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 

Abstract—Neural Network Coding and Representation (NNR) 

is the first international standard for efficient compression of 

neural networks (NNs). The standard is designed as a toolbox of 

compression methods, which can be used to create coding 

pipelines. It can be either used as an independent coding 

framework (with its own bitstream format) or together with 

external neural network formats and frameworks. For providing 

the highest degree of flexibility, the network compression methods 

operate per parameter tensor in order to always ensure proper 

decoding, even if no structure information is provided. The NNR 

standard contains compression-efficient quantization and an 

arithmetic coding scheme (DeepCABAC) as core encoding and 

decoding technologies, as well as neural network parameter pre-

processing methods like sparsification, pruning, low-rank 

decomposition, unification, local scaling and batch norm folding. 

NNR achieves a compression efficiency of more than 97% for 

transparent coding cases, i.e. without degrading classification 

quality, such as top-1 or top-5 accuracies. This paper provides an 

overview of the technical features and characteristics of NNR. 

 
Index Terms—Neural Network Compression, Neural Network 

Representation, MPEG Standards, Machine Learning  

 

I. INTRODUCTION 

HE Neural Network Compression and Representation 

standard (NNR) is the first standard by the ISO/IEC 

Moving Picture Experts Group (MPEG) standardization 

working group that targets the efficient compression and 

transmission of neural networks. The NNR standard provides a 

compression efficiency of up to 97% for transparent coding use 

cases, i.e. without degrading the classification and inference 

capability of the respective neural network. This is reflected by 

the obtained evaluation results, where compression efficiency 

in terms of compressed bitrate vs. original neural network 

bitrate is analyzed. Here, performance metrics for relevant use 

cases in multimedia for the original as well as decoded and 

reconstructed network are used, such as constant top-1 and top-
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5 classification accuracy for image classification. In addition, 

much higher coding gains can be obtained if the classification 

accuracy is allowed to drop, as reflected by the rate-

classification curves.  

The demand for efficient compression of neural networks has 

grown exponentially in recent years, as machine learning and 

artificial intelligence have evolved and these methods have 

been incorporated into almost every technical field, such as 

medical applications, transportation, network optimization, big 

data analysis, surveillance, speech, audio, image and video 

classification, and many more [1]. Furthermore, the neural 

network architectures have developed towards much more 

complex structures with increasing number of layers and 

neurons per layer, such that current architectures already 

contain several hundreds of millions of weight parameters. An 

additional factor for the exponential growth is the development 

of use cases itself. While in simple scenarios, a neural network 

is trained, transmitted once to an application device and used 

there for inference, new scenarios of federated learning demand 

for continuous communication between many devices [2], [3]. 

Accordingly, such use cases require the best compression 

technology with highest coding gain in order to minimize the 

overall communication traffic. 

Therefore, the NNR standard is designed to provide the 

highest compression efficiency for deep neural network by 

combining preprocessing methods for data reduction, 

quantization and context-adaptive arithmetic binary coding 

(DeepCABAC). The standard supports the most common 

neural network formats, such as PyTorch1, TensorFlow2, 

ONNX [4] or NNEF [5] in two different ways: Either, NNR is 

used independently by compressing all parameter tensors of a 

neural network and including the respective network structure 

or connection graph into the NNR bitstream, or NNR is used 

within an external framework by also coding neural network 

parameters tensor-wise, while all structure data is handled by 

the framework. 

The paper is organized as follows: Section II presents related 
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technology from the field of neural network compression. 

Section III describes coding tools and features. The high-level 

syntax of the NNR standard is described in Section IV, while 

Section V introduces preprocessing and parameter reduction 

methods. The NNR core compression methods are described in 

Section VI with quantization methods, followed by Section VII 

with the arithmetic coding engine. In Section VIII, the 

compression efficiency is demonstrated with respective NNR 

coding results and finally, the paper is concluded in Section IX. 

II. RELATED WORK 

Starting with the development of deep neural networks, early 

works already showed the redundancy of the parameters in 

these models, and that the full set of parameters can be predicted 

from a fraction of them [6]. NNs are often not trained from 

scratch, and it has been shown that models obtained from 

retraining a model or training multiple specializations using 

transfer learning have similar parameter statistic as the base 

model [7]. Reducing the redundancy of the model parameters 

involves typically three steps: (i) reduction of parameters, for 

example by eliminating neurons (pruning), reducing the 

entropy of a tensor (sparsification) or decomposing/ 

transforming a tensor, (ii) reducing the precision of parameters 

(i.e. quantization), and (iii) performing entropy coding. Han et 

al. were one of the first to describe this complete compression 

pipeline [8].  

A large number of variants of algorithms for obtaining NNs 

with a reduced number of parameters have been proposed, 

which is for example evident from a recent survey that analyses 

and compares 81 NN pruning papers [9]. The Lottery Ticket 

Hypothesis [10] postulates that for a dense randomly initialized 

feed forward NN there are subnetworks that achieve the same 

performance at similar training cost. Several recent works 

address this hypothesis, showing that such an optimal 

subnetwork can be obtained by pruning without further training 

[11] or finding subnetworks that can be re-trained from an early 

iterate [12]. While removing entire neurons or channels will 

directly impact inference complexity, parameter reduction 

resulting in sparser tensors requires specific support on the 

target platform. Recently, support for efficient operations on 

sparse tensors is increasing, e.g. for GPUs [13]. 

Quantization can be applied in a straight forward way to the 

parameters of an NN. For many commonly used networks using 

8 bits or even less results in no or only small performance 

degradations, in particular, if the quantized network is then fine-

tuned. Several works show that performance loss can be 

avoided when quantization is already considered in the training 

process (requiring a differentiable quantization function) [14] 

or when learning the quantization function with the network 

[15]. Recent work proposes an asymptotic-quantized estimator 

(AQE) to estimate the gradients in networks with highly 

quantized weights (e.g. 1 bit), ensuring smoothness and 

differentiability during back-propagation [16]. In order to gain 

not just model size but also inference efficiency from 

quantization, support on the target architecture is needed. 

Neural network inference using 8, 4 or even 1 bit fixed point 

representations has been an active research topic in recent 

years, supported first on FPGAs [17] and meanwhile also on 

general purpose hardware such as GPUs (e.g., NVIDIA 

TensorRT [18]). Deep learning frameworks have added support 

for fixed point inference, as well as varying the precision for 

different parts of the NN (mixed precision). 

The borders between compressing a trained NN, possibly 

with fine-tuning, and training a smaller network for the same 

task are not sharp. The approach of training a more compact 

network on the outputs of a larger trained network is known as 

knowledge distillation or teacher-student learning and predates 

deep learning [19]. Taking this further to training a set of 

models and selecting the best one results in performing network 

architecture search (NAS). Although less computationally 

expensive NAS methods have been proposed recently [20], NN 

compression approaches require a more efficient approach 

resulting in a single model. Another issue for retraining is the 

requirement to access (the original) training data, which may 

not be feasible in all use cases. An interesting approach in this 

direction is performing compression with a synthetic dataset 

[21]. 

