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Abstract

Deep neural networks (DNN) have shown remarkable
success in a variety of machine learning applications. The
capacity of these models (i.e., number of parameters),
endows them with expressive power and allows them to
reach the desired performance. In recent years, there
is an increasing interest in deploying DNNs to resource-
constrained devices (i.e., mobile devices) with limited en-
ergy, memory, and computational budget. To address this
problem, we propose Entropy-Constrained Trained Ternar-
ization (EC2T), a general framework to create sparse and
ternary neural networks which are efficient in terms of stor-
age (e.g., at most two binary-masks and two full-precision
values are required to save a weight matrix) and computa-
tion (e.g., MAC operations are reduced to a few accumula-
tions plus two multiplications). This approach consists of
two steps. First, a super-network is created by scaling the
dimensions of a pre-trained model (i.e., its width and depth).
Subsequently, this super-network is simultaneously pruned
(using an entropy constraint) and quantized (that is, ternary
values are assigned layer-wise) in a training process, re-
sulting in a sparse and ternary network representation. We
validate the proposed approach in CIFAR-10, CIFAR-100,
and ImageNet datasets, showing its effectiveness in image
classification tasks.

1. Introduction

Convolutional neural networks (CNN) have excelled
in numerous computer vision applications. Their per-
formance is attributed to their design. That is, deeper
(i.e., designed with many layers) and high-capacity (i.e.,
equipped with many parameters) CNNs achieve better per-
formance in a given task, at the cost of sacrificing com-
putational and memory efficiency. This general trend has
been disrupted by the need to deploy neural networks in

resource-constrained devices (e.g., autonomous vehicles,
robots, smartphones, wearable, and IoT devices) with lim-
ited energy, memory, and computational budget, as well as
low-latency and/or low-communication cost requirements.
Thus, driven by both the industry and the scientific com-
munity, the design of efficient CNNs has become an ac-
tive area of research. Moreover, the Moving Picture Expert
Group (MPEG) of the International Organization of Stan-
dards (ISO) joined this endeavor, and recently issued a call
on neural network compression techniques [1].

Recent studies have shown that most CNNs are over-
parameterized for the given task [2]. Such models can be
interpreted as super-networks, designed with millions of pa-
rameters to reach a target performance (e.g., high classifi-
cation accuracy), while being memory and computational
inefficient. However, from these models, it is possible to
find a small and efficient sub-network with comparable per-
formance. This hypothesis has been validated with simple
methods, i.e., by pruning neural network connections based
on the weights’ magnitude [3], resulting in little accuracy
degradation. Moreover, the recently proposed lottery-ticket
hypothesis [4], supports the existence of an optimal sub-
network inside a super-network, and has shown to general-
ize across different datasets and optimizers [5].

Among existing network compression techniques, prun-
ing and quantization are two popular and effective tech-
niques to reduce the redundancy of deep neural net-
works [6]. Pruning entails systematically removing network
connections in a structured (i.e., by removing groups of pa-
rameters) or unstructured fashion (i.e., by removing indi-
vidual parameter elements) [7]. In contrast, quantization
minimizes the bit-width of the network parameter values
(and thus, the number of distinct values) [8, 9]. From an-
other perspective, efficient neural networks can be designed
by finding the right balance between its dimensions, i.e.,
the networks’ width, depth, and input resolution. In this
regard, compound model scaling [10] allows scaling the di-
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mensions of a baseline-network according to some heuristic
rules grounded on computational efficiency.

