
Methods for Interpreting and Understanding Deep Neural Networks

Grégoire Montavona,∗, Wojciech Samekb,∗, Klaus-Robert Müllera,c,d,∗

a Department of Electrical Engineering & Computer Science, Technische Universität Berlin, Marchstr. 23, Berlin 10587, Germany
b Department of Video Coding & Analytics, Fraunhofer Heinrich Hertz Institute, Einsteinufer 37, Berlin 10587, Germany

c Department of Brain & Cognitive Engineering, Korea University, Anam-dong 5ga, Seongbuk-gu, Seoul 136-713, South Korea
d Max Planck Institute for Informatics, Stuhlsatzenhausweg, Saarbrücken 66123, Germany

Abstract

This paper provides an entry point to the problem of interpreting a deep neural network model and explaining its
predictions. It is based on a tutorial given at ICASSP 2017. It introduces some recently proposed techniques of
interpretation, along with theory, tricks and recommendations, to make most efficient use of these techniques on real
data. It also discusses a number of practical applications.

Keywords: deep neural networks, activation maximization, sensitivity analysis, Taylor decomposition, layer-wise
relevance propagation

1. Introduction

Machine learning techniques such as deep neural net-
works have become an indispensable tool for a wide range
of applications such as image classification, speech recog-
nition, or natural language processing. These techniques
have achieved extremely high predictive accuracy, in many
cases, on par with human performance.

In practice, it is also essential to verify for a given task,
that the high measured accuracy results from the use of a
proper problem representation, and not from the exploita-
tion of artifacts in the data [29, 46, 27]. Techniques for in-
terpreting and understanding what the model has learned
have therefore become a key ingredient of a robust vali-
dation procedure [51, 6, 5]. Interpretability is especially
important in applications such as medicine or self-driving
cars, where the reliance of the model on the correct fea-
tures must be guaranteed [15, 14].

It has been a common belief, that simple models provide
higher interpretability than complex ones. Linear models
or basic decision trees still dominate in many applications
for this reason. This belief is however challenged by recent
work, in which carefully designed interpretation techniques
have shed light on some of the most complex and deepest
machine learning models [44, 55, 5, 37, 40].

Techniques of interpretation are also becoming increas-
ingly popular as a tool for exploration and analysis in the
sciences. In combination with deep nonlinear machine
learning models, they have been able to extract new in-

∗Corresponding authors
Email addresses: gregoire.montavon@tu-berlin.de (Grégoire

Montavon), wojciech.samek@hhi.fraunhofer.de (Wojciech
Samek), klaus-robert.mueller@tu-berlin.de (Klaus-Robert
Müller)

sights from complex physical, chemical, or biological sys-
tems [20, 21, 49, 43, 54].

This tutorial gives an overview of techniques for inter-
preting complex machine learning models, with a focus on
deep neural networks (DNN). It starts by discussing the
problem of interpreting modeled concepts (e.g. predicted
classes), and then moves to the problem of explaining indi-
vidual decisions made by the model. The tutorial abstracts
from the exact neural network structure and domain of ap-
plication, in order to focus on the more conceptual aspects
that underlie the success of these techniques in practical
applications.

2. Preliminaries

Techniques of interpretation have been applied to a wide
range of practical problems, and various meanings have
been attached to terms such as “understanding”, “inter-
preting”, or “explaining”. See [32] for a discussion. As a
first step, it can be useful to clarify the meaning we asso-
ciate to these words in this tutorial, as well as the type of
techniques that are covered.

We will focus in this tutorial on post-hoc interpretability,
i.e. a trained model is given and our goal is to understand
what the model predicts (e.g. categories) in terms what
is readily interpretable (e.g. the input variables) [5, 40].
Post-hoc interpretability should be contrasted to incorpo-
rating interpretability directly into the structure of the
model, as done, for example, in [39, 15].

Also, when using the word “understanding”, we refer
to a functional understanding of the model, in contrast
to a lower-level mechanistic or algorithmic understanding
of it. That is, we seek to characterize the model’s black-
box behavior, without however trying to elucidate its inner
workings or shed light on its internal representations.

Throughout this tutorial, we will also make a distinction
between interpretation and explanation, by defining these
words as follows.

Definition 1. An interpretation is the mapping of an ab-
stract concept (e.g. a predicted class) into a domain that
the human can make sense of.

Examples of domains that are interpretable are images (ar-
rays of pixels), or texts (sequences of words). A human can
look at them and read them respectively. Examples of do-
mains that are not interpretable are abstract vector spaces
(e.g. word embeddings [33]), or domains composed of un-
documented input features (e.g. sequences with unknown
words or symbols).

Definition 2. An explanation is the collection of features
of the interpretable domain, that have contributed for a
given example to produce a decision (e.g. classification or
regression).

An explanation can be, for example, a heatmap highlight-
ing which pixels of the input image most strongly support
the classification decision [44, 26, 5]. The explanation can
be coarse-grained to highlight e.g. which regions of the
image support the decision. It can also be computed at
a finer grain, e.g. to include pixels and their color compo-
nents in the explanation. In natural language processing,
explanations can take the form of highlighted text [31, 3].

3. Interpreting a DNN Model

This section focuses on the problem of interpreting a
concept learned by a deep neural network (DNN). A DNN
is a collection of neurons organized in a sequence of mul-
tiple layers, where neurons receive as input the neuron
activations from the previous layer, and perform a simple
computation (e.g. a weighted sum of the input followed
by a nonlinear activation). The neurons of the network
jointly implement a complex nonlinear mapping from the
input to the output. This mapping is learned from the
data by adapting the weights of each neuron using a tech-
nique called error backpropagation [41].

The learned concept that must be interpreted is usu-
ally represented by a neuron in the top layer. Top-layer
neurons are abstract (i.e. we cannot look at them), on the
other hand, the input domain of the DNN (e.g. image or
text) is usually interpretable. We describe below how to
build a prototype in the input domain that is interpretable
and representative of the abstract learned concept. Build-
ing the prototype can be formulated within the activation
maximization framework.

3.1. Activation Maximization (AM)

Activation maximization is an analysis framework that
searches for an input pattern that produces a maximum
model response for a quantity of interest [9, 17, 44].

Consider a DNN classifier mapping data points x to a set
of classes (ωc)c. The output neurons encode the modeled
class probabilities p(ωc|x). A prototype x? representative
of the class ωc can be found by optimizing:

max
x

log p(ωc|x)− λ‖x‖2.

The class probabilities modeled by the DNN are functions
with a gradient [11]. This allows for optimizing the objec-
tive by gradient ascent. The rightmost term of the objec-
tive is an `2-norm regularizer that implements a preference
for inputs that are close to the origin. When applied to im-
age classification, prototypes thus take the form of mostly
gray images, with only a few edge and color patterns at
strategic locations [44]. These prototypes, although pro-
ducing strong class response, look in many cases unnatu-
ral.

3.2. Improving AM with an Expert

In order to focus on more probable regions of the input
space, the `2-norm regularizer can be replaced by a data
density model p(x) called “expert”, leading to the new
optimization problem:

max
x

log p(ωc|x) + log p(x).

Here, the prototype is encouraged to simultaneously pro-
duce strong class response and to resemble the data. By
application of the Bayes’ rule, the newly defined objective
can be identified, up to modeling errors and a constant
term, as the class-conditioned data density p(x|ωc). The
learned prototype thus corresponds to the most likely in-
put x for class ωc. A possible choice for the expert is
the Gaussian RBM [23]. Its probability function can be
written as:

log p(x) =
∑
jfj(x)− 1

2x
>Σ−1x + cst.

where fj(x) = log(1 + exp(w>j x + bj)) are factors with
parameters learned from the data. When interpreting con-
cepts such as natural images classes, more complex density
models such as convolutional RBM/DBMs [28], or pixel-
RNNs [52] are needed.