One issue that makes creating compact NNs for efficient 

inference challenging is the dependency on the characteristics 

of the target hardware. A framework for dynamic inference on 

resource constrained hardware, including input- and resource 

dependent dynamic inference mechanisms, allowing to meet 

specific resource constraints, has been proposed recently [22]. 

First steps are being made towards network compression 

methods that output representations prepared for later 

specialization to the target platform [23]. However, one 

challenge is still the complexity of measuring the impact of 

certain modifications of the network in terms of speed and 

energy consumption on the target platform. First frameworks 

such as Deep500 [24] have been proposed, but are still in an 

early stage.  

While NN compression is still a very active research area, 

building blocks that are common to most approaches have 

emerged. For each of them, established methods and best 

practices can be found in literature. In order to facilitate 

adoption of these tools beyond the research community, 

standardizing interfaces and providing reference 

implementations are required. 

III. NNR CODING TOOLS AND FEATURES 

Achieving compact representations of trained neural 

networks addresses two main goals: (i) providing efficiency 

when the NN is stored or transmitted and (ii) allowing for 

resource-efficient inference. The importance of these goals 

depends on the specific use case. For example, for frequent 

updates in a federated training scenario involving nodes in a 

cloud infrastructure the efficient transmission is most 

important, while for infrequent deployments of a trained NN to 

an embedded device supporting efficient inference is crucial. 

Methods addressing the second goal also support the first one, 

and need to output a representation that can be used directly for 

inference (at least on specific target platform), while methods 

addressing the first one will have additional coding steps 

requiring decoding at the receiving end. 
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The NNR coding design thus addresses these two core goals, 

i.e. coding efficiency of any neural network, ease of transport 

and good implementability due to parallelization as well as 

interoperability with common NN frameworks. It allows 

efficient compression of original NNs, as well as certain 

preprocessing steps for NN parameter reduction. 

 

 
Fig. 1 NNR Overview. 

Fig. 1 provides an overview of the NNR coding and decoding 

process. Starting from an original network O, which can have 

any NN architecture, parameter reduction may be applied to the 

NN. Multiple such parameter reduction methods (e.g., structure 

pruning and tensor sparsification) may be applied subsequently, 

resulting in a preprocessed network Pi (after i such operations). 

Some or all of the remaining parameters in Pi are then 

quantized, resulting in the network Q. In order to obtain a 

bitstream S for storage or transmission of the model, entropy 

coding is applied to the quantized parameters. In the decoding 

process, entropy decoding provides a reconstructed model RQ. 

As entropy coding is a lossless operation, RQ is equivalent to Q. 

If the target platform supports inference with the quantized 

representation(s) used in RQ, this NN can be used for inference. 

Otherwise, the parameter values need to be reconstructed to 

their original representation, resulting in RP (note that even if 

the precision of values is the same as in Pi, the models will only 

be equivalent but not identical due the information loss during 

quantization). RP can be directly used for inference, unless any 

of the sparse tensor representation used cannot be processed on 

the target platform. In this case fully reconstructing the network 

R is required, which does not contain any tensor or structure 

representations different to O. The coding gain is evaluated as 

compression ratio cr = S/O of bitstream size over original 

network size, or alternatively as compression efficiency 

ce = 1 - cr. 

A. Coding Pipelines 

As different use cases focus on different competing 

requirements (e.g., coding efficiency vs. inference complexity), 

and the usefulness of certain encoding tools may depend on the 

intended target platform, there is no single optimal coding 

pipeline that optimally serves all intended use cases. NNR is 

thus designed as a toolbox of coding tools, from which 

 
3 https://www.tensorflow.org/ 
4 https://pytorch.org/ 

appropriate coding pipelines can be assembled by selecting 

tools for each of the three stages in the process shown in Fig. 1. 

Some of the tools are alternatives for addressing neural network 

models with different types of characteristics, while other tools 

are designed to work in sequence.  

Parameter reduction methods process a model to obtain a 

compact representation, for which the NNR standard specifies 

the most widely used: Sparsification produces a sparse 

representation of the model, e.g., by replacing some weight 

values with zeros. Unification produces groups of similar 

parameters in order to lower the entropy of model parameters 

by making them similar to each other. Pruning reduces the 

number of parameters by eliminating parameters or group of 

parameters. Decomposition changes the structure of the weight 

tensors to obtain a more compact representation. The parameter 

reduction methods can be combined or applied in sequence, 

e.g., performing pruning and sparsification. 

Parameter quantization methods reduce the precision of the 

representation of parameters. The methods include uniform 

quantization, codebook-based quantization and dependent 

scalar quantization. If supported by the inference engine, the 

quantized representation can directly be used for more efficient 

inference. For storage and transmission, it also prepares the data 

for entropy coding. Parameter quantization can be applied to the 

outputs of parameter reduction methods as well as to source 

models. Entropy coding methods encode the results of 

parameter quantization methods. These coding tools are 

presented in detail in Sections V-VII. 

B. Interoperability with Exchange Formats 

The representation of a trained NN consists of two main 

components: (i) the description of the topology of the NN, i.e. 

the definition of the layers, their types, sizes and the 

connections between them, and (ii) the parameter values such 

as weights and biases, grouped into tensors. NNR focuses on 

the second component, aiming to replace raw parameter tensors 

with more efficient representations. The first component is well 

covered by the native formants of common deep learning 

frameworks (most notably, TensorFlow3 and PyTorch4). In 

order to improve interoperability, two exchange formats have 

been proposed: (i) Open Neural Network Exchange Format 

ONNX [4], with a serialized format is based on protobuf5, with 

strings identifying types of elements in the graph, and widely 

supported as import/export format by different frameworks. (ii) 

Neural Network Exchange Format (NNEF) [5], which is an 

effort by the Khronos group to define an exchange format to use 

networks trained with different frameworks for inference on 

different platforms. However, apart from basic support for 

quantization, these formats currently do not support 

compressed model representations. 

Here, the NNR standard is complementary to these efforts 

and achieves interoperability with topology information 

represented in native formats as well as with exchange formats. 

The standard thus allows carrying topology information defined 

in any of these formats as part of an NNR bitstream containing 

5 https://developers.google.com/protocol-buffers 

Reconstructed 
Neural Net

R

Original 
Neural Net

O

NNR Encoder

NNR Decoder

Pi Q

RP RQ

Bitstream S

0 1 0 1 1 1 

Sparsification

Pruning

LR-Decomp.

Optional Preprocessing / 
Parameter Reduction

Quantization Entropy Coding

Uniform Nearest
Neighbor Q.

DeepCABAC
Codebook Q.

Dependent Q.Unification

Batchnorm
Folding

Local Scaling

Optional Postprocessing / 
FineTuning

Value Reconstruction Entropy Decoding

DeepCABAC
Value 

Reconstruction /
Rescaling

Network Reconstruction /
Re-Composition



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

4 

compressed parameter tensors (see Section IV for details). For 

the exchange formats, NNR also proposes a way to carry 

compressed parameter tensors in these formats, replacing the 

uncompressed representation for some or all tensors of the NN. 

