
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

1



Abstract—Neural Network Coding and Representation (NNR)

is the first international standard for efficient compression of

neural networks (NNs). The standard is designed as a toolbox of

compression methods, which can be used to create coding

pipelines. It can be either used as an independent coding

framework (with its own bitstream format) or together with

external neural network formats and frameworks. For providing

the highest degree of flexibility, the network compression methods

operate per parameter tensor in order to always ensure proper

decoding, even if no structure information is provided. The NNR

standard contains compression-efficient quantization and an

arithmetic coding scheme (DeepCABAC) as core encoding and

decoding technologies, as well as neural network parameter pre-

processing methods like sparsification, pruning, low-rank

decomposition, unification, local scaling and batch norm folding.

NNR achieves a compression efficiency of more than 97% for

transparent coding cases, i.e. without degrading classification

quality, such as top-1 or top-5 accuracies. This paper provides an

overview of the technical features and characteristics of NNR.

Index Terms—Neural Network Compression, Neural Network

Representation, MPEG Standards, Machine Learning

I. INTRODUCTION

HE Neural Network Compression and Representation

standard (NNR) is the first standard by the ISO/IEC

Moving Picture Experts Group (MPEG) standardization

working group that targets the efficient compression and

transmission of neural networks. The NNR standard provides a

compression efficiency of up to 97% for transparent coding use

cases, i.e. without degrading the classification and inference

capability of the respective neural network. This is reflected by

the obtained evaluation results, where compression efficiency

in terms of compressed bitrate vs. original neural network

bitrate is analyzed. Here, performance metrics for relevant use

cases in multimedia for the original as well as decoded and

reconstructed network are used, such as constant top-1 and top-

Manuscript received <Month> xx, 202x; etc.
H. Kirchhoffer, P. Haase, W. Samek and K. Müller are with Fraunhofer

Institute for Telecommunications, Heinrich Hertz Institute, 10587 Berlin,

Germany (e-mail: {karsten.mueller, heiner.kirchhoffer}@hhi.fraunhofer.de)
H. Rezazadegan-Tavakoli, F. Cricri, E. Aksu and M. M. Hannuksela are

with NOKIA Technologies, Finland.

5 classification accuracy for image classification. In addition,

much higher coding gains can be obtained if the classification

accuracy is allowed to drop, as reflected by the rate-

classification curves.

The demand for efficient compression of neural networks has

grown exponentially in recent years, as machine learning and

artificial intelligence have evolved and these methods have

been incorporated into almost every technical field, such as

medical applications, transportation, network optimization, big

data analysis, surveillance, speech, audio, image and video

classification, and many more [1]. Furthermore, the neural

network architectures have developed towards much more

complex structures with increasing number of layers and

neurons per layer, such that current architectures already

contain several hundreds of millions of weight parameters. An

additional factor for the exponential growth is the development

of use cases itself. While in simple scenarios, a neural network

is trained, transmitted once to an application device and used

there for inference, new scenarios of federated learning demand

for continuous communication between many devices [2], [3].

Accordingly, such use cases require the best compression

technology with highest coding gain in order to minimize the

overall communication traffic.

Therefore, the NNR standard is designed to provide the

highest compression efficiency for deep neural network by

combining preprocessing methods for data reduction,

quantization and context-adaptive arithmetic binary coding

(DeepCABAC). The standard supports the most common

neural network formats, such as PyTorch1, TensorFlow2,

ONNX [4] or NNEF [5] in two different ways: Either, NNR is

used independently by compressing all parameter tensors of a

neural network and including the respective network structure

or connection graph into the NNR bitstream, or NNR is used

within an external framework by also coding neural network

parameters tensor-wise, while all structure data is handled by

the framework.

The paper is organized as follows: Section II presents related

W. Jiang, W. Wang and S. Liu are with Tencent, Palo Alto, CA, USA
F. Racapé, S. Jain, S. Hamidi-Rad are with InterDigital AI Lab, Los Altos,

California 94022, USA.

W. Bailer is with JOANNEUM RESEARCH, 8010 Graz, Austria.
1 https://pytorch.org/
2 https://www.tensorflow.org/

Overview of the Neural Network Compression

and Representation (NNR) Standard

Heiner Kirchhoffer, Paul Haase, Wojciech Samek, Member, IEEE, Karsten Müller, Senior Member,

IEEE, Hamed Rezazadegan-Tavakoli, Member, IEEE, Francesco Cricri, Emre Aksu, Miska M.

Hannuksela, Member, IEEE, Wei Jiang, Member, IEEE, Wei Wang, Member, IEEE, Shan Liu, Senior

Member, IEEE, Swayambhoo Jain, Member, IEEE, Shahab Hamidi-Rad, Fabien Racapé, and Werner

Bailer, Member, IEEE

T

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

technology from the field of neural network compression.

Section III describes coding tools and features. The high-level

syntax of the NNR standard is described in Section IV, while

Section V introduces preprocessing and parameter reduction

methods. The NNR core compression methods are described in

Section VI with quantization methods, followed by Section VII

with the arithmetic coding engine. In Section VIII, the

compression efficiency is demonstrated with respective NNR

coding results and finally, the paper is concluded in Section IX.

II. RELATED WORK

Starting with the development of deep neural networks, early

works already showed the redundancy of the parameters in

these models, and that the full set of parameters can be predicted

from a fraction of them [6]. NNs are often not trained from

scratch, and it has been shown that models obtained from

retraining a model or training multiple specializations using

transfer learning have similar parameter statistic as the base

model [7]. Reducing the redundancy of the model parameters

involves typically three steps: (i) reduction of parameters, for

example by eliminating neurons (pruning), reducing the

entropy of a tensor (sparsification) or decomposing/

transforming a tensor, (ii) reducing the precision of parameters

(i.e. quantization), and (iii) performing entropy coding. Han et

al. were one of the first to describe this complete compression

pipeline [8].

A large number of variants of algorithms for obtaining NNs

with a reduced number of parameters have been proposed,

which is for example evident from a recent survey that analyses

and compares 81 NN pruning papers [9]. The Lottery Ticket

Hypothesis [10] postulates that for a dense randomly initialized

feed forward NN there are subnetworks that achieve the same

performance at similar training cost. Several recent works

address this hypothesis, showing that such an optimal

subnetwork can be obtained by pruning without further training

[11] or finding subnetworks that can be re-trained from an early

iterate [12]. While removing entire neurons or channels will

directly impact inference complexity, parameter reduction

resulting in sparser tensors requires specific support on the

target platform. Recently, support for efficient operations on

sparse tensors is increasing, e.g. for GPUs [13].

Quantization can be applied in a straight forward way to the

parameters of an NN. For many commonly used networks using

8 bits or even less results in no or only small performance

degradations, in particular, if the quantized network is then fine-

tuned. Several works show that performance loss can be

avoided when quantization is already considered in the training

process (requiring a differentiable quantization function) [14]

or when learning the quantization function with the network

[15]. Recent work proposes an asymptotic-quantized estimator

(AQE) to estimate the gradients in networks with highly

quantized weights (e.g. 1 bit), ensuring smoothness and

differentiability during back-propagation [16]. In order to gain

not just model size but also inference efficiency from

quantization, support on the target architecture is needed.

Neural network inference using 8, 4 or even 1 bit fixed point

representations has been an active research topic in recent

years, supported first on FPGAs [17] and meanwhile also on

general purpose hardware such as GPUs (e.g., NVIDIA

TensorRT [18]). Deep learning frameworks have added support

for fixed point inference, as well as varying the precision for

different parts of the NN (mixed precision).

The borders between compressing a trained NN, possibly

with fine-tuning, and training a smaller network for the same

task are not sharp. The approach of training a more compact

network on the outputs of a larger trained network is known as

knowledge distillation or teacher-student learning and predates

deep learning [19]. Taking this further to training a set of

models and selecting the best one results in performing network

architecture search (NAS). Although less computationally

expensive NAS methods have been proposed recently [20], NN

compression approaches require a more efficient approach

resulting in a single model. Another issue for retraining is the

requirement to access (the original) training data, which may

not be feasible in all use cases. An interesting approach in this

direction is performing compression with a synthetic dataset

[21].

One issue that makes creating compact NNs for efficient

inference challenging is the dependency on the characteristics

of the target hardware. A framework for dynamic inference on

resource constrained hardware, including input- and resource

dependent dynamic inference mechanisms, allowing to meet

specific resource constraints, has been proposed recently [22].

First steps are being made towards network compression

methods that output representations prepared for later

specialization to the target platform [23]. However, one

challenge is still the complexity of measuring the impact of

certain modifications of the network in terms of speed and

energy consumption on the target platform. First frameworks

such as Deep500 [24] have been proposed, but are still in an

early stage.

While NN compression is still a very active research area,

building blocks that are common to most approaches have

emerged. For each of them, established methods and best

practices can be found in literature. In order to facilitate

adoption of these tools beyond the research community,

standardizing interfaces and providing reference

implementations are required.

III. NNR CODING TOOLS AND FEATURES

Achieving compact representations of trained neural

networks addresses two main goals: (i) providing efficiency

when the NN is stored or transmitted and (ii) allowing for

resource-efficient inference. The importance of these goals

depends on the specific use case. For example, for frequent

updates in a federated training scenario involving nodes in a

cloud infrastructure the efficient transmission is most

important, while for infrequent deployments of a trained NN to

an embedded device supporting efficient inference is crucial.

Methods addressing the second goal also support the first one,

and need to output a representation that can be used directly for

inference (at least on specific target platform), while methods

addressing the first one will have additional coding steps

requiring decoding at the receiving end.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

3

The NNR coding design thus addresses these two core goals,

i.e. coding efficiency of any neural network, ease of transport

and good implementability due to parallelization as well as

interoperability with common NN frameworks. It allows

efficient compression of original NNs, as well as certain

preprocessing steps for NN parameter reduction.

