
Explaining NonLinear Classification Decisions with Deep Taylor Decomposition

(Supplementary Material)

Grégoire Montavon, Sebastian Lapuschkin, Alexander Binder, Wojciech Samek, Klaus-Robert Müller

Abstract

This supplement provides proofs, detailed derivations, pseudocode, and empirical comparisons with other relevance
propagation techniques.

1. Derivations of Propagation Rules

In this section, we give the detailed derivations of prop-
agation rules resulting from deep Taylor decomposition of
the neural network of Section 4 of the paper. Each prop-
agation rule corresponds to different choices of root point
{x̃i}(j). For the class of networks considered here, the rel-
evance of neurons in the detection layer is given by

Rj = max(0,
∑

ixiwij + bj), (1)

where bj < 0. All rules derived in this paper are based on
the search for a root in a particular search direction {vi}(j)
in the input space associated to neuron j:

{x̃i}(j) = {xi}+ t{vi}(j) (2)

We need to consider two cases separately:

C1 = {j :
∑

ixiwij + bj ≤ 0} = {j : Rj = 0}
C2 = {j :

∑
ixiwij + bj > 0} = {j : Rj > 0}

In the first case (j ∈ C1), the data point itself is already
the nearest root point of the function Rj . Therefore,

xi − x̃(j)i = 0. (3)

In the second case (j ∈ C2), the nearest root point along
the defined search direction is given by the intersection of

Equation 2 with the plane equation
∑

i x̃
(j)
i wij + bj = 0

to which the nearest root belong. In particular, resolving
t by injecting (2) into that plane equation, we get

xi − x̃(j)i =

∑
i xiwij + bj∑

i v
(j)
i wij

v
(j)
i (4)

Starting from the generic relevance propagation formula
proposed in Section 3 of the paper, we can derive a more
specific formula that involve the search directions {vi}(j):

Ri =
∑
j

∂Rj

∂xi

∣∣∣
{x̃i}(j)

· (xi − x̃(j)i ) (5)

=
∑
j∈C1

∂Rj

∂xi
· 0 +

∑
j∈C2

wij

∑
i xiwij + bj∑

i v
(j)
i wij

v
(j)
i (6)

=
∑
j

v
(j)
i wij∑
i v

(j)
i wij

Rj (7)

From (5) to (6) we have considered the two listed cases
separately, and injected their corresponding roots found
in Equations 3 and 4. From (6) to (7), we have used the
fact that the relevance for the case C1 is always zero to
recombine both terms.

The derivation of the various relevance propagation
rules presented in this paper will always follow the same
three steps:

1. Define for each neuron j ∈ C2 a line or segment in
the input space starting from data point {xi} and
with direction {vi}(j).

2. Verify that the line or segment lies inside the input
domain and includes at least one root of Rj .

3. Inject the search directions {vi}(j) into Equation 7,
and obtain the relevance propagation rule as a result.

An illustration of the search directions and root points se-
lected by each rule for various relevance functions Rj({xi})
is given in Figure 1.

1.1. w2-Rule
The w2-rule is obtained by choosing the root of Rj

that is nearest to {xi} in Rd. Such nearest root must be
searched for on the line including the point {xi}, and with
direction corresponding to the gradient of Rj (the ith com-
ponent of this gradient is wij). Therefore, the components
of the search vector are given by

v
(j)
i = wij

This line is included in the input domain Rd, and always
contains a root (the nearest of which is obtained by setting
t = −Rj/

∑
i w

2
ij in Equation 2). Injecting the defined

search direction vi into Equation 7, we get

Ri =
∑
j

w2
ij∑

i w
2
ij

Rj .

Preprint submitted to Elsevier January 11, 2017



Figure 1: Illustration of root points (empty circles) found for a given data point (full circle) for various propagation rules, relevance functions,
and input domains. Here, for the zB-rule, we have used the bounding box l1 = −1, h1 = 1, l2 = −1, h2 = 1.

