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ABSTRACT

Within the last decade, neural network based predictors have demon-
strated impressive — and at times super-human — capabilities. This
performance is often paid for with an intransparent prediction pro-
cess and thus has sparked numerous contributions in the novel field
of explainable artificial intelligence (XAl). In this paper, we focus on
a popular and widely used method of XAl the Layer-wise Relevance
Propagation (LRP). Since its initial proposition LRP has evolved as
a method, and a best practice for applying the method has tacitly
emerged, based on humanly observed evidence. We investigate —
and for the first time quantify — the effect of this current best practice
on feedforward neural networks in a visual object detection setting.
The results verify that the current, layer-dependent approach to LRP
applied in recent literature better represents the model’s reasoning,
and at the same time increases the object localization and class dis-
criminativity of LRP.

Index Terms— layer-wise relevance propagation, explainable
artificial intelligence, neural networks, visual object recognition,
quantitative evaluation

1. INTRODUCTION

In recent years, deep neural networks (DNN) have become the state
of the art method in many different fields but are mainly applied as
black-box predictors. Since understanding the decisions of artificial
intelligence systems is crucial in numerous scenarios and partially
demanded by law', neural network interpretability has been estab-
lished as an important and active research area. Consequently, many
approaches to explaining neural network decisions have been pro-
posed in recent years, e.g. [1, 2, 3, 4]. The Layer-wise Relevance
Propagation (LRP) [5] framework has proven successful at provid-
ing a meaningful intuition and measurable quantities describing a
network’s feature processing and decision making [6, 7, 8]. LRP
attributes relevance scores R; to the model inputs or intermediate
neurons ¢ by decomposing a model output of interest. The method
follows the principles of relevance conservation and proportional
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decomposition. Therefore, attributions computed with LRP maintain
a strong connection to the predictor output. While early applications
of LRP use a single decomposition rule uniformly to all layers of a
model [5, 9, 10] more recent work describes a trend towards assign-
ing specific decomposition rules purposedly to layers wrt. function
and position within the network [11, 8, 12, 13, 14]. This trend has
tacitly emerged and formulates a best practice for applying LRP.
Under qualitative evaluation, the attribution maps resulting from this
current approach seem to be more robust against the effects of shat-
tered gradients [10, 15, 11] and demonstrate an increased discrim-
inativity between target classes [11, 12] compared to the uniform
application of a single rule.

However, recent literature applying LRP-rules in a layer-
dependent manner do not justify the beneficial effects of this novel
variant quantitatively, but only based on human observation. In this
paper, we design and conduct a series of experiments in order to ver-
ify whether a layer-specific application of different decomposition
rules actually constitutes an improvement above earlier descriptions
and applications of LRP [9, 16]. Our experiments are conducted
on popular computer vision data sets with ground truth object lo-
calizations, the ImageNet [17] and Pascal VOC [18] datasets, using
different neural network models.

2. FEEDFORWARD NEURAL NETWORKS AND LRP

Feedforward neural networks constitute a popular architecture type,
ranging from simple multi-layer perceptrons and shallower convolu-
tional architectures to deeper and more complex Inception [19] and
VGG-like architectures [20]. These types of neural network com-
monly use ReLU non-linearities and first pass information through a
stack of convolution an pooling layers, followed by several fully con-
nected layers. The good performance of feedforward architectures in
numerous problem domains, and the availability as pre-trained mod-
els makes them a valuable standard architecture in neural network
design.