Fig. 1 NNR Overview.

Fig. 1 provides an overview of the NNR coding and decoding

process. Starting from an original network O, which can have

any NN architecture, parameter reduction may be applied to the

NN. Multiple such parameter reduction methods (e.g., structure

pruning and tensor sparsification) may be applied subsequently,

resulting in a preprocessed network Pi (after i such operations).

Some or all of the remaining parameters in Pi are then

quantized, resulting in the network Q. In order to obtain a

bitstream S for storage or transmission of the model, entropy

coding is applied to the quantized parameters. In the decoding

process, entropy decoding provides a reconstructed model RQ.

As entropy coding is a lossless operation, RQ is equivalent to Q.

If the target platform supports inference with the quantized

representation(s) used in RQ, this NN can be used for inference.

Otherwise, the parameter values need to be reconstructed to

their original representation, resulting in RP (note that even if

the precision of values is the same as in Pi, the models will only

be equivalent but not identical due the information loss during

quantization). RP can be directly used for inference, unless any

of the sparse tensor representation used cannot be processed on

the target platform. In this case fully reconstructing the network

R is required, which does not contain any tensor or structure

representations different to O. The coding gain is evaluated as

compression ratio cr = S/O of bitstream size over original

network size, or alternatively as compression efficiency

ce = 1 - cr.

A. Coding Pipelines

As different use cases focus on different competing

requirements (e.g., coding efficiency vs. inference complexity),

and the usefulness of certain encoding tools may depend on the

intended target platform, there is no single optimal coding

pipeline that optimally serves all intended use cases. NNR is

thus designed as a toolbox of coding tools, from which

3 https://www.tensorflow.org/
4 https://pytorch.org/

appropriate coding pipelines can be assembled by selecting

tools for each of the three stages in the process shown in Fig. 1.

Some of the tools are alternatives for addressing neural network

models with different types of characteristics, while other tools

are designed to work in sequence.

Parameter reduction methods process a model to obtain a

compact representation, for which the NNR standard specifies

the most widely used: Sparsification produces a sparse

representation of the model, e.g., by replacing some weight

values with zeros. Unification produces groups of similar

parameters in order to lower the entropy of model parameters

by making them similar to each other. Pruning reduces the

number of parameters by eliminating parameters or group of

parameters. Decomposition changes the structure of the weight

tensors to obtain a more compact representation. The parameter

reduction methods can be combined or applied in sequence,

e.g., performing pruning and sparsification.

Parameter quantization methods reduce the precision of the

representation of parameters. The methods include uniform

quantization, codebook-based quantization and dependent

scalar quantization. If supported by the inference engine, the

quantized representation can directly be used for more efficient

inference. For storage and transmission, it also prepares the data

for entropy coding. Parameter quantization can be applied to the

outputs of parameter reduction methods as well as to source

models. Entropy coding methods encode the results of

parameter quantization methods. These coding tools are

presented in detail in Sections V-VII.

B. Interoperability with Exchange Formats

The representation of a trained NN consists of two main

components: (i) the description of the topology of the NN, i.e.

the definition of the layers, their types, sizes and the

connections between them, and (ii) the parameter values such

as weights and biases, grouped into tensors. NNR focuses on

the second component, aiming to replace raw parameter tensors

with more efficient representations. The first component is well

covered by the native formants of common deep learning

frameworks (most notably, TensorFlow3 and PyTorch4). In

order to improve interoperability, two exchange formats have

been proposed: (i) Open Neural Network Exchange Format

ONNX [4], with a serialized format is based on protobuf5, with

strings identifying types of elements in the graph, and widely

supported as import/export format by different frameworks. (ii)

Neural Network Exchange Format (NNEF) [5], which is an

effort by the Khronos group to define an exchange format to use

networks trained with different frameworks for inference on

different platforms. However, apart from basic support for

quantization, these formats currently do not support

compressed model representations.

Here, the NNR standard is complementary to these efforts

and achieves interoperability with topology information

represented in native formats as well as with exchange formats.

The standard thus allows carrying topology information defined

in any of these formats as part of an NNR bitstream containing

5 https://developers.google.com/protocol-buffers

Reconstructed
Neural Net

R

Original
Neural Net

O

NNR Encoder

NNR Decoder

Pi Q

RP RQ

Bitstream S

0 1 0 1 1 1

Sparsification

Pruning

LR-Decomp.

Optional Preprocessing /
Parameter Reduction

Quantization Entropy Coding

Uniform Nearest
Neighbor Q.

DeepCABAC
Codebook Q.

Dependent Q.Unification

Batchnorm
Folding

Local Scaling

Optional Postprocessing /
FineTuning

Value Reconstruction Entropy Decoding

DeepCABAC
Value

Reconstruction /
Rescaling

Network Reconstruction /
Re-Composition

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

compressed parameter tensors (see Section IV for details). For

the exchange formats, NNR also proposes a way to carry

compressed parameter tensors in these formats, replacing the

uncompressed representation for some or all tensors of the NN.

C. Decoding Methods

The NNR standard provides decoding methods for specific

network tensor types, such as integer, scaled integer, or floating

point parameter representations. A decoding method denoted

NNR_PT_INT provides decoding functionality for parameters

that are arrays or tensors of integer values. A decoding method

NNR_PT_FLOAT extends NNR_PT_INT by adding

quantization step size ∆ that is multiplied with each decoded

integer value yielding scaled integers (which are usually

represented as float values). This quantization step size is

derived from an integer quantization parameter qp and an

integer parameter qp_density as follows:

 𝑚𝑢𝑙 = 2𝑞𝑝_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + (𝑞𝑝 & (2𝑞𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 1), (1)

 ∆= 𝑚𝑢𝑙 ∙ 2(𝑞𝑝≫𝑞𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦)−𝑞𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦. (2)

Here, “>>” represents the bitwise right-shift operator. Both

values qp and qp_density are signaled in the bitstream. As can

be seen from equations (1) and (2), a qp of 0 corresponds to

∆ = 1, negative qp values to ∆ < 1, and positive qp values to

∆ > 1. The qp_density controls the granularity of the step size.

More precisely, increasing the qp by 2𝑞𝑝_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 corresponds to

doubling ∆. For example, a typical value for qp_density would

be 3 allowing 7 intermediate step size values between ∆ and 2∆.

A further decoding method NNR_PT_BLOCK jointly

decodes several related parameter arrays or tensors including

local scaling parameters, biases, batch norm parameters, and

weights. This is the basis for enabling techniques like batch

norm folding or local scaling.

The decoding methods NNR_PT_FLOAT and

NNR_PT_BLOCK can furthermore be combined with an

integer codebook. I.e., the decoded values are indexes to values

of a codebook that contains integer values which are finally

multiplied by step size ∆.

D. Parallel Decoding

In order to provide a decoder with the ability of parallel

decoding of large tensors, a block scanning and entry point

concept is included in the NNR standard. A tensor is first

reshaped into 2D and then subdivided into blocks of size NxN

where N can be 8, 16, 32, or 64. Such blocks may directly be

fed into optimized inference engines that operate on an NxN

block size. Decoding of blocks is carried out in row-major

order. For each row of blocks (except the uppermost row), entry

point information is provided in the bitstream so that a decoder

can choose to start the decoding at a particular row or to decode

several rows in parallel. This refers in particular to dependent

quantization and arithmetic coding methods, where respective

absolute values of state variables are signaled in the entry point

information to enable parallel block row or sub-tensor decoding

independent of previously coded information.

IV. HIGH-LEVEL SYNTAX

Storage, carriage and distribution of compressed neural

networks are important systems aspects of NNR. The NNR

standard not only defines compression tools for neural networks

but also high-level syntax for efficient carriage of such

compressed data.

Compressed neural network data and related metadata are

stored and carried in the form of structured syntax elements

which are called NNR units. When multiple NNR units are

concatenated, they form an NNR bitstream as illustrated in

Fig. 2 top. The NNR bitstream format provides an efficient and

well-structured mechanism to carry, signal and exchange

compressed neural network representations, either fully or

partially (e.g. compressed data of one layer only). With the

defined NNR high-level syntax, it is possible to carry

compressed neural network information at any granularity as

long as such information is uniquely referenceable to the neural

network topology (e.g. a tensor, filter, layer, or bias).

Fig. 2 Top: NNR bitstream with NNR units, Bottom: NNR Unit Structure.

As presented in Fig. 2 bottom, an NNR unit consists of the

following syntax elements in the given order:

• NNR unit size, which signals the total byte size of the NNR

unit, including the NNR unit size itself.

• NNR unit header, which contains information about the NNR

unit type and related metadata.

• NNR unit payload, which contains compressed or

uncompressed data related to the neural network.

TABLE I lists different types of NNR units and their

descriptions. An NNR bitstream always starts with an NNR

Start Unit, followed by an NNR Model Parameter Set Data Unit

and several NNR Compressed Data Units. If neural network

topology information is signaled to be carried inside an NNR

bitstream, then NNR Topology Data Units (and optionally NNR

Quantization Data Units) are also present before any NNR

Compressed Data Unit that reference them.