C. Decoding Methods 

The NNR standard provides decoding methods for specific 

network tensor types, such as integer, scaled integer, or floating 

point parameter representations. A decoding method denoted 

NNR_PT_INT provides decoding functionality for parameters 

that are arrays or tensors of integer values. A decoding method 

NNR_PT_FLOAT extends NNR_PT_INT by adding 

quantization step size ∆ that is multiplied with each decoded 

integer value yielding scaled integers (which are usually 

represented as float values). This quantization step size is 

derived from an integer quantization parameter qp and an 

integer parameter qp_density as follows: 

 𝑚𝑢𝑙 = 2𝑞𝑝_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 + (𝑞𝑝 & (2𝑞𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦 − 1), (1) 

 ∆= 𝑚𝑢𝑙 ∙ 2(𝑞𝑝≫𝑞𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦)−𝑞𝑝𝑑𝑒𝑛𝑠𝑖𝑡𝑦. (2) 

Here, “>>” represents the bitwise right-shift operator. Both 

values qp and qp_density are signaled in the bitstream. As can 

be seen from equations (1) and (2), a qp of 0 corresponds to 

∆ = 1, negative qp values to ∆ < 1, and positive qp values to 

∆ > 1. The qp_density controls the granularity of the step size. 

More precisely, increasing the qp by 2𝑞𝑝_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 corresponds to 

doubling ∆. For example, a typical value for qp_density would 

be 3 allowing 7 intermediate step size values between ∆ and 2∆. 

A further decoding method NNR_PT_BLOCK jointly 

decodes several related parameter arrays or tensors including 

local scaling parameters, biases, batch norm parameters, and 

weights. This is the basis for enabling techniques like batch 

norm folding or local scaling. 

The decoding methods NNR_PT_FLOAT and 

NNR_PT_BLOCK can furthermore be combined with an 

integer codebook. I.e., the decoded values are indexes to values 

of a codebook that contains integer values which are finally 

multiplied by step size ∆. 

D. Parallel Decoding 

In order to provide a decoder with the ability of parallel 

decoding of large tensors, a block scanning and entry point 

concept is included in the NNR standard. A tensor is first 

reshaped into 2D and then subdivided into blocks of size NxN 

where N can be 8, 16, 32, or 64. Such blocks may directly be 

fed into optimized inference engines that operate on an NxN 

block size. Decoding of blocks is carried out in row-major 

order. For each row of blocks (except the uppermost row), entry 

point information is provided in the bitstream so that a decoder 

can choose to start the decoding at a particular row or to decode 

several rows in parallel. This refers in particular to dependent 

quantization and arithmetic coding methods, where respective 

absolute values of state variables are signaled in the entry point 

information to enable parallel block row or sub-tensor decoding 

independent of previously coded information. 

IV. HIGH-LEVEL SYNTAX 

Storage, carriage and distribution of compressed neural 

networks are important systems aspects of NNR. The NNR 

standard not only defines compression tools for neural networks 

but also high-level syntax for efficient carriage of such 

compressed data.  

Compressed neural network data and related metadata are 

stored and carried in the form of structured syntax elements 

which are called NNR units. When multiple NNR units are 

concatenated, they form an NNR bitstream as illustrated in 

Fig. 2 top. The NNR bitstream format provides an efficient and 

well-structured mechanism to carry, signal and exchange 

compressed neural network representations, either fully or 

partially (e.g. compressed data of one layer only). With the 

defined NNR high-level syntax, it is possible to carry 

compressed neural network information at any granularity as 

long as such information is uniquely referenceable to the neural 

network topology (e.g. a tensor, filter, layer, or bias). 

 
Fig. 2 Top: NNR bitstream with NNR units, Bottom: NNR Unit Structure. 

As presented in Fig. 2 bottom, an NNR unit consists of the 

following syntax elements in the given order: 

• NNR unit size, which signals the total byte size of the NNR 

unit, including the NNR unit size itself.  

• NNR unit header, which contains information about the NNR 

unit type and related metadata. 

• NNR unit payload, which contains compressed or 

uncompressed data related to the neural network. 

 

TABLE I lists different types of NNR units and their 

descriptions. An NNR bitstream always starts with an NNR 

Start Unit, followed by an NNR Model Parameter Set Data Unit 

and several NNR Compressed Data Units. If neural network 

topology information is signaled to be carried inside an NNR 

bitstream, then NNR Topology Data Units (and optionally NNR 

Quantization Data Units) are also present before any NNR 

Compressed Data Unit that reference them.  

Multiple NNR units which are related to each other can be 

grouped together and carried as a single NNR Unit. Such NNR 

Units are called NNR Aggregate Units. For example, the data 

that refers to a neural network layer can be aggregated into such 

a unit. NNR Aggregate Units may have their own parameter 

sets. If multiple NNR units are aggregated into an NNR 

Aggregate Unit, then an NNR Layer Parameter Set Data Unit 

is present as the first NNR Unit inside the NNR Aggregate Unit 

which further provides information about the NNR Aggregate 

Unit contents. NNR Layer Parameter Set Data Units are active 

until another one is signaled or until the data boundary of the 
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containing NNR Aggregate Unit is reached. 
TABLE I 

NNR UNIT TYPES 

Identifier NNR Unit Type Description 

NNR_STR NNR start unit Compressed neural network 

bitstream start indicator  
NNR_MPS NNR model parameter 

set data unit 

Neural network global 

metadata and information 

NNR_LPS NNR layer parameter 
set data unit 

Metadata related to a partial 
representation of neural 

network 

NNR_TPL NNR topology data 
unit 

Neural network topology 
information 

NNR_QNT NNR quantization data 

unit 

Neural network quantization 

information 
NNR_NDU NNR compressed data 

unit 

Compressed neural network 

data 

NNR_AGG NNR aggregate unit NNR unit with payload 
containing multiple NNR units 

NNR high-level syntax also enables efficient carriage of 

compressed neural network data by providing mechanisms for 

partitioning compressed tensor data into multiple NNR units, as 

well as indicating whether such NNR units are independently 

decodable. 

NNR Model Parameter Set Data Units and NNR Layer 

Parameter Set Data Units can also carry additional metadata 

related to the compressed neural network such as inference 

performance at different sparsification, pruning, unification and 

decomposition levels. Moreover, pruning information related to 

a neural network topology can be signaled inside an NNR 

Topology Data Unit. 

NNR utilizes industry-defined and existing topology 

representations and enables the carriage of such externally 

defined information as part of the NNR bitstream. Such data is 

carried inside the NNR Topology Data Units and NNR 

Quantization Data Units. By utilizing a reference signaling 

mechanism, different elements and components of a neural 

network can be compressed, carried in the NNR bitstream and 

then linked to the neural network topology. In addition to this 

feature, carriage of NNR bitstream inside different neural 

network exchange formats, as given in Section III.B, is also 

defined by the specification.  

V. PRE-PROCESSING AND PARAMETER REDUCTION 

Instead of coding and compressing a neural network in its 

original form, one of the preprocessing and parameter reduction 

methods can be applied. The methods defined in the NNR 

standard are described in the following subsections. 

A. Sparsification 

Sparsification refers to a group of technologies that process 

the parameters or group of parameters to produce a sparse 

representation of the model by replacing some weight values 

with zeros. Obtaining weight matrices/tensors that are sparse is 

one method for achieving parameter reduction. 