2.1. Layer-wise Relevance Propagation

Consequently, feedforward networks have been subject to investiga-
tions in countless contributions towards neural network interpretabil-
ity, including applications of LRP [5, 9, 16], which finds its mathe-
matical foundation in Deep Taylor Decomposition (DTD) [21]. The
most basic attribution rule of LRP (we here refer to as LRP.) is de-
fined as
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Fig. 1. Different attributions for the output classes “Tiger Cat” and “Bernese Mountain Dog” using the VGG-16 model. Network output
strength (logit) is given in parenthesis. Uniformly applied rules (a) - (d) are not, or hardly class discriminative. LRP, shows the effect of
gradient shattering. Composite strategies (e) - (g) are sensitive to class-specific information and highlight features on different levels of scale.

and performs a proportional decomposition of an upper layer (I + 1)
relevance value R;H'l) to obtain lower layer (1) relevance scores Rgl)
wrt. to the forward mappings z;; (directed from layer inputs ¢ to
outputs j during inference) and their respective aggregations z; at
the layer output. Note that Eq. (1) is conservative between layers
and in general maintains an equality >, Rgl) = f(z) at any layer of
the model.

Further purposed LRP-rules beyond Eq. (1) are introduced in
[5] which can be understood as advancements thereof. So does the
LRP. decomposition rule add a signed and small constant ¢ to the
denominator in order to prevent divisions by zero and to diminish the
effect of recessive mappings z;; to the relevance decomposition. The
LRP.3 rule performs and then merges separate decompositions for
the activatory (z;; > 0) and inhibitory (z;; < 0) parts of the forward
pass. Here, the o parameter permits a weighting of relevance distri-
bution towards activations and inhibitions (3 is given implicitely s.t.
a + B = 1 to uphold conservativity) . The commonly used pa-
rameter o = 1 (short: «) can be derived from DTD and has been
rediscovered in ExcitationBackprop [22]. Later work [23, 12] in-
troduces LRP,, a decomposition which spreads the relevance of a
neuron uniformly across all its inputs. This rule (or alternatively the
DTD_ 5 rule [21]) has seen application in networks’ input layers, and
provides invariance to the decomposition process wrt. to translations
in the input domain.

Earlier applications of LRP (e.g. [5, 9]) did use one single de-
composition rule uniformly over the whole network, which often
resulted in suboptimal “explanations” of model behavior [11]. So
are LRP, and LRP. respectively identical and highly similar to
Gradientx Input (GxI) in ReLU-activated DNNs [10] and — while
working well for shallower models — demonstrate the effect of gradi-
ent shattering in overly complex attributions for deeper models [11].
The LRP .3 demonstrates robustness against gradient shattering and
produces visually pleasing attribution maps, however is lacking in
class- or object discriminativity [24, 11] by consistently attributing
relevance to features unrelated to the object. Further, LRP,z intro-
duces the constraint of positive layer activations [21], which is in
general not guaranteed, especially at the (logit) output of a model.

2.2. A Current Best Practice for LRP

A recent trend among XAl researchers and practitioners employing
LRP is the use of a composite strategy for decomposing the pre-
diction of a neural network [12, 11, 8, 13, 14]. That is, different
parts of the DNN are decomposed using different rules, which in
combination are robust against gradient shattering while sustaining

object discriminativity. Common among these works is the utiliza-
tion of LRP. with ¢ < 1 (or just LRP) to decompose fully con-
nected layers close to the model output, followed by an applica-
tion of LRP,s to the underlying convolutional layers (usually with
a € {1,2}). Here, the separate decomposition of the positive and
negative forward mappings complements the localized feature acti-
vation of convolutional filters activated by, and feeding into ReLUs.
A final decomposition step within the convolution layers near the in-
put uses the LRP,-rule’*. Most commonly this rule (or alternatively
the DTD 5 -rule) is applied to the input layer only. In summary, we
here describe this pattern of rule application as LRPcap. Fig. 1
provides a qualitative overview of the effect of LRPc s p in contrast
to other parameterizations and methods, which we will further dis-
cuss in Sec. 4. Note that the option to apply the LRP;, decomposition
to the first n layers near the input (instead of only the first) provides
control over the local and semantic scale [23] of the computed at-
tributions (see Fig. 1(e)-(g)). Previous works profit from this option
for comparing DNNs of varying depth, and differently configured
convolutional stacks [12], or by increasing readability of attributions
maps aligned to the requirements of human investigators [13].

