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Abstract

Nonlinear methods such as Deep Neural Networks (DNNs) are the gold standard for various challenging machine learn-
ing problems such as image recognition. Although these methods perform impressively well, they have a significant
disadvantage, the lack of transparency, limiting the interpretability of the solution and thus the scope of application in
practice. Especially DNNs act as black boxes due to their multilayer nonlinear structure. In this paper we introduce
a novel methodology for interpreting generic multilayer neural networks by decomposing the network classification de-
cision into contributions of its input elements. Although our focus is on image classification, the method is applicable
to a broad set of input data, learning tasks and network architectures. Our method called deep Taylor decomposition
efficiently utilizes the structure of the network by backpropagating the explanations from the output to the input layer.
We evaluate the proposed method empirically on the MNIST and ILSVRC data sets.
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1. Introduction

Nonlinear models have been used since the advent of
machine learning (ML) methods and are integral part of
many popular algorithms. They include, for example, graph-
ical models [1], kernels [2, 3], Gaussian processes [4], neu-
ral networks [5, 6, 7], boosting [8], or random forests [9].
Recently, a particular class of nonlinear methods, Deep
Neural Networks (DNNs), revolutionized the field of au-
tomated image classification by demonstrating impressive
performance on large benchmark data sets [10, 11, 12].
Deep networks have also been applied successfully to other
research fields such as natural language processing [13, 14],
human action recognition [15, 16, 17], or physics [18, 19].

Although these models are highly successful in terms
of performance, they have a drawback of acting like a black
box in the sense that it is not clear how and why they arrive
at a particular classification decision. This lack of trans-
parency is a serious disadvantage as it prevents a human
expert from being able to verify, interpret, and understand
the reasoning of the system. In this paper, we consider the
problem of explaining classification decisions of a machine
learning model in terms of input variables. For instance,
for image classification problems, the classifier should not
only indicate whether an image of interest belongs to a
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certain category or not, but also explain what structures
(e.g. pixels in the image) were the basis for its decision.

Linear models readily provide explanations in terms
of input variables [20, 21, 22], however, due to their lim-
ited expressive power, they cannot be applied to complex
tasks such as explaining image classifications. Explana-
tion methods for complex nonlinear models such as convo-
lutional neural networks can be categorized as follows: (1)
functional approaches [23] where the explanation results
from the local analysis of the prediction function, for ex-
ample, sensitivity analysis or Taylor series expansion, and
(2) message passing approaches [24, 25] that view the pre-
diction as the output of a computational graph, and where
the explanation is obtained by running a backward pass in
that graph.

A main goal of this paper is to reconcile in the context
of deep neural networks the functional and message pass-
ing approaches for producing these explanations1. Specifi-
cally, we view each neuron of a deep network as a function
that can be expanded and decomposed on its input vari-
ables. The decompositions of multiple neurons are then
aggregated or propagated backwards, resulting in a “deep
Taylor decomposition”. Furthermore, we will show how
the propagation rules derived from deep Taylor decompo-
sition relate to those heuristically defined by [25].

Because of the theoretical focus of this paper, we do

1Similarly, error backpropagation [26] used for training neural net-
works also offers both a function-based interpretation (gradient eval-
uation) and a message passing interpretation (chain-rule for deriva-
tives).
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not perform a broader empirical comparison with other
recently proposed methods for explanation, however, we
refer to [27] for that matter.

Related Work

There has been a significant body of work focusing
on the analysis and understanding of nonlinear classifiers.
Some methods seek to provide a global understanding of
the trained model, by measuring important characteris-
tics of it, such as the noise and relevant dimensionality
of its feature space(s) [28, 29, 30], its invariance to certain
transformations of the data [31], the role of particular neu-
rons [32], or its global decision structure [33, 34]. Other
methods focus instead on the interpretation of individual
predictions. The method proposed in [35] explains pre-
dictions in terms of input variables by locally evaluating
the gradient of the decision function. Simonyan et al. [23]
incorporate saliency information into the explanation by
multiplying the gradient by the actual data point. To de-
termine the importance of input variables for a particular
prediction, Landecker et al. [36] proposed a contribution
propagation approach for hierarchical networks, applying
at each unit of the network a propagation rule that obeys
a conservation property.

Recent work has focused on the problem of understand-
ing of state-of-the-art GPU-trained convolutional neural
networks for image classification [23, 24, 25, 37], offering
new insights into these highly complex models. The de-
convolution method proposed by Zeiler and Fergus [24]
was designed to visualize and understand the features of
state-of-the-art convolutional neural networks with max-
pooling and rectified linear units. The method performs a
backpropagation pass on the network, where a set of rules
is applied uniformly to all layers of the network, resulting
in an assignment of values onto pixels. The method how-
ever does not aim to attribute a defined meaning to the
assigned pixel values, except for the fact that they should
form a visually interpretable pattern. For the same con-
volutional neural network models, the layer-wise relevance
propagation method of Bach et al. [25] applies at each neu-
ron of the network a propagation rule with a conservative
property, resulting in an assignment of values onto pixels
which is directly interpretable as their importance for the
classification decision. While scoring high quantitatively
[27], the choice of propagation rules was mainly heuristic
and lacked a strong theoretical justification.

A theoretical foundation to the problem of measuring
the importance of input variables for a prediction, can be
found in the Taylor decomposition of a nonlinear func-
tion. The approach was described by Bazen and Joutard
[38] as a nonlinear generalization of the Oaxaca method in
econometrics [21]. The idea was subsequently introduced
in the context of image analysis [23, 25] for the purpose of
explaining machine learning classifiers.