To sparsify the neural network, some of the convolutional 

kernels’ values, or some of the fully-connected layers’ weights 

are set to zero. A highly-sparse neural network is likely to have 

low entropy and thus be more compressible by entropy-based 

encoders such as arithmetic codecs. In addition, inference-time 

speed-ups can be achieved when sparse matrix multiplications 

are used [25]. An important step of the sparsification process is 

to determine which parameters are less important than others, 

so that they can be set to zero while minimizing the 

performance loss of the neural network (e.g., the classification 

accuracy in the case of a classifier neural network).  

One common approach is to sparsify the parameters with low 

absolute values. However, neural networks are usually not 

trained specifically for the purpose of being sparsified, 

therefore sparsifying such models can be considered to be sub-

optimal. A better approach, adopted into the NNR standard, is 

to optimize the neural network for the sparsification process by 

fine-tuning a pre-trained neural network with a custom-

designed loss function. A sparsity loss was designed based on 

the sparsity metric introduced in [26], and is defined as follows: 

 𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦(𝑤) =  
|𝑤|1

|𝑤|2
+ 𝛾

|𝑤|2
2

|𝑤|1
, (3) 

where |𝑥|1and |𝑥|2 are the 𝑙1 and 𝑙2 norms of 𝑥, respectively. 

During the fine-tuning process, 𝛾 is chosen such that 
|𝑤|2

2

|𝑤|1
=

1

3

|𝑤|1

|𝑤|2
. More details on the sparsity loss can be found in [27]. The 

sparsity loss in eq. (3) is combined with the task loss, i.e., the 

loss used for pre-training the neural network, such as the cross-

entropy loss for a classifier, thus obtaining the total loss used 

for fine-tuning: 

 𝐿𝑡𝑜𝑡𝑎𝑙(𝑤) = 𝐿𝑡𝑎𝑠𝑘(𝑤) + 𝜆 𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦(𝑤), (4) 

where 𝜆 is set so that 𝐿𝑠𝑝𝑎𝑟𝑠𝑖𝑡𝑦(𝑤) = 𝑚 𝐿𝑡𝑎𝑠𝑘(𝑤) on a 

validation dataset, and 𝑚 is a hyper-parameter which can be 

tuned to achieve different rate-distortion points – higher 𝑚 

values lead to better robustness to high sparsity ratios and 

therefore can be used to achieve higher compression. After this 

fine-tuning process has completed, the actual sparsification is 

performed by setting the parameter values to zero that are lower 

than a predefined threshold. This threshold is another hyper-

parameter that can be used to achieve different rate-distortion 

points – higher thresholds lead to higher sparsity and therefore 

higher compression. 

B. Pruning 

In modern literature, pruning and sparsification are often 

used interchangeably. Nonetheless, given context and how 

removal of weights are done, the two terminologies may refer 

to different technologies. In the NNR standard, pruning is 

defined as an operation that reduces the number of parameters 

by eliminating parameters or groups of parameters. This 

procedure results in a dense representation which has less 

parameters in comparison to the original model, e.g., by 

removing redundant convolution filters from the layers, as 

described in subsection V.B.1). Second, micro-structured 

pruning removes weight coefficients to accelerate GEMM 

computation and is described in subsection V.B.2). 

 

1) General Neural Network Pruning 

The NNR standard contains a pruning technology that is 

combined with the sparsification methods. Algorithm 1 

summarizes the three steps. 
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ALGORITHM 1 

Inputs: 
Pre-trained network, pruning ratio  

x, sparsification ratio y 

1) Analyze the neural network weight to determine which weights 
to be removed from the network by estimating weight 

importance using eq. (5). 

2) Remove the least important neurons with respect to the pruning 
ratio x. 

3) Apply data dependent sparsification with regard to 

sparsification ratio y 
4) Repeat steps 1)-3) when required. 

Whenever pruning ratio y is satisfied, step 3 can be reduced 

to employing only task loss to improve the neural network 

performance. Steps in Algorithm 1 could be used in a 

progressive fashion or at once. 

The neural network weights are estimated based on a 

diffusion process over the layers. An example of pruning of 

convolution filters is provided below, and a similar formulation 

applies to other type of layers and to group of layers. 

Each convolution layer consists of a weight tensor, or filter, 

denoted ℱ ∈ 𝑅𝐶𝑜×𝐾×𝐾×𝐶𝑖  where 𝐶𝑜 is the number of output 

channels, 𝐾 is the dimension of the convolution kernel, and 𝐶𝑖 

is the number of input channels.  

Under constant input the redundancy in a layer output is 

modelled by the internal redundant information inside the filter. 

Thus, by considering an ergodic Markov process between the 

output channels, graph diffusion is employed to find the 

redundancy. To this end, given a convolution filter ℱ, a feature 

matrix 𝐌 ∈ 𝑅𝐶𝑜×𝑚 is obtained where 𝑚 = 𝐾 × 𝐾 × 𝐶𝑖, via 

tensor reshape. 

Following the ergodic Markov chain with each output 

channel as one state, the probability of reaching a particular 

state at the equilibrium is 𝜋𝑇 = 𝜋𝑇𝐏 where 𝐏 is the stochastic 

transition matrix and π is the equilibrium probability of 𝐏, 

corresponding to the left eigenvector λ = 1. Under equilibrium, 

the importance could be defined as  

 𝑆 = 𝑒𝑥𝑝( −
1

σπ
), (5) 

where σ is a smoothing factor, that could be equal to the 

number of output channels. The transition matrix 𝑃 is 

determined as  

 p
ij

=
e

−D(mi,mj)

∑ e−D(mi,mz)co
z=1

, (6) 

where 𝑚𝑖 is the i-th row of the 𝑴 and 𝐷(⋅,⋅) is any distance 

function of preference. A higher value of 𝑆 will indicate more 

dissimilarity, importance and salience for output channel in 

comparison to the other output channels. To prune the filters, 

after computing the 𝑆, less salient channels are removed. 

In step (3) any of the sparsification methods could apply, as 

shown in section V.A.  

 

2) Micro-structured Pruning 

The convolutional computation in DNN is commonly 

implemented as GEneral Matrix Multiplication (GEMM). For 

this, the NNR standard applies micro-structured weight 

pruning, which removes weight coefficients in the micro-

structured level to accelerate GEMM computation. 