3. EXPERIMENTS

The declared purpose of LRP is to precisely and quantitatively in-
form about the features which contribute towards or against the de-
cision of a model wrt. to a specific predictor output [5]. While the
recent LRPc s p exhibits improved properties above previous vari-
ants of LRP by eyeballing, an objective verification requires quan-
tification. The visual object detection setting, as it is described by
the Pascal VOC (PVOC) [18] or ImageNet [25] datasets — both of
which include object bounding box annotations — delivers an opti-
mal experimental setting for this purpose.

An assumed ideal model would, in such a setting, exhibit true
object understanding by only predicting based on the object itself.
A good and representative attribution method should therefore re-
flect that object understanding of the model closely i.e. by marking
(parts of) the shown object as relevant and disregarding visual fea-
tures not representing the object itself. Similar to [9], we therefore
rely on a measure based on localization of attribution scores. In
the following, we will evaluate LRPc s p against other methods and
variants of LRP on ImageNet using a pre-trained VGG-16 network,
and on PVOC 2007 using a pre-trained (on PVOC 2012) CaffeNet

2read: b =“flat”, as in the musical b.
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Fig. 2. Mean prediction changes measured in the logit outputs as
a function of the occluded area, when occluding the pixels within
(object) and without (context) the class-specific bounding boxes on
PVOC 2007 (left) and ImageNet (right).

model [9]. Both models perform well on their respective task and
have been obtained from https://modelzoo.co/ .

3.1. Verifying Object-centricity During Prediction

In practice, both datasets can not be assumed to be free from con-
textual biases (c.f. [8]), and in both settings models are trained to
categorize images rather than localize objects. Still, we (neccessar-
ily) assume that the models we use dominantly base their decision on
the target object, as opposed to the image context. We verify our hy-
pothesis in Fig. 2, showing for both models and datasets the A f(z)
of the true class, when occluding the area within the object bound-
ing box in contrast to occluding the remaining image area, relative
to the unperturbed f(z). We occlude by replacing the selected pixel
coordinates with the respective mean values from the training set.
Occluding the object area consistently leads to a sharper decrease in
the output for the specific class. The trend is especially evident for
smaller objects. This supports our claim that the networks base their
decision mainly on the object as opposed to the image context.

3.2. Attribution Localization as a Quantitative Measure

This gives us a performance criterion for attribution methods in ob-
ject detection and classification: In order to track the fraction of the
total amount of relevance that is attributed to the object, we use the
inside-total relevance ratio p without, and a weighted variant fi,
within consideration of the object size:

Rin Stot
f— w = . 2
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While conceptually similar to the inside-outside ratio used in [9],
w and i, avoid numerical issues in edge cases wrt. bounding box
size. Here, Rij, is the sum of positive relevance in the bounding box,
Ry the total sum of positive relevance in the image and Si, and Siot
are the size of the bounding box and the image respectively, in pix-
els. The subscript w signals the addition of the normalization factor
in ., considering the image and object size. Since correctly locat-
ing small objects is more difficult than locating image-sized objects,
4w puts an emphasis on measuring the outcome for small bound-
ing box sizes. In both cases, higher values indicate larger fractions
of relevance attributed to the object area (and not background), and
therefore are the desirable outcome.

The inside-total relevance ratio highly depends on the size of
the bounding box, we thus report the average p., as an aggregate of
results over differently sized objects and images in Tab. 1 and plot p
as a function of bounding box size in Fig. 3.

3.3. Experimental Setup

We perform our experiments on both the ImageNet and the PVOC
2007 datasets, since both collections provide large numbers of
ground truth object bounding boxes.