In practice, the choice of the expert p(x) plays an im-
portant role. The relation between the expert and the re-
sulting prototype is given qualitatively in Figure 1, where
four cases (a–d) are identified. On one extreme, the expert
is coarse, or simply absent, in which case, the optimization
problem reduces to the maximization of the class proba-
bility function p(ωc|x). On the other extreme, the expert
is overfitted on some data distribution, and thus, the opti-
mization problem becomes essentially the maximization of
the expert p(x) itself. When using AM for the purpose of
model validation, an overfitted expert (case d) must be es-
pecially avoided, as the latter could hide interesting failure
modes of the model p(ωc|x). A slightly underfitted expert
(case b), e.g. that simply favors images with natural colors,

2

p(ωc|x)

a

b

c

d

true

overfitted

underfitted

none or l2

c
natural
looking

and likely

b
natural
looking

but unlikely

a
artificial
looking

d
represents

p(x) instead
of ω c

ch
oi

ce
 o

f "
ex

pe
rt

" p
(x

)

resulting
prototype:

data

Figure 1: Cartoon illustrating how the expert p(x) affects the pro-
totype x? found by AM. The horizontal axis represents the input
space, and the vertical axis represents the probability.

can already be sufficient. On the other hand, when using
AM to gain knowledge on a correctly predicted concept
ωc, the focus should be to prevent underfitting. Indeed, an
underfitted expert would expose optima of p(ωc|x) poten-
tially distant from the data, and therefore, the prototype
x? would not be truly representative of ωc.

3.3. Performing AM in Code Space

In certain applications, data density models p(x) can be
hard to learn up to high accuracy, or very complex such
that maximizing them becomes difficult. An alternative
class of unsupervised models are generative models. They
do not provide the density function directly, but are able
to sample from it, usually via the following two steps:

1. Sample from a simple distribution q(z) ∼ N (0, I) de-
fined in some abstract code space Z.

2. Apply to the sample a decoding function g : Z → X ,
that maps it back to the original input domain.

One such model is the generative adversarial network [19].
It learns a decoding function g such that the generated
data distribution is as hard as possible to discriminate
from the true data distribution. The decoding function
g is learned in competition with a discriminant between
the generated and the true distributions. The decoding
function and the discriminant are typically chosen to be
multilayer neural networks.

Nguyen et al. [37] proposed to build a prototype for ωc
by incorporating such generative model in the activation
maximization framework. The optimization problem is re-
defined as:

max
z∈Z

log p(ωc | g(z))− λ‖z‖2,

where the first term is a composition of the newly intro-
duced decoder and the original classifier, and where the
second term is an `2-norm regularizer in the code space.
Once a solution z? to the optimization problem is found,
the prototype for ωc is obtained by decoding the solution,
that is, x? = g(z?). In Section 3.1, the `2-norm regu-
larizer in the input space was understood in the context
of image data as favoring gray-looking images. The effect
of the `2-norm regularizer in the code space can instead
be understood as encouraging codes that have high prob-
ability. Note however, that high probability codes do not
necessarily map to high density regions of the input space.

To illustrate the qualitative differences between the
methods of Sections 3.1–3.3, we consider the problem of
interpreting MNIST classes as modeled by a three-layer
DNN. We consider for this task (1) a simple `2-norm reg-
ularizer λ‖x − x̄‖2 where x̄ denotes the data mean for
ωc, (2) a Gaussian RBM expert p(x), and (3) a gener-
ative model with a two-layer decoding function, and the
`2-norm regularizer λ‖z − z̄‖2 where z̄ denotes the code
mean for ωc. Corresponding architectures and found pro-
totypes are shown in Figure 2. Each prototype is classified
with full certainty by the DNN. However, only with an ex-
pert or a decoding function, the prototypes become sharp
and realistic-looking.

+

784

10

900 1

density function

784

10900

decoding function

784 DNN

10

sim
pl

e
A

M
A

M
 +

 e
xp

er
t

A
M

 +
 d

ec
od

er

100

x

log p(ωc|x)

x=g(z)
z

x

log p(x)

log p(ωc|x)

log p(ωc|x)

DNN

DNN

+

lo
g

p(
x|
ω

c)

architecture found prototypes

Figure 2: Architectures supporting AM procedures and found pro-
totypes. Black arrows indicate the forward path and red arrows
indicate the reverse path for gradient computation.

3.4. From Global to Local Analysis

When considering complex machine learning problems,
probability functions p(ωc|x) and p(x) might be multi-
modal or strongly elongated, so that no single prototype

3

x? fully represents the modeled concept ωc. The issue of
multimodality is raised by Nguyen et al. [38], who demon-
strate in the context of image classification, the benefit
of interpreting a class ωc using multiple local prototypes
instead of a single global one.

Producing an exhaustive description of the modeled con-
cept ωc is however not always necessary. One might in-
stead focus on a particular region of the input space. For
example, biomedical data is best analyzed conditioned on
a certain development stage of a medical condition, or in
relation to a given subject or organ.

An expedient way of introducing locality into the anal-
ysis is to add a localization term η · ‖x− x0‖2 to the AM
objective, where x0 is a reference point. The parameter
η controls the amount of localization. As this parameter
increases, the question “what is a good prototype of ωc?”
becomes however insubstantial, as the prototype x? con-
verges to x0 and thus looses its information content.

Instead, when trying to interpret the concept ωc locally,
a more relevant question to ask is “what features of x make
it representative of the concept ωc?”. This question gives
rise to a second type of analysis, that will be the focus of
the rest of this tutorial.

4. Explaining DNN Decisions

In this section, we ask for a given data point x, what
makes it representative of a certain concept ωc encoded in
some output neuron of the deep neural network (DNN).
The output neuron can be described as a function f(x) of
the input. A common approach is to view the data point
x as a collection of features (xi)

d
i=1, and to assign to each

of these, a score Ri determining how relevant the feature
xi is for explaining f(x). An example is given in Figure 3.

DNN

output f(x)

(evidence for "boat")

input x

explanation R(x)

Figure 3: Explanation of the DNN prediction “boat” for an image x
given as input.

In this example, an image is presented to a DNN and
is classified as “boat”. The prediction (encoded in the
output layer) is then mapped back to the input domain.
The explanation takes the form of a heatmap, where pixels
with a high associated relevance score are shown in red.

4.1. Sensitivity Analysis

A first approach to identify the most important input
features is sensitivity analysis. It is based on the model’s
locally evaluated gradient or some other local measure of

variation. A common formulation of sensitivity analysis
defines relevance scores as

Ri(x) =
(∂f
∂xi

)2
,

where the gradient is evaluated at the data point x. The
most relevant input features are those to which the output
is most sensitive. The technique is easy to implement for a
deep neural network, since the gradient can be computed
using backpropagation [11, 41].

Sensitivity analysis has been regularly used in scientific
applications of machine learning such as medical diagnosis
[25], ecological modeling [18], or mutagenicity prediction
[6]. More recently, it was also used for explaining the clas-
sification of images by deep neural networks [44].

It is important to note, however, that sensitivity analy-
sis does not produce an explanation of the function value
f(x) itself, but rather a variation of it. Sensitivity scores
are indeed a decomposition of the local variation of the
function as measured by the gradient square norm:∑d

i=1Ri(x) = ‖∇f(x)‖2

Intuitively, when applying sensitivity analysis e.g. to a neu-
ral network detecting cars in images, we answer the ques-
tion “what makes this image more/less a car?”, rather
than the more basic question “what makes this image a
car?”.

4.2. Simple Taylor Decomposition

The Taylor decomposition [7, 5] is a method that ex-
plains the model’s decision by decomposing the function
value f(x) as a sum of relevance scores. The relevance
scores are obtained by identification of the terms of a first-
order Taylor expansion of the function at some root point
x̃ for which f(x̃) = 0. This expansion lets us rewrite the
function as:

f(x) =
∑d
i=1Ri(x) +O(xx>)

where the relevance scores

Ri(x) =
∂f

∂xi

∣∣∣
x=x̃
· (xi − x̃i)

are the first-order terms, and where O(xx>) contains all
higher-order terms. Because these higher-order terms are
typically non-zero, this analysis only provides a partial
explanation of f(x).