Multiple NNR units which are related to each other can be

grouped together and carried as a single NNR Unit. Such NNR

Units are called NNR Aggregate Units. For example, the data

that refers to a neural network layer can be aggregated into such

a unit. NNR Aggregate Units may have their own parameter

sets. If multiple NNR units are aggregated into an NNR

Aggregate Unit, then an NNR Layer Parameter Set Data Unit

is present as the first NNR Unit inside the NNR Aggregate Unit

which further provides information about the NNR Aggregate

Unit contents. NNR Layer Parameter Set Data Units are active

until another one is signaled or until the data boundary of the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

5

containing NNR Aggregate Unit is reached.
TABLE I

NNR UNIT TYPES

Identifier NNR Unit Type Description

NNR_STR NNR start unit Compressed neural network

bitstream start indicator
NNR_MPS NNR model parameter

set data unit

Neural network global

metadata and information

NNR_LPS NNR layer parameter
set data unit

Metadata related to a partial
representation of neural

network

NNR_TPL NNR topology data
unit

Neural network topology
information

NNR_QNT NNR quantization data

unit

Neural network quantization

information
NNR_NDU NNR compressed data

unit

Compressed neural network

data

NNR_AGG NNR aggregate unit NNR unit with payload
containing multiple NNR units

NNR high-level syntax also enables efficient carriage of

compressed neural network data by providing mechanisms for

partitioning compressed tensor data into multiple NNR units, as

well as indicating whether such NNR units are independently

decodable.

NNR Model Parameter Set Data Units and NNR Layer

Parameter Set Data Units can also carry additional metadata

related to the compressed neural network such as inference

performance at different sparsification, pruning, unification and

decomposition levels. Moreover, pruning information related to

a neural network topology can be signaled inside an NNR

Topology Data Unit.

NNR utilizes industry-defined and existing topology

representations and enables the carriage of such externally

defined information as part of the NNR bitstream. Such data is

carried inside the NNR Topology Data Units and NNR

Quantization Data Units. By utilizing a reference signaling

mechanism, different elements and components of a neural

network can be compressed, carried in the NNR bitstream and

then linked to the neural network topology. In addition to this

feature, carriage of NNR bitstream inside different neural

network exchange formats, as given in Section III.B, is also

defined by the specification.

V. PRE-PROCESSING AND PARAMETER REDUCTION

Instead of coding and compressing a neural network in its

original form, one of the preprocessing and parameter reduction

methods can be applied. The methods defined in the NNR

standard are described in the following subsections.

A. Sparsification

Sparsification refers to a group of technologies that process

the parameters or group of parameters to produce a sparse

representation of the model by replacing some weight values

with zeros. Obtaining weight matrices/tensors that are sparse is

one method for achieving parameter reduction.

To sparsify the neural network, some of the convolutional

kernels’ values, or some of the fully-connected layers’ weights

are set to zero. A highly-sparse neural network is likely to have

low entropy and thus be more compressible by entropy-based

encoders such as arithmetic codecs. In addition, inference-time

speed-ups can be achieved when sparse matrix multiplications

are used [25]. An important step of the sparsification process is

to determine which parameters are less important than others,

so that they can be set to zero while minimizing the

performance loss of the neural network (e.g., the classification

accuracy in the case of a classifier neural network).

One common approach is to sparsify the parameters with low

absolute values. However, neural networks are usually not

trained specifically for the purpose of being sparsified,

therefore sparsifying such models can be considered to be sub-

optimal. A better approach, adopted into the NNR standard, is

to optimize the neural network for the sparsification process by

fine-tuning a pre-trained neural network with a custom-

designed loss function. A sparsity loss was designed based on

the sparsity metric introduced in [26], and is defined as follows:

 𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦(𝑤) =
|𝑤|1

|𝑤|2
+ 𝛾

|𝑤|2
2

|𝑤|1
, (3)

where |𝑥|1and |𝑥|2 are the 𝑙1 and 𝑙2 norms of 𝑥, respectively.

During the fine-tuning process, 𝛾 is chosen such that
|𝑤|2

2

|𝑤|1
=

1

3

|𝑤|1

|𝑤|2
. More details on the sparsity loss can be found in [27]. The

sparsity loss in eq. (3) is combined with the task loss, i.e., the

loss used for pre-training the neural network, such as the cross-

entropy loss for a classifier, thus obtaining the total loss used

for fine-tuning:

 𝐿𝑡𝑜𝑡𝑎𝑙(𝑤) = 𝐿𝑡𝑎𝑠𝑘(𝑤) + 𝜆 𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦(𝑤), (4)

where 𝜆 is set so that 𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦(𝑤) = 𝑚 𝐿𝑡𝑎𝑠𝑘(𝑤) on a

validation dataset, and 𝑚 is a hyper-parameter which can be

tuned to achieve different rate-distortion points – higher 𝑚

values lead to better robustness to high sparsity ratios and

therefore can be used to achieve higher compression. After this

fine-tuning process has completed, the actual sparsification is

performed by setting the parameter values to zero that are lower

than a predefined threshold. This threshold is another hyper-

parameter that can be used to achieve different rate-distortion

points – higher thresholds lead to higher sparsity and therefore

higher compression.

B. Pruning

In modern literature, pruning and sparsification are often

used interchangeably. Nonetheless, given context and how

removal of weights are done, the two terminologies may refer

to different technologies. In the NNR standard, pruning is

defined as an operation that reduces the number of parameters

by eliminating parameters or groups of parameters. This

procedure results in a dense representation which has less

parameters in comparison to the original model, e.g., by

removing redundant convolution filters from the layers, as

described in subsection V.B.1). Second, micro-structured

pruning removes weight coefficients to accelerate GEMM

computation and is described in subsection V.B.2).

1) General Neural Network Pruning

The NNR standard contains a pruning technology that is

combined with the sparsification methods. Algorithm 1

summarizes the three steps.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

6

ALGORITHM 1

Inputs:
Pre-trained network, pruning ratio

x, sparsification ratio y

1) Analyze the neural network weight to determine which weights
to be removed from the network by estimating weight

importance using eq. (5).

2) Remove the least important neurons with respect to the pruning
ratio x.

3) Apply data dependent sparsification with regard to

sparsification ratio y
4) Repeat steps 1)-3) when required.

Whenever pruning ratio y is satisfied, step 3 can be reduced

to employing only task loss to improve the neural network

performance. Steps in Algorithm 1 could be used in a

progressive fashion or at once.

The neural network weights are estimated based on a

diffusion process over the layers. An example of pruning of

convolution filters is provided below, and a similar formulation

applies to other type of layers and to group of layers.

Each convolution layer consists of a weight tensor, or filter,

denoted ℱ ∈ 𝑅𝐶𝑜×𝐾×𝐾×𝐶𝑖 where 𝐶𝑜 is the number of output

channels, 𝐾 is the dimension of the convolution kernel, and 𝐶𝑖

is the number of input channels.

Under constant input the redundancy in a layer output is

modelled by the internal redundant information inside the filter.

Thus, by considering an ergodic Markov process between the

output channels, graph diffusion is employed to find the

redundancy. To this end, given a convolution filter ℱ, a feature

matrix 𝐌 ∈ 𝑅𝐶𝑜×𝑚 is obtained where 𝑚 = 𝐾 × 𝐾 × 𝐶𝑖, via

tensor reshape.

Following the ergodic Markov chain with each output

channel as one state, the probability of reaching a particular

state at the equilibrium is 𝜋𝑇 = 𝜋𝑇𝐏 where 𝐏 is the stochastic

transition matrix and π is the equilibrium probability of 𝐏,

corresponding to the left eigenvector λ = 1. Under equilibrium,

the importance could be defined as

 𝑆 = 𝑒𝑥𝑝(−
1

σπ
), (5)

where σ is a smoothing factor, that could be equal to the

number of output channels. The transition matrix 𝑃 is

determined as

 p
ij

=
e

−D(mi,mj)

∑ e−D(mi,mz)co
z=1

, (6)

where 𝑚𝑖 is the i-th row of the 𝑴 and 𝐷(⋅,⋅) is any distance

function of preference. A higher value of 𝑆 will indicate more

dissimilarity, importance and salience for output channel in

comparison to the other output channels. To prune the filters,

after computing the 𝑆, less salient channels are removed.

In step (3) any of the sparsification methods could apply, as

shown in section V.A.

2) Micro-structured Pruning

The convolutional computation in DNN is commonly

implemented as GEneral Matrix Multiplication (GEMM). For

this, the NNR standard applies micro-structured weight

pruning, which removes weight coefficients in the micro-

structured level to accelerate GEMM computation.

Let Wk be the weight tensor of the k-th layer. Wk is a general

5-D tensor of size 𝑐1
𝑘 × 𝑐2

𝑘 × 𝑛1
𝑘 × 𝑛2

𝑘 × 𝑛3
𝑘, where 𝑐1

𝑘(𝑐2
𝑘) is the

number of input (output) channel and 𝑛1
𝑘, 𝑛2

𝑘, and 𝑛3
𝑘 give the

kernel size. When any of 𝑐1
𝑘, 𝑐2

𝑘, 𝑛1
𝑘, 𝑛

2

𝑘
 or 𝑛3

𝑘 equals 1, tensor Wk

is reduced to a lower dimension. Micro-structure pruning first

reshapes Wk into a 3D tensor of size 𝑐1
𝑘′ × 𝑐2

𝑘′ × 𝑛𝑘 (e.g.,

𝑐1
𝑘′=𝑐1

𝑘, 𝑐2
𝑘′ = 𝑐2

𝑘 , 𝑛𝑘 = 𝑛1
𝑘 × 𝑛2

𝑘 × 𝑛3
𝑘), and then partitions the

resized weight tensor into micro-structured blocks (denoted by

𝐵𝑗
𝑘 as the j-th block of 𝑊𝑘) of size 𝑏1

𝑘 × 𝑏2
𝑘 × 𝑏3

𝑘. Weights

within the selected micro-structured blocks are set to 0. A

pruning loss 𝐿(𝐵𝑗
𝑘) can be computed for 𝐵𝑗

𝑘 as the LN norm of

the absolute of weights in 𝐵𝑗
𝑘 (e.g., L1 as MAE or L2 as MSE).