In this work, we propose Entropy-Constrained Trained
Ternarization (EC2T), a method that leverages on com-
pound model scaling [10] and ternary quantization tech-
niques [9], to design a sparse and ternary neural network.
The motivations behind such network representation are
based on efficiency. Specifically, in terms of storage, at
most two binary-masks and two full-precision values are
required to represent and save each layer’s weight matrix.
Regarding mathematical operations, multiply-accumulate
operations (MACs) are reduced to a few accumulations
plus two multiplications. The EC2T approach is illustrated
in Figure 1 and consists of two stages. In the first stage,
a super-network is created by scaling the dimensions of
a baseline-network (its width and depth). Subsequently,
during a training stage, a sparse and ternary sub-network
is found by simultaneously pruning (enforced by introduc-
ing an entropy constraint in the assignment cost function)
and quantizing (ternary values are assigned layer-wise) the
super-network. Specifically, our contributions are:

• We propose an approach to design sparse and ternary
neural networks, that relies on compound model scal-
ing [10] and quantization techniques. For the latter,
we extend the approach described in [9] by introduc-
ing an assignment cost function in terms of distance
and entropy constraints. The entropy constraint allows
adjusting the trade-off between sparsity and accuracy
in the quantized model. Therefore, quantized mod-
els with different levels of sparsity can be rendered,
according to the compression and application require-
ments.

• Our approach allows simultaneous quantization and
sparsification in a single training stage.

• In the context of image classification, the proposed ap-
proach finds sparse and ternary networks across differ-
ent datasets (CIFAR-10, CIFAR-100, and ImageNet),
whose performance is competitive with efficient state-
of-the-art models.

This paper is organized as follows. First, in section 2, a
literature review of techniques to design efficient neural net-
works is provided, emphasizing those that are related to our
approach. Subsequently, in section 3, the proposed EC2T
approach is detailed. Afterward, in section 4, we present
experimental evidence and results, validating the proposed
method across different networks and datasets. Finally, in
section 5, we discuss the insights of the EC2T approach, its
advantages and downsides, and future work.

2. Related Works

In recent years, various techniques have been proposed
in the literature to design efficient neural networks, e.g.,
pruning, quantization, distillation, and low-rank factoriza-
tion [6]. In particular, pruning and quantization provide
unique benefits to DNNs in terms of hardware efficiency
and acceleration.

Pruning removes non-essential neural network connec-
tions, according to different criteria, either in groups (struc-
tured pruning) or individual parameters (unstructured prun-
ing). Specifically, the second approach is achieved by max-
imizing the sparsity 1 of the network parameters. Conse-
quently, the computational complexity of the network is
reduced, since arithmetic operations can be skipped for
those parameter elements which are zero [11]. Early works
on sparsity use second-order derivatives (Hessian) to com-
pute the saliency of parameters, suppressing those with the
smallest value [12, 13]. Current state-of-the-art techniques
to promote sparsity in DNNs rely either on magnitude-
based pruning or Bayesian approaches [14]. Magnitude-
based pruning is the simplest and most effective way to in-
duce sparsity in neural networks, [7]. In contrast, Bayesian
approaches although computationally expensive, represent
an elegant solution to the problem. Moreover, they estab-
lish connections with information theory. In this context,
variational dropout [15] and l0-regularization [16] are two
representative techniques.

Regarding quantization, it reduces the redundancy of
deep neural networks by minimizing the bit-width of the
full-precision parameters. Therefore, quantized networks
require fewer bits to represent each full-precision weight,
and demand less mathematical operations than their full-
precision counterparts. Binary networks [17, 18] repre-
sent an extreme case of quantization where both, weights
and activations are binarized. Thus, arithmetic opera-
tions are reduced to bit-wise operations. By introducing
three distinct elements per layer, ternary networks achieve
more expressive power and higher performance than bi-
nary networks. Moreover, sparsity can be induced in the
network by including zero as a quantized value, while
the remaining values are modeled with scaling factors per
layer. Following this approach, [19] proposed to minimize
the Euclidean distance between full-precision and quan-
tized parameters (e.g., wq), where the latter are symmet-
rically constrained (e.g., wq ∈ {−a, 0, a}, with a > 0).
In contrast, [9] used asymmetric constraints (e.g., wq ∈
{−a, 0, b}, with a > 0 and b > 0), improving the mod-
eling capabilities of ternary networks. Several variants of
ternary network quantization exist, e.g., based on Truncated
Gaussian Approximation (TGA) [20], Alternating Direction

1Percentage of zero-valued parameter elements in the whole neural net-
work.