However, a special class of functions, piecewise linear
and satisfying the property f(tx) = t f(x) for t ≥ 0, is not
subject to this limitation. Examples of such functions used
in machine learning are homogeneous linear models, or
deep ReLU networks (without biases). For these functions,
we can always find a root point x̃ = limε→0 ε · x, that
incidentally lies on the same linear region as the data point
x, and for which the second and higher-order terms are
zero. In that case, the function can be rewritten as

f(x) =
∑d
i=1Ri(x)

4

where the relevance scores simplify to

Ri(x) =
∂f

∂xi
· xi.

Relevance can here be understood as the product of sen-
sitivity (given by the locally evaluated partial derivative)
and saliency (given by the input value). That is, an input
feature is relevant if it is both present in the data, and if
the model reacts to it.

Later in this tutorial, we will also show how this sim-
ple technique serves as a primitive for building the more
sophisticated deep Taylor decomposition [34].

4.3. Relevance Propagation

An alternative way of decomposing the prediction of
a DNN is to make explicit use of its feed-forward graph
structure. The algorithm starts at the output of the net-
work, and moves in the graph in reverse direction, pro-
gressively redistributing the prediction score (or total rel-
evance) until the input is reached. The redistribution pro-
cess must furthermore satisfy a local relevance conserva-
tion principle.

A physical analogy would be that of an electrical cir-
cuit where one injects a certain amount of current at the
first endpoint, and measures the resulting current at the
other endpoints. In this physical example, Kirchoff’s con-
servation laws for current apply locally to each node of
the circuit, but also ensure the conservation property at a
global level.

The propagation approach was proposed by Landecker
et al. [26] to explain the predictions of hierarchical net-
works, and was also introduced by Bach et al. [5] in the
context of convolutional DNNs for explaining the predic-
tions of these state-of-the-art models.

Let us consider a DNN where j and k are indices for neu-
rons at two successive layers. Let (Rk)k be the relevance
scores associated to neurons in the higher layer. We define
Rj←k as the share of relevance that flows from neuron k
to neuron j. This share is determined based on the con-
tribution of neuron j to Rk, subject to the local relevance
conservation constraint∑

j Rj←k = Rk.

The relevance of a neuron in the lower layer is then defined
as the total relevance it receives from the higher layer:

Rj =
∑
k Rj←k

These two equations, when combined, ensure between all
consecutive layers a relevance conservation property, which
in turn also leads to a global conservation property from
the neural network output to the input relevance scores:∑d

i=1Ri = · · · =
∑
j Rj =

∑
k Rk = · · · = f(x)

It should be noted that there are other explanation tech-
niques that rely on the DNN graph structure, although not

producing a decomposition of f(x). Two examples are the
deconvolution by Zeiler and Fergus [55], and guided back-
prop by Springenberg et al. [47]. They also work by apply-
ing a backward mapping through the graph, and generate
interpretable patterns in the input domain, that are asso-
ciated to a certain prediction or a feature map activation.

4.4. Practical Considerations

Explanation techniques that derive from a decomposi-
tion principle provide several practical advantages: First,
they give an implicit quantification of the share that can
be imputed to individual input features. When the num-
ber of input variables is limited, the analysis can therefore
be represented as a pie chart or histogram. If the number
of input variables is too large, the decomposition can be
coarsened by pooling relevance scores over groups of fea-
tures.

For example, in RGB images, the three relevance scores
of a pixel can be summed to obtain the relevance score
of the whole pixel. The resulting pixel scores can be dis-
played as a heatmap. On an object recognition task, La-
puschkin et al. [27] further exploited this mechanism by
pooling relevance over two large regions of the image: (1)
the bounding box of the object to detect and (2) the rest
of the image. This coarse analysis was used to quantify
the reliance of the model on the object itself and on its
spatial context.

In addition, when the explanation technique uses propa-
gation in the model’s graph, the quantity being propagated
can be filtered to only include what flows through a certain
neuron or feature map. This allows to capture individual
components of an explanation, that would otherwise be
entangled in the heatmap.

The pooling and filtering capabilities of each explana-
tion technique are shown systematically in Table 1.

pooling filtering

sensitivity analysis X
simple Taylor X
relevance propagation X X
deconvolution [55] X
guided backprop [47] X

Table 1: Properties of various techniques for explaining DNN deci-
sions. The first three entries correspond to the methods introduced
in Sections 4.1–4.3.

5. The LRP Explanation Framework

In this section, we focus on the layer-wise relevance
propagation (LRP) technique introduced by Bach et al.
[5] for explaining deep neural network predictions. LRP
is based on the propagation approach described in Section
4.3, and has been used in a number of practical applica-
tions, in particular, for model validation and analysis of
scientific data. Some of these applications are discussed in
Sections 8.1 and 8.2.

5

LRP is first described algorithmically in Section 5.1, and
then shown in Section 5.2 to correspond in some cases to
a deep Taylor decomposition of the model’s decision [34].
Practical recommendations and tricks to make efficient use
of LRP are then given in Section 6.

5.1. Propagation Rules for DNNs

In the original paper [5], LRP was applied to bag-of-
words and deep neural network models. In this tutorial,
we focus on the second type of models. Let the neurons of
the DNN be described by the equation

ak = σ
(∑

j ajwjk + bk
)
,

with ak the neuron activation, (aj)j the activations from
the previous layer, and wjk, bk the weight and bias pa-
rameters of the neuron. The function σ is a positive and
monotonically increasing activation function.

One propagation rule that fulfills local conservation
properties, and that was shown to work well in practice
is the αβ-rule given by:

Rj =
∑
k

(
α

ajw
+
jk∑

j ajw
+
jk

− β
ajw

−
jk∑

j ajw
−
jk

)
Rk, (1)

where ()+ and ()− denote the positive and negative parts
respectively, and where the parameters α and β are chosen
subject to the constraints α− β = 1 and β ≥ 0. To avoid
divisions by zero, small stabilizing terms can be introduced
when necessary. The rule can be rewritten as

Rj =
∑
k

ajw
+
jk∑

j ajw
+
jk

R∧k +
∑
k

ajw
−
jk∑

j ajw
−
jk

R∨k ,

where R∧k = αRk and R∨k = −βRk. It can now be inter-
preted as follows:

Relevance R∧k should be redistributed to the lower-
layer neurons (aj)j in proportion to their excita-
tory effect on ak. “Counter-relevance” R∨k should
be redistributed to the lower-layer neurons (aj)j
in proportion to their inhibitory effect on ak.

Different combinations of parameters α, β were shown to
modulate the qualitative behavior of the resulting explana-
tion. As a naming convention, we denote, for example, by
LRP-α2β1, the fact of having chosen the parameters α = 2
and β = 1 for this rule. In the context of image classifi-
cation, a non-zero value for β was shown empirically to
have a sparsifying effect on the explanation [5, 34]. On
the BVLC CaffeNet [24], LRP-α2β1 was shown to work
well, while for the deeper GoogleNet [50], LRP-α1β0 was
found to be more stable.

When choosing LRP-α1β0, the propagation rule reduces
to the simpler rule:

Rj =
∑
k

ajw
+
jk∑

j ajw
+
jk

Rk. (2)

The latter rule was also used by Zhang et al. [56] as part
of an explanation method called excitation backprop.

5.2. LRP and Deep Taylor Decomposition

In this section, we show for deep ReLU networks a con-
nection between LRP-α1β0 and Taylor decomposition. We
show in particular that when neurons are defined as

ak = max
(
0,
∑
j ajwjk + bk

)
with bk ≤ 0,

the application of LRP-α1β0 at a given layer can be seen
as computing a Taylor decomposition of the relevance at
that layer onto the lower layer. The name “deep Taylor
decomposition” then arises from the iterative application
of Taylor decomposition from the top layer down to the
input layer.