The micro-structured blocks can be 3-D, 2-D or 1-D blocks,

resulting in different model compression and acceleration

effects. When 𝑐1
𝑘 cannot be fully divided by 𝑏1

𝑘, 𝑐2
𝑘 cannot be

fully divided by 𝑏2
𝑘, or 𝑛𝑘 can not be fully divided by 𝑏3

𝑘, micro-

structured blocks along the boundary of these corresponding

dimension will be smaller. That is, 𝑏1
𝑘 × 𝑏2

𝑘 × 𝑏3
𝑘 is the

maximum size of the micro-structured blocks.

A pruning mask 𝑀𝑘 is maintained in the training process with

the same shape as 𝑊𝑘, which records whether the

corresponding weight coefficients are pruned or not. Given the

original target loss 𝐿𝑡𝑟𝑎𝑖𝑛 of the task (categorical cross-entropy

for image classification, MSE for image compression, etc.), the

training process iteratively takes the following two steps:

Step 1: The micro-structured blocks are ranked based on their

pruning loss in ascending order. Given a pruning ratio p as a

hyperparameter, the top p super-blocks with smallest pruning

loss are selected to be pruned.

Step 2: Weight coefficients that are marked by 𝑀𝑘 as being

pruned are fixed, and the remaining unfixed weight coefficients

in 𝑊𝑘 are updated through a neural network training process by

optimizing the target loss Ltrain.

The micro-structured weight pruning will output an updated

model with the same model structure as the input model, where

part of the weight coefficients have been structurally removed

(pruned). The output model can be directly used in the same

way as the input model.

C. Low-Rank Decomposition

In NNR, a network can also be preprocessed by low-rank

decomposition of layer weight parameters. For a dense layer

with weight-matrix 𝑊 ∈ ℝ𝑚 𝑥 𝑛 rank 𝑟 ≤ 𝑚𝑖𝑛 (𝑚, 𝑛)

approximation is obtained by solving (7).

 𝑈𝑊 , 𝑉𝑊 = arg min
𝑈∈ ℝ𝑚 𝑥 𝑟 ,V ∈ ℝ𝑟 𝑥 𝑛

||𝑊 − 𝑈𝑉||𝐹
2 (7)

The above problem is efficiently solved by singular value

decomposition (SVD) of weight-matrix 𝑊. Using the low-rank

factors 𝑈𝑊 , 𝑉𝑊 the weight-matrix 𝑊 is approximated as 𝑊 ≈
 𝑈𝑊𝑉𝑊 and therefore the total number of parameters are

reduced from 𝑚𝑛 to 𝑟(𝑚 + 𝑛). With rank 𝑟 approximation the

dense layer is effectively converted to a two dense layer of sizes

𝑚  𝑟 and 𝑟  𝑛 with no bias and non-linearity in between them,

and original bias in the second layer. The final rank for low-

rank approximation is chosen using a tolerance 𝜀 by finding the

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

7

minimum rank that leads to ||𝑊 − 𝑈𝑊𝑉𝑊||𝐹
2 ≤ 𝜀. In some

cases, such tolerance may not be achievable with reduction in

the number of parameters. Therefore, if the total number of

parameters after low-rank approximation for a given tolerance

𝜀 is more than the parameters in the original weight-matrix, skip

the low-rank approximation is skipped and the original matrix

retained. This happens when 𝑟 ≥
𝑚𝑛

𝑚+𝑛
.

While the SVD is computationally more expensive than

pruning, its computational complexity can be improved by

leveraging orthogonality of the singular-vectors. Rank 𝑟 + 1

SVD shares first 𝑟 singular-vectors from rank 𝑟 SVD and

therefore only one pair of singular-vectors is needed for

calculating rank 𝑟 + 1 low rank approximation.

Consider a convolutional layer for one input channel, such

that the general 5-D convolution tensor reduces to a 4-D weight

tensor with size 𝑓ℎ  𝑓𝑤  𝑛𝑖  𝑛𝑜, where 𝑓ℎ, 𝑓𝑤 are the height

and width of the convolutional filter, 𝑛𝑖 is the number of input

channels and 𝑛𝑜 is the number of output channel. For low-rank

decomposition the 4-D weight tensor of convolutional layer

first needs to be reshaped into a 2-D matrix in the following

way: First the 3-D filters for each output channel is vectorized

into a vector of size 𝑓ℎ𝑓𝑤𝑛𝑖, followed by stacking the 𝑛𝑜 vectors

into a matrix of size 𝑓ℎ𝑓𝑤𝑛𝑖  𝑛𝑜. A rank 𝑟 approximation of

this 𝑓ℎ𝑓𝑤𝑛𝑖  𝑛𝑜 matrix reduces the number of parameters from

𝑓ℎ𝑓𝑤𝑛𝑖𝑛𝑜 to 𝑟(𝑓ℎ𝑓𝑤𝑛𝑖 + 𝑛𝑜). Similar to the dense layers, these

low-rank factors can be reshaped back into two back-to-back

convolutional layers of size 𝑓ℎ  𝑓𝑤  𝑛𝑖  𝑟 and 1  1  𝑟  𝑛𝑜

with no-bias and non-linearity in between them, and original

bias in the second convolutional layer.

Since the low-rank approximation effectively reduces a layer

into two more computationally efficient layers it leads to

equivalent gains in inference complexity proportional to the

reduction in number of parameters with a typical off-the-shelf

GPU. Another advantage is that it allows for efficient fine-

tuning for cases when the performance of DNN drops beyond

acceptable limits after low-rank approximation.

D. Unification

Unification in the NNR standard is a generalization of weight

pruning. Here, the weight representation is reduced in a

structured way that benefits storage and GEMM computation.

This approach unifies weights within a selected micro-

structured weight block by assigning them a shared absolute

value. When this value is zero, the method reduces to the micro-

structured weight pruning approach described in Section V.B.2)

The micro-structured weight unification method keeps the

neuron connections instead of removing them (setting them to

zero as in weight pruning), which better preserves the original

network structure to provide a balanced model for both

compression and task performance. In contrast, the micro-

structured weight pruning pursues more aggressive

compression effects, i.e., the pruned micro-structured blocks

can be completely removed from storage and computation.

Both micro-structured weight unification and micro-structured

weight pruning are hardware friendly for both model storage

and inference computation, in terms of accommodating flexible

micro-structured block shapes that are compatible with the

underlying inference engine.

Specifically, the weight tensor 𝑊𝑘 of the k-th layer of the

network is reshaped into a 3D tensor of size 𝑐1
𝑘′ × 𝑐2

𝑘′ × 𝑛𝑘.

Here the reshaped weight tensor is further partitioned into

super-blocks (denoted by 𝑆𝑖
𝑘 as the i-th super-block of 𝑊𝑘) of

size 𝑠1
𝑘 × 𝑠2

𝑘 × 𝑛𝑘. For example, super-blocks of size 64 ×

64 × 𝑛𝑘 are selected to be consistent with 3-dimensional

Coding Tree Units (CTU3Ds). Each super-block is further

partitioned into micro-structured blocks (denoted by 𝐵𝑖,𝑗
𝑘 as the

j-th block of 𝑆𝑖
𝑘) of size 𝑏1

𝑘 × 𝑏2
𝑘 × 𝑏3

𝑘. Weight unification

happens within the selected micro-structured blocks, where its

weight coefficients are set to have the same absolute value

while maintaining their original signs:

 𝑣𝑖,𝑗,𝑙
𝑘 = {

𝑞𝑖,𝑗
𝑘 , if 𝑤𝑖,𝑗,𝑙

𝑘 ≥ 0,

−𝑞𝑖,𝑗
𝑘 , otherwise,

 (8)

where 𝑣𝑖,𝑗,𝑙
𝑘 is the newly assigned value for coefficient 𝑤𝑖,𝑗,𝑙

𝑘 in

block 𝐵𝑖,𝑗
𝑘 . Here 𝑞𝑖,𝑗

𝑘 is computed as the mean of the absolute of

weights in 𝐵𝑖,𝑗: 𝑞𝑖,𝑗
𝑘 = 𝑎𝑣𝑔

𝑤𝑖,𝑗,𝑙
𝑘 ∈𝐵𝑖,𝑗

𝑘
|𝑤𝑖,𝑗,𝑙

𝑘 |, and the loss

introduced by this unification operation can be measured by a

unification loss 𝐿(𝐵𝑖,𝑗
𝑘), which can be computed as the LN norm

of the absolute of weights in 𝐵𝑖,𝑗
𝑘 (e.g., L2 as MSE). Then the

unification loss 𝐿(𝑆𝑖
𝑘) of the super-block 𝑆𝑖

𝑘 is computed by

averaging 𝐿(𝐵𝑖,𝑗
𝑘) across micro-structured blocks in 𝑆𝑖

𝑘.

The micro-structured blocks can be 3D, 2D or 1D, resulting

in different model compression and acceleration effects. Also,

when 𝑐1
𝑘 cannot be fully divided by 𝑠1

𝑘, or 𝑐2
𝑘 cannot be fully

divided by 𝑠2
𝑘, the super-blocks along the boundary of the

corresponding dimension will be smaller. When 𝑛𝑘 can not be

fully divided by 𝑏3
𝑘, 𝑠1

𝑘 cannot be fully divided by 𝑏1
𝑘, or 𝑠2

𝑘

cannot be fully divided by 𝑏2
𝑘, the micro-structured blocks

along the boundary of the corresponding dimension will be

smaller. That is, 𝑏1
𝑘 × 𝑏2

𝑘 × 𝑏3
𝑘 is the maximum size of the

micro-structured blocks, and 𝑠1
𝑘 × 𝑠2

𝑘 × 𝑛𝑘 is the maximum

size of the super-blocks.

