
Explaining the Predictions of Unsupervised
Learning Models

Grégoire Montavon1,2[0000−0001−7243−6186], Jacob
Kauffmann1[0000−0003−2667−513X], Wojciech Samek3,2[0000−0002−6283−3265], and

Klaus-Robert Müller1,2,4,5[0000−0002−3861−7685]

1 ML Group, Department of Electrical Engineering and Computer Science,
Technische Universität Berlin, Berlin, Germany

2 BIFOLD – Berlin Institute for Foundations of Learning and Data, Berlin, Germany
3 Department of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, Berlin,

Germany
4 Department of Artificial Intelligence, Korea University, Seoul, Korea

5 Max Planck Institut für Informatik, Saarbrücken, Germany

Abstract. Unsupervised learning is a subfield of machine learning that
focuses on learning the structure of data without making use of labels.
This implies a different set of learning algorithms than those used for
supervised learning, and consequently, also prevents a direct transposi-
tion of Explainable AI (XAI) methods from the supervised to the less
studied unsupervised setting. In this chapter, we review our recently pro-
posed ‘neuralization-propagation’ (NEON) approach for bringing XAI
to workhorses of unsupervised learning such as kernel density estima-
tion and k-means clustering. NEON first converts (without retraining)
the unsupervised model into a functionally equivalent neural network so
that, in a second step, supervised XAI techniques such as layer-wise rel-
evance propagation (LRP) can be used. The approach is showcased on
two application examples: (1) analysis of spending behavior in wholesale
customer data and (2) analysis of visual features in industrial and scene
images.

Keywords: Explainable AI · Unsupervised Learning · Neural Networks.

1 Introduction

Supervised learning has been in the spotlight of machine learning research and
applications for the last decade, with deep neural networks achieving record-
breaking classification accuracy and enabling new machine learning applications
[23, 5, 15]. The success of deep neural networks can be attributed to their ability
to implement with their multiple layers, complex nonlinear functions in a com-
pact manner [32]. Recently, a significant amount of work has been dedicated to
make deep neural network models more transparent [24, 40, 13, 41], for example,
by proposing algorithms that identify which input features are responsible for a
given classification outcome. Methods such as layer-wise relevance propagation



2 G. Montavon et al.

(LRP) [3], guided backprop [47], and Grad-CAM [42], have been shown capable
of quickly and robustly computing these explanations.

Unsupervised learning is substantially different from supervised learning in
that there is no ground-truth supervised signal to match. Consequently, non-
neural network models such as kernel density estimation or k-means clustering,
where the user controls the scale and the level of abstraction through a par-
ticular choice of kernel or feature representation, have remained highly popular.
Despite the predominance of unsupervised machine learning in a variety of appli-
cations (e.g. [22, 9]), research on explaining unsupervised models has remained
relatively sparse [25, 30, 28, 19, 18] compared to their supervised counterparts.
Paradoxically, it might in fact be unsupervised models that most strongly re-
quire interpretability. Unsupervised models are indeed notoriously hard to quan-
titatively validate [51], and the main purpose of applying these models is often
to better understand the data in the first place [17, 9].

In this chapter, we review the ‘neuralization-propagation’ (NEON) approach
we have developed in the papers [19, 18, 20] to make the predictions of unsu-
pervised models, e.g. cluster membership or anomaly score, explainable. NEON
proceeds in two steps: (1) the decision function of the unsupervised model is re-
formulated (without retraining) as a functionally equivalent neural network (i.e.
it is ‘neuralized’); (2) the extracted neural network structure is then leveraged
by the LRP method to produce an explanation of the model prediction. We re-
view the application of NEON to kernel density estimation for outlier detection
and k-means clustering, as presented originally in [19, 18, 20]. We also extend the
reviewed work with a new contribution: explanation of inlier detection, and we
use the framework of random features [36] for that purpose.

The NEON approach is showcased on several practical examples, in particu-
lar, the analysis of wholesale customer data, image-based industrial inspection,
and analysis of scene images. The first scenario covers the application of the
method directly to the raw input features, whereas the second scenario illus-
trates how the framework can be applied to unsupervised models built on some
intermediate layer of representation of a neural network.