Let us assume that the relevance for the neuron k can be
written as Rk = akck, a product of the neuron activation
ak and a term ck that is constant and positive. These two
properties allow us to construct a “relevance neuron”

Rk = max
(
0,
∑
j ajw

′
jk + b′k

)
, (3)

with parameters w′jk = wjkck and b′k = bkck. The rele-
vance neuron is shown in Figure 4(a).

(a) relevance
neuron

(c) relevance
propagation

(b) function's view

Figure 4: Diagram of the relevance neuron and its analysis. The
root search domain is shown with a dashed line, and the relevance
propagation resulting from decomposing Rk is shown in red.

We now would like to propagate the relevance to the
lower layer. For this, we perform a Taylor decomposition
of Rk on the lower-layer neurons. We search for the nearest
root point (ãj)j of Rk on the segment [(aj1w′jk≤0)j , (aj)j].

The search strategy is visualized in Figure 4(b). Because
the relevance neuron is piecewise linear, the Taylor expan-
sion at the root point contains only first-order terms:

Rk =
∑
j

∂Rk
∂aj

∣∣∣
(ãj)j
· (aj − ãj)︸ ︷︷ ︸

Rj←k

The first-order terms correspond to the decomposition of
Rk on the lower-layer neurons and have the closed-form
expression

Rj←k =
ajw

+
jk∑

j ajw
+
jk

Rk.

The resulting propagation of Rk is shown in Figure 4(c).
Summing Rj←k over all neurons k to which neuron j con-
tributes yields exactly the LRP-α1β0 propagation rule of
Equation (2).

6

We now would like to verify that the procedure can be
repeated one layer below. For this, we inspect the struc-
ture of Rj and observe that it can be written as a product
Rj = ajcj , where aj is the neuron activation and

cj =
∑
k

w+
jk∑

j ajw
+
jk

Rk

=
∑
k

w+
jk

max
(
0,
∑
j ajwjk + bk

)∑
j ajw

+
jk

ck

is positive and also approximately constant. The latter
property arises from the observation that the dependence
of cj on the activation aj is only very indirect (diluted by
two nested sums), and that the other terms wjk, w

+
jk, bk, ck

are constant or approximately constant.
The positivity and near-constancy of cj implies that sim-

ilar relevance neuron to the one of Equation (3) can be
built for neuron j, for the purpose of redistributing rele-
vance on the layer before. The decomposition process can
therefore be repeated in the lower layers, until the first
layer of the neural network is reached, thus, performing a
deep Taylor decomposition [34].

In the derivation above, the segment on which we search
for a root point incidentally guarantees (1) membership
of the root point to the domain of ReLU activations and
(2) positivity of relevance scores. These guarantees can
also be brought to other types of layers (e.g. input layers
receiving real values or pixels intensities), by searching for
a root point (ãj)j on a different segment. This leads to
different propagation rules, some of which are listed in
Table 2. Details on how to derive these rules are given in
the original paper [34]. We refer to these rules as “deep
Taylor LRP” rules.

Input domain Rule

ReLU activations
(aj ≥ 0)

Rj =
∑
k

ajw
+
jk∑

j ajw
+
jk

Rk

Pixel intensities
(xi ∈ [li, hi],
li ≤ 0 ≤ hi)

Ri =
∑
j

xiwij − liw
+
ij − hiw

−
ij∑

i xiwij − liw
+
ij − hiw

−
ij

Rj

Real values
(xi ∈ R)

Ri =
∑
j

w2
ij∑

i w
2
ij

Rj

Table 2: Deep Taylor LRP rules derived for various layer types. The
first rule applies to the hidden layers, and the next two rules apply
to the first layer.

5.3. Handling Special Layers

Practical neural networks are often composed of spe-
cial layers, for example, `p-pooling layers (including sum-
pooling and max-pooling as the two extreme cases), and
normalization layers. The original paper by Bach et al.
[5] uses a winner-take-all redistribution policy for max-
pooling layers, where all relevance goes to the most acti-
vated neuron in the pool. Instead, Montavon et al. [34]

recommend to apply for `p-pooling layers the following
propagation rule:

Rj =
xj∑
j xj

Rk,

i.e. redistribution is proportional to neuron activations in
the pool. This redistribution rule ensures explanation con-
tinuity (see Section 7.1 for an introduction to this concept).

With respect to normalization layers, Bach et al. [5] pro-
posed to ignore them in the relevance propagation pass.
Alternately, Binder et al. [10] proposed for these layers a
more sophisticated rule based on a local Taylor expansion
of the normalization function, with some benefits in terms
of explanation selectivity.

6. Recommendations and Tricks for LRP

Machine learning methods are often described in papers
at an abstract level, for maximum generality. However,
a good choice of hyperparameters is usually necessary to
make them work well on real-world problems, and tricks
are often used to make most efficient use of these methods
and extend their capabilities [8, 23, 35]. Likewise, the LRP
framework introduced in Section 5, also comes with a list
of recommendations and tricks, some of which are given
below.

6.1. How to Choose the Model to Explain

The LRP approach is aimed at general feedforward com-
putational graphs. However, it was most thoroughly stud-
ied, both theoretically [34] and empirically [42], on specific
types of models such as convolutional neural networks with
ReLU nonlinearities. This leads to our first recommenda-
tion:

Apply LRP to classes of models where it was suc-
cessfully applied in the past. In absence of trained
model of such class, consider training your own.

We have also observed empirically that in order for LRP
to produce good explanations, the number of fully con-
nected layers should be kept low, as LRP tends for these
layers to redistribute relevance to too many lower-layer
neurons, and thus, loose selectivity.

As a first try, consider a convolutional ReLU net-
work, as deep as needed, but with not too many
fully connected layers. Use dropout [48] in these
layers.

For the LRP procedure to best match the deep Tay-
lor decomposition framework outlined in Section 5.2, sum-
pooling or average-pooling layers should be preferred to
max-pooling layers, and bias parameters of the network
should either be zero or negative.

Prefer sum-pooling to max-pooling, and force bi-
ases to be zero or negative at training time.

7

Negative biases will contribute to further sparsify the
network activations, and therefore, also to better disen-
tangle the relevance at each layer.

6.2. How to Choose the LRP Rules for Explanation

In presence of a deep neural network that follows the
recommendations above, a first set of propagation rules to
be tried are the deep Taylor LRP rules of Table 2, which
exhibit a stable behavior, and that are also well understood
theoretically. These rules produce for positive predictions
a positive heatmap, where input variables are deemed rel-
evant if Ri > 0 or irrelevant if Ri = 0.

As a default choice for relevance propagation, use
the deep Taylor LRP rules given in Table 2.

In presence of predictive uncertainty, a certain num-
ber of input variables might be in contradiction with the
prediction, and the concept of “negative relevance” must
therefore be introduced. Negative relevance can be in-
jected into the explanation in a controlled manner by set-
ting the coefficients of the αβ-rule of Equation (1) to an
appropriate value.

If negative relevance is needed, or the heatmaps
are too diffuse, replace the rule LRP-α1β0 by
LRP-α2β1 in the hidden layers.

The LRP-α1β0 and LRP-α2β1 rules were shown to work
well on image classification [34], but there is a potentially
much larger set of rules that we can choose from. For
example, the “ε-rule” [5] was applied successfully to text
categorization [3, 4]. To choose the most appropriate rule
among the set of possible ones, a good approach is to de-
fine a heatmap quality criterion, and select the rule at
each layer accordingly. One such quality criterion called
“pixel-flipping” measures heatmap selectivity and is later
introduced in Section 7.2.

If the heatmaps obtained with LRP-α1β0 and
LRP-α2β1 are unsatisfactory, consider a larger
set of propagation rules, and use pixel-flipping to
select the best one.

6.3. Tricks for Implementing LRP

Let us consider the LRP-α1β0 propagation rule of Equa-
tion (2):

Rj = aj
∑
k

w+
jk∑

j ajw
+
jk

Rk,

where we have for convenience moved the neuron activa-
tion aj outside the sum. This rule can be written as four
elementary computations, all of which can also expressed

in vector form:

element-wise vector form

zk ←
∑
j ajw

+
jk z ←W>+ · a (4)

sk ← Rk/zk s← R� z (5)

cj ←
∑
k w

+
jksk c←W+ · s (6)

Rj ← ajcj R← a� c (7)

In the vector form computations, � and � denote the
element-wise division and multiplication. The variable
W denotes the weight matrix connecting the neurons of
the two consecutive layers, and W+ is the matrix retain-
ing only the positive weights of W and setting remaining
weights to zero. This vector form is useful to implement
LRP for fully connected layers.