A unification mask 𝑀𝑘 is maintained in the training process,

which takes the same processing steps as the pruning mask (see

section V.B.2) for details).

The micro-structured weight unification will output an updated

model with the same model structure as the input model, where

part of the weight coefficients have been structurally changed

(unified). The output model can be directly used in the same

way as the input model.

E. Batch Norm Folding

Batch norm folding is a technique for reducing redundancy

of particular parameters for which interdependencies are known

by encoder and decoder. It assumes that the combination of a

convolutional or fully-connected layer with a batch norm layer

of the following form can be expressed as

 𝐵𝑁(𝑋) =
𝑊 ∗ 𝑋 + 𝑏 − 𝜇

√𝜎2 + 𝜖
∘ 𝛾 + 𝛽 (9)

where 𝑋 is the input, 𝐵𝑁(𝑋) is the output, 𝑊 is the weight

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

8

tensor (represented as 2D matrix so that each row corresponds

to a neuron), 𝑏 is a bias parameter, and the remaining

parameters are batch-normalization parameters. Note that 𝑏, 𝜇,

𝜎2, 𝛾, and 𝛽 have the same shape as 𝑋 and that 𝑋 is shaped as

a transposed vector. Parameter 𝜖 is a scalar close to zero.

Operator ∘ denotes element-wise scaling of each row vector of

a matrix (or each element of a transposed vector) with the

corresponding element of a transposed vector.

Instead of encoding each of the parameters individually, the

following transformation can be done before encoding:

 𝐵𝑁(𝑋) = 𝛼 ∘ 𝑊 ∗ 𝑋 + 𝛿 (10)

where 𝛼 =
𝛾

√𝜎2+𝜖
 and where 𝛿 =

(𝑏−𝜇)∘𝛾

√𝜎2+𝜖
+ 𝛽. Instead of the

original parameters, it is now sufficient to encode 𝑊, 𝛼, and 𝛿.

The decoding method NNR_PT_BLOCK provides the option

to signal that batch norm parameters have been folded (by

indicating their presence in the bit stream).

F. Local Scaling

Local scaling adds an additional scaling factor to each row

vector of the weight tensor (represented as 2D matrix so that

each row corresponds to a neuron as also done for batch norm

folding). This gives the encoder the option to partly compensate

the error introduced by quantizing the weight tensor. The

scaling factors are given as a transposed vector 𝑠 and they can

be merged with parameter 𝛼 of batch norm folding by updating

𝛼 as follows:

 𝛼 ≔ 𝛼 ∘ 𝑠 (11)

Consequently, when batch norm parameters are present and

folded, local scaling doesn’t introduce a new parameter and the

compressed size of the model is virtually unchanged while the

model capacity is increased. If an encoder has the ability to fine-

tune the model, its capacity can further be increased by only

fine-tuning the local scaling parameters after quantization of the

weight tensors. For example, local scaling factors can be

initialized with a value of 1 and then adapted by means of

backpropagation so that the prediction performance of the

model is increased.

VI. QUANTIZATION

Similar to other coding standards, quantization is used in

NNR for controlling the rate-distortion tradeoff, i.e. finding the

lowest bitrate at a given accuracy, or vice versa finding the

accuracy for a given bit rate. Depending on the type, NNs may

already contain inherent integer quantization to be efficiently

processed. Thus, in NNR, either an external or internal

quantization method is applied. In the first case, the external

quantization is directly used, the quantized network is further

processed by entropy coding, and associated quantization

control parameters are parsed with the NNR bitstream. In the

second case, one of the following NNR quantization methods is

applied, as described in the following sub-sections.

A. Uniform Nearest Neighbor Quantization

As a straight forward approach, the NNR standard provides

nearest neighbor quantization with a uniform reconstruction

quantizer (URQ). In a URQ, the reconstruction levels are

uniformly spaced and each level is associated to an integer

quantization index. Here, the admissible reconstruction levels

are integer multiples of a quantization step size ∆. Implicitly,

these integer values uniquely identify the quantizer level.

Hence, the quantization indices are chosen, such that they

directly correspond to the reconstruction level, i.e. zero

corresponds to 0, -1 to −∆ and 1 to ∆, etc.

An input value to be quantized is then mapped to the

reconstruction level that is closest the current value and thus the

one which minimizes the distortion.

B. Codebook Quantization

In the NNR codebook quantization, each entry of a given

parameter tensor is quantized using vector quantization wherein

each parameter is assigned to the values in a finite size

codebook. Thus, a parameter tensor is represented by its

codebook and a mapping tensor with the same size as the

parameter. The codebook of size 𝑘 and the corresponding

mapping is obtained by using 𝑘-means clustering algorithm on

the vectorized parameter tensor. The size of the codebook is

chosen based on rate-distortion tradeoff. For a given distortion,

the codebook of minimum size is chosen that permits the

required distortion. Each parameter tensor has its own distortion

and codebook.

The 𝑘-means clustering algorithm requires initial codebook

values. Typically, this is obtained by computing the empirical

cumulative density function (CDF) of the given parameter

tensor. While this initialization leads to better precision for

value ranges in high-probability regions, it results in poor

approximation in low-probability regions. However, some

parameters lying in the low probability region are important for

the overall performance of an NN. Therefore, a lower-bounded

probability density function (PDF)-based initialization is used

in which the PDF function is clipped with a lower bound. This

ensures that enough initial codebook values from lower

probability regions are available.

C. Dependent Quantization

The new NNR standard supports a vector quantization

scheme called dependent scalar quantization (DQ), which is

also known as trellis-coded quantization (TCQ) [28]-[31]. It

generally achieves a higher compression efficiency at the same

performance or distortion level.

Fig. 3 Quantizer design for dependent quantization.

DQ consists of two major elements. Firstly, two scalar

quantizers, Q0 and Q1 with distinct sets of reconstruction levels

and, secondly, a procedure for switching between them.

As illustrated in Fig. 3 the admissible reconstruction values

are represented by integer multiples of a quantization step size

∆ for both quantizers, where 𝑄0 contains all even multiples, 𝑄1

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

9

all odd multiples and both contain zero.

The switching process can be represented by a state machine

with 8 states, as illustrated in TABLE II. Each state is

associated with one of the scalar quantizers, i.e. states 0, 1, 4, 5

refer to 𝑄0 and states 2, 3, 6, 7 refer to 𝑄1. The state transitions

are determined by the preceding states and quantization indices,

or more precisely a current state value depends on the previous

state value and the parity of the previous quantization index.

This provides a mechanism to uniquely identify the current state

and thus the applied quantizer. Obviously, this process requires

the neural network parameters to be reconstructed sequentially

in a predefined order which is chosen equally to the coding and

scan order. So, given the current state value (and thus the

quantizer) as it is output by the state transitioning process, and

the transmitted quantization index, the decoder is able to

properly reconstruct the current parameter.
TABLE II

STATE TRANSITIONS FOR QUANTIZER SELECTION IN DQ

state 0 1 2 3 4 5 6 7

quantizer used 𝑄0 𝑄0 𝑄1 𝑄1 𝑄0 𝑄0 𝑄1 𝑄1

next state
parity 0 0 4 5 1 6 2 3 7

parity 1 4 0 1 5 2 6 7 3

For encoding, the potential transitions can be interpreted as

an 8-state trellis. Then, determining the optimal sequence of

quantization indices is equivalent to finding the path through

the trellis that minimizes a Lagrangian cost function 𝐽 = 𝐷 +
 𝜆𝑅 of distortion 𝐷 (mean squared error) and bitrate 𝑅. Since

each transition is associated with an RD-cost, the best path is

determined using the well-known Viterbi algorithm [32]. For

more details the reader is referred to [33].

VII. ENTROPY CODING

In the NNR standard, the quantization indices that are output

by the selected quantization method and all other syntax

elements are entropy coded using DeepCABAC [34]. This

method is based on context-adaptive binary arithmetic coding

(CABAC) [35], which was originally developed and optimized

for video compression. CABAC is a lossless coding method

that provides high compression performance as well as a high

flexibility of adaptation and also allows highly efficient

implementation, when compared to other entropy coding

techniques.

For this, CABAC includes the following three techniques, as

described in more detail in the respective subsections: A.) Each

non-binary symbol or data element to be encoded is

decomposed into a series of binary decisions (also called bins),

such that a symbol can be uniquely identified. B.) A binary

probability model (context model) is assigned to each bin. This

probability model adapts on-the-fly to the local statistics of the

data with each bin that is encoded with the model. C.) Finally,

each bin is encoded, according to its estimated probability using

an arithmetic coding engine.

A. Binarization

A data element is represented by a binary symbol, as required

by the binary arithmetic coding engine. Consequently, the non-

binary quantization indices need to be decomposed into a series

of bins. For this, a parameter tensor is mapped onto a sequence

of quantization indices by applying a scan. Then, each

quantized neural network parameter is binarized (as depicted in

Fig. 4) in the following manner:

Fig. 4 DeepCABAC binarization scheme.

A first bin, called SigFlag (significance flag), determines if

the current neural network parameter is significant or not,

which means that a bit is assigned which determines if the

parameter is 0 or not. Then, if the neural network parameter is

not 0, a SignFlag denotes the sign of the parameter, which is

equal to 1 if the parameter is negative and equal to 0, otherwise.

Then, a series of bins, called AbsGr(𝑛𝑖)Flag, are similarly

encoded, which determine whether the quantization index is

greater than 𝑛𝑖 = 1, 2, … , 10. Thus, whenever an

AbsGr(𝑛𝑖) Flag equals 1 it is followed by the next

AbsGr(𝑛𝑖+1) Flag, otherwise, when the flag equals 0, encoding

of the current parameter is terminated and no further bits are

transmitted. If AbsGr10Flag is 1, a reminder is present and

encoded using an exponential Golomb code [36], composed of

a unary and fixed part. For clarity, the bins of the unary part are

denoted as ExpGoUn(𝑙𝑎) and the bins of the fixed part are

denoted as ExpGoFix(𝑘𝑎). The binarization scheme and two

examples are depicted in Fig. 3.