Let Wk be the weight tensor of the k-th layer. Wk is a general 

5-D tensor of size 𝑐1
𝑘 × 𝑐2

𝑘 × 𝑛1
𝑘 × 𝑛2

𝑘 × 𝑛3
𝑘, where 𝑐1

𝑘(𝑐2
𝑘) is the 

number of input (output) channel and 𝑛1
𝑘, 𝑛2

𝑘, and 𝑛3
𝑘 give the 

kernel size. When any of 𝑐1
𝑘, 𝑐2

𝑘, 𝑛1
𝑘, 𝑛

2

𝑘
 or 𝑛3

𝑘 equals 1, tensor Wk 

is reduced to a lower dimension. Micro-structure pruning first 

reshapes Wk into a 3D tensor of size 𝑐1
𝑘′ × 𝑐2

𝑘′ × 𝑛𝑘 (e.g., 

𝑐1
𝑘′=𝑐1

𝑘, 𝑐2
𝑘′ = 𝑐2

𝑘 ,  𝑛𝑘 = 𝑛1
𝑘 × 𝑛2

𝑘 × 𝑛3
𝑘), and then partitions the 

resized weight tensor into micro-structured blocks (denoted by 

𝐵𝑗
𝑘  as the j-th block of 𝑊𝑘) of size 𝑏1

𝑘 × 𝑏2
𝑘 × 𝑏3

𝑘. Weights 

within the selected micro-structured blocks are set to 0. A 

pruning loss 𝐿(𝐵𝑗
𝑘  ) can be computed for 𝐵𝑗

𝑘  as the LN norm of 

the absolute of weights in 𝐵𝑗
𝑘 (e.g., L1 as MAE or L2 as MSE).  

The micro-structured blocks can be 3-D, 2-D or 1-D blocks, 

resulting in different model compression and acceleration 

effects. When 𝑐1
𝑘 cannot be fully divided by 𝑏1

𝑘, 𝑐2
𝑘 cannot be 

fully divided by 𝑏2
𝑘, or 𝑛𝑘  can not be fully divided by 𝑏3

𝑘, micro-

structured blocks along the boundary of these corresponding 

dimension will be smaller. That is, 𝑏1
𝑘 × 𝑏2

𝑘 × 𝑏3
𝑘 is the 

maximum size of the micro-structured blocks. 

A pruning mask 𝑀𝑘 is maintained in the training process with 

the same shape as 𝑊𝑘, which records whether the 

corresponding weight coefficients are pruned or not. Given the 

original target loss 𝐿𝑡𝑟𝑎𝑖𝑛 of the task (categorical cross-entropy 

for image classification, MSE for image compression, etc.), the 

training process iteratively takes the following two steps: 

Step 1: The micro-structured blocks are ranked based on their 

pruning loss in ascending order. Given a pruning ratio p as a 

hyperparameter, the top p super-blocks with smallest pruning 

loss are selected to be pruned.  

Step 2: Weight coefficients that are marked by 𝑀𝑘 as being 

pruned are fixed, and the remaining unfixed weight coefficients 

in 𝑊𝑘 are updated through a neural network training process by 

optimizing the target loss Ltrain. 

The micro-structured weight pruning will output an updated 

model with the same model structure as the input model, where 

part of the weight coefficients have been structurally removed 

(pruned). The output model can be directly used in the same 

way as the input model. 

C. Low-Rank Decomposition 

In NNR, a network can also be preprocessed by low-rank 

decomposition of layer weight parameters. For a dense layer 

with weight-matrix 𝑊 ∈  ℝ𝑚 𝑥 𝑛 rank 𝑟 ≤  𝑚𝑖𝑛 (𝑚, 𝑛) 

approximation is obtained by solving (7). 

 𝑈𝑊 , 𝑉𝑊  =  arg min
𝑈∈ ℝ𝑚 𝑥 𝑟 ,V ∈ ℝ𝑟 𝑥 𝑛  

||𝑊 −  𝑈𝑉||𝐹
2  (7) 

The above problem is efficiently solved by singular value 

decomposition (SVD) of weight-matrix 𝑊. Using the low-rank 

factors 𝑈𝑊 , 𝑉𝑊 the weight-matrix 𝑊 is approximated as 𝑊 ≈
 𝑈𝑊𝑉𝑊 and therefore the total number of parameters are 

reduced from 𝑚𝑛 to 𝑟(𝑚 + 𝑛). With rank 𝑟 approximation the 

dense layer is effectively converted to a two dense layer of sizes 

𝑚  𝑟 and 𝑟  𝑛 with no bias and non-linearity in between them, 

and original bias in the second layer. The final rank for low-

rank approximation is chosen using a tolerance 𝜀 by finding the 
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minimum rank that leads to ||𝑊 −  𝑈𝑊𝑉𝑊||𝐹 
2 ≤  𝜀. In some 

cases, such tolerance may not be achievable with reduction in 

the number of parameters. Therefore, if the total number of 

parameters after low-rank approximation for a given tolerance 

𝜀 is more than the parameters in the original weight-matrix, skip 

the low-rank approximation is skipped and the original matrix 

retained. This happens when 𝑟 ≥  
𝑚𝑛

𝑚+𝑛
.  

While the SVD is computationally more expensive than 

pruning, its computational complexity can be improved by 

leveraging orthogonality of the singular-vectors. Rank 𝑟 + 1 

SVD shares first 𝑟 singular-vectors from rank 𝑟 SVD and 

therefore only one pair of singular-vectors is needed for 

calculating rank 𝑟 + 1 low rank approximation.  

Consider a convolutional layer for one input channel, such 

that the general 5-D convolution tensor reduces to a 4-D weight 

tensor with size 𝑓ℎ  𝑓𝑤   𝑛𝑖   𝑛𝑜, where 𝑓ℎ, 𝑓𝑤 are the height 

and width of the convolutional filter, 𝑛𝑖 is the number of input 

channels and 𝑛𝑜 is the number of output channel. For low-rank 

decomposition the 4-D weight tensor of convolutional layer 

first needs to be reshaped into a 2-D matrix in the following 

way: First the 3-D filters for each output channel is vectorized 

into a vector of size 𝑓ℎ𝑓𝑤𝑛𝑖, followed by stacking the 𝑛𝑜 vectors 

into a matrix of size 𝑓ℎ𝑓𝑤𝑛𝑖  𝑛𝑜. A rank 𝑟 approximation of 

this 𝑓ℎ𝑓𝑤𝑛𝑖   𝑛𝑜 matrix reduces the number of parameters from 

𝑓ℎ𝑓𝑤𝑛𝑖𝑛𝑜 to 𝑟(𝑓ℎ𝑓𝑤𝑛𝑖 + 𝑛𝑜). Similar to the dense layers, these 

low-rank factors can be reshaped back into two back-to-back 

convolutional layers of size 𝑓ℎ  𝑓𝑤  𝑛𝑖  𝑟 and 1  1  𝑟  𝑛𝑜 

with no-bias and non-linearity in between them, and original 

bias in the second convolutional layer. 

Since the low-rank approximation effectively reduces a layer 

into two more computationally efficient layers it leads to 

equivalent gains in inference complexity proportional to the 

reduction in number of parameters with a typical off-the-shelf 

GPU. Another advantage is that it allows for efficient fine-

tuning for cases when the performance of DNN drops beyond 

acceptable limits after low-rank approximation.  

D. Unification 

Unification in the NNR standard is a generalization of weight 

pruning. Here, the weight representation is reduced in a 

structured way that benefits storage and GEMM computation. 

This approach unifies weights within a selected micro-

structured weight block by assigning them a shared absolute 

value. When this value is zero, the method reduces to the micro-

structured weight pruning approach described in Section V.B.2) 

The micro-structured weight unification method keeps the 

neuron connections instead of removing them (setting them to 

zero as in weight pruning), which better preserves the original 

network structure to provide a balanced model for both 

compression and task performance. In contrast, the micro-

structured weight pruning pursues more aggressive 

compression effects, i.e., the pruned micro-structured blocks 

can be completely removed from storage and computation. 