For PVOC, we compute attribution maps for all samples (ap-
prox. 10.000) from PVOC 2007, using a model which has been pre-
trained on the multi label setting of PVOC 2012 [18, 9]. The re-
spective model performs with a mean AP of 72.12 on PVOC 2007.
Since PVOC describes a multi label setting, multiple classes can be
present in the same image. We therefore evaluate for p and ., once
for each unique existing pair of { class x sample }, yielding ap-
proximately 15.000 measurements. Images with a higher number
of (smaller) bounding boxes thus effectively have a stronger impact
on the results than images with larger, image-filling objects, while
at the same time describing a more difficult setting. Many of the
objects shown in PVOC images are not centered. In order to use
all available object information in our evaluation, we rescale the in-
put images to the network’s desired input shape to avoid (partially)
cropping objects.

On ImageNet [17] (2012 version), bounding box information
does only exist for the 50.000 validation samples (one class per im-
age) and can be downloaded from the official website®. We evaluate
a pre-trained VGG-16 model from the keras model zoo, obtained via
the iNNvestigate [26] toolbox. The model performs with a 90.1%
top-5 accuracy on the ImageNet test set. For all images the shortest
side is rescaled to fit the model input and the longest side is center-
cropped to obtain a quadratic input shape. Bounding box informa-
tion is adjusted correspondingly.

For computing attribution maps, we make use of existing XAl
software packages, depending on the models’ formats. That is, for
the VGG-16 model we use the iNNvestigate [26] toolbox. For the
PVOC data and the CaffeNet architecture, we compute attributions
using the LRP Toolbox [27].

Both XAI packages support the same functionality regarding
LRP, yet differ in the provided selection of other attribution meth-
ods. Our study, however, shall be focussed on the beneficial or detri-
mental effects between the variants of LRP used in literature. We
compute attributions maps and compute values for p and pu,, for four
variants of LRPcarp (a1, iz, each once with and without LRP, at
the input), LRP,s (both ar1 and «2), and LRP., for both models.
We complement the results for ImageNet with Guided Backprop [1]
and Pattern Attribution [2] only available in iNNvestigate, as well
as LRPc an for demonstration purposes. LRPcanr is equivalent
to LRP, (and CAM [28], absent the SoftMax) in the fully connected
part of the model, but replaces the upsampling over the convolutional
stack of CAM with applications of LRP;, and distributes negative rel-
evance. On both datasets, we evaluate attributions for the real class
label, independent of network prediction.

4. RESULTS AND DISCUSSION

4.1. Qualitative Observations

Fig. 1 exemplarily shows attribution maps computed with different
methods based on the VGG-16 model, for two object classes present

3http://www.image-net.org/challenges/LSVRC/2012/index
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Fig. 3. Average in-total ratio p as a function of bounding box size.
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in the ImageNet labels and the input image; “Bernese Mountain
Dog” and “Tiger Cat”. Attributions (a)-(d) result from uniform rule
application to the whole network. Next to applications of LRP. and
LRP.g3, this includes Guided Backprop [1] and Pattern Attribu-
tion [2]. Neither of these maps demonstrate class-discriminativeness
and prominently attribute scores to the same areas, regardless of the
target class chosen for attribution. LRP, additionally shows the ef-
fects of gradient shattering in a highly complex attribution structure
due to its equivalence to GxI. Such attributions would be difficult
to use and juxtapose in further algorithmic or manual analyses.

To the right, attribution maps (e)-(g) correspond to variants of
LRPc v p, which apply different decomposition rules depending on
layer type and position. In Fig. 1 (e), the LRP;-rule is only applied
to the input layer, while in (g) it is used for the first three convolu-
tional layers and the whole convolutional stack in (f). Both (e) and (f)
use av1. Here altogether, the visualized attribution maps correspond
more to an “intuitive expectation”. Fig. 1 (e)-(g) demonstrates the
change in scale and semantic, from attributions to local features to
a very coarse localization map, with changing placements of LRP,,.
Further, it becomes clear that with an application of LRP, g in upper
layers, object localization is lost (see (b) vs (g)), while an application
in lower layers avoids issues related to gradient shattering, as shown
in (e)-(f) compared to (a).