Figure 1. In the EC2T approach, model compound scaling is used to create a super-network from a baseline-network. Afterward, in a
ternary quantization stage, this super-network is simultaneously pruned and quantized, rendering a sparse and ternary sub-network with
comparable performance.

Method of Multipliers (ADMM)) [21], and Multiple-Level-
Quantization (MLQ) [22], among others. With regards to
hardware efficiency, ternary networks represent a trade-off
between binary networks (extremely hardware-friendly, but
with limited modeling capabilities) and their full-precision
counterparts (with higher modeling capabilities, but expen-
sive in terms of storage and computational resources), [19].

Usually, highly efficient network representations are the
result of combining multiple techniques. For instance, prun-
ing followed by quantization [23, 24], in addition to en-
tropy coding [25, 26, 27]. From a different perspective,
progress in designing efficient neural networks has been fu-
eled by advances in hand-crafted architectures (e.g., Mo-
bilenet [28], Mobilenet-V2 [29], and ShuffleNet [30]) as
well as neural architecture search techniques (e.g., Mnas-
net [31], EfficientNet [10], and MobileNet-V3 [32]). More-
over, simpler methods such as model scaling, allows in-
creasing the performance of a baseline network by scaling
one or more dimensions (i.e., its depth, width, and input
resolution) independently [31, 32]. In [10], this approach
is improved with the introduction of compound model scal-
ing, where the network dimensions are treated as dependent
variables, constrained by a limited number of resources,
measured in terms of floating-point operations (FLOPs).

In this research work, we advocate for compound model
scaling, ternary quantization, and information theory tech-
niques, as the core building blocks to design a CNN with
optimal dimensions (i.e., the right balance between the net-
works’ width and depth) and efficient parameter representa-
tion (i.e., three distinct values per layer and maximal spar-
sity).

3. Learning Sparse & Ternary Networks
The entropy-constrained trained ternarization (EC2T)

approach (see Figure 1), consists of two stages, namely
compound model scaling followed by ternary quantization,
both described in sections 3.1 and 3.2, respectively.

3.1. Compound model scaling

In this stage, a super-network is created by scaling the
dimensions of a pre-trained model, resulting in an over-
parameterized network. Specifically, the pre-trained net-
work’s depth, width, and input image resolution, are mod-
ified with the scaling factors d, w, and r, respectively, ac-
cording to Equation (1). In this equation, a, b and c, are
constants determined by grid search, and φ is an user spec-
ified parameter. For small-scale datasets (CIFAR-10 and
CIFAR-100) the input image resolution was fixed in the pre-
trained model. Thus, Equation (1) was solved with r = 1.
On the other hand, for large-scale datasets (ImageNet), the
EfficientNet-B1 network was adopted using the scaling fac-
tors suggested in [10].

d = aφ, w = bφ, r = cφ (1)

s.t. a · b2 · c2 ≈ 2 and a ≥ 1, b ≥ 1, c ≥ 1

3.2. Ternary quantization

In this stage, a sparse and ternary sub-network is ob-
tained by simultaneously pruning and quantizing a super-
network. To this end, we extend the approach described
in [9], where a ternary network is obtained by the inter-
play between quantized and full-precision models. That
is, gradients from the quantized model are used to update
both, its parameters and those of the full-precision model.
Therefore, the first parameter update enables the learning
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Figure 2. Histograms of the parameters in the projection-convolution layer, in the first block (MBConv1) of the EfficientNet-B1 network.
The centroid values wn (negative scalar), w0 (zero), and wp (positive scalar), are shown in magenta, blue and orange colors, respectively.
The hyper-parameter λ controls the intensity of the network sparsification, i.e., how many full-precision weight elements are assigned with
the value w0. When λ=0, the weights are quantized to their nearest neighbor centroids. Using small values for λ (see the histogram with
λ=0.05) results in quantized parameters with low sparsity (i.e., few parameters are set to zero). As λ is increased (see histograms with
λ=0.10 and 0.15), the sparsity of the quantized parameters is promoted (i.e., most parameters are set to zero). Eventually, as this process
continues, there is a value λ = λmax, at which the network parameters are binarized. In this special case, one of the two clusters of values
(represented by wn and wp) is completely assigned to w0 (see the histogram with λ=λmax).