B. Context modeling

Two types of bins, bypass and regular bins, are coded as

follows: For bypass bins, one bit per bin is written to the

bitstream, e.g. as processed for the fixed part of the exponential

Golomb code (ExpGoFix(ka)). Each regular bin is associated

with a probability model. The number of bits output by the

arithmetic coding engine depends on the estimated probability

and is usually lower than one bit per bin on average.

Consequently, the compression efficiency highly depends on

accurately estimated probabilities. To address this, bins with

similar statistics are assigned to the same probability model,

which is also known as context modeling. Those bins are

grouped based on previously coded bins or a local context as

follows: For the syntax element SigFlag a set of either three or

up to 24 context model candidates is assigned. First, three cases

are distinguished by the value of the left neighboring

quantization index, i.e. whether it is negative, zero or positive.

Then, for the non-DQ case, one context model for each case is

assigned. In contrast, for DQ, 8 context models are assigned for

each of the three cases, according to the value of the variable

‘state’ (0…7) as given in TABLE II.

The SignFlag employs three context model candidates based

on the left neighboring quantization index, analogously to the

SigFlag. For each of the AbsGr(𝑛𝑖) Flags and ExpGoUn(𝑙𝑎) a

set of two possible candidates is used. The chosen model is

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

10

determined by the value 0 or 1 of the preceding SignFlag.

C. Arithmetic coding

The coding engine processes bypass and regular bins as

follows: For each bypass bin a bit is written to the bitstream,

which corresponds to a probability estimate of 0.5. The value

of this bit reflects the value of the respective bin. In fact, the

arithmetic coding engine is bypassed in this case, which also

improves throughput.

For all regular bins, a binary arithmetic coder is employed,

i.e. a series of bins is encoded into a single integer value. The

integer value represents the outcome of an iterative interval

subdivision process. Beginning with a starting interval, for each

bin, the respective interval is subdivided according to the

probability estimate of the bin being equal to 1 or 0. Then the

interval that corresponds to the bin value is chosen and input to

the subdivision process for the next bin. Finally, an integer

number is chosen, which uniquely determines the outcome

interval. Analogously, the bins can be obtained at the decoder

by performing the subdivision process synchronously.

VIII. COMPRESSION PERFORMANCE

The NNR compression performance is evaluated for a

verification dataset of different neural networks as defined in

[37]. An overview of the models is given in [38], which also

highlights the corresponding use cases, performance measures,

application data and number of parameters. The dataset

includes three models (VGG16, ResNet50, MobileNetV2) for

image classification, one model (DCase) for audio

classification and an image autoencoder (UC12B). The

experiments were carried out, using the standard reference

software NCTM (Neural network Compression Test Model,

version 6.0) [39].
TABLE III

NNR TRANSPARENT CODING RESULTS

Model cr in %
Top-1 / Top-5
Acc. reconstr.

Top-1 / Top-5
Acc. original

Orig. size

(bytes)

VGG16 2.98 70.51 / 89.54 70.93 / 89.85 553.43 M

ResNet50 6.54 74.42 / 91.80 74.98 / 92.15 102.55 M

MobileNetV2 12.18 71.13 / 90.06 71.47 / 90.27 14.16 M

DCase 4.12 58.15 / 92.35 58.27 / 91.85 467.26 k

Model cr in %
PSNR / SSIM
reconstructed

PSNR / SSIM
original

Orig. size
(bytes)

UC12B 17.34 29.98 / 0.954 30.13 / 0.956 304.72 k

In TABLE III, the transparent coding results at working

points with same classification quality of original and

reconstructed pre-trained NNs for Top-1 / Top-5 accuracies and

Peak Signal-to-Noise Ratio (PSNR) / Structural Similarity

Index Measure (SSIM) for UC12B are given. TABLE III shows

that a compression ratio cr of less than 3% (or vice versa a

compression efficiency ce of more than 97%) can be achieved

without accuracy degradation. As an example, the compressed

bitstream size is only 2.98% for VGG16 and 4.12% for DCase

in comparison to the original size at the same quality.

Fig. 5 Compression Ratio-Performance curves for (a) original, (b) sparse, (c)

low-rank and (d) unified models for Top-1 Accuracies, and PSNR for UC12B.

5

10

15

20

25

30

35

40

25

35

45

55

65

75

0 0.05 0.1 0.15 0.2 0.25
Compression Ratio

Pretrained

VGG16 NCTM
BZIP2
ResNet50 NCTM
BZIP2
MobileNetV2 NCTM
BZIP2
DCase NCTM
BZIP2
UC12B NCTM
BZIP2

Top-1 Accuracy in % PSNR in dB

5

10

15

20

25

30

35

40

25

30

35

40

45

50

55

60

65

70

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
Compression Ratio

Sparse

VGG16 NCTM
BZIP2
ResNet50 NCTM
BZIP2
MobileNetV2 NCTM
BZIP2
DCase NCTM
BZIP2
UC12B NCTM
BZIP2

Top-1 Accuracy in % PSNR in dB

5

10

15

20

25

30

35

40

25

30

35

40

45

50

55

60

65

70

75

0 0.05 0.1 0.15Compression Ratio

Low Rank Decomposition

VGG16 NCTM
BZIP2
ResNet50 NCTM
BZIP2
MobileNetV2 NCTM
BZIP2
DCase NCTM
BZIP2
UC12B NCTM
BZIP2

Top-1 Accuracy in % PSNR in dB

5

10

15

20

25

30

35

40

25

30

35

40

45

50

55

60

65

70

75

0 0.05 0.1 0.15 0.2
Compression Ratio

Unification

VGG16 NCTM
BZIP2
ResNet50 NCTM
BZIP2
MobileNetV2 NCTM
BZIP2
DCase NCTM
BZIP2
UC12B NCTM
BZIP2

Top-1 Accuracy in % PSNR in dB

(a)

(b)

(c)

(d)

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

11

Additional benchmark results for different preprocessing

methods from section V, i.e. pretraining, sparsification, low

rank decomposition and unification, are depicted in Fig. 5 (a) to

(d) respectively. Each figure shows compressing ratio cr with

respect to performance measure (Top-1 Accuracy for

classification models and PSNR for the image autoencoder) at

different working points. These working points are determined

by a quantization parameter (QP) that controls the quantization

step size. The NNR standard results (NCTM) are denoted by a

solid line. A second reference method, that applies uniform

quantization according to section VI.A and bzip2 [40] for

compression of the quantization indices is shown as dashed

lines. Fig. 5 shows, that NNR achieves high compression even

for high performance qualities and outperforms comparable

methods, significantly. As an example, cr = 2.98% for VGG16

NCTM, while for VGG16 BZIP cr = 7.74%, as given in [34].

The graphs also show that much higher compression ratios (far

below 3%) of compressed NNs can be achieved for lossy

coding scenarios, i.e. when performance decreases are allowed.

IX. CONCLUSION

The NNR standard for efficient compression of neural

networks has been developed and standardized by ISO/IEC

MPEG. The standard is developed as a toolbox, and appropriate

coding pipelines can be created from the included methods. It

can be used either as an independent coding framework or

together with external neural network formats and frameworks.

For providing the highest degree of flexibility, the network

compression methods operate per parameter tensor to always

ensure proper decoding, independent of a respective external

framework and even if no structure information is provided. In

the independent coding case the neural network structure or

connection graph is transmitted internally as part of the NNR

specification, whereas in the framework-dependent case,

structure information is provided by the respective NN

framework.

The codec design includes compression-efficient

quantization methods, namely uniform reconstruction,

codebook and dependent scalar quantization and the

DeepCABAC arithmetic coding method as core encoding and

decoding technologies. Next, common neural network

preprocessing methods for parameter reduction are specified,

including sparsification, pruning, low-rank decomposition,

unification, batch norm folding and local scaling. Furthermore,

the NNR high-level syntax also supports mechanisms for

parallel decoding at block-row or sub-tensor level.

NNR achieves a compression efficiency ce of up to 97% for

transparent coding cases, i.e. without degrading classification

quality, such as top-1 or top-5 accuracies. In addition, much

higher coding gains can be obtained for accuracy-lossy coding

cases.

ACKNOWLEDGMENT

The authors would like to thank the experts of ISO/IEC

MPEG and in particular the MPEG NNR group for their

contributions.

REFERENCES

[1] K. Ota, M. S. Dao, V. Mezaris, and F. G. B. D. Natale, “Deep learning for
mobile multimedia: A survey”, ACM Transactions on Multimedia

Computing, Communications, and Applications, vol. 13, no. 3s, pp.34:1–

34:22, 2017.
[2] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,

“Communication-efficient learning of deep networks from decentralized

data,” 2016, arXiv:1602.05629. [Online]. Available:
http://arxiv.org/abs/1602.05629.

[3] F. Sattler, S. Wiedemann, K.-R. Müller, W. Samek “Robust and

Communication-Efficient Federated Learning from Non-IID Data”, IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 9,

pp. 3400-3413, September 2020, doi: 10.1109/TNNLS.2019.2944481.

[4] Open Neural Network Exchange, VERSION 6, 2019-09-19
(https://github.com/onnx/onnx/blob/master/onnx/onnx.proto)

[5] Neural Network Exchange Format, The Khronos NNEF Working Group,

Version 1.0.3, 2020-06-12
(https://www.khronos.org/registry/NNEF/specs/1.0/nnef-1.0.3.pdf).