As an alternative to propagation methods, spatial re-
sponse maps [39] build heatmaps by looking at the neural
network output while sliding the neural network in the

pixel space. Attention models based on neural networks,
trained to classify an image from only a few glimpses of it
[40], readily provide a spatial interpretation for the clas-
sification decision. Similar models can also visualize what
part of an image is relevant at a given time in some tem-
poral context [41]. However, these dynamical models can
be significantly more complex to design and train.

2. Pixel-Wise Decomposition of a Function

In this section, we describe the general concept of ex-
plaining a neural network decision by decomposing the
function value (i.e. neural network output) onto the input
variables in an amount that matches the respective rele-
vance of these input variables to the function value. After
enumerating a certain number of desirable properties of
a decomposition, we will present in Section 2.1 and 2.2
two simple solutions to this problem. Because all subse-
quent empirical evaluations focus on the problem of image
recognition, we call the input variables “pixels”, and use
the letter p for indexing them. Also, we employ the term
“heatmap” to designate the set relevance scores assigned
to pixels of an image. Despite the image-related termi-
nology, the concept is applicable to other input domains
such as vector spaces, time series, or more generally any
type of input domain whose elements can be processed by
a neural network2.

Let us consider a positive-valued function f : Rd →
R+. In the context of image classification, the input x ∈
Rd of this function is an image. The image can be viewed
as a set of pixel values x = {xp} where p denotes a par-
ticular pixel. The function f(x) quantifies the presence of
a certain type of object(s) in the image. A function value
f(x) = 0 indicates an absence of it. On the other hand,
a function value f(x) > 0 expresses its presence with a
certain degree of certainty, or in a certain amount.

We would like to associate to each pixel p in the image
a relevance score Rp(x), that indicates for an image x
to what extent the pixel p contributes to explaining the
classification decision f(x). The relevance of each pixel
can be stored in a heatmap denoted byR(x) = {Rp(x)} of
same dimensions as x and can be visualized as an image.
A heatmapping should satisfy properties that we define
below:

Definition 1. A heatmapping R(x) is conservative if the
sum of assigned relevances in the pixel space corresponds
to the total relevance detected by the model:

∀x : f(x) =
∑
p

Rp(x).

Definition 2. A heatmapping R(x) is positive if all values
forming the heatmap are greater or equal to zero, that is:

∀x, p : Rp(x) ≥ 0

2See [42, 43] for the application of decomposition techniques to
text and EEG data.
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The first property ensures that the total redistributed
relevance corresponds to the extent to which the object
in the input image is detected by the function f(x). The
second property forces the heatmapping to assume that the
model is devoid of contradictory evidence (i.e. no pixels
can be in contradiction with the presence or absence of the
detected object in the image). These two properties can
be combined into the notion of consistency:

Definition 3. A heatmapping R(x) is consistent if it is
conservative and positive. That is, it is consistent if it
complies with Definitions 1 and 2.

In particular, a consistent heatmap is forced to satisfy
(f(x)=0)⇒ (R(x)=0). That is, in absence of an object
to detect, the relevance is forced to be zero everywhere in
the image (i.e. empty heatmap), and not simply to have
negative and positive relevance in same amount. We will
use Definition 3 as a formal tool for assessing the correct-
ness of the heatmapping techniques proposed in this paper.
It was noted by [25] that there may be multiple heatmap-
ping techniques that satisfy a particular definition. For
example, we can consider a heatmapping that assigns for
all images the relevance uniformly onto the pixel grid:

∀p : Rp(x) =
1

d
· f(x), (1)

where d is the number of input dimensions. Alternately, we
can consider a heatmapping where all relevance is assigned
to the first pixel:

Rp(x) =

{
f(x) if p = 1st pixel
0 else.

(2)

Both (1) and (2) are consistent in the sense of Defi-
nition 3, however they lead to different relevance assign-
ments. In practice, it is not possible to specify explicitly
all properties that a heatmapping technique should sat-
isfy. In the following, we give two meaningful examples of
decompositions that comply with the definitions above.

2.1. Natural Decomposition

A natural decomposition can be defined as a decompo-
sition that is obtained directly from the structure of the
prediction. Consider, for example, the prediction function

f(x) =
∑
p

σp(xp), (3)

where {σp} is a set of positive nonlinear functions applying
to each pixel. The relevance of each input variable can be
identified as elements of the sum [22]:

Rp(x) = σp(xp).

If there exists for each pixel a deactivated state x̃p such
that σp(x̃p) = 0, then, the relevance score Rp(x) can be
interpreted as the effect on the prediction of deactivating

sensitivity analysis:

decomposition:

function to analyze:

Figure 1: Difference between sensitivity analysis and decomposition
for an exemplary two-dimensional function f(x). The function value
is represented with contour lines. Explanations are represented as a
vector field.

pixel p. A pixel whose deactivation would cause a large
drop in function value is therefore modeled as relevant.

Figure 1 illustrates on a simple two-dimensional func-
tion the difference between this decomposition technique
and another frequently used explanation technique called
sensitivity analysis [44], which explains the prediction as
locally evaluated squared partial derivatives. We can ob-
serve that sensitivity analysis is not related to the function
value and is discontinuous in some regions of the input
space. The natural decomposition, on the other hand, is
continuous and also incorporates the function value, as ev-
idenced by the continuously varying size and direction of
the arrows.

While this example motivates the importance of dis-
tinguishing between decomposition and sensitivity, func-
tions like the one of Equation 3 are typically not expres-
sive enough to model the high complexity of input-output
relations observed in real data.