of ternary values (i.e., only two scalar values per layer are
learned, while the third quantized value, which is zero, is
excluded from the learning process). On the other hand, the
latter parameter update promotes the learning of ternary as-
signments (i.e., by adapting the full-precision parameters to
the quantization process). Nonetheless, this approach does
not allow explicit control of the sparsification process. To
overcome this limitation, we introduce the assignment cost
function shown in Equation (2), which guides the assign-
ment (with centroid indices) of ternary values (or centroid
values) in the quantized network, in terms of distance and
entropy constraints.

C(l)
c = d(W(l), w(l)

c )− λ(l) log2(P
(l)
c ) (2)

dWij ,wc
= (Wij − wc)2 (3)

In Equation (2), C(l)
c stands for the assignment cost for the

full-precision weights W(l) at layer l, given the centroid
values w(l)

c , indexed by c. Therefore, if W(l) has m × n
dimensions and there are nc centroid values in that layer,
then C(l)

c ∈ <nc×m×n. The first term in Equation (2) mea-
sures the distance between every full-precision weight el-
ement W (l)

ij ∈ W(l) (where i andj are indices along the

dimensions of W(l)) and the centroid values w(l)
c ∈ <, ac-

cording to Equation (3). The second term in Equation (2),

weighted by the scalar λ(l) ∈ <, is an entropy constraint
which promotes sparsity in the quantized model. This is
achieved by measuring the information content of the quan-
tized weights, i.e., I = − log2(P

(l)
c ) ∈ <, where the

probability P (l)
c ∈ [0, 1] defines how likely a weight ele-

ment W (l)
ij ∈ W(l) is going to be assigned to the centroid

value w(l)
c . This probability is calculated for each layer l

as P (l)
c = N

(l)
wc/N

(l)
W , with N (l)

wc being the number of full-
precision weight elements assigned to the centroid value
w

(l)
c , and N (l)

W the total number of parameters in W(l).
After computing Equation (2) (for all layers and centroid

values), the quantized model is updated at layer l, by assign-
ing the current centroid values (w(l)

c ), using the new cen-
troid indices (c) obtained from Equation (4). In this equa-
tion, the assignment matrix A(l) has the dimensions of the
full-precision weights W(l). For ternary networks, we de-
fine the centroid values as w(l)

c ∈ {wn, w0, wp}, and their
assignments with the indices c ∈ {n, 0, p}. In this notation,
the indices n, 0, and p, correspond to negative, zero, and
positive values, respectively.

A(l) = argmin
c

C(l)
c (4)

During the ternary quantization process, the strength of the
sparsification (at layer l) is modulated by the scalar λ(l)



Figure 3. Performance of the C10-MicroNet network evaluated in the CIFAR-10 dataset, using TTQ vs our proposal (EC2T). Every data
point in this plot represents a quantized model, trained with a specific level of sparsity, and initialized with different centroid values. In the
TTQ approach, the sparsity is controlled via simple thresholding as described in [9], whereas in the EC2T approach, it is modulated by γ,
which was increased from 0.0 (low sparsity) to 0.4 (high sparsity), in steps of 0.1. Notice that beyond 70% sparsity, the accuracy of the
quantized models degrades quickly. However, this effect is more evident when using TTQ than EC2T.

(shown in Equation (2)). As a concrete example, Figure 2
illustrates the effect of using different values for λ(l) during
the quantization of the parameters (in the first block) of the
EfficientNet-B1 network. In practice, λ(l) is computed as
λ(l) = γ δ(l) λ

(l)
max. In this expression, γ is a global hyper-

parameter that controls the intensity of the sparsification,
while δ(l) and λ(l)max are scalars computed layer-wise. The
scaling factor δ(l), renders higher values for layers with lots
of parameters. Analogously, it renders lower values for lay-
ers with few parameters. Finally, λmax is updated during
training and avoids a binary quantization process (see the
histogram with λ=λmax in Figure 2).