[6] M. Denil et al. Predicting parameters in deep learning. In Advances in

Neural Information Processing Systems, 2013.
[7] Ziqian Chen, Shiqi Wang, Dapeng Oliver Wu, Tiejun Huang, and Ling-

Yu Duan. From Data to Knowledge: Deep Learning Model Compression,

Transmission and Communication. Proc. ACM MM, 2018.
[8] S. Ha, H. Mao and W. J. Dall, “Deep Compression: Compressing Deep

Neural Network with Pruning, Trained Quantization and Huffman

Coding,” International Conference on Learning Representations, 2016.
[9] D. Blalock, “What is the State of Neural Network Pruning?” in

Proceedings of Machine Learning and Systems (MLSys), 2020.

[10] J. Frankle and M. Carbin. "The Lottery Ticket Hypothesis: Finding
Sparse, Trainable Neural Networks." International Conference on

Learning Representations. 2018.

[11] E. Malach, et al. "Proving the Lottery Ticket Hypothesis: Pruning is All
You Need." arXiv preprint arXiv:2002.00585 (2020).

[12] P. Savarese, H. Silva, and M. Maire. "Winning the lottery with continuous

sparsification." Advances in Neural Information Processing Systems 33
(2020).

[13] A. Keller at al., “Structural Sparsity - Speeding up Training and Inference

of Neural Networks by linear Algorithms,” GPU Technology Conference,
2019, https://developer.download.nvidia.com/video/gputechconf/gtc/

2019/presentation/s9389-structural-sparsity-speeding-up-training-and-

inference-of-neural-networks-by-linear-algorithms.pdf

[14] C. Louizos, et al, “Relaxed quantization for discretized neural networks,”

In International Conference on Learning Representations (ICLR), 2019.

[15] D. Zhang, Dongqing, et al. “Lq-nets: Learned quantization for highly
accurate and compact deep neural networks,” Proceedings of the

European conference on computer vision (ECCV), 2018.

[16] J. Chen, et al. "Propagating Asymptotic-Estimated Gradients for Low
Bitwidth Quantized Neural Networks." IEEE Journal of Selected Topics

in Signal Processing (2020).

[17] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference”, 25th International Symposium on Field-

Programmable Gate Arrays, 2017.
[18] https://developer.nvidia.com/tensorrt

[19] C. Bucila, R. Caruana, and A. Niculescu-Mizil, “Model compression,” In

ACM SIGKDD, pp. 535–541, 2006.
[20] D. Stamoulis et al., “Single-Path Mobile AutoML: Efficient ConvNet

Design and NAS Hyperparameter Optimization,”. IEEE J. Sel. Top.

Signal Process. 14(4): 609-622, 2020.
[21] K. Bhardwaj, N. Suda, and R. Marculescu, “Dream distillation: A data-

independent model compression framework,“ Joint Workshop on On-

Device Machine Learning & Compact Deep Neural Network
Representations at ICML 2019.

[22] Y. Wang, et al., "Dual dynamic inference: Enabling more efficient,

adaptive and controllable deep inference." IEEE Journal of Selected
Topics in Signal Processing (2020).

[23] H. Cai et al., “Once for All: Train One Network and Specialize it for

Efficient Deployment”, International Conference on Learning
Representations, 2020.

[24] T. Ben-Nun, “A Modular Benchmarking Infrastructure for High-

Performance and Reproducible Deep Learning,” IEEE International
Parallel & Distributed Processing Symposium, 2019.

[25] B. Liu, M. Wang, H. Foroosh, M. Tappen and M. Penksy, "Sparse

Convolutional Neural Networks," IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015.

http://arxiv.org/abs/1602.05629
https://github.com/onnx/onnx/blob/master/onnx/onnx.proto
https://www.khronos.org/registry/NNEF/specs/1.0/nnef-1.0.3.pdf
https://developer.nvidia.com/tensorrt

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

12

[26] P. O. Hoyer, “Non-negative matrix factorization with sparseness
constraints”, Journal of Machine Learning Research, 5:1457-1469, 2004.

[27] C. Aytekin, F. Cricri, and E. Aksu, “Compressibility loss for neural

network weights”, in arXiv:1905.01044, 2019. 2, 3.2.

[28] M. W. Marcellin and T. R. Fischer, "Trellis coded quantization of

memoryless and Gauss-Markov sources," in IEEE Transactions on

Communications, vol. 38, no. 1, pp. 82-93, Jan. 1990, doi:
10.1109/26.46532.

[29] J. H. Kasner, M. W. Marcellin and B. R. Hunt, "Universal trellis coded

quantization," in IEEE Transactions on Image Processing, vol. 8, no. 12,
pp. 1677-1687, Dec. 1999, doi: 10.1109/83.806615.

[30] T. R. Fischer and M. Wang, "Entropy-constrained trellis coded

quantization," [1991] Proceedings. Data Compression Conference,
Snowbird, UT, USA, 1991, pp. 103-112, doi:

10.1109/DCC.1991.213377.

[31] H. Schwarz, T. Nguyen, D. Marpe and T. Wiegand, "Hybrid Video
Coding with Trellis-Coded Quantization," 2019 Data Compression

Conference (DCC), Snowbird, UT, USA, 2019, pp. 182-191, doi:

10.1109/DCC.2019.00026.
[32] G. D. Forney, "The viterbi algorithm," in Proceedings of the IEEE, vol.

61, no. 3, pp. 268-278, March 1973, doi: 10.1109/PROC.1973.9030.

[33] P. Haase et al., "Dependent Scalar Quantization For Neural Network

Compression," 2020 IEEE International Conference on Image Processing

(ICIP), Abu Dhabi, United Arab Emirates, 2020, pp. 36-40, doi:

10.1109/ICIP40778.2020.9190955.
[34] S. Wiedemann et al., "DeepCABAC: A Universal Compression

Algorithm for Deep Neural Networks," in IEEE Journal of Selected
Topics in Signal Processing, vol. 14, no. 4, pp. 700-714, May 2020, doi:

10.1109/JSTSP.2020.2969554.

[35] D. Marpe, H. Schwarz and T. Wiegand, "Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard," in

IEEE Transactions on Circuits and Systems for Video Technology, vol.

13, no. 7, pp. 620-636, July 2003, doi: 10.1109/TCSVT.2003.815173.
[36] Jukka Teuhola, “A compression method for clustered bit-vectors.”, Inf.

Process. Lett., vol. 7, pp. 308-311, Oct. 1978

[37] “Description of Core Experiments on Compression of neural networks for
multimedia content description and analysis”, MPEG document N18574,

ISO/IEC JTC 1/SC 29/WG 11, Jul. 2019.

[38] “Evaluation Framework for Compressed Representation of Neural
Networks”, MPEG document N17929, ISO/IEC JTC 1/SC 29/WG 11,

Oct. 2018.

[39] “Test Model 6 of Compression of Neural Networks for Multimedia
Content Description and Analysis”, MPEG document N00017, ISO/IEC

JTC 1/SC 29/ WG 04, Oct. 2020

[40] Bzip2, Version 1.0.8, 2020-12-03 (https://sourceware.org/bzip2/)

Heiner Kirchhoffer received the Dipl.-

Ing. (FH) degree in television technology

and electronic media from the Wiesbaden

University of Applied Sciences,

Wiesbaden, Germany, in 2005 and the

Dr.-Ing. degree from University of

Rostock, Rostock, Germany, in 2016. In

2004, he joined the Fraunhofer Institute

for Telecommunications-Heinrich Hertz

Institute, Berlin, Germany, where he is currently research

associate in the Video Coding & Analytics Department.

Dr. Kirchhoffer has contributed successfully to the

H.265/High Efficiency Video Coding (HEVC) and to the

H.266/Versatile Video Coding (VVC) standardization activities

of the ITU-T Video Coding Experts Group and the ISO/IEC

Moving Pictures Experts Group. His research interests include

image and video compression, entropy coding, and efficient

representations of deep neural networks.

Paul Haase received the B.Sc. degree and

the M.Sc. degree in Electrical

Engineering from the Technical

University of Berlin, Germany, in 2012

and 2015, respectively. In 2013, he joined

the Fraunhofer Institute for

Telecommunications-Heinrich Hertz

Institute, Berlin, Germany, where he is

currently research associate in the Video

Coding & Analytics Department. He successfully contributed

to the H.266/Versatile Video Coding (VVC) standardization

activity of the ITU-T Moving Pictures Experts Group. His

research interests include efficient representations of deep

neural networks, image and video compression and entropy

coding.

Wojciech Samek (M’13) received the

Dipl.-Inf. degree in computer science

from the Humboldt University of Berlin,

Berlin, Germany, in 2010, and the Dr. rer.

nat. degree from the Technical University

of Berlin, Berlin, in 2014. He was a

Visiting Researcher with the NASA

Ames Research Center, Mountain View,

CA, USA. He is currently the Head of the

Artificial Intelligence Department, Fraunhofer Heinrich Hertz

Institute, Berlin. He is also a PI with the Berlin Institute for the

Foundations of Learning and Data (BIFOLD), Berlin, a

member of the European Laboratory for Learning and

Intelligent Systems (ELLIS), and an Associate Faculty Member

with the DFG Graduate School BIOQIC, Berlin.

He has coauthored more than 100 peer-reviewed journal

articles and conference papers, predominantly in the areas of

deep learning, explainable AI, neural network compression, and

federated learning.

Dr. Samek is also an Editorial Board Member of Digital

Signal Processing, PLOS ONE, Pattern Recognition and the

IEEE Transactions on Neural Networks and Learning Systems,

and an elected member of the IEEE MLSP Technical

Committee. During his studies, he was awarded scholarships

from the Studienstiftung des deutschen Volkes and the DFG

Research Training Group GRK1589/1. He is involved in the

standardization of MPEG-7 Part 17 and was an organizer of

special sessions, workshops, and tutorials on topics such as

explainable AI and federated learning at top-tier machine

learning and signal processing conferences.