2.2. Taylor Decomposition

Moving to the general case of arbitrary differentiable
functions f(x), we introduce a decomposition method based
on the Taylor expansion of the function at some well-
chosen root point x̃. A root point is a point where f(x̃) =
0. The first-order Taylor expansion of f(x) is given by

f(x) = f(x̃) +

(
∂f

∂x

∣∣∣
x=x̃

)>
· (x− x̃) + ε

= 0 +
∑
p

∂f

∂xp

∣∣∣
x=x̃
· (xp − x̃p)︸ ︷︷ ︸

Rp(x)

+ ε, (4)
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where the sum
∑

p runs over all pixels in the image, and
{x̃p} are the pixel values of the root point x̃. We identify
the summed elements as the relevances Rp(x) assigned to
pixels in the image. The term ε denotes second-order and
higher-order terms. Most of them involve several pixels
and are therefore more difficult to redistribute. Thus, for
simplicity, only the first-order terms are considered. The
heatmap (composed of all identified pixel-wise relevances)
can be written as the element-wise product “�” between
the gradient of the function ∂f/∂x at the root point x̃ and
the difference between the image and the root (x− x̃):

R(x) =
∂f

∂x

∣∣∣
x=x̃
� (x− x̃). (5)

For a given classification function f(x), the Taylor de-
composition approach has one free variable: the choice of
the root point x̃ at which the Taylor expansion is per-
formed. A good root point is one that removes what in
the data point x causes the function f(x) to be positive
(e.g. an object in an image that is being detected), but
that minimally deviates from the original point x for the
Taylor expansion to be still valid. In mathematical terms,
it is a point x̃ with f(x̃) = 0 that lies in the vicinity of x
under some distance metric, for example the nearest root.
If x, x̃ ∈ Rd, one can show that for a continuously differ-
entiable function f the gradient at the nearest root always
points to the same direction as the difference x − x̃, and
their element-wise product is always positive, thus satis-
fying Definition 2. Relevance conservation in the sense of
Definition 1 is however not satisfied for general functions f
due to the possible presence of non-zero higher-order terms
in ε. The nearest root x̃ can be obtained as a solution of
an optimization problem [37], by minimizing the objective

min
ξ
‖ξ − x‖2 subject to f(ξ) = 0 and ξ ∈ X ,

where X is the input domain. The nearest root x̃ must
therefore be obtained in the general case by an iterative
minimization procedure. It is time consuming when the
function f(x) is expensive to evaluate or differentiate, al-
though some fast approximations do exist [45]. It is also
not necessarily solvable due to the possible non-convexity
of the minimization problem. A further problem with the
Taylor-based approach comes from the observation in [37]
that for large deep neural networks, nearest root points
x̃ are often imperceptibly different from the actual data
point x. In particular, the difference (x− x̃) is hardly in-
terpretable visually, and thus, cannot properly play its role
in Equation 5 for supporting a pixel-wise decomposition.

Relation to Sensitivity Analysis. Sensitivity analysis can
be viewed as a special instance of Taylor decomposition
where one expands the function f(x) not at a root point
x̃, but at a point ξ, taken at an infinitesimally small dis-
tance from the actual point x, in the direction of maximum
gradient (i.e. ξ = x − δ · ∂f/∂x with δ small). On these
infinitesimal scales, the function is locally linear and the

gradient is constant, and rewriting the Taylor expansion
of f(x) at ξ in a way that the first-order terms can be
identified,

f(x) = f(ξ) +
(∂f
∂x

∣∣∣
x=ξ

)>
· (x− ξ) + ε

= f(ξ) +
∑
p

δ
( ∂f
∂xp

)2
︸ ︷︷ ︸

Rp(x)

+ 0,

the direct relation between identified relevances and the
squared local derivatives used in sensitivity analysis be-
comes clear. The resulting heatmap is positive, but not
conservative since almost all relevance is absorbed by the
non-redistributed zero-order term.

3. Deep Taylor Decomposition

In this section, we introduce the main contribution of
this paper: a novel method for explaining nonlinear pre-
dictions that we call “deep Taylor decomposition”. It is
applicable to a much larger class of functions than those
considered in Section 2.1. It also overcomes the multiple
technical limitations of the simple Taylor-based method
described in Section 2.2. We will assume that the function
f(x) is implemented by a deep neural network, composed
of multiple layers of representation, where each layer is
composed of a set of neurons. Each neuron performs on
its input an elementary computation consisting of a lin-
ear projection followed by a nonlinear activation function.
Deep neural networks derive their high representational
power from the interconnection of a large number of these
neurons, each of them, realizing a small distinct subfunc-
tion.

The deep Taylor decomposition method is inspired by
the divide-and-conquer paradigm, and exploits the prop-
erty that the function learned by a deep network is decom-
posed into a set of simpler subfunctions, either enforced
structurally by the neural network connectivity, or occur-
ring as a result of training. These subfunctions can, for
example, apply locally to subsets of pixels, or they can op-
erate at a certain level of abstraction based on the layer at
which they are located in the deep network. An example
of neural network mapping an input image to some score
indicating the presence of an object of a certain class is
given in Figure 2 (top).

Let us assume that the function f(x) encoded by the
output neuron xf has been decomposed on the set of neu-
rons at a given layer. Let xj be one such neuron and Rj

be its associated relevance. We would like to decompose
Rj on the set of lower layer neurons {xi} to which xj is
connected. Assuming that {xi} and Rj are related by a
function Rj({xi}), such decomposition onto input neurons
can be obtained by Taylor decomposition. It should be
noted, however, that the relevance function may in prac-
tice depend on additional variables in the neural network,
for example, the relevances of upper-layer neurons {xk} to
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heatmap

output
forward pass

relevance propagation
output

Figure 2: Computational flow of deep Taylor decomposition. A pre-
diction for the class “cat” is obtained by forward-propagation of the
pixel values {xp}, and is encoded by the output neuron xf . The
output neuron is assigned a relevance score Rf = xf representing
the total evidence for the class “cat”. Relevance is then backpropa-
gated from the top layer down to the input, where {Rp} denotes the
pixel-wise relevance scores, that can be visualized as a heatmap.

which xj contributes. These top-down dependencies in-
clude the necessary information to determine whether a
neuron xj is relevant, not only based on the pattern it re-
ceives as input, but also based on its context. For now,
we will take for granted, that these top-down dependen-
cies in the relevance function are such, that one can always
decompose Rj exclusively in terms of {xi}. Practical rele-
vance models that satisfy this property will be introduced
in Section 5.