2 A Brief Review of Explainable AI

The field of Explainable AI (XAI) has produced a wealth of explanation tech-
niques and types of explanation. They address the heterogeneity of ML models
found in applications and the heterogeneity of questions the user may formulate
about the model and its predictions. An explanation may take the form of a sim-
ple decision tree (or other intrinsically interpretable model) that approximates
the model’s input-output relation [10, 29]. Alternatively, an explanation may be
a prototype for the concept represented at the output of the model, specifically,
an input example to which the model reacts most strongly [45, 34]. Lastly, an
explanation may highlight what input features are the most important for the
model’s predictions [7, 4, 3].



Explaining Unsupervised Learning Models 3

In the following, we focus on a well-studied problem of XAI, which is how to
attribute the prediction of an individual data point, to the input features [4, 48,
45, 3, 37, 29, 50]. Let us denote by X = I1×· · ·×Id the input space formed by the
concatenation of d input features (e.g. words, pixels, or sensor measurements).
We assume a learned model f : X → R (supervised or unsupervised), mapping
each data point in X to a real-valued score measuring the evidence for a class
or some other predicted quantity. The problem of attribution can be abstracted
as producing for the given function f a mapping Ef : X → Rd that associates
to each input example a vector of scores representing the (positive or negative)
contribution of each feature. Often, one requires attribution techniques to im-
plement a conservation (or completeness) property, where for all x ∈ X we have
1>Ef (x) = f(x) i.e. for every data point the sum of explanation scores over the
input features should match the function value.

2.1 Approaches to Attribution

A first approach, occlusion-based, consists of testing the function to explain
against various occlusions of the input features [53, 54]. An important method of
this family (and which was originally developed in the context of game theory)
is the Shapley value [43, 48, 29]. The Shapley value identifies a unique attribu-
tion that satisfies some predefined set of axioms of an explanation, including
the conservation property stated above. While the approach has strong theoret-
ical underpinnings, computing the explanation however requires an exponential
number of function evaluations (an evaluation for every subset of input features).
This makes the Shapley value in its basic form intractable for any problem with
more than a few input dimensions.

Another approach, gradient-based, leverages the gradient of the function, so
that a mapping of the function value onto the multiple input dimensions is
readily obtained [45, 50]. The method of integrated gradients [50], in particular,
attributes the prediction to input features by integrating the gradient along a
path connecting some reference point (e.g. the origin) to the data point. The
method requires somewhere between ten and a hundred function evaluations,
and satisfies the aforementioned conservation property. The main advantage of
gradient-based methods is that, by leveraging the gradient information in ad-
dition to the function value, one no longer has to perturb each input feature
individually to produce an explanation.

A further approach, surrogate-based, consists of learning a simple local surro-
gate model of the function which is as accurate as possible, and whose structure
makes explanation fast and unambiguous [37, 29]. For example, when approx-

imating the function locally with a linear model, e.g. g(x) =
∑d
i=1 xiwi, the

output of that linear model can be easily decomposed to the input features by
taking the individual summands. While explanation itself is fast to compute,
training the surrogate model incurs a significant additional cost, and further
care must be taken to ensure that the surrogate model implements the same



4 G. Montavon et al.

decision strategy as the original model, in particular, that it uses the same input
features.

A last approach, propagation-based, assumes that the prediction has been
produced by a neural network, and leverages the neural network structure by
casting the problem of explanation as performing a backward pass in the network
[47, 3, 42]. The propagation approach is embodied by the Layer-wise Relevance
Propagation (LRP) method [3, 31]. The backward pass implemented by LRP
consists of a sequence of conservative propagation steps where each step is im-
plemented by a propagation rule. Let j and k be indices for neurons at layer
l and l + 1 respectively, and assume that the function output f(x) has been
propagated from the top-layer to layer l+1. We denote the resulting attribution
onto these neurons as the vector of ‘relevance scores’ (Rk)k. LRP then defines
‘messages’ Rj←k that redistribute the relevance Rk to neurons in the layer be-
low. These messages typically have the structure Rj←k = [zjk/

∑
j zjk] · Rk,

where zjk models the contribution of neuron j to activating neuron k. The over-
all relevance of neuron j is then obtained by computing Rj =

∑
k Rj←k. It

is easy to show that application of LRP from one layer to the layer below is
conservative. Consequently, the explanation formed by iterating the LRP prop-
agation from the top layer to the input layer is therefore also conservative, i.e.∑
iRi = · · · = ∑

j Rj =
∑
k Rk = · · · = f(x). As a result, explanations satisfy-

ing the conservation property can be obtained within a single forward/backward
pass, instead of multiple function evaluations, as it was the case for the ap-
proaches described above. The runtime advantage of LRP facilitates explanation
of large models and datasets (e.g. GPU implementations of LRP can achieve
hundreds of image classification explanations per second [1, 40]).