4. Experiments & Results
The experiments were conducted in a variety of networks

across different datasets (i.e., CIFAR-10, CIFAR-100, and
ImageNet), using multiple GPUs (NVIDIA Titan-V and
Tesla-V100).

First, to reveal the advantages of our proposal (EC2T)
over Trained-Ternary-Quantization (TTQ) [9], an image
classification network was designed for the CIFAR-10
dataset, by introducing the building blocks of Pyramid-
Net [33] in the ResNet-44 architecture [34]. This neural
network, termed C10-MicroNet, was derived from models
designed for the 2019 MicroNet Challenge 2 competition.
For a detailed description of the network architecture, see
Appendix A. The experimental results contrasting the two
mentioned approaches are depicted in Figure 3. In this il-
lustration, notice that as the sparsity of the quantized net-

2https://micronet-challenge.github.io

works increases, EC2T shows less accuracy degradation
than TTQ.

Subsequently, Table 1 provides a comparison of the
EC2T approach vs state-of-the-art ternary quantization
techniques, by applying them to ResNet-20 and ResNet-
18 networks, in CIFAR-10 and ImageNet datasets, respec-
tively. From these results, we have two main conclusions.
First, they suggest that disabling the entropy constraint in
Equation (2) (i.e., setting λ = 0), renders ternary mod-
els with low sparsity. Nonetheless, they are more efficient
than their full-precision counterparts and show little accu-
racy degradation. These ternary networks are referred to as
EC2T-1 in Table 1. Specifically, in the ImageNet dataset,
the EC2T-1 model reduces the parameter count in 92.25%
and the FLOPs in 79.73%, while in the CIFAR-10 dataset,
the reductions are 95.02% and 86.35% in parameter count
and FLOPs, respectively. In contrast, by enabling the en-
tropy constraint in Equation (2) (i.e., setting λ > 0), it re-
sults in ternary models with increased sparsity, and thus,
they are more efficient in terms of parameter size and math-
ematical operations. For instance, in the ImageNet dataset,
the model with the highest sparsity is EC2T-4, which re-
duces the number of parameters by 93.88% and the number
of FLOPs by 86.61%, while its accuracy is degraded only by
2.73%. Likewise, in the CIFAR-10 dataset, the model with
the highest sparsity is EC2T-3, with an accuracy degrada-
tion of 0.91%, while the parameter count and FLOPs are
reduced by 95.91% and 91.88%, respectively. The sec-
ond conclusion is that the EC2T approach renders accurate
ternary models, which are competitive with state-of-the-art
techniques. Regarding sparsity, only [9] provides an es-

https://micronet-challenge.github.io


Table 1. Comparison of the EC2T approach vs state-of-the-art ternary network quantization techniques, applied to ResNet-20 and ResNet-
18 networks, in CIFAR-10 and ImageNet datasets, respectively.

Model Top-1 Acc. (%) |W=0|
|W | (%)‡ #Params. #+ #× #FLOPs

ImageNet

ResNet-18a 69.75 0.00 11M 1795M 1797M 3592M
EC2T-1 (λ = 0)b 67.30 26.80 852K 669M 59M 728M
EC2T-2 (λ > 0)c 67.58 59.00 734K 560M 61M 622M
EC2T-3 (λ > 0)c 67.26 72.09 686K 528M 57M 585M
EC2T-4 (λ > 0)c 67.02 75.62 673K 424M 57M 481M
TTQ [9] 66.60 30-50 � � � �

ADMM [21] 67.00 � � � � �

TGA [20] 66.00 � � � � �

CIFAR-10

ResNet-20a 91.67 0.00 269K 40.6M 40.7M 81.3M
EC2T-1 (λ = 0)b 91.16 45.17 13.4K 10.6M 0.5M 11.1M
EC2T-2 (λ > 0)c 91.01 63.90 11.8K 8.0M 0.5M 8.5M
EC2T-3 (λ > 0)c 90.76 73.26 11.0K 6.1M 0.5M 6.6M
TTQ [9] 91.13 30-50 � � � �

TGA [20] 90.39 � � � � �

MLQ [22] 90.02 � � � � �
a Baseline model. b EC2T approach with the entropy constraint disabled (λ = 0).

c EC2T approach with the entropy constraint enabled (λ > 0).
‡ Sparsity, measured as the percentage of zero-valued parameters in the whole neural network.