We define a root point {x̃i}(j) of this function. Note
that we choose a different root point for each neuron xj
in the current layer, hence the superscript (j) to identify
them. The Taylor decomposition of Rj is given by:

Rj =

(
∂Rj

∂{xi}

∣∣∣
{x̃i}(j)

)>
· ({xi} − {x̃i}(j)) + εj

=
∑
i

∂Rj

∂xi

∣∣∣
{x̃i}(j)

· (xi − x̃(j)i )︸ ︷︷ ︸
Rij

+ εj ,

where εj denotes the Taylor residual, and where
∣∣
{x̃i}(j)

indicates that the derivative has been evaluated at the root
point {x̃i}(j). The identified term Rij is the redistributed
relevance from neuron xj to neuron xi in the lower layer.
To determine the total relevance of neuron xi, one needs
to pool relevance coming from all neurons {xj} to which
the neuron xi contributes:

Ri =
∑
j

Rij .

Combining the last two equations, we get

Ri =
∑
j

∂Rj

∂xi

∣∣∣
{x̃i}(j)

· (xi − x̃(j)i ). (6)

This last equation will be central for computing explicit
relevance redistribution formulas based on specific choices
of root points {x̃i}(j).

It can be verified from the equations above that if
∀j :

∑
iRij = Rj , in particular, when all residuals εj

are zero, then
∑

iRi =
∑

j Rj , i.e. the propagation from
one layer to another is conservative in the sense of Defini-
tion 1. Moreover, if each layer-wise Taylor decomposition
in the network is conservative, then, the chain of equalities
Rf = . . . =

∑
j Rj =

∑
iRi = . . . =

∑
pRp holds, and the

global pixel-wise decomposition is thus also conservative.
This chain of equalities is referred by [25] as layer-wise
relevance conservation. Similarly, if Definition 2 holds for
each local Taylor decomposition, the positivity of relevance
scores at each layer Rf , . . . , {Rj}, {Ri}, . . . , {Rp} ≥ 0 is
also ensured. If all local Taylor decompositions are consis-
tent in the sense of Definition 3, then, the whole decom-
position is consistent in the same sense.

Figure 2 illustrates the procedure of layer-wise rele-
vance propagation on a cartoon example where an image
of a cat is presented to a deep network. If the neural net-
work has been designed and trained successfully for the
detection task, it is likely to have a structure, where neu-
rons are modeling specific features at distinct locations. In
such network, relevance redistribution is not only easier in
the top layer where it has to be decided which neurons,
and not pixels, are relevant for the object “cat”. It is also
easier in the lower layers where the relevance has already
been redistributed to the relevant neurons, and where the
final redistribution step only involves a few neighboring
pixels.

4. Application to One-Layer Networks

As a starting point for better understanding deep Tay-
lor decomposition, in particular, how it leads to practi-
cal propagation rules, we work through a simple example,
with advantageous analytical properties. We consider a
detection-pooling network made of one layer of nonlinear-
ity. The network is defined as

xj = max
(
0,
∑

ixiwij + bj
)

and xk =
∑

jxj (7)

where {xi} is a d-dimensional input, {xj} is a detection
layer, xk is the output, and θ = {wij , bj} are the weight
and bias parameters of the network. The one-layer net-
work is depicted in Figure 3.

The mapping {xi} → xk defines a function g ∈ G,
where G denotes the set of functions representable by this
one-layer network. We will set an additional constraint
on biases, where we force bj ≤ 0 for all j. Imposing this
constraint guarantees the existence of a root point {x̃i} of
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detection
sum-
pooling outputinput

one-layer
neural network

Figure 3: Detection-pooling network that implements Equations 7:
The first layer detects features in the input space, the second layer
pools the detected features into an output score.

the function g (located at the origin), and thus also en-
sures the applicability of standard Taylor decomposition,
for which a root point is needed. We now perform the
deep Taylor decomposition of this function. We start by
equating the predicted output to the amount of total rel-
evance that must be backpropagated, i.e., Rk = xk. The
relevance for the top layer can now be expressed in terms
of lower-layer neurons as:

Rk =
∑

jxj (8)

Having established the mapping between {xj} and Rk,
we would like to redistribute Rk onto neurons {xj}. Us-
ing Taylor decomposition (Equation 4), redistributed rel-
evances Rj can be written as:

Rj =
∂Rk

∂xj

∣∣∣
{x̃j}
· (xj − x̃j). (9)

We still need to choose a root point {x̃j}. The list of all
root points of this function is given by the plane equation∑

j x̃j = 0. However, for the root to play its role of ref-
erence point, it should be admissible. Here, because of
the application of the function max(0, ·) in the preceding
layer, the root point must be positive. The only point that
is both a root (

∑
j x̃j = 0) and admissible (∀j : x̃j ≥ 0)

is {x̃j} = 0. Choosing this root point in Equation 9, and
observing that the derivative ∂Rk

∂xj
= 1, we obtain the first

rule for relevance redistribution:

Rj = xj (10)

In other words, the relevance must be redistributed on
the neurons of the detection layer in same proportion as
their activation value. Trivially, we can also verify that
the relevance is conserved during the redistribution process
(
∑

j Rj =
∑

j xj = Rk) and positive (Rj = xj ≥ 0). Let
us now express the relevance Rj as a function of the input
neurons {xi}. Because Rj = xj as a result of applying the
propagation rule of Equation 10, we can write

Rj = max
(
0,
∑

ixiwij + bj
)
, (11)

that establishes a mapping between {xi} and Rj . To ob-
tain redistributed relevances {Ri}, we will apply Taylor

decomposition again on this new function. The identifi-
cation of the redistributed total relevance

∑
j Rj onto the

preceding layer was identified in Equation 6 as:

Ri =
∑
j

∂Rj

∂xi

∣∣∣
{x̃i}(j)

· (xi − x̃(j)i ). (12)

Relevances {Ri} can therefore be obtained by performing
as many Taylor decompositions as there are neurons in the
hidden layer. We will introduce below various methods
for choosing a root {x̃i}(j) that consider the diversity of
possible input domains X ⊆ Rd to which the data belongs.
Each choice of input domain and associated method to find
a root will lead to a different rule for propagating relevance
{Rj} to {Ri}.