2.2 Neuralization-Propagation

Propagation-based explanation techniques such as LRP have a computational
advantage over approaches based on multiple function evaluations. However,
they assume a preexisting neural network structure associated to the prediction
function. Unsupervised learning models such as kernel density estimation or k-
means, are a priori not neural networks. However, the fact that these models are
not given as neural networks does not preclude the existence of a neural network
that implements the same function. If such a network exists (neural network
equivalents of some unsupervised models will be presented in Sections 3 and 4),
we can quickly and robustly compute explanations by applying the following two
steps:

Step 1: The unsupervised model is ‘neuralized ’, that is, rewritten (without re-
training) as a functionally equivalent neural network.

Step 2: The LRP method is applied to the resulting neural network, in order
to produce an explanation of the prediction of the original model.

These two steps are illustrated in Fig. 1. In practice, for the second step
to work well, some restrictions must be imposed on the type of neurons com-
posing the network. In particular neurons should have a clear directionality in



Explaining Unsupervised Learning Models 5

neural network equivalentunsupervised model explanation

contribution of x1
contribution of x2

neuralization propagation

Fig. 1. Overview of the neuralization-propagation (NEON) approach to explain the
predictions of an unsupervised model. As a first step, the unsupervised model is trans-
formed without retraining into a functionally equivalent neural network. As a second
step, the LRP procedure is applied to identify, with help of the neural network struc-
ture, by what amount each input feature has contributed to a given prediction.

their input space to ensure that meaningful propagation to the lower layer can
be achieved. (We will see in Sections 3 and 4, that this requirement does not
always hold.) Hence, the ‘neuralized model’ must be designed under the double
constraint of (1) replicating the decision function of the unsupervised model ex-
actly, and (2) being composed of neurons that enable a meaningful redistribution
from the output to the input features.

3 Kernel Density Estimation

Kernel density estimation (KDE) [35] is one of the most common methods for
unsupervised learning. The KDE model (or variations of it) has been used, in
particular, for anomaly detection [26, 21, 38]. It assumes an unlabeled dataset
D = (u1, . . . ,uN ), and a kernel, typically the Gaussian kernel K(x,x′) =
exp(−γ ‖x−x′‖2). The KDE model predicts a new data point x by computing:

p̃(x) =
1

N

N∑
k=1

exp(−γ ‖x− uk‖2). (1)

The function p̃(x) can be interpreted as an (unnormalized) probability density
function. From this score, one can predict inlierness or outlierness of a data point.
For example, one can say that x is more anomalous than x′ if the inequality
p̃(x) < p̃(x′) holds. In the following, we consider the task of neuralizing the KDE
model so that its inlier/outlier predictions can be explained.

3.1 Explaining Outlierness

A first question to ask is why a particular example x is predicted by KDE to be an
outlier, more specifically, what features of this example contribute to outlierness.
As a first step, we consider what is a suitable measure of outlierness. The function



6 G. Montavon et al.

p̃(x) produced by KDE decreases with outlierness, and also saturates to zero even
though outlierness continues to grow. A better measure of outlierness is given
by [19]:

o(x) , − 1

γ
log p̃(x),

Unlike the function p̃(x), the function o(x) increases as the probability decreases.
It also does not saturate as x becomes more distant from the dataset. We now
focus on neuralizing the outlier score o(x). We find that o(x) can be expressed
as the two-layer neural network:

hk = ‖x− uk‖2 (layer 1)

o(x) = LME−γk {hk} (layer 2)

where LMEαk{hk} = 1
α log

(
1
N

∑N
k=1 exp(αhk)

)
is a generalized log-mean-exp

pooling. The first layer computes the square distance of the new example from
each point in the dataset. The second layer can be interpreted as a soft min-
pooling. The structure of the outlier computation is shown for a one-dimensional
toy example in Fig. 2.

−4 −2 0 2

0.0

1.0

2.0

3.0

o
u

tl
ie

rn
es

s

Fig. 2. Neuralized view of kernel density estimation for outlier prediction. The outlier
function can be represented as a soft min-pooling over square distances. These distances
also provide directionality in input space.

This structure is particularly amenable to explanation. In particular, redis-
tribution of o(x) in the intermediate layer can be achieved by a soft argmin
operation, e.g.