In convolution layers, the matrix-vector multiplications
of Equations (4) and (6) can be more efficiently imple-
mented by borrowing the forward and backward meth-
ods used for forward activation and gradient propagation.
These methods are readily available in many neural net-
work libraries and are typically highly optimized. Based
on these high-level primitives, LRP can implemented by
the following sequence of operations:

def lrp(layer,a,R):

clone = layer.clone()

clone.W = maximum(0,layer.W)

clone.B = 0

z = clone.forward(a)

s = R / z

c = clone.backward(s)

return a * c

The function lrp receives as arguments the layer

through which the relevance should be propagated, the ac-
tivations “a” at the layer input, and the relevance scores
“R” at the layer output. The function returns the redis-
tributed relevance at the layer input. Sample code is pro-
vided at http://heatmapping.org/tutorial. This mod-
ular approach was also used by Zhang et al. [56] to imple-
ment the excitation backprop method.

6.4. Translation Trick for Denoising Heatmaps

It is sometimes observed that, for classifiers that are not
optimally trained or structured, LRP heatmaps have un-
aesthetic features. This can be caused, for example, by
the presence of noisy first-layer filters, or a large stride
parameter in the first convolution layer. These effects can
be mitigated by considering the explanation not of a single
input image but the explanations of multiple slightly trans-
lated versions of the image. The heatmaps for these trans-
lated versions are then recombined by applying to them
the inverse translation operation and averaging them up.

8

In mathematical terms, the improved heatmap is given by:

R?(x) =
1

|T |
∑
τ∈T

τ−1(R(τ(x)))

where τ, τ−1 denote the translation and its inverse, and T
is the set of all translations of a few pixels.

6.5. Sliding Window Explanations for Large Images

In applications such as medical imaging or scene parsing,
the images to be processed are typically larger than the
what the neural network receives as input. Let X be this
large image. The LRP procedure can be extended for this
scenario by applying a sliding window strategy, where the
neural network is moved through the whole image, and
where heatmaps produced at various locations must then
be combined into a single large heatmap. Technically, we
define the quantity to explain as:

g(X) =
∑
s∈S

f(X[s]︸︷︷︸
x

)

where X[s] extracts a patch from the image X at location
s, and S is the set of all locations in that image. Pixels then
receive relevance from all patches to which they belong and
in which they contribute to the function value f(x). This
technique is illustrated in Figure 5.

CIFAR-10
network

patch x

heatmap R(x)
f(x)

input image X aggregated heatmap R(X)

Figure 5: Highlighting in a large image pixels that are relevant for
the CIFAR-10 class “horse”, using the sliding window technique.

The convolutional neural network is a special case that
can technically receive an input of any size. A heatmap
can be obtained directly from it by redistributing the top-
layer activations using LRP. This direct approach can pro-
vide a computational gain compared to the sliding window
approach. However, it is not strictly equivalent and can
produce unreliable heatmaps, e.g. when the network uses
border-padded convolutions. If in doubt, it is preferable
to use the sliding window formulation.

6.6. Visualize Relevant Pattern

Due to their characteristic spatial structure, LRP
heatmaps readily provide intuition on which input pat-
tern the model has used to make its prediction. However,

in presence of cluttered scenes, a better visualization can
be obtained by using the heatmap as a mask to extract
relevant pixels (and colors) from the image. We call the
result of the masking operation the pattern P (x) that we
compute as:

P (x) = x�R(x).

Here, we assume that the heatmap scores have been pre-
liminarily normalized between 0 and 1 through rescaling
and/or clipping so that the masked image remains in the
original color space. This visualization of LRP heatmaps
makes it also more directly comparable to the visualiza-
tions techniques proposed in [55, 47].

7. Quantifying Explanation Quality

In Sections 4 and 5, we have introduced a number of ex-
planation techniques. While each technique is based on its
own intuition or mathematical principle, it is also impor-
tant to define at a more abstract level what are the char-
acteristics of a good explanation, and to be able to test for
these characteristics quantitatively. A quantitative frame-
work allows to compare explanation techniques specifically
for a target problem, e.g. ILSVRC or MIT Places [42]. We
present in Sections 7.1 and 7.2 two important properties
of an explanation, along with possible evaluation metrics.

7.1. Explanation Continuity

A first desirable property of an explanation technique is
that it produces a continuous explanation function. Here,
we implicitly assume that the prediction function f(x) is
also continuous. We would like to ensure in particular the
following behavior:

If two data points are nearly equivalent, then the
explanations of their predictions should also be
nearly equivalent.

Explanation continuity (or lack of it) can be quantified by
looking for the strongest variation of the explanation R(x)
in the input domain:

max
x6=x′

‖R(x)−R(x′)‖1
‖x− x′‖2

.

When f(x) is a deep ReLU network, both sensitivity
analysis and simple Taylor decomposition have sharp dis-
continuities in their explanation function. On the other
hand, deep Taylor LRP produces continuous explanations.
This is illustrated in Figure 6 for the simple function
f(x) = max(x1, x2) in R2

+, here implemented by the two-
layer ReLU network

f(x) = max
(
0 , 0.5 max(0, x1 − x2)

+ 0.5 max(0, x2 − x1)

+ 0.5 max(0, x1 + x2)
)
.

It can be observed that despite the continuity of the
prediction function, the explanations offered by sensitivity

9

sensitivity analysis simple Taylor
decomposition

relevance propagation
(deep Taylor LRP)

Figure 6: Explaining max(x1, x2). Function values are represented
as a contour plot, with dark regions corresponding to high values.
Relevance scores are represented as a vector field, where horizontal
and vertical components are the relevance of respective input vari-
ables.

analysis and simple Taylor decomposition are discontin-
uous on the line x1 = x2. Here, only deep Taylor LRP
produces a smooth transition.

More generally, techniques that rely on the function’s
gradient, such as sensitivity analysis or simple Taylor de-
composition, are more exposed to the derivative noise [45]
that characterizes complex machine learning models. Con-
sequently, these techniques are also unlikely to score well
in terms of explanation continuity.

Figure 7 shows the function value and the relevance
scores for each technique, when applying them to a convo-
lutional DNN trained on MNIST. Although the function
itself is relatively low-varying, strong variations occur in
the explanations. Here again, only deep Taylor LRP pro-
duces reasonably continuous explanations.

explanation with
relevance propagation

input sequence

sensitivity analysis simple Taylor
decomposition

relevance propagation
(deep Taylor LRP)

DNN
model

x
f(x)

R1 R3

R2 R4

R(x)

Figure 7: Classification “2” by a DNN, explained by different meth-
ods, as we move a handwritten digit from left to right in its recep-
tive field. Relevance scores are pooled into four quadrants, and are
tracked as we apply the translation operation.

7.2. Explanation Selectivity

Another desirable property of an explanation is that it
redistributes relevance to variables that have the strongest
impact on the function f(x). Bach et al. [5] and Samek
et al. [42] proposed to quantify selectivity by measuring
how fast f(x) goes down when removing features with
highest relevance scores.

The method was introduced for image data under the
name “pixel-flipping” [5, 42], and was also adapted to text
data, where words selected for removal have their word
embeddings set to zero [3]. The method works as follows:

repeat until all features have been removed:

• record the current function value f(x)

• find feature i with highest relevance Ri(x)

• remove that feature (x← x− {xi})

make a plot with all recorded function values, and
return the area under the curve (AUC) for that plot.

A sharp drop of function’s value, characterized by a low
AUC score indicates that the correct features have been
identified as relevant. AUC results can be averaged over a
large number of examples in the dataset.