4.1. Unconstrained Input Space and the w2-Rule

We first consider the simplest case where any real-
valued input is admissible (X = Rd). In that case, we
can always choose the root point {x̃i}(j) that is nearest in
the Euclidean sense to the actual data point {xi}. When
Rj > 0, the nearest root of Rj as defined in Equation 11 is

the intersection of the plane equation
∑

i x̃
(j)
i wij + bj = 0,

and the line of maximum descent {x̃i}(j) = {xi} + t ·wj ,
where wj is the vector of weight parameters that connects
the input to neuron xj and t ∈ R. The intersection of
these two subspaces is the nearest root point. It is given by
{x̃i}(j) = {xi− wij∑

i w
2
ij

(
∑

i xiwij + bj)}. Injecting this root

into Equation 12, the redistributed relevance becomes:

Ri =
∑
j

w2
ij∑

i′ w
2
i′j

Rj (13)

The propagation rule consists of redistributing relevance
according to the square magnitude of the weights, and
pooling relevance across all neurons j. This rule is also
valid for Rj = 0, where the actual point {xi} is already a
root, and for which no relevance needs to be propagated.

Proposition 1. For all g ∈ G, the deep Taylor decompo-
sition with the w2-rule is consistent in the sense of Defi-
nition 3.

The w2-rule resembles the rule by [46, 44] for determin-
ing the importance of input variables in neural networks,
where absolute values of wij are used in place of squared
values. It is important to note that the decomposition that
we propose here is modulated by the upper layer data-
dependent Rjs, which leads to an individual explanation
for each data point.

4.2. Constrained Input Space and the z-Rules

When the input domain is restricted to a subset X ⊂
Rd, the nearest root of Rj in the Euclidean sense might
fall outside of X . Finding the nearest root in this con-
strained input space can be difficult. An alternative is to
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further restrict the search domain to a subset of X where
nearest root search becomes feasible again. We first study
the case X = Rd

+, which arises, for example in feature
spaces that follow the application of rectified linear units.
In that case, we restrict the search domain to the segment
({xi1wij<0}, {xi}) ⊂ Rd

+, that we know contains at least
one root. The relevance propagation rule then becomes:

Ri =
∑
j

z+ij∑
i′ z

+
i′j

Rj

(called z+-rule), where z+ij = xiw
+
ij , and where w+

ij denotes
the positive part of wij . This rule corresponds for positive
input spaces to the αβ-rule proposed by [25] with α =
1 and β = 0. The z+-rule will be used in Section 5 to
propagate relevances in higher layers of a neural network
where neuron activations are positive.

Proposition 2. For all g ∈ G and data points {xi} ∈ Rd
+,

the deep Taylor decomposition with the z+-rule is consis-
tent in the sense of Definition 3.

For image classification tasks, pixel spaces are typically
subjects to box-constraints, where an image has to be in
the domain B = {{xi} : ∀di=1 li ≤ xi ≤ hi}, where li ≤ 0
and hi ≥ 0 are the smallest and largest admissible pixel
values for each dimension. In that new constrained set-
ting, we can restrict the search for a root on the segment
({li1wij>0 + hi1wij<0}, {xi}) ⊂ B, where we know that
there is at least one root at its first extremity. Finding the
nearest root on that segment and injecting it into Equation
12, we obtain the relevance propagation rule:

Ri =
∑
j

zij − liw+
ij − hiw

−
ij∑

i′ zi′j − liw
+
i′j − hiw

−
i′j

Rj

(called zB-rule), where zij = xiwij , and where we note
the presence of data-independent additive terms in the nu-
merator and denominator. The idea of using an additive
term in the denominator was formerly proposed by [25]
and called ε-stabilized rule. However, the objective of [25]
was to make the denominator non-zero to avoid numerical
instability, while in our case, the additive terms serve to
enforce positivity.

Proposition 3. For all g ∈ G and data points {xi} ∈ B,
the deep Taylor decomposition with the zB-rule is consis-
tent in the sense of Definition 3.

Detailed derivations of the proposed rules, proofs of
Propositions 1, 2 and 3, and algorithms that implement
these rules efficiently are given in the supplement.

5. Application to Deep Networks

In order to represent efficiently complex hierarchical
problems, one needs deeper architectures. These architec-
tures are typically made of several layers of nonlinearity,

where each layer extracts features at different scale. An
example of deep architecture is shown in Figure 4 (left).
In this example, the input is first processed by feature ex-
tractors localized in the pixel space. The resulting features
are combined into more complex mid-level features that
cover more pixels. Finally, these more complex features
are combined in a final stage of nonlinear mapping, that
produces a score determining whether the object to detect
is present in the input image or not. A practical exam-
ple of deep network with similar hierarchical architecture,
and that is frequently used for image recognition tasks, is
the convolutional neural network [47]. In Section 3, we
have assumed the existence and knowledge of a functional
mapping between the neuron activities at a given layer and
relevances in the higher layer. This was the case for the
small network of Section 4. However, in deeper architec-
tures, the mapping may be unknown (although it may still
exist). In order to redistribute the relevance from higher
to lower layers, one needs to make this mapping explicit.
For this purpose, we introduce the concept of relevance
model.