Both micro-structured weight unification and micro-structured 

weight pruning are hardware friendly for both model storage 

and inference computation, in terms of accommodating flexible 

micro-structured block shapes that are compatible with the 

underlying inference engine.  

Specifically, the weight tensor 𝑊𝑘 of the k-th layer of the 

network is reshaped into a 3D tensor of size 𝑐1
𝑘′ × 𝑐2

𝑘′ × 𝑛𝑘. 

Here the reshaped weight tensor is further partitioned into 

super-blocks (denoted by 𝑆𝑖
𝑘 as the i-th super-block of 𝑊𝑘) of 

size 𝑠1
𝑘 × 𝑠2

𝑘 × 𝑛𝑘. For example, super-blocks of size 64 ×

64 × 𝑛𝑘 are selected to be consistent with 3-dimensional 

Coding Tree Units (CTU3Ds). Each super-block is further 

partitioned into micro-structured blocks (denoted by 𝐵𝑖,𝑗
𝑘  as the 

j-th block of 𝑆𝑖
𝑘) of size 𝑏1

𝑘 × 𝑏2
𝑘 × 𝑏3

𝑘. Weight unification 

happens within the selected micro-structured blocks, where its 

weight coefficients are set to have the same absolute value 

while maintaining their original signs:  

 𝑣𝑖,𝑗,𝑙
𝑘  = {

𝑞𝑖,𝑗
𝑘  ,      if 𝑤𝑖,𝑗,𝑙

𝑘  ≥ 0,

−𝑞𝑖,𝑗
𝑘  ,   otherwise,

 (8) 

where 𝑣𝑖,𝑗,𝑙
𝑘   is the newly assigned value for coefficient 𝑤𝑖,𝑗,𝑙

𝑘   in 

block 𝐵𝑖,𝑗
𝑘 . Here 𝑞𝑖,𝑗

𝑘   is computed as the mean of the absolute of 

weights in 𝐵𝑖,𝑗: 𝑞𝑖,𝑗
𝑘  = 𝑎𝑣𝑔

𝑤𝑖,𝑗,𝑙
𝑘  ∈𝐵𝑖,𝑗

𝑘  
|𝑤𝑖,𝑗,𝑙

𝑘  |, and the loss 

introduced by this unification operation can be measured by a 

unification loss 𝐿(𝐵𝑖,𝑗
𝑘  ), which can be computed as the LN norm 

of the absolute of weights in 𝐵𝑖,𝑗
𝑘  (e.g., L2 as MSE). Then the 

unification loss 𝐿(𝑆𝑖
𝑘 ) of the super-block 𝑆𝑖

𝑘 is computed by 

averaging 𝐿(𝐵𝑖,𝑗
𝑘  ) across micro-structured blocks in 𝑆𝑖

𝑘.  

The micro-structured blocks can be 3D, 2D or 1D, resulting 

in different model compression and acceleration effects. Also, 

when 𝑐1
𝑘 cannot be fully divided by 𝑠1

𝑘, or 𝑐2
𝑘 cannot be fully 

divided by 𝑠2
𝑘, the super-blocks along the boundary of the 

corresponding dimension will be smaller. When 𝑛𝑘  can not be 

fully divided by 𝑏3
𝑘, 𝑠1

𝑘 cannot be fully divided by 𝑏1
𝑘, or  𝑠2

𝑘 

cannot be fully divided by 𝑏2
𝑘, the micro-structured blocks 

along the boundary of the corresponding dimension will be 

smaller. That is, 𝑏1
𝑘 × 𝑏2

𝑘 × 𝑏3
𝑘 is the maximum size of the 

micro-structured blocks, and 𝑠1
𝑘 × 𝑠2

𝑘 × 𝑛𝑘   is the maximum 

size of the super-blocks. 

A unification mask 𝑀𝑘 is maintained in the training process, 

which takes the same processing steps as the pruning mask (see 

section V.B.2) for details). 

The micro-structured weight unification will output an updated 

model with the same model structure as the input model, where 

part of the weight coefficients have been structurally changed 

(unified). The output model can be directly used in the same 

way as the input model. 

E. Batch Norm Folding 

Batch norm folding is a technique for reducing redundancy 

of particular parameters for which interdependencies are known 

by encoder and decoder. It assumes that the combination of a 

convolutional or fully-connected layer with a batch norm layer 

of the following form can be expressed as 

 𝐵𝑁(𝑋) =
𝑊 ∗ 𝑋 + 𝑏 − 𝜇

√𝜎2 + 𝜖
∘ 𝛾 + 𝛽 (9) 

where 𝑋 is the input, 𝐵𝑁(𝑋) is the output, 𝑊 is the weight 
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tensor (represented as 2D matrix so that each row corresponds 

to a neuron), 𝑏 is a bias parameter, and the remaining 

parameters are batch-normalization parameters. Note that 𝑏, 𝜇, 

𝜎2, 𝛾, and 𝛽 have the same shape as 𝑋 and that 𝑋 is shaped as 

a transposed vector. Parameter 𝜖 is a scalar close to zero. 

Operator ∘ denotes element-wise scaling of each row vector of 

a matrix (or each element of a transposed vector) with the 

corresponding element of a transposed vector. 

Instead of encoding each of the parameters individually, the 

following transformation can be done before encoding: 

 𝐵𝑁(𝑋) = 𝛼 ∘ 𝑊 ∗ 𝑋 + 𝛿 (10) 

where 𝛼 =
𝛾

√𝜎2+𝜖
 and where 𝛿 =

(𝑏−𝜇)∘𝛾

√𝜎2+𝜖
+ 𝛽. Instead of the 

original parameters, it is now sufficient to encode 𝑊, 𝛼, and 𝛿. 

The decoding method NNR_PT_BLOCK provides the option 

to signal that batch norm parameters have been folded (by 

indicating their presence in the bit stream). 

F. Local Scaling 

Local scaling adds an additional scaling factor to each row 

vector of the weight tensor (represented as 2D matrix so that 

each row corresponds to a neuron as also done for batch norm 

folding). This gives the encoder the option to partly compensate 

the error introduced by quantizing the weight tensor. The 

scaling factors are given as a transposed vector 𝑠 and they can 

be merged with parameter 𝛼 of batch norm folding by updating 

𝛼 as follows: 

 𝛼 ≔  𝛼 ∘ 𝑠 (11) 

Consequently, when batch norm parameters are present and 

folded, local scaling doesn’t introduce a new parameter and the 

compressed size of the model is virtually unchanged while the 

model capacity is increased. If an encoder has the ability to fine-

tune the model, its capacity can further be increased by only 

fine-tuning the local scaling parameters after quantization of the 

weight tensors. For example, local scaling factors can be 

initialized with a value of 1 and then adapted by means of 

backpropagation so that the prediction performance of the 

model is increased. 