1.2. z-Rule

The z-rule (originally proposed by [1]) is obtained by
choosing the nearest root of Rj on the segment (0, {xi}).
This segment is included in all domains considered in this
paper (Rd,Rd

+,B), provided that {xi} also belongs to these
domains. This segment has a root at its first extremity,
because Rj(0) = max(0,

∑
i 0 · wij + bj) = max(0, bj) = 0

since bj is negative by design. The direction of this seg-
ment on which we search for the nearest root corresponds
to the data point itself:

v
(j)
i = xi.

Injecting this search direction into Equation 7, and defin-
ing the weighted activation zij = xiwij , we get

Ri =
∑
j

zij∑
i zij

Rj .

1.3. z+-Rule

The z+-rule is obtained by choosing the nearest root on
the segment ({xi1wij<0}, {xi}). If {xi} is in Rd

+, then, the
segment is also in the domain Rd

+. The relevance function
has a root at the first extremity of the segment:

Rj({xi1wij<0}) = max(0,
∑

ixi1wij<0wij + bj)

= max(0,
∑

ixiw
−
ij + bj) = 0,

since xi ≥ 0 and w−ij ≤ 0, and therefore xiw
−
ij ≤ 0, and

since bj < 0 by design. The direction of this segment on
which we search for the nearest root is given by:

v
(j)
i = xi − xi1wij<0

= xi1wij≥0.

Injecting this search direction into Equation 7, and defin-
ing z+ij = xiw

+
ij with w+

ij = 1wij≥0wij , we get

Ri =
z+ij∑
i z

+
ij

Rj .

1.4. zB-Rule

The zB-rule is obtained by choosing the nearest root
on the segment ({li1wij>0 + hi1wij<0}, {xi}). Provided
that {xi} is in B, the segment is also in B. The relevance
function has a root at the first extremity of the segment:

Rj({li1wij>0 + hi1wij<0})
= max(0,

∑
ili1wij>0wij + hi1wij<0wij + bj)

= max(0,
∑

iliw
+
ij + hiw

−
ij + bj) = 0,

because all summed terms are either negative or the prod-
uct of a negative and positive value. The search direction
for this choice of segment is given by

v
(j)
i = xi − li1wij>0 − hi1wij<0

Injecting this search direction in to Equation 7, we get

Ri =
∑
j

zij − liw+
ij − hiw

−
ij∑

i zij − liw
+
ij − hiw

−
ij

Rj .

2. Algorithms for Propagation Rules

We give here algorithms to implement the rules de-
rived in Section 1 of the supplement. A useful property
of these rules is that they can all be expressed in terms
of matrix multiplications, thus, making them easily im-
plementable with numerical libraries such as Matlab or
Python/Numpy.

2.1. w2-Rule

Input:
Weight matrix W = {wij}
Upper-layer relevance vector R = {Rj}

Procedure:
V← W� W

N← V� ([1] · V)
return N · R

where � and � denote the element-wise multiplication
and division respectively, and [1] is a matrix of ones.
Note that for efficiency purposes, the squaring and nor-
malization of the weight matrix can be performed once,
and reused for many heatmaps computations.

2



2.2. z-Rule
Input:

Weight matrix W = {wij}
Input activations X = {xi}
Upper-layer relevance vector R = {Rj}

Procedure:
Z← W>X

return X� (W · (R� Z))

where � and � denote the element-wise multiplication and
division respectively, and where the variable Z is the sum
of weighted activations for each upper-layer neuron.

2.3. z+-Rule
Input:

Weight matrix W = {wij}
Input activations X = {xi}
Upper-layer relevance vector R = {Rj}

Procedure:
V← W+

Z← V>X

return X� (V · (R� Z))

where � and � denote the element-wise multiplication and
division respectively, and where the operation (·)+ keeps
the positive part of the input matrix. For efficiency, like for
the w2-rule, the matrix V can be precomputed and reused
for multiple heatmaps computations.