A relevance model is a function that maps a set of neu-
ron activations at a given layer to the relevance of a neuron
in a higher layer, and whose output can be redistributed
onto its input variables, for the purpose of propagating
relevance backwards in the network. For the deep network
of Figure 4 (left), on can for example, try to predict Rk

from {xi}, which then allows us to decompose the pre-
dicted relevance Rk into lower-layer relevances {Ri}. The
relevance models we will consider borrow the structure of
the one-layer network studied in Section 4, and for which
we have already derived a deep Taylor decomposition.

Upper-layer relevance is not only determined by in-
put neuron activations of the considered layer, but also by
high-level information (i.e. abstractions) that have been
formed in the top layers of the network. These high-level
abstractions are necessary to ensure a global cohesion be-
tween low-level parts of the heatmap.

5.1. Min-Max Relevance Model

We first consider a trainable relevance model of Rk.
This relevance model is illustrated in Figure 4 (top right)
and is designed to incorporate both bottom-up and top-
down information, in a way that the relevance can still be
fully decomposed in terms of input neurons. It is defined
as

yj = max
(
0,
∑

ixivij + aj
)

and R̂k =
∑

jyj .

where aj = min(0,
∑

lRlvlj +dj) is a negative bias that de-
pends on upper-layer relevances, and where

∑
l runs over

the detection neurons of that upper-layer. This negative
bias plays the role of an inhibitor, in particular, it pre-
vents the activation of the detection unit yj of the rele-
vance model in the case where no upper-level abstraction
in {Rl} matches the feature detected in {xi}.
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Figure 4: Left: Example of a 3-layer deep network, composed of increasingly high-level feature extractors. Right: Diagram of the two proposed
relevance models for redistributing relevance onto lower layers.

The parameters {vij , vlj , dj} of the relevance model are
learned by minimization of the mean square error objective

min
〈
(R̂k −Rk)2

〉
,

where Rk is the true relevance, R̂k is the predicted rele-
vance, and 〈·〉 is the expectation with respect to the data
distribution. Because the relevance model has the same
structure as the one-layer network described in Section 4,
in particular, because aj is negative and only weakly de-
pendent on the set of neurons {xi}, one can apply the same
set of rules for relevance propagation. We compute

Rj = yj (14)

for the pooling layer and

Ri =
∑
j

qij∑
i′ qi′j

Rj (15)

for the detection layer, where qij = v2ij , qij = xiv
+
ij , or

qij = xivij − liv+ij − hiv
−
ij if choosing the w2-, z+-, zB-rules

respectively. This set of equations used to backpropagate
relevance from Rk to {Ri}, is approximately conservative,
with an approximation error that is determined by how
much on average the output of the relevance model R̂k

differs from the true relevance Rk.

5.2. Training-Free Relevance Model

A large deep neural network may have taken weeks
or months to train, and we should be able to explain it
without having to train a relevance model for each neuron.
We consider the original feature extractor

xj = max
(
0,
∑

ixiwij + bj
)

and xk = ‖{xj}‖q

where the Lq-norm can represent a variety of pooling op-
erations such as sum-pooling or max-pooling. Assuming

that the upper-layer has been explained by the z+-rule, and
indexing by l the detection neurons of that upper-layer, we
can write the relevance Rk as

Rk =
∑
l

xkw
+
kl∑

k′ xk′w+
k′l

Rl.

Taking xk out of the sum, and using the identity
∑

j xj =
‖{xj}‖1 for xj ≥ 0, we can rewrite the relevance as

Rk =
(∑

jxj
)
· ck · dk

where ck =
‖{xj}‖q
‖{xj}‖1 is a Lq/L1 pooling ratio, and dk =∑

l
w+

klRl∑
k′ xk′w

+

k′l
is a top-down contextualization term. Mod-

eling the terms ck and dk as constant under a perturbation
of the activities {xj}, we obtain the “training-free” rele-
vance model, that we illustrate in Figure 4 (bottom right).
We give below some arguments that support the modeling
of ck and dk as constants.

First, we can observe that ck is indeed constant under
certain transformations such as a homogeneous rescaling
of the activations {xj}, or any permutation of neurons ac-
tivations within the pool. More generally, if we consider a
sufficiently large pool of neurons {xj}, independent varia-
tions of individual neuron activations within the pool can
be viewed as swapping activations between neurons with-
out changing the actual value of these activations. These
repeated swaps also keep the norms and their ratio con-
stant. For the top-down term dk, we remark that the most
direct way it is influenced by {xj} is through the variable
xk′ of the sum in the denominator of dk, when k′ = k. As
the sum combines many neuron activations, the effect of
{xj} on dk can also be expected to be very limited. Mod-
eling ck and dk as constants enables us to backpropagate
the relevance on the lower layers: Because the relevance
model Rk above has the same structure as the network of
Section 4 (up to a constant factor ckdk), it is easy to de-
rive its Taylor decomposition, in particular, we obtain the
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conservative no no yes† yes
positive yes yes? yes yes

consistent no no yes† yes

unique solution yes no‡ no‡ yes
training-free yes yes no yes
fast computation yes no yes yes

Table 1: Summary of the technical properties of neural network
heatmapping methods described in this paper. (?) using the differen-
tiable approximation max(0, x) = limt→∞ t−1 log(0.5 + 0.5 exp(tx)),
(†) up to a fitting error between the redistributed relevance and the
relevance model output, (‡) root search and relevance model training
are potentially nonconvex.

rules

Rj =
xj∑
j′ xj′

Rk ,

where relevance is redistributed in proportion to activa-
tions in the detection layer, and

Ri =
∑
j

qij∑
i′ qi′j

Rj ,

where qij = w2
ij , qij = xiw

+
ij , or qij = xiwij− liw+

ij−hiw
−
ij ,

corresponding to the w2-, z+-, zB-rules respectively. If we
choose the z+-rule for that layer again, the same training-
free decomposition technique can be applied to the layer
below, and the process can be repeated until the input
layer. Thus, when using the training-free relevance model,
all layers of the network must be decomposed using the
z+-rule, except for the first layer to which other rules can
be applied such as the w2-rule or the zB-rule.