Figure 8 illustrates the procedure on the same DNN as
in Figure 7. At each iteration, a patch of size 4 × 4 cor-
responding to the region with highest relevance is set to
black. The plot on the right keeps track of the function
score as the features are being progressively removed. In
this particular case, the plot indicates that deep Taylor
LRP is more selective than sensitivity analysis and simple
Taylor decomposition.

It is important to note however, that the result of the
analysis depends to some extent on the feature removal
process. Various feature removal strategies can be used,
but a general rule is that it should keep as much as possible
the image being modified on the data manifold. Indeed,

examples heatmaps

(1)

(2)

(1)

(2)

(1)

(2) av
er

ag
e

cla
ss

ifi
ca

tio
n

sc
or

e

features removed
(1) compute current heatmap
(2) remove most relevant features

"pixel-flipping" procedure
comparing
explanation
techniques

Figure 8: Illustration of the “pixel-flipping” procedure. At each step,
the heatmap is used to determine which region to remove (by setting
it to black), and the classification score is recorded.

10

this guarantees that the DNN continues to work reliably
through the whole feature removal procedure. This in turn
makes the analysis less subject to uncontrolled factors of
variation.

8. Applications

Potential applications of explanation techniques are vast
and include as diverse domains as extraction of domain
knowledge, computer-assisted decisions, data filtering, or
compliance. We focus in this section on two types of ap-
plications: validation of a trained model, and analysis of
scientific data.

8.1. Model Validation

Model validation is usually achieved by measuring the
error on some validation set disjoint from the training data.
While providing a simple way to compare different ma-
chine learning models in practice, it should be reminded
that the validation error is only a proxy for the true er-
ror and that the data distribution and labeling process
might differ. A human inspection of the model rendered
interpretable can be a good complement to the validation
procedure. We present two recent examples showing how
explainability allows to better validate a machine learning
model by pointing out at some unsuspected qualitative
properties of it.

Arras et al. [3] considered a document classification task
on the 20-Newsgroup dataset, and compared the explana-
tions of a convolutional neural network (CNN) trained on
word2vec inputs to the explanations of a support vector
machine (SVM) trained on bag-of-words (BoW) document
representations. They observed that, although both mod-
els produce a similar test error, the CNN model assigns
most relevance to a small number of keywords, whereas

Based on Arras et al. (2016) "What is relevant in a text document? an interpretable ML approach"

SVM/BoW classifier

Based on Lapuschkin et al. (2016) "Analyzing classifiers: Fisher vectors and deep neural nets"

(a)

(b)

CNN/word2vec classifier

input image "horse" classification by
Fisher vectors

"horse" classification by
Deep neural networks

Figure 9: Examples taken from the literature of model validation
via explanation. (a) Explanation of the concept “sci.space” by two
text classifiers. (b) Unexpected use of copyright tags by the Fisher
vector model for predicting the class “horse”.

the SVM classifier relies on word count regularities. Fig-
ure 9(a) displays explanations for an example of the target
class sci.space.

Lapuschkin et al. [27] compared the decisions taken
by convolutional DNN transferred from ImageNet, and a
Fisher vector classifier on PASCAL VOC 2012 images. Al-
though both models reach similar classification accuracy
on the category “horse”, the authors observed that they
use different strategies to classify images of that category.
Explanations for a given image are shown in Figure 9(b).
The deep neural network looks at the contour of the actual
horse, whereas the Fisher vector model (of more rudimen-
tary structure and trained with less data) relies mostly
on a copyright tag, that happens to be present on many
horse images. Removing the copyright tag in the test im-
ages would consequently significantly decrease the mea-
sured accuracy of the Fisher vector model but leave the
deep neural network predictions unaffected.

8.2. Analysis of Scientific Data

Beyond model validation, techniques of explanation can
also be applied to shed light on scientific problems where
human intuition and domain knowledge is often limited.
Simple statistical tests and linear models have proved use-
ful to identify correlations between different variables of
a system, however, the measured correlations typically re-
main weak due to the inability of these models to capture
the underlying complexity and nonlinearity of the stud-
ied problem. For a long time, the computational scientist
would face a tradeoff between interpretability and predic-
tive power, where linear models would sometimes be pre-
ferred to nonlinear models despite their lower predictive
power. We give below a selection of recent works in vari-
ous fields of research, that combine deep neural networks
and explanation techniques to extract insight on the stud-
ied scientific problems.

In the domain of atomistic simulations, powerful ma-
chine learning models have been produced to link molecu-
lar structure to electronic properties [36, 21, 43, 16]. These
models have been trained in a data-driven manner, with-
out simulated physics involved into the prediction. In par-
ticular, Schütt et al. [43] proposed a deep tensor neural
network model that incorporates sufficient structure and
representational power to simultaneously achieve high pre-
dictive power and explainability. Using a test-charge per-
turbation analysis (a variant of sensitivity analysis where
one measures the effect on the neural network output of
inserting a charge at a given location), three-dimensional
response maps were produced that highlight for each in-
dividual molecule spatial structures that were the most
relevant for explaining the modeled structure-property re-
lationship. Example of response maps are given in Fig-
ure 10(a) for various molecules.

Sturm et al. [49] showed that explanation techniques can
also be applied to EEG brain recording data. Because the
input EEG pattern can take different forms (due to differ-
ent users, environments, or calibration of the acquisition

11

Based on Schütt et al. (2017) "Quantum-
chemical insights from deep tensor neural
networks"

Based on Sturm et al. (2016) "Interpretable
deep neural networks for single-trial EEG

classification"

"right hand" "foot"

LR
P

imagined movement of

portrait explanation
for age

explanation
for gender

Based on Arbabzadah et al. (2016)
"Identifying individual facial expressions

by deconstructing a neural network"

(a) (b)

(d)
(c)

Adapted from Vidovic et al. (2016) "Feature impor-
tance measure for non-linear learning algorithms"

time time

ch
an

ne
l

ch
an

ne
l

pooling

sequence 1 (true positive)

sequence 2 (false positive)

... ...

... ...

... ...
sequence 3 (false negative)

ex
pl

an
at

io
n

Explain E

Figure 10: Overview of several applications of machine learning ex-
planation techniques in the sciences. (a) Molecular response maps
for quantum chemistry, (b) EEG heatmaps for neuroimaging, (c) ex-
tracting relevant information from gene sequences, (d) analysis of
facial appearance.

device), it is important to produce an individual expla-
nation that adapts to these parameters. After training a
neural network to map EEG patterns to a set of move-
ments imagined by the user (“right hand” and “foot”), a
LRP decomposition of that prediction could be achieved
in the EEG input domain (a spatiotemporal signal cap-
turing the electrode measurements at various positions on
the skull and at multiple time steps), and pooled tem-
porally to produce EEG heatmaps revealing from which
part of the brain the decision for “right hand” or “foot”
originates. An interesting property of decomposition tech-
niques in this context is that temporally pooling preserves
the total function value, and thus, still corresponds to a
decomposition of the prediction. Example of these indi-
vidual EEG brain maps are given in Figure 10(b). For
classical linear explanation of neural activation patterns
in cognitive brain science experiments or Brain Computer
Interfacing, see [13, 30, 12, 22].

Deep neural networks have also been proposed to make
sense of the human genome. Alipanahi et al. [1] trained
a convolutional neural network to map the DNA sequence
to protein binding sites. In a second step, they asked what
are the nucleotides of that sequence that are the most rel-
evant for explaining the presence of these binding sites.
For this, they used a perturbation-based analysis, similar
to the sensitivity analysis described in Section 4.1, where
the relevance score of each nucleotide is measured based
on the effect of mutating it on the neural network predic-
tion. Other measures of feature importance for individual
gene sequences have been proposed [53] that apply to a
broad class of nonlinear models, from deep networks to

weighted degree kernel classifiers. Examples of heatmaps
representing relevant genes for various sequences and pre-
diction outcomes are shown in Figure 10(c).