2.4. zB-Rule

Input:
Weight matrix W = {wij}
Input activations X = {xi}
Upper-layer relevance vector R = {Rj}
Lower-bound L = {li}
Upper-bound H = {hi}

Procedure:
U← W−

V← W+

N← R� (W>X− V>L− U>H)
return X� (W · N)− L� (V · N)− H� (U · N)

where � and � denote the element-wise multiplication and
division respectively, and where the operations (·)+, (·)−
keep the positive part and the negative part of the input
matrix respectively. For efficiency, like for the previous
rules, the matrices U and V can be precomputed and reused
for multiple heatmaps computations.

3. Proofs of Propositions

Definition 1. A heatmapping R(x) is conservative if the
sum of assigned relevances in the pixel space corresponds
to the total relevance detected by the model, that is

∀x : f(x) =
∑
p

Rp(x).

Definition 2. A heatmapping R(x) is positive if all values
forming the heatmap are greater or equal to zero, that is:

∀x, p : Rp(x) ≥ 0

Definition 3. A heatmapping R(x) is consistent if it is
conservative and positive. That is, it is consistent if it
complies with Definitions 1 and 2.

Proposition 1. For all g ∈ G, the deep Taylor decompo-
sition with the w2-rule is consistent in the sense of Defi-
nition 3.

Proof. We first show that the heatmapping is conservative:∑
i

Ri =
∑
i

(∑
j

w2
ij∑

i w
2
ij

Rj

)
=
∑
j

∑
i w

2
ij∑

i w
2
ij

Rj =
∑
j

Rj =
∑
j

xj = f(x).

where we have assumed the weights to be never exactly
zero. Then, we show that the heatmapping is positive:

Ri =
∑
j

w2
ij∑

i w
2
ij

Rj =
∑
j

w2
ij︸︷︷︸

>0

· 1∑
i w

2
ij︸ ︷︷ ︸

>0

· Rj︸︷︷︸
≥0

≥ 0.

Therefore, because the heatmapping is both conservative
and positive, it is also consistent.

For the case where
∑

i w
2
ij = 0, it implies that wij = 0

for all i and therefore zij = 0 for all i too. Because bj ≤ 0,
then Rj = xj = 0 (there is no relevance to redistribute to
the lower-layer).

Proposition 2. For all g ∈ G and data points {xi} ∈ Rd
+,

the deep Taylor decomposition with the z+-rule is consis-
tent in the sense of Definition 3.

Proof. The proof is the same as for Proposition 1 for the
case where

∑
i z

+
ij > 0. We simply replace w2

ij by z+ij in
the proof.

For the case where
∑

i z
+
ij = 0, it implies that zij ≤ 0

for all i. Because bj ≤ 0, then Rj = xj = 0 (there is no
relevance to redistribute to the lower-layer).

Proposition 3. For all g ∈ G and data points {xi} ∈ B,
the deep Taylor decomposition with the zB-rule is consis-
tent in the sense of Definition 3.

Proof. We first show that the numerator of the zB-rule
qij = zij − liw+

ij − hiw
−
ij is greater or equal than zero for

{xi} ∈ B:

qij = zij − liw+
ij − hiw

−
ij

= xiwij − liw+
ij − hiw

−
ij

= xi(w
−
ij + w+

ij)− liw
+
ij − hiw

−
ij

= (xi − hi)︸ ︷︷ ︸
≤0

· w−ij︸︷︷︸
≤0

+ (xi − li)︸ ︷︷ ︸
≥0

· w+
ij︸︷︷︸
≥0

≥ 0

3



Then, the proof is the same as for Proposition 1 for the
case where

∑
i qij > 0. We simply replace w2

ij by qij in the
proof. For the case where

∑
i qij = 0, this equality implies

that ∀i : qij = 0, which can be satisfied by one of the three
sets of conditions:

1. xi = hi and w+
ij = 0. In that case, the contribution

of the input to the detection neuron is zij = hiwij ,
and because hi ≥ 0, then zij ≤ 0.

2. xi = li and w−ij = 0. In that case, the contribution
of the input to the detection neuron is zij = liwij ,
and because li ≤ 0, then zij ≤ 0.

3. wij = 0. In that case, the contribution is zij = 0.