VI. QUANTIZATION  

Similar to other coding standards, quantization is used in 

NNR for controlling the rate-distortion tradeoff, i.e. finding the 

lowest bitrate at a given accuracy, or vice versa finding the 

accuracy for a given bit rate. Depending on the type, NNs may 

already contain inherent integer quantization to be efficiently 

processed. Thus, in NNR, either an external or internal 

quantization method is applied. In the first case, the external 

quantization is directly used, the quantized network is further 

processed by entropy coding, and associated quantization 

control parameters are parsed with the NNR bitstream. In the 

second case, one of the following NNR quantization methods is 

applied, as described in the following sub-sections.  

A. Uniform Nearest Neighbor Quantization 

As a straight forward approach, the NNR standard provides 

nearest neighbor quantization with a uniform reconstruction 

quantizer (URQ). In a URQ, the reconstruction levels are 

uniformly spaced and each level is associated to an integer 

quantization index. Here, the admissible reconstruction levels 

are integer multiples of a quantization step size ∆. Implicitly, 

these integer values uniquely identify the quantizer level. 

Hence, the quantization indices are chosen, such that they 

directly correspond to the reconstruction level, i.e. zero 

corresponds to 0, -1 to −∆ and 1 to ∆, etc. 

An input value to be quantized is then mapped to the 

reconstruction level that is closest the current value and thus the 

one which minimizes the distortion. 

B. Codebook Quantization 

In the NNR codebook quantization, each entry of a given 

parameter tensor is quantized using vector quantization wherein 

each parameter is assigned to the values in a finite size 

codebook. Thus, a parameter tensor is represented by its 

codebook and a mapping tensor with the same size as the 

parameter. The codebook of size 𝑘 and the corresponding 

mapping is obtained by using 𝑘-means clustering algorithm on 

the vectorized parameter tensor. The size of the codebook is 

chosen based on rate-distortion tradeoff. For a given distortion, 

the codebook of minimum size is chosen that permits the 

required distortion. Each parameter tensor has its own distortion 

and codebook.  

The 𝑘-means clustering algorithm requires initial codebook 

values. Typically, this is obtained by computing the empirical 

cumulative density function (CDF) of the given parameter 

tensor. While this initialization leads to better precision for 

value ranges in high-probability regions, it results in poor 

approximation in low-probability regions. However, some 

parameters lying in the low probability region are important for 

the overall performance of an NN. Therefore, a lower-bounded 

probability density function (PDF)-based initialization is used 

in which the PDF function is clipped with a lower bound. This 

ensures that enough initial codebook values from lower 

probability regions are available. 

C. Dependent Quantization 

The new NNR standard supports a vector quantization 

scheme called dependent scalar quantization (DQ), which is 

also known as trellis-coded quantization (TCQ) [28]-[31]. It 

generally achieves a higher compression efficiency at the same 

performance or distortion level.  

 
Fig. 3 Quantizer design for dependent quantization. 

DQ consists of two major elements. Firstly, two scalar 

quantizers, Q0 and Q1 with distinct sets of reconstruction levels 

and, secondly, a procedure for switching between them. 

As illustrated in Fig. 3 the admissible reconstruction values 

are represented by integer multiples of a quantization step size 

∆ for both quantizers, where 𝑄0 contains all even multiples, 𝑄1 
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all odd multiples and both contain zero. 

The switching process can be represented by a state machine 

with 8 states, as illustrated in TABLE II. Each state is 

associated with one of the scalar quantizers, i.e. states 0, 1, 4, 5 

refer to 𝑄0 and states 2, 3, 6, 7 refer to 𝑄1. The state transitions 

are determined by the preceding states and quantization indices, 

or more precisely a current state value depends on the previous 

state value and the parity of the previous quantization index. 

This provides a mechanism to uniquely identify the current state 

and thus the applied quantizer. Obviously, this process requires 

the neural network parameters to be reconstructed sequentially 

in a predefined order which is chosen equally to the coding and 

scan order. So, given the current state value (and thus the 

quantizer) as it is output by the state transitioning process, and 

the transmitted quantization index, the decoder is able to 

properly reconstruct the current parameter. 
TABLE II 

STATE TRANSITIONS FOR QUANTIZER SELECTION IN DQ 

state 0 1 2 3 4 5 6 7 

quantizer used 𝑄0 𝑄0 𝑄1 𝑄1 𝑄0 𝑄0 𝑄1 𝑄1 

next state 
parity 0 0 4 5 1 6 2 3 7 

parity 1 4 0 1 5 2 6 7 3 

For encoding, the potential transitions can be interpreted as 

an 8-state trellis. Then, determining the optimal sequence of 

quantization indices is equivalent to finding the path through 

the trellis that minimizes a Lagrangian cost function 𝐽 = 𝐷 +
 𝜆𝑅 of distortion 𝐷 (mean squared error) and bitrate 𝑅. Since 

each transition is associated with an RD-cost, the best path is 

determined using the well-known Viterbi algorithm [32]. For 

more details the reader is referred to [33]. 

VII. ENTROPY CODING  

In the NNR standard, the quantization indices that are output 

by the selected quantization method and all other syntax 

elements are entropy coded using DeepCABAC [34]. This 

method is based on context-adaptive binary arithmetic coding 

(CABAC) [35], which was originally developed and optimized 

for video compression. CABAC is a lossless coding method 

that provides high compression performance as well as a high 

flexibility of adaptation and also allows highly efficient 

implementation, when compared to other entropy coding 

techniques. 

For this, CABAC includes the following three techniques, as 

described in more detail in the respective subsections: A.) Each 

non-binary symbol or data element to be encoded is 

decomposed into a series of binary decisions (also called bins), 

such that a symbol can be uniquely identified. B.) A binary 

probability model (context model) is assigned to each bin. This 

probability model adapts on-the-fly to the local statistics of the 

data with each bin that is encoded with the model. C.) Finally, 

each bin is encoded, according to its estimated probability using 

an arithmetic coding engine. 

A. Binarization 

A data element is represented by a binary symbol, as required 

by the binary arithmetic coding engine. Consequently, the non-

binary quantization indices need to be decomposed into a series 

of bins. For this, a parameter tensor is mapped onto a sequence 

of quantization indices by applying a scan. Then, each 

quantized neural network parameter is binarized (as depicted in 

Fig. 4) in the following manner: 

 
Fig. 4 DeepCABAC binarization scheme. 

A first bin, called SigFlag (significance flag), determines if 

the current neural network parameter is significant or not, 

which means that a bit is assigned which determines if the 

parameter is 0 or not. Then, if the neural network parameter is 

not 0, a SignFlag denotes the sign of the parameter, which is 

equal to 1 if the parameter is negative and equal to 0, otherwise. 

Then, a series of bins, called AbsGr(𝑛𝑖)Flag, are similarly 

encoded, which determine whether the quantization index is 

greater than 𝑛𝑖 = 1, 2, … , 10. Thus, whenever an 

AbsGr(𝑛𝑖) Flag equals 1 it is followed by the next 

AbsGr(𝑛𝑖+1) Flag, otherwise, when the flag equals 0, encoding 

of the current parameter is terminated and no further bits are 

transmitted. If AbsGr10Flag is 1, a reminder is present and 

encoded using an exponential Golomb code [36], composed of 

a unary and fixed part. For clarity, the bins of the unary part are 

denoted as ExpGoUn(𝑙𝑎) and the bins of the fixed part are 

denoted as ExpGoFix(𝑘𝑎). The binarization scheme and two 

examples are depicted in Fig. 3.  