Explanation techniques also have a potential application
in the analysis of face images. These images may reveal
a wide range of information about the person’s identity,
emotional state, or health. However, interpreting them di-
rectly in terms of actual features of the input image can
be difficult. Arbabzadah et al. [2] applied a LRP tech-
nique to identify which pixels in a given image are re-
sponsible for explaining, for example, the age and gender
attributes. Example of pixel-wise explanations are shown
in Figure 10(d).

9. Conclusion

Building transparent machine learning systems is a con-
vergent approach to both extracting novel domain knowl-
edge and performing model validation. As machine learn-
ing is increasingly used in real-world decision processes,
the necessity for transparent machine learning will con-
tinue to grow. Examples that illustrate the limitations of
black-box methods were mentioned in Section 8.1.

This tutorial has covered two key directions for improv-
ing machine learning transparency: interpreting the con-
cepts learned by a model by building prototypes, and ex-
plaining of the model’s decisions by identifying the rel-
evant input variables. The discussion mainly abstracted
from the exact choice of deep neural network, training pro-
cedure, or application domain. Instead, we have focused
on the more conceptual developments, and connected them
to recent practical successes reported in the literature.

In particular we have discussed the effect of linking pro-
totypes to the data, via a data density function or a gen-
erative model. We have described the crucial difference
between sensitivity analysis and decomposition in terms
of what these analyses seek to explain. Finally, we have
outlined the benefit in terms of robustness, of treating the
explanation problem with graph propagation techniques
rather than with standard analysis techniques.

This tutorial has focused on post-hoc interpretability,
where we do not have full control over the model’s struc-
ture. Instead, the techniques of interpretation should ap-
ply to a general class of nonlinear machine learning models,
no matter how they were trained and who trained them –
even fully trained models that are available for download
like BVLC CaffeNet [24] or GoogleNet [50]

In that sense the presented novel technological devel-
opment in ML allowing for interpretability is an orthog-
onal strand of research independent of new developments
for improving neural network models and their learning
algorithms. We would like to stress that all new devel-
opments can in this sense always profit in addition from
interpretability.

12

Acknowledgments

We gratefully acknowledge discussions and comments on
the manuscript by our colleagues Sebastian Lapuschkin,
and Alexander Binder. This work was supported by
the Brain Korea 21 Plus Program through the Na-
tional Research Foundation of Korea; the Institute for
Information & Communications Technology Promotion
(IITP) grant funded by the Korea government [No. 2017-
0-00451]; the Deutsche Forschungsgemeinschaft (DFG)
[grant MU 987/17-1]; and the German Ministry for Ed-
ucation and Research as Berlin Big Data Center (BBDC)
[01IS14013A]. This publication only reflects the authors
views. Funding agencies are not liable for any use that
may be made of the information contained herein.

[1] Alipanahi, B., Delong, A., Weirauch, M. T., Frey, B. J., jul
2015. Predicting the sequence specificities of DNA- and RNA-
binding proteins by deep learning. Nature Biotechnology 33 (8),
831–838.

[2] Arbabzadah, F., Montavon, G., Müller, K.-R., Samek, W.,
2016. Identifying individual facial expressions by deconstruct-
ing a neural network. In: Pattern Recognition - 38th German
Conference, GCPR 2016, Hannover, Germany, September 12-
15, 2016, Proceedings. pp. 344–354.

[3] Arras, L., Horn, F., Montavon, G., Müller, K.-R., Samek, W.,
2016. ”What is relevant in a text document?”: An interpretable
machine learning approach. CoRR abs/1612.07843.

[4] Arras, L., Montavon, G., Müller, K.-R., Samek, W., 2017. Ex-
plaining recurrent neural network predictions in sentiment anal-
ysis. CoRR abs/1706.07206.

[5] Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-
R., Samek, W., 07 2015. On pixel-wise explanations for non-
linear classifier decisions by layer-wise relevance propagation.
PLOS ONE 10 (7), 1–46.

[6] Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M.,
Hansen, K., Müller, K.-R., 2010. How to explain individual clas-
sification decisions. Journal of Machine Learning Research 11,
1803–1831.

[7] Bazen, S., Joutard, X., 2013. The Taylor decomposition: A uni-
fied generalization of the Oaxaca method to nonlinear models.
Working papers, HAL.

[8] Bengio, Y., 2012. Practical recommendations for gradient-based
training of deep architectures. In: Neural Networks: Tricks of
the Trade - Second Edition. pp. 437–478.

[9] Berkes, P., Wiskott, L., 2006. On the analysis and interpretation
of inhomogeneous quadratic forms as receptive fields. Neural
Computation 18 (8), 1868–1895.

[10] Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R.,
Samek, W., 2016. Layer-wise relevance propagation for neural
networks with local renormalization layers. In: Artificial Neural
Networks and Machine Learning - ICANN 2016 - 25th Inter-
national Conference on Artificial Neural Networks, Barcelona,
Spain, September 6-9, 2016, Proceedings, Part II. pp. 63–71.

[11] Bishop, C. M., 1995. Neural Networks for Pattern Recognition.
Oxford University Press, Inc., New York, NY, USA.

[12] Blankertz, B., Lemm, S., Treder, M. S., Haufe, S., Müller, K.-
R., 2011. Single-trial analysis and classification of ERP compo-
nents - A tutorial. NeuroImage 56 (2), 814–825.

[13] Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Müller,
K.-R., 2008. Optimizing spatial filters for robust EEG single-
trial analysis. IEEE Signal Processing Magazine 25 (1), 41–56.

[14] Bojarski, M., Yeres, P., Choromanska, A., Choromanski, K.,
Firner, B., Jackel, L. D., Muller, U., 2017. Explaining how a
deep neural network trained with end-to-end learning steers a
car. CoRR abs/1704.07911.

[15] Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., El-
hadad, N., 2015. Intelligible models for healthcare: Predicting

pneumonia risk and hospital 30-day readmission. In: Proceed-
ings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Sydney, NSW, Aus-
tralia, August 10-13, 2015. pp. 1721–1730.

[16] Chmiela, S., Tkatchenko, A., Sauceda, H. E., Poltavsky, I.,
Schütt, K. T., Müller, K.-R., may 2017. Machine learning of
accurate energy-conserving molecular force fields. Science Ad-
vances 3 (5), e1603015.

[17] Erhan, D., Bengio, Y., Courville, A., Vincent, P., Jun. 2009.
Visualizing higher-layer features of a deep network. Tech. Rep.
1341, University of Montreal, also presented at the ICML 2009
Workshop on Learning Feature Hierarchies, Montréal, Canada.

[18] Gevrey, M., Dimopoulos, I., Lek, S., feb 2003. Review and com-
parison of methods to study the contribution of variables in
artificial neural network models. Ecological Modelling 160 (3),
249–264.

[19] Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-
Farley, D., Ozair, S., Courville, A. C., Bengio, Y., 2014. Gen-
erative adversarial nets. In: Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Informa-
tion Processing Systems 2014, December 8-13 2014, Montreal,
Quebec, Canada. pp. 2672–2680.

[20] Hansen, K., Baehrens, D., Schroeter, T., Rupp, M., Müller, K.-
R., sep 2011. Visual interpretation of kernel-based prediction
models. Molecular Informatics 30 (9), 817–826.

[21] Hansen, K., Biegler, F., Ramakrishnan, R., Pronobis, W., von
Lilienfeld, O. A., Müller, K.-R., Tkatchenko, A., jun 2015. Ma-
chine learning predictions of molecular properties: Accurate
many-body potentials and nonlocality in chemical space. The
Journal of Physical Chemistry Letters 6 (12), 2326–2331.

[22] Haufe, S., Meinecke, F. C., Görgen, K., Dähne, S., Haynes, J.-
D., Blankertz, B., Bießmann, F., 2014. On the interpretation of
weight vectors of linear models in multivariate neuroimaging.
NeuroImage 87, 96–110.

[23] Hinton, G. E., 2012. A practical guide to training restricted
Boltzmann machines. In: Neural Networks: Tricks of the Trade
- Second Edition. pp. 599–619.