Karsten Müller (M’98–SM’07)

received the Dr. Ing. degree in Electrical

Engineering and Dipl. Ing. degree from

the Technical University of Berlin,

Germany, in 2006 and 1997

respectively. He has been with the

Fraunhofer Institute for

Telecommunications, Heinrich-Hertz-

Institut, Berlin, since 1997, where he is

currently head of the Efficient Deep

Learning group. His research interests include multi-

dimensional video coding, efficient federated learning and

compression of neural networks.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

13

Dr. Müller has been involved in international standardization

activities, successfully contributing to the ISO/IEC Moving

Picture Experts Group for work items on visual media content

description, multiview, multi-texture, 3D video coding and

neural network representation. He co-chaired an adHoc group

on 3D Video Coding from 2003 to 2012. Dr. Müller has served

as chair and editor in IEEE conferences and associated editor of

the IEEE Transactions on Image Processing.

Hamed R. Tavakoli (M’10) received

his Dr. Sci. (Tech.) from University of

Oulu, Finland in 2014. Before joining

Nokia as a Principal Scientist in machine

learning, he was with the Aalto

University, Finland.

Hamed has been involved in various

activities ranging from cognitive vision

systems to natural language processing and multimodal

information processing.

Francesco Cricri received the PhD in

Signal Processing from Tampere

University of Technology, Finland, in

2014, and the MSc degree in

Telecommunications Engineering from

the University of Trento, Italy. He has

been with Nokia Technologies,

Tampere, Finland, since 2014, where he

is currently a principal researcher in machine learning, leading

various projects in the field of machine learning, computer

vision, and data compression. He is also a Nokia delegate to

ISO/IEC Moving Picture Experts Group (MPEG for the

standardization of neural network compression technologies.

His current research interests include neural network

compression, neural network based image and video

compression, few-shots learning, meta-learning, and evaluation

of generative models.

Dr. Cricri has published over 24 research papers in

international scientific conferences and journals, filed over 90

patent applications and holds over 25 granted patents. He was a

recipient of the Best Student Paper Award at the 2011 IEEE

International Symposium on Multimedia, and a recipient of the

Most Innovative Image Codec Award at the 2020 IEEE

International Workshop on Multimedia Signal Processing.

Emre B. Aksu is a research leader at

Nokia Technologies, Tampere, Finland.

He received his BSc degree in 1995 on

Electrical and Electronics Engineering

from Bilkent University, Ankara,

Turkey, MSc degree in 1998 on Signal

Processing from Middle East Technical

University, Ankara, Turkey.

His research team’s focus is on emerging media systems and

related systems standardization, cloud-based media processing

technologies, and media-based applications of machine

learning. As a standardization delegate of Nokia, he actively

contributes to MPEG systems standards on topics such as coded

representation of neural networks (NNR), file formats [ISO

Base Media File Format (ISOBMFF), High Efficiency Image

File Format (HEIF)], omnidirectional application format

(OMAF) and carriage of V3C coded data.

Miska M. Hannuksela (M’03) received his

M. Sc. (Eng.) and D. Sc. (Tech.) degrees

from Tampere University of Technology,

Finland, in 1997 and 2010, respectively.

He has been with Nokia since 1996 in

different roles including research

manager/leader positions in the areas of

video and image compression, end-to-end

multimedia systems, as well as sensor signal processing and

context extraction. Currently he works as Bell Labs Fellow and

Head of Video Research at Nokia Technologies, Tampere,

Finland.

Dr. Hannuksela has published over 170 journal and

conference papers and more than 1000 standardization

contributions in JVET, JCT-VC, JVT, MPEG, 3GPP, and DVB.

He has been an editor in several video and systems standards,

including High Efficiency Image File Format (HEIF),

Omnidirectional Media Format, RFC 3984, RFC 7798, as well

as some parts of H.264/AVC, H.265/HEVC, and ISO Base

Media File Format. He has granted and pending patents from

more than 430 patent families. His research interests include

video compression as well as multimedia communication

systems and formats. Dr. Hannuksela has several best paper

awards and received an award of the best doctoral thesis of

Tampere University of Technology in 2009 and Scientific

Achievement Award nominated by the Centre of Excellence of

Signal Processing, Tampere University of Technology, in 2010.

He was an Associate Editor in IEEE Transactions on Circuits

and Systems of Video Technology from 2010 to 2015.

Wei Jiang (M’04) received her Ph.D

degree in 2010 from the E.E. Department

of Columbia University. She got her M.S.

and B.E. degree in Automation from

Tsinghua University, in 2005 and 2002,

respectively. Wei is currently a Principal

Researcher in Tencent America. Her

research focuses on computer vision and

machine learning, including video

understanding, object detection/recognition, image restoration,

visual computing, deep neural network compression and

acceleration, deep feature compression and representation

learning. Wei has published over 30 papers in top tier

conferences and journals and holds over 20 patents. Wei was

elected as IBM’s Watson Emerging Leaders in Multimedia in

2008.

Wei Wang (M’20) Wei received his M.S.

and B.S. degree from E.E. Department of

Fudan University, China, in 1998 and

1995, respectively. He is currently a

Principal Researcher in Tencent

America. He was formerly a Senior Staff

Researcher at Futurewei Technologies.

His research interests include high

performance computing, image and video

compression, neural networks compression and acceleration,

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

14

and converting algorithms to product on desktop, embedded or

ASIC platforms.

He has been involved in international standardization

activities, including contributing to ISO/IEC Moving Picture

Experts Group for work items on H.265/HEVC SCC and neural

network representation, and to IEEE Data Compression

Standards Committee for work item on neural image coding.

He served as co-Chair of MPEG neural network representation

group.

Shan Liu (M’01–SM’11) received the

B.Eng. degree in Electronic Engineering

from Tsinghua University, the M.S. and

Ph.D. degrees in Electrical Engineering

from the University of Southern

California, respectively. She is currently a

Tencent Distinguished Scientist and

General Manager of Tencent Media Lab.

She was formerly Director of Media

Technology Division at MediaTek USA. She was also formerly

with MERL, Sony and IBM, etc.

Dr. Liu has been actively contributing to international

standards since the last decade and served co-Editor of

H.265/HEVC SCC and H.266/VVC. She has numerous

technical proposals adopted into various standards, such as

VVC, HEVC, OMAF, DASH and PCC, etc. Technologies and

products developed by her and under her leadership have served

hundreds of millions of users. Dr. Liu holds more than 200

granted US and global patents and has published more than 80

journal and conference papers. She has been on the Editorial

Board of IEEE Transactions on Circuits and Systems for Video

Technology since 2018 and received the Best AE Award in

2019. Her research interests include audio-visual, high volume,

immersive and emerging media compression, intelligence,

transport and systems.

Swayambhoo Jain (M’13) is a

researcher at Interdigital AI Lab in

Palo Alto, California, USA. He

received the Bachelor of Technology

degree in Electronics and

Communication Engineering from the

National Institute of Technology,

Calicut, India in 2007. He was a

Research and Development Engineer with IBM Systems and

Technology Group, Bangalore, India, from 2007 to 2010. He

received the M.Sc. degree and Ph.D. degree in Electrical

Engineering from the University of Minnesota, MN, USA, in

2012 and 2017, respectively. He worked as Researcher at

Technicolor AI Lab in Palo Alto, CA, USA from 2017 till 2019.

His general research interests lie in Machine Learning, Signal

Processing, and High Dimensional Statistical Inference. His

current research focus in on issues related to efficiency and

robustness of deep neural networks.

Shahab Hamidi-Rad is a Software

Architect at Interdigital AI Lab in Palo

Alto, California, USA. Before Interdigital

he worked at the Technicolor AI research

lab for 4 years. His areas of work and

interest include machine learning, deep

learning, big data, cloud computing, and

software design and development. Before

Technicolor, Shahab worked at Harmonic

Inc. for 9 years, during which he developed several different

video encoding products. His work included design and

implementation of a statistical multiplexing system for video

broadcast transport streams. During 2001 to 2006, he was with

Animatics Corporation, where he worked on controlling smart

stepper/servo motors in real-time. He designed and

implemented a G-Code based Servo Motion Control System

that delivered precise multi-axis contouring.

Fabien Racapé is a senior scientist at the

InterDigital AI Lab. He received an

engineering degree in physics and a M.Sc.

in signal processing and

telecommunications from the Grenoble

Institute of Technology, France in 2008,

and a PhD degree from the National

Institute of Applied Science (INSA), Rennes, France in 2011.

Prior to InterDigital, Fabien was a researcher at Technicolor

R&I France from 2014 to 2019. He also worked at and the

French Institute for Research in Computer Science and Control

(INRIA) as a research engineer and at the Fraunhofer Institute

for Telecommunications – Heinrich-Hertz-Institut, Berlin,

Germany, as a post-doctoral fellow (Marie Curie COFUND

grant) in 2013 and 2014. He has been involved in

H.266/Versatile Video Coding (VVC) and MPEG neural

network compression standardization activities. His current

research interests include neural network-based video

compression, 3D and omnidirectional video coding, as well as

compressed neural network representations.

Werner Bailer (M’12) is a Key

Researcher at DIGITAL – Institute for

Information and Communication

Technologies at JOANNEUM

RESEARCH in Graz, Austria. He

received the Dipl. Ing. degree in Media

Technology and Design in 2002 for his

diploma thesis on motion estimation and

segmentation for film/video standards conversion.

His research interests include audiovisual content analysis

and retrieval and machine learning. He regularly contributes to

standardization, among others in MPEG, where he co-chairs the

ad-hoc group on neural network compression.