6. Experiments

In this section, we would like to test how well deep
Taylor decomposition performs empirically, in particular,
if the resulting heatmaps are able to pinpoint the relevant
information in the input data. We first consider a neural
network composed of two detection-pooling layers applied
on a simple MNIST-based task. Then, we test our method
on large convolutional neural networks for general image
classification. Table 1 lists the main technical properties
of the various methods used in the experiments.

6.1. Experiment on MNIST

The MNIST dataset consists of 60000 training and
10000 test images of size 28x28 representing handwritten
digits, along with their label (from 0 to 9). We consider
an artificial problem consisting of detecting the presence

of a digit with label 0–3 in an image of size 28×56 built as
a concatenation of two MNIST digits. There is a virtually
infinite number of possible combinations.

A neural network with 28× 56 input neurons and one
output neuron is trained on this task. The input values are
coded between −0.5 (black) and +1.5 (white). The neural
network is composed of a first detection-pooling layer with
400 detection neurons sum-pooled into 100 units (i.e. we
sum-pool non-overlapping groups of 4 detection units). A
second detection-pooling layer with 400 detection neurons
is applied to the 100-dimensional output of the previous
layer, and activities are sum-pooled onto a single unit rep-
resenting the deep network output. Positive examples are
assigned target value 100 and negative examples are as-
signed target value 0. The neural network is trained to
minimize the mean-square error between the target values
and its output xf . Treating the supervised task as a regres-
sion problem forces the network to assign approximately
the same amount of relevance to all positive examples, and
as little relevance as possible to the negative ones. Weights
of the network are initialized using a normal distribution of
mean 0 and standard deviation 0.05. Biases are initialized
to zero and constrained to be negative or zero through-
out training. Training data is extended with translated
versions of MNIST digits. The deep network is trained
using stochastic gradient descent with minibatch size 20,
for 300000 iterations, and using a small learning rate.

We compare four heatmapping techniques: sensitivity
analysis, standard Taylor decomposition, and the min-max
and training-free variants of deep Taylor decomposition.
Sensitivity analysis is straightforward to apply. For stan-
dard Taylor decomposition, the root x̃ is chosen to be the
nearest point such that f(x̃) < 0.1f(x). For the deep Tay-
lor decomposition models, we apply the z+-rule in the top
layer and the zB-rule in the first layer. The zB-rule is com-
puted using as lower- and upper-bounds lp = −0.5 and
hp = 1.5. For the min-max variant, the relevance model in
the first layer is trained to minimize the mean-square error
between the relevance model output and the true relevance
(obtained by application of the z+-rule in the top layer).
It is trained in parallel to the actual neural network, using
similar training parameters.

Figure 5 shows the analysis for 12 positive examples
generated from the MNIST test set and processed by the
deep neural network. Heatmaps are shown below their
corresponding example for each heatmapping method. In
all cases, we can observe that the heatmapping procedure
correctly assigns most of the relevance to pixels where the
digit to detect is located, and ignores the distracting digit.

Sensitivity analysis produces unbalanced and incom-
plete heatmaps, with some examples reacting strongly, and
others weakly. There is also a non-negligible amount of rel-
evance allocated to the border of the image (where there is
no information), or placed on the distractor digit. Nearest
root Taylor decomposition ignores irrelevant pixels in the
background but is still producing spurious relevance on
the distractor digit. On the other hand, deep Taylor de-
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Figure 5: Comparison of heatmaps produced by various decompositions and relevance models. Each input image is presented with its
associated heatmap.
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Figure 6: Top: Scatter plots showing for each type of decomposition and data points the predicted class score (x-axis), and the sum-of-
relevance in the input layer (y-axis). Bottom: Histograms showing the number of times (on a log-scale) a particular pixel-wise relevance score
occurs.

composition produces relevance maps that are less affected
by the distractor digit and that are also better balanced
spatially. The heatmaps obtained by the trained min-max
model and the training-free method are of similar quality,
suggesting that the approximations made in Section 5.2
are also valid empirically.

Figure 6 quantitatively evaluates the heatmapping tech-
niques of Figure 5. The scatter plots compare the total
output relevance with the sum of pixel-wise relevances.
Each point in the scatter plot is a different example drawn
independently from the input distribution. These scat-
ter plots test empirically for each heatmapping method
whether it is conservative in the sense of Definition 1. In
particular, if all points lie on the diagonal line of the scatter
plot, then

∑
pRp = Rf , and the heatmapping is conserva-

tive. The histograms just below test empirically whether
the studied heatmapping methods satisfy positivity in the
sense of Definition 2, by counting the number of times
(shown on a log-scale) pixel-wise contributions Rp take a
certain value. Red color in the histogram indicates posi-
tive relevance assignments, and blue color indicates nega-
tive relevance assignments. Therefore, an absence of blue

bars in the histogram indicates that the heatmap is posi-
tive (the desired behavior). Overall, the scatter plots and
the histograms produce a complete description of the de-
gree of consistency of the heatmapping techniques in the
sense of Definition 3.