�: Not reported by the authors.

timated value for the ternary models after applying TTQ
(30%-50%). For the remaining techniques (ADMM [21],
TGA [20], and MLQ [22]), only the quantized model accu-
racy is reported.

Finally, Table 2 contrasts efficient state-of-the-art neu-
ral networks vs sparse and ternary networks rendered with
our proposal, in three distinct datasets (CIFAR-10, CIFAR-
100, and ImageNet). The former models include Con-
denseNet [35], Mobilenet-V2 [29], and Mobilenet-V3 [32].
The latter models result from applying the EC2T ap-
proach to the pre-trained networks, C10-MicroNet, C100-
MicroNet, and EfficientNet-B1 [10]. In particular, the C10-
MicroNet and C100-MicroNet networks were designed and
improved based on our submissions to the 2019-MicroNet
Challenge. Both share the same topology, except in the last
layer (i.e., the softmax layer), which is adapted to the num-
ber of output classes (see Appendix A). From the results in
Table 2, we highlight two points. First, the ternary networks
found by our proposed technique (see models indicated
with EC2T), are more efficient in terms of parameter size
and FLOPs than their respective baselines (C10-MicroNet,
C100-MicroNet, and EfficientNet-B1). Moreover, using the
tree adder [36] and efficient matrix representations (includ-
ing Compressed-Entropy-Row (CER)/Compressed-Sparse-

Row (CSR) formats [11] and the method described in Ap-
pendix B), leads to further savings in mathematical op-
erations and storage (see models referred with Improve-
ments). Second, these ternary models are competitive with
current state-of-the-art efficient neural networks (i.e., Con-
denseNet, Mobilenet-V2, and Mobilenet-V3), offering sim-
ilar advantages in terms of memory and computational re-
sources.

5. Conclusions

In this work, we presented Entropy-Constrained Trained
Ternarization, an approach that relies on compound model
scaling and ternary quantization to design efficient neural
networks. By incorporating an entropy constraint during the
network quantization process, a sparse and ternary model is
rendered, which is efficient in terms of storage and math-
ematical operations. The proposed approach has shown to
be effective in image classification tasks in both, small and
large-scale datasets. As future work, this method will be
investigated in other tasks and scenarios, e.g., federated-
learning [37]. Moreover, interpretability techniques [38]
will help us to understand how these models make predic-
tions given their constrained parameter space.



Table 2. Ternary models rendered with the EC2T approach vs efficient state-of-the-art neural networks, in CIFAR-10, CIFAR-100, and
ImageNet datasets.

Model Top-1 Acc. (%) |W=0|
|W | (%)‡ #Params. #+ #× #FLOPs

ImageNet

EfficientNet-B1a 78.43 0.00 7.72M 654M 670M 1324M
+EC2T (λ = 0)b 75.05 60.73 1.07M 338M 50M 387M
+Improvementsc - - 972K 212M 50M 261M

MobileNet-V2 (d=1.4) 74.70 � 6.90M � � 585M?

MobileNet-V3 (Large) 75.20 � 5.40M � � 219M?

CIFAR-100

C100-MicroNeta 81.47 0.00 8.03M 1243M 1243M 2487M
+EC2T (λ = 0)b 80.13 90.49 412K 126M 3M 129M
+Improvementsc - - 226K 67M 3M 71M

CondenseNet-86 76.36 � 520K � � 65M?

CondenseNet-182 81.50 � 4.20M � � 513M?