Note that the VGG-16 network used here never has been trained
in a multi-label setting. Despite only receiving one object category
per input sample, it has learned to distinguish between different ob-
ject types, e.g. that a dog is not a cat. This in turn reflects well in the
attribution maps computed after the LRPc s p pattern.

4.2. Quantitative Results

Figs. 3 (a) and (b) show the average in-total ratio  as a function of
bounding box size, discretized over 100 equally spaced intervals, per
size interval, for PVOC 2007 and ImageNet. Averages for p and fi.
over the whole (and partial) datasets can be found in Tab. 1. Large
values indicate more precise attribution to the relevant object. The
assumed Baseline is the uniform attribution of relevance over the
whole image, which is outperformed by all methods.

LRP. performs noticably worse on ImageNet than on PVOC,
which we trace back to the significant difference in model depth (13
vs 21 layers) affecting gradient shattering. We omit LRP. due to
identity in results to LRP,. LRP,z has the tendency to attribute to
all shown objects and suffers from the multiple classes per image in

Table 1. Average context attribution metrics for different analyzers
and datasets. Row order is determined by p.,. Higher p. are better.

Data  Analyzer Hw H<o0.25 H<0.5 M
LRPcyrp.a2ty | 2.716 0.307 0.421 0.532
LRPcMP:a1 2.664 0.306 0.426 0.539

< LRPcrpa1+s | 2.598 0.301 0.421 0.535
Q= LRPcumpac | 2475 0276 0388  0.504
E 5§ LRP, 2.128 0.236 0.353 0.480

O LRP.» 1.843 0.205 0.320 0.452

LRP .1 1.486 0.163 0.273 0.403
Baseline 1.000 0.100 0.186 0.322
LRPchrp.a2ty | 1.902 0.397 0.534 0.714
LRPcMP.a2 1.797 0.368 0.505 0.693
LRPcMP-al 1.7044 03467 0.4887 0.6898

3 S  LRPcapaiss | 17043 03466 04886  0.6898

%05 LRP.> 1.702 0.332 0.496 0.706

g E GB 1.640 0.312 0.485 0.710

=<  LRP.1 1.609 0.306 0.475 0.699
PA 1.591 0.303 0.471 0.698
LRP, 1.347 0.236 0.389 0.632
Baseline 1.000 0.128 0.260 0.547

PVOC, where ImageNet shows only one class. Also, the similar-
ity of attributions between PA and LRP.; observed in Fig. 1 seem
consistent on ImageNet and result in close measurements in Tab. 1.

Tab. 1 shows that LRPc v p clearly outperforms other methods
consistently on large datasets. That is, the increased precision in at-
tribution to relevant objects is especially evident in the presence of
smaller bounding boxes in p,,. This can also be seen in p<g.25 and
t<o.5 in Tab. 1 and the left parts of Figs. 3 (a) and (b), where a
majority of the image shows contextual information or other classes.
Once bounding boxes become (significantly) larger and cover over
50% of the image, all methods converge towards perfect perfor-
mance. In both settings, LRPc nrp.a2tb (2 and using b) yields the
best results, while overall the composite strategy is more effectful
than a fine tuning of decomposition parameters.

4.3. Conclusion

In this study, we discuss a recent development in the application
of Layer-wise Relevance Propagation. We summarize this emerg-
ing strategy of a composite application of multiple decomposition
rules as LRPcap and juxtapose its effects to previous approaches
which uniformly apply a single decomposition rule to all layers of
the model. Our results show that LRPc s p does not only yield
more representative attribution maps, but also provides a solution
against gradient shattering affecting previous approaches and im-
proves properties related to object localization and class discrimi-
mation. The discussed beneficial effects are demonstrated qualita-
tively and verified quantitatively at hand of two large and popular
computer vision datasets. While alternative approaches with the aim
to achieve a similar effect to LRPc s p may rely on multiple back-
ward passes through the model or are unable to attribute negative
relevance to class-contradicting features, LRPc s p needs only one
backward pass using established tools from the LRP framework.
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