Sensitivity analysis only measures a local effect and
therefore does not conceptually redistribute relevance onto
the input. However, we can still measure the relative
strength of computed sensitivities between examples or
pixels. The nearest root Taylor decomposition is posi-
tive, but dissipates relevance. The deep Taylor decompo-
sition with the min-max relevance model produces near-
conservative heatmaps, and the training-free deep Taylor
decomposition produces heatmaps that are fully conserva-
tive. Deep Taylor decomposition spreads relevance onto
more pixels than competing methods, as shown by the
shorter tail of its relevance histogram. Both deep Taylor
decomposition variants shown here also ensures positivity,
due to the application of the zB- and z+-rule in the respec-
tive layers.
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Image Sensitivity (CaffeNet) Deep Taylor (CaffeNet) Deep Taylor (GoogleNet)

0

Figure 7: Images of different ILSVRC classes (“frog”, “shark”, “cat”, and “sheep”) given as input to a deep network, and displayed next to
the corresponding heatmaps. Heatmap scores are summed over all color channels.

6.2. Experiment on ILSVRC

We now apply the fast training-free deep Taylor de-
composition to explain decisions made by large neural net-
works (BVLC Reference CaffeNet [48] and GoogleNet [12])
trained on the dataset of the ImageNet large scale vi-
sual recognition challenges ILSVRC 2012 [49] and ILSVRC
2014 [50] respectively. We keep the neural networks un-
changed. We compare our decomposition method to sen-
sitivity analysis. Both methods perform a single backward
pass in the network and are therefore suitable for analyzing
the predictions of these highly complex models.

The methods are tested on a number of images from
Pixabay.com and Wikimedia Commons. The zB-rule is
applied to the first convolution layer. For all higher con-
volution and fully-connected layers, the z+-rule is applied.
Positive biases (that are not allowed in our deep Taylor
framework), are treated as neurons, on which relevance can
be redistributed (i.e. we add max(0, bj) in the denomina-
tor of zB- and z+-rules). Normalization layers are bypassed
in the relevance propagation pass. In order to visualize the
heatmaps in the pixel space, we sum the relevances of the
three color channels, leading to single-channel heatmaps,
where the red color designates relevant regions.

Figure 7 shows the heatmaps resulting from deep Tay-
lor decomposition for four different images. For example,
heatmaps identify as relevant the dorsal fin of the shark

and the head of the cat. The heatmaps can detect two
instances of the same object within a single image, here,
the two frogs. The heatmaps also ignore most of the dis-
tracting structure, such as the horizontal lines above the
cat’s head. Sometimes, the object to detect is shown in
a less stereotypical pose or is hard to separate from the
background. For example, the sheeps are overlapping and
are superposed to a background of same color, leading to
a more diffuse heatmap.

Sensitivity analysis ignores or overrepresents some of
the relevant regions. For example, the leftmost frog in the
first image is assigned more importance than the second
frog. Some of the contour of the shark in the second image
is ignored. On the other hand, deep Taylor decomposition
produces heatmaps that cover the explanatory features in
a more comprehensive manner and also better match the
saliency of the objects to detect in the input image. See
[27] for a quantitative comparison of sensitivity analysis
and relevance propagation methods similar to deep Taylor
decomposition on this data.

Decompositions for CaffeNet and GoogleNet predic-
tions have a high level of similarity. It demonstrates a
certain level of transparency of the method to the choice
of deep network architecture supporting the prediction.
We can however observe that GoogleNet heatmaps are of
higher quality, in particular, with better spatial resolu-
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Figure 8: Image with ILSVRC class “volcano”, displayed next to its
associated heatmaps and a zoom on a region of interest.

tion, and the ability to detect relevant features even in
cluttered scenes such as the last image, where the char-
acteristic v-shaped nose of the sheep is still identified as
relevant. Instead, AlexNet is more reliant on context for
its predictions, and uses more pixels to detect contours
of the relevant objects. The observation that more ac-
curate predictions are supported by better resolved input
patterns is also in line with other studies [51, 52].

Figure 8 studies the special case of an image of class
“volcano”, and a zoomed portion of it. On a global scale,
the heatmapping method recognizes the characteristic out-
line of the volcano. On a local scale, the relevance is
present on both sides of the edge of the volcano, which
is consistent with the fact that the two sides of the edge
are necessary to detect it. The zoomed portion of the
image also reveals different stride sizes in the first convo-
lution layer between CaffeNet (stride 4) and GoogleNet
(stride 2). Observation of these global and local charac-
teristics of the heatmap provides a visual feedback of the
way relevance flows in the deep network.

7. Conclusion

Nonlinear machine learning models have become stan-
dard tools in science and industry due to their excellent
performance even for large, complex and high-dimensional
problems. However, in practice it becomes more and more
important to understand the underlying nonlinear model,
i.e. to achieve transparency of what aspect of the input
makes the model decide. To achieve this, we have con-
tributed by novel conceptual ideas to deconstruct nonlin-
ear models. Specifically, we have proposed a novel ap-
proach to relevance propagation called deep Taylor de-
composition, and used it to assess the importance of single
pixels in image classification tasks. We were able to com-
pute heatmaps that clearly and intuitively allow to better

understand the role of input pixels when classifying an
unseen data point. We have shed light on theoretical con-
nections between the Taylor decomposition of a function,
and rule-based relevance propagation techniques, showing
a clear relationship between the two approaches for a par-
ticular class of neural networks. We have introduced the
concept of relevance model as a mean to scale the analysis
to networks with many layers. Our method is stable under
different architectures and datasets, and does not require
hyperparameter tuning. We would like to stress, that we
are free to use as a starting point of our framework either
an own trained and carefully tuned neural network model
or we may also download existing pre-trained deep network
models (e.g. the BVLC CaffeNet [48]) that have already
been shown to achieve excellent performance on bench-
marks. In both cases, our method provides explanation.
In other words our approach is orthogonal to the quest for
enhanced results on benchmarks, in fact, we can use any
benchmark winner and then enhance its transparency to
the user.
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