[24] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Gir-
shick, R. B., Guadarrama, S., Darrell, T., 2014. Caffe: Convolu-
tional architecture for fast feature embedding. In: Proceedings
of the ACM International Conference on Multimedia, MM’14,
Orlando, FL, USA, November 03 - 07, 2014. pp. 675–678.

[25] Khan, J., Wei, J. S., Ringnér, M., Saal, L. H., Ladanyi, M.,
Westermann, F., Berthold, F., Schwab, M., Antonescu, C. R.,
Peterson, C., Meltzer, P. S., jun 2001. Classification and diag-
nostic prediction of cancers using gene expression profiling and
artificial neural networks. Nature Medicine 7 (6), 673–679.

[26] Landecker, W., Thomure, M. D., Bettencourt, L. M. A.,
Mitchell, M., Kenyon, G. T., Brumby, S. P., 2013. Interpret-
ing individual classifications of hierarchical networks. In: IEEE
Symposium on Computational Intelligence and Data Mining,
CIDM 2013, Singapore, 16-19 April, 2013. pp. 32–38.

[27] Lapuschkin, S., Binder, A., Montavon, G., Müller, K.-R.,
Samek, W., 2016. Analyzing classifiers: Fisher vectors and deep
neural networks. In: 2016 IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA,
June 27-30, 2016. pp. 2912–2920.

[28] Lee, H., Grosse, R. B., Ranganath, R., Ng, A. Y., 2009. Con-
volutional deep belief networks for scalable unsupervised learn-
ing of hierarchical representations. In: Proceedings of the 26th
Annual International Conference on Machine Learning, ICML
2009, Montreal, Quebec, Canada, June 14-18, 2009. pp. 609–
616.

[29] Leek, J. T., Scharpf, R. B., Bravo, H. C., Simcha, D., Lang-
mead, B., Johnson, W. E., Geman, D., Baggerly, K., Irizarry,
R. A., sep 2010. Tackling the widespread and critical impact of
batch effects in high-throughput data. Nature Reviews Genetics
11 (10), 733–739.

[30] Lemm, S., Blankertz, B., Dickhaus, T., Müller, K.-R., 2011.
Introduction to machine learning for brain imaging. NeuroImage
56 (2), 387–399.

13

[31] Li, J., Chen, X., Hovy, E. H., Jurafsky, D., 2016. Visualizing and
understanding neural models in NLP. In: NAACL HLT 2016,
The 2016 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language
Technologies, San Diego California, USA, June 12-17, 2016. pp.
681–691.

[32] Lipton, Z. C., 2016. The mythos of model interpretability. CoRR
abs/1606.03490.

[33] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., Dean,
J., 2013. Distributed representations of words and phrases and
their compositionality. In: Advances in Neural Information Pro-
cessing Systems 26: 27th Annual Conference on Neural Infor-
mation Processing Systems 2013. Proceedings of a meeting held
December 5-8, 2013, Lake Tahoe, Nevada, United States. pp.
3111–3119.

[34] Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller,
K.-R., 2017. Explaining nonlinear classification decisions with
deep Taylor decomposition. Pattern Recognition 65, 211–222.

[35] Montavon, G., Orr, G., Müller, K.-R., 2012. Neural Networks:
Tricks of the Trade, 2nd Edition. Springer Publishing Company,
Inc.

[36] Montavon, G., Rupp, M., Gobre, V., Vazquez-Mayagoitia, A.,
Hansen, K., Tkatchenko, A., Müller, K.-R., von Lilienfeld,
O. A., sep 2013. Machine learning of molecular electronic prop-
erties in chemical compound space. New Journal of Physics
15 (9), 095003.

[37] Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.,
2016. Synthesizing the preferred inputs for neurons in neural
networks via deep generator networks. In: Advances in Neu-
ral Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems 2016, December 5-10,
2016, Barcelona, Spain. pp. 3387–3395.

[38] Nguyen, A., Yosinski, J., Clune, J., 2016. Multifaceted feature
visualization: Uncovering the different types of features learned
by each neuron in deep neural networks. CoRR abs/1602.03616.

[39] Poulin, B., Eisner, R., Szafron, D., Lu, P., Greiner, R., Wishart,
D. S., Fyshe, A., Pearcy, B., Macdonell, C., Anvik, J., 2006. Vi-
sual explanation of evidence with additive classifiers. In: Pro-
ceedings, The Twenty-First National Conference on Artificial
Intelligence and the Eighteenth Innovative Applications of Ar-
tificial Intelligence Conference, July 16-20, 2006, Boston, Mas-
sachusetts, USA. pp. 1822–1829.

[40] Ribeiro, M. T., Singh, S., Guestrin, C., 2016. ”why should I
trust you?”: Explaining the predictions of any classifier. In:
Proceedings of the 22nd ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, San Francisco,
CA, USA, August 13-17, 2016. pp. 1135–1144.

[41] Rumelhart, D. E., Hinton, G. E., Williams, R. J., oct 1986.
Learning representations by back-propagating errors. Nature
323 (6088), 533–536.

[42] Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller,
K.-R., 2016. Evaluating the visualization of what a deep neural
network has learned. IEEE Transactions on Neural Networks
and Learning Systems, 1–14.

[43] Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R.,
Tkatchenko, A., jan 2017. Quantum-chemical insights from deep
tensor neural networks. Nature Communications 8, 13890.

[44] Simonyan, K., Vedaldi, A., Zisserman, A., 2013. Deep inside
convolutional networks: Visualising image classification models
and saliency maps. CoRR abs/1312.6034.

[45] Snyder, J. C., Rupp, M., Hansen, K., Müller, K.-R., Burke, K.,
jun 2012. Finding density functionals with machine learning.
Physical Review Letters 108 (25).

[46] Soneson, C., Gerster, S., Delorenzi, M., 06 2014. Batch effect
confounding leads to strong bias in performance estimates ob-
tained by cross-validation. PLOS ONE 9 (6), 1–13.

[47] Springenberg, J. T., Dosovitskiy, A., Brox, T., Riedmiller,
M. A., 2014. Striving for simplicity: The all convolutional net.
CoRR abs/1412.6806.

[48] Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I.,
Salakhutdinov, R., 2014. Dropout: a simple way to prevent

neural networks from overfitting. Journal of Machine Learning
Research 15 (1), 1929–1958.

[49] Sturm, I., Lapuschkin, S., Samek, W., Müller, K.-R., dec 2016.
Interpretable deep neural networks for single-trial EEG classifi-
cation. Journal of Neuroscience Methods 274, 141–145.

[50] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S. E.,
Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015.
Going deeper with convolutions. In: IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2015, Boston,
MA, USA, June 7-12, 2015. pp. 1–9.

[51] Taylor, B. J., 2005. Methods and Procedures for the Verification
and Validation of Artificial Neural Networks. Springer-Verlag
New York, Inc., Secaucus, NJ, USA.

[52] van den Oord, A., Kalchbrenner, N., Kavukcuoglu, K., 2016.
Pixel recurrent neural networks. In: Proceedings of the 33nd In-
ternational Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016. pp. 1747–1756.

[53] Vidovic, M. M.-C., Görnitz, N., Müller, K.-R., Kloft, M., 2016.
Feature importance measure for non-linear learning algorithms.
CoRR abs/1611.07567.

[54] Vidovic, M. M.-C., Kloft, M., Müller, K.-R., Görnitz, N., 03
2017. Ml2motif–reliable extraction of discriminative sequence
motifs from learning machines. PLOS ONE 12 (3), 1–22.

[55] Zeiler, M. D., Fergus, R., 2014. Visualizing and understanding
convolutional networks. In: Computer Vision - ECCV 2014 -
13th European Conference, Zurich, Switzerland, September 6-
12, 2014, Proceedings, Part I. pp. 818–833.

[56] Zhang, J., Lin, Z. L., Brandt, J., Shen, X., Sclaroff, S., 2016.
Top-down neural attention by excitation backprop. In: Com-
puter Vision - ECCV 2016 - 14th European Conference, Am-
sterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part IV. pp. 543–559.

14