CIFAR-10

C10-MicroNeta 97.02 0.00 8.02M 1243M 1243M 2487M
+EC2T (λ = 0)b 95.87 95.64 295K 72M 3M 75M
+Improvementsc - - 133K 39M 3M 42M

CondenseNet-86 95.00 � 520K � � 65M?

CondenseNet-182 96.24 � 4.20M � � 513M?

a Baseline model. b EC2T approach with the entropy constraint enabled (λ > 0).
c Improved representation of the neural network parameters by applying the tree adder,

the Compressed-Entropy-Row (CER)/Compressed-Sparse-Row (CSR) formats, and the method described Appendix B.
‡ Sparsity, measured as the percentage of zero-valued parameters in the whole neural network.

? Reported as Multiply-Additions (MAdds). The number of FLOPs is approximately twice this value.
�: Not reported by the authors.
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A. MicroNet-C10 & MicroNet-C100 Networks
The MicroNet-C10 and MicroNet-C100 networks were designed for the CIFAR-10 and CIFAR-100 datasets, respectively.

They share the same architecture described in Table A.1, which consists of three sections of layers. The first section is
represented by the input layer or “Stem Convolution”. The next section has three stages, each one containing identical
building blocks, whose elements are depicted in Figure A.1. This block was designed by introducing the building blocks
PyramidNet [33] in the ResNet-44 architecture [34]. The third section consists of a global average-pooling layer followed
by a fully-connected layer. Finally, as an important remark, when applying the Entropy-Constrained Trained Ternarization
(EC2T) approach, the first and last layers are not quantized.

Table A.1. Architecture of MicroNet-C10 and MicroNet-C100 networks, where d and w are scaling factors for the networks’ depth and
width, respectively. For the baseline neworks (i.e., before applying compound-model-scaling), d = w = 1. The number of classes,
nclasses, corresponds to 10 for CIFAR-10 and 100 for CIFAR-100.

Stage Operation Resolution Output Channels Repetitions

Stem Convolution (3× 3)
+ BN & ReLU 32× 32 16× w 1

1 Building Block 32× 32 16× w 7× d
2 Building Block 16× 16 32× w 7× d
3 Building Block 8× 8 64× w 7× d

ReLU & Global Avg. Pooling 8× 8 64× w 1
Fully-Connected 1× 1 nclasses 1

BatchNorm 3x3
conv BatchNorm ReLU 3x3

conv BatchNorm
Input Output

SkipOp

Figure A.1. Building block for the baseline models, MicroNet-C10 and MicroNet-C100.



B. Efficient Storage of Sparse & Ternary Weight Matrices
In addition to the trainable network parameters, we count those values that are needed to reconstruct the model from sparse

matrix formats, i.e., binary masks or indices. Specifically, full-precision parameters (32-bits) count as one, while quantized
parameters (with less than 32-bits) as a fraction of a parameter. For instance, a binary mask element counts as 1/32 with
respect to a full-precision (32-bit) parameter.

If Compressed-Entropy-Row(CER)/Compressed-Sparse-Row (CSR) formats are not applied, a ternary convolution layer
of size NK2M consists of two binary masks as illustrated in Figure B.1. One mask indicates the location of the centroid
values (see Figure B.1b), while the other describes the sign of those values (see Figure B.1c). Thus, the parameter count
for these masks is 1/32 × NK2M and 1/32 × σNK2M, respectively. In this notation, N is the number of effective
input channels, K the kernel size, M the number of effective output channels, and σ = 1 − sparsity, with σ ∈ [0, 1].
The effective number of channels is computed as the original number of channels minus the number of channels pruned by
the Entropy-Constrained Trained Ternarization (EC2T) approach. To calculate the layers’ sparsity, we exclude the pruned
channels. The third matrix in Figure B.1, uses two 16-bit numbers to represent the centroid values. Thus, they count as a
single full-precision (32-bit) parameter (Figure B.1d). For the batch normalization layers, we add a 16-bit value (bias) per
effective output channel. Therefore, their corresponding parameter count isM/2.
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Figure B.1. Efficient storage of sparse and ternary weight matrices.