Therefore, inputs are prevented from contributing pos-
itively to the neuron xj . In particular, the total contribu-
tion is given by zj =

∑
i zij ≤ 0. Because bj ≤ 0, then

Rj = xj = 0 (there is no relevance to redistribute to the
lower-layer).

4. Empirical Comparison with LRP

In this section, we compare heatmaps produced by the
rules based on deep Taylor decomposition, and the layer-
wise relevance propagation (LRP) rules proposed by [1].
The LRP rules include in particular, the αβ-rule:

Ri =
∑
j

(
α

z+ij∑
i z

+
ij + b+j

− β
z−ij∑

i z
−
ij + b−j

)
Rj ,

where α− β = 1, and the ε-stabilized rule:

Ri =
∑
j

zij
s(
∑

i zij + bj)
Rj ,

where s(t) = t + ε(1t≥0 − 1t<0) is a stabilizing function
whose output is never zero. The respective free hyperpa-
rameters α and ε of these rules are typically selected such
that the produced heatmaps have the desired quality.

Figure 2 compares heatmaps obtained by applying deep
Taylor decomposition (min-max) and LRP (same rule in
both layers) to the neural network of the MNIST exper-
iments. Figure 3 compares heatmaps obtained by deep
Taylor decomposition (training-free) and LRP (same rule
in all layers) on the BVLC CaffeNet and the GoogleNet.
Normalization layers are ignored in the backward pass.

It can be observed that the quality of the deep Tay-
lor heatmaps is less influenced by the choice of model
and dataset than LRP with a fixed set of parameters.
Deep Taylor heatmaps look similar in all cases. LRP
also produces high-quality heatmaps, but the best param-
eters differ in each setting. For example, the parameters
α = 2, β = 1 perform well for the CaffeNet, but tend to
produce too sparse heatmaps for the GoogleNet, or to pro-
duce a large amount of negative relevance on MNIST. Var-
ious parameters of LRP produce various artefacts such as
the presence of residual relevance on the irrelevant digit,

or the presence of negative relevance in the black areas
surrounding the digits. On the other hand, LRP-based
heatmaps are sharper than Taylor-based heatmaps and
less subject to the stride artefact that arises with con-
volutional neural networks. Future work will seek to iden-
tify the reason for the superiority of LRP on these par-
ticular aspects, and investigate whether the deep Taylor
decomposition method and its underlying principles can
be refined to incorporate these desirable properties of a
heatmap while retaining stability.

References

[1] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller,
and W. Samek, “On pixel-wise explanations for non-linear clas-
sifier decisions by layer-wise relevance propagation,” PLoS ONE,
vol. 10, no. 7, p. e0130140, 2015.

4



Deep Taylor LRP
(min-max, {z+, zB}-rules) (alphabeta, α = 1, β = 0) (alphabeta, α = 2, β = 1) (stabilized, ε = 3)

0

0 100
Rf

0

100

∑
p
R
p

〈|Rf −
∑

pRp|〉 = 6.0

0 100
Rf

0

100

∑
p
R
p

〈|Rf −
∑

pRp|〉 = 0.0

0 100
Rf

0

100

∑
p
R
p

〈|Rf −
∑

pRp|〉 = 3.1

0 100
Rf

0

100

∑
p
R
p

〈|Rf −
∑

pRp|〉 = 40.4

0 1 2 3
Rp

100
101
102
103
104
105
106

〈∑p min(0, Rp)〉 = 0.0

0 1 2 3
Rp

100
101
102
103
104
105
106

〈∑p min(0, Rp)〉 = 0.0

0 1 2 3
Rp

100
101
102
103
104
105
106

〈∑p min(0, Rp)〉 = −42.4

0 1 2 3
Rp

100
101
102
103
104
105
106

〈∑p min(0, Rp)〉 = −20.6

Figure 2: Heatmaps and their properties produced by various heatmapping techniques applied on the MNIST network of the paper.

Deep Taylor LRP (α = 2, β = 1)
CaffeNet GoogleNet CaffeNet GoogleNet

Figure 3: Heatmaps produced by deep Taylor decomposition and LRP when applied to the predictions of the CaffeNet and GoogleNet
networks.

5