B. Context modeling 

Two types of bins, bypass and regular bins, are coded as 

follows: For bypass bins, one bit per bin is written to the 

bitstream, e.g. as processed for the fixed part of the exponential 

Golomb code (ExpGoFix(ka)). Each regular bin is associated 

with a probability model. The number of bits output by the 

arithmetic coding engine depends on the estimated probability 

and is usually lower than one bit per bin on average. 

Consequently, the compression efficiency highly depends on 

accurately estimated probabilities. To address this, bins with 

similar statistics are assigned to the same probability model, 

which is also known as context modeling. Those bins are 

grouped based on previously coded bins or a local context as 

follows: For the syntax element SigFlag a set of either three or 

up to 24 context model candidates is assigned. First, three cases 

are distinguished by the value of the left neighboring 

quantization index, i.e. whether it is negative, zero or positive. 

Then, for the non-DQ case, one context model for each case is 

assigned. In contrast, for DQ, 8 context models are assigned for 

each of the three cases, according to the value of the variable 

‘state’ (0…7) as given in TABLE II. 

The SignFlag employs three context model candidates based 

on the left neighboring quantization index, analogously to the 

SigFlag. For each of the AbsGr(𝑛𝑖) Flags and ExpGoUn(𝑙𝑎) a 

set of two possible candidates is used. The chosen model is 
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determined by the value 0 or 1 of the preceding SignFlag. 

C. Arithmetic coding 

The coding engine processes bypass and regular bins as 

follows: For each bypass bin a bit is written to the bitstream, 

which corresponds to a probability estimate of 0.5. The value 

of this bit reflects the value of the respective bin. In fact, the 

arithmetic coding engine is bypassed in this case, which also 

improves throughput. 

For all regular bins, a binary arithmetic coder is employed, 

i.e. a series of bins is encoded into a single integer value. The 

integer value represents the outcome of an iterative interval 

subdivision process. Beginning with a starting interval, for each 

bin, the respective interval is subdivided according to the 

probability estimate of the bin being equal to 1 or 0. Then the 

interval that corresponds to the bin value is chosen and input to 

the subdivision process for the next bin. Finally, an integer 

number is chosen, which uniquely determines the outcome 

interval. Analogously, the bins can be obtained at the decoder 

by performing the subdivision process synchronously. 

VIII. COMPRESSION PERFORMANCE 

The NNR compression performance is evaluated for a 

verification dataset of different neural networks as defined in 

[37]. An overview of the models is given in [38], which also 

highlights the corresponding use cases, performance measures, 

application data and number of parameters. The dataset 

includes three models (VGG16, ResNet50, MobileNetV2) for 

image classification, one model (DCase) for audio 

classification and an image autoencoder (UC12B). The 

experiments were carried out, using the standard reference 

software NCTM (Neural network Compression Test Model, 

version 6.0) [39].  
TABLE III 

NNR TRANSPARENT CODING RESULTS 

Model cr in % 
Top-1 / Top-5 
Acc. reconstr. 

Top-1 / Top-5 
Acc. original 

Orig. size 

(bytes) 

VGG16 2.98 70.51 / 89.54 70.93 / 89.85 553.43 M 

ResNet50 6.54 74.42 / 91.80 74.98 / 92.15 102.55 M 

MobileNetV2 12.18 71.13 / 90.06 71.47 / 90.27 14.16 M 

DCase 4.12 58.15 / 92.35 58.27 / 91.85  467.26 k 

Model cr in % 
PSNR / SSIM 
reconstructed 

PSNR / SSIM 
original 

Orig. size 
(bytes) 

UC12B 17.34 29.98 / 0.954 30.13 / 0.956 304.72 k 

 

In TABLE III, the transparent coding results at working 

points with same classification quality of original and 

reconstructed pre-trained NNs for Top-1 / Top-5 accuracies and 

Peak Signal-to-Noise Ratio (PSNR) / Structural Similarity 

Index Measure (SSIM) for UC12B are given. TABLE III shows 

that a compression ratio cr of less than 3% (or vice versa a 

compression efficiency ce of more than 97%) can be achieved 

without accuracy degradation. As an example, the compressed 

bitstream size is only 2.98% for VGG16 and 4.12% for DCase 

in comparison to the original size at the same quality. 

 

 

 

 
Fig. 5 Compression Ratio-Performance curves for (a) original, (b) sparse, (c) 

low-rank and (d) unified models for Top-1 Accuracies, and PSNR for UC12B. 
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Additional benchmark results for different preprocessing 

methods from section V, i.e. pretraining, sparsification, low 

rank decomposition and unification, are depicted in Fig. 5 (a) to 

(d) respectively. Each figure shows compressing ratio cr with 

respect to performance measure (Top-1 Accuracy for 

classification models and PSNR for the image autoencoder) at 

different working points. These working points are determined 

by a quantization parameter (QP) that controls the quantization 

step size. The NNR standard results (NCTM) are denoted by a 

solid line. A second reference method, that applies uniform 

quantization according to section VI.A and bzip2 [40] for 

compression of the quantization indices is shown as dashed 

lines. Fig. 5 shows, that NNR achieves high compression even 

for high performance qualities and outperforms comparable 

methods, significantly. As an example, cr = 2.98% for VGG16 

NCTM, while for VGG16 BZIP cr = 7.74%, as given in [34]. 

The graphs also show that much higher compression ratios (far 

below 3%) of compressed NNs can be achieved for lossy 

coding scenarios, i.e. when performance decreases are allowed.  

IX. CONCLUSION 

The NNR standard for efficient compression of neural 

networks has been developed and standardized by ISO/IEC 

MPEG. The standard is developed as a toolbox, and appropriate 

coding pipelines can be created from the included methods. It 

can be used either as an independent coding framework or 

together with external neural network formats and frameworks. 

For providing the highest degree of flexibility, the network 

compression methods operate per parameter tensor to always 

ensure proper decoding, independent of a respective external 

framework and even if no structure information is provided. In 

the independent coding case the neural network structure or 

connection graph is transmitted internally as part of the NNR 

specification, whereas in the framework-dependent case, 

structure information is provided by the respective NN 

framework. 

The codec design includes compression-efficient 

quantization methods, namely uniform reconstruction, 

codebook and dependent scalar quantization and the 

DeepCABAC arithmetic coding method as core encoding and 

decoding technologies. Next, common neural network 

preprocessing methods for parameter reduction are specified, 

including sparsification, pruning, low-rank decomposition, 

unification, batch norm folding and local scaling. Furthermore, 

the NNR high-level syntax also supports mechanisms for 

parallel decoding at block-row or sub-tensor level. 

NNR achieves a compression efficiency ce of up to 97% for 

transparent coding cases, i.e. without degrading classification 

quality, such as top-1 or top-5 accuracies. In addition, much 

higher coding gains can be obtained for accuracy-lossy coding 

cases. 
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