Rk =
exp(−βhk)∑
k exp(−βhk)

· o(x),

where β is a hyperparameter to be selected. Then, propagation on the input
features can leverage the geometry of the distance function, by computing

Ri =
∑
k

[x− uk]2i
ε+ ‖x− uk‖2

Rk.



Explaining Unsupervised Learning Models 7

The hyperparameter ε in the denominator is a stabilization term that ‘dissipates’
some of the relevance when x and uk coincide.

Referring back to Section 2.1 we want to stress that computing the relevance
of input features with LRP has the same computational complexity as a single
forward pass, and does not require to train an explainable surrogate model.

3.2 Explaining Inlierness: Direct Approach

In Section 3.1, we have focused on explaining what makes a given example an
outlier. An equally important question to ask is why a given example x is pre-
dicted by the KDE model to be an inlier. Inlierness is naturally modeled by the
KDE output p̃(x). Hence we can define the measure of inlierness as i(x) , p̃(x).
An inspection of Eq. (1) suggests the following two-layer neural network:

hk = exp(−γ ‖x− uk‖2) (layer 1)

i(x) = 1
N

∑N
k=1 hk (layer 2)

The first layer performs a mapping on Gaussian functions at different locations,
and the second layer performs an average pooling. We now consider the task of
propagation. A natural way of redistributing in the top layer is in proportion to
the activations. This gives us the scores

Rk =
hk∑
k hk

i(x).

A decomposition of Rk on the input features is however difficult. Because the
relevance Rk can be rewritten as a product:

Rk =
1

N

d∏
i=1

exp(−γ (xi − uik)2)

and observing that the contribution Rk can be made nearly zero by perturbing
any of the input features significantly, we can conclude that every input feature
contributes equally to Rk and should therefore be attributed an equal share of
it. Application of this strategy for every neuron k would result in an uniform
redistribution of the score i(x) to the input features. The explanation would
therefore be qualitatively always the same, regardless of the data point x and
the overall shape of the inlier function i(x). While uniform attribution may be
a good baseline, we usually strive for a more informative explanation.

3.3 Explaining Inlierness: Random Features Approach

To overcome the limitations of the approach above, we explore a second approach
to explaining inlierness, where the neuralization is based on a feature map rep-
resentation of the KDE model. For this, we first recall that any kernel-based



8 G. Montavon et al.

model also admits a formulation in terms of the feature map Φ(x) associated to
the kernel, i.e. K(x,x′) = 〈Φ(x), Φ(x′)〉. In particular Eq.(1) can be equivalently
rewritten as:

p̃(x) =
〈
Φ(x),

1

N

N∑
k=1

Φ(uk)
〉
, (2)

i.e. the product in feature space of the current example and the dataset mean.
Here, we first recall that there is no explicit finite-dimensional feature map asso-
ciated to the Gaussian kernel. However, such feature map can be approximated
using the framework of random features [36]. In particular, for a Gaussian kernel,
features can be sampled as

Φ̂(x) =

√
2

H

(
cos(ω>j x+ bj)

)H
j=1

, (3)

with ωj ∼ N (µ, σ2I) and bj ∼ U(0, 2π), and where the mean and scale param-

eters of the Gaussian are µ = 0 and σ =
√

2γ. The dot product 〈Φ̂(x), Φ̂(x′)〉
converges to the Gaussian kernel as more and more features are being drawn.
In practice, we settle for a fixed number H of features. Injecting the random
features in Eq. (2) yields the two-layer architecture:

hj =
√

2 cos
(
ω>j x+ bj

)
· µj (layer 1)

î(x) = 1
H

∑H
j=1 hj (layer 2)

where µj = 1
N

∑N
k=1

√
2 cos(ω>j uk+bj) and with (ωj , bj)j drawn from the distri-

bution given above. This architecture produces at its output an approximation of
the true inlierness score i(x) which becomes increasingly accurate as H becomes
large. Here, the first layer is a detection layer with a cosine nonlinearity, and
the second layer performs average pooling. The structure of the neural network
computation is illustrated on our one-dimensional example in Fig. 3.

−4 −2 0 2

0.0

0.5

1.0

in
li

er
n

es
s

Fig. 3. Kernel density estimation approximated with random features (four of them
are depicted in the figure). Unlike the Gaussian kernel, random features have a clear
directionality in input space, thereby enabling a feature-wise explanation.



Explaining Unsupervised Learning Models 9

This structure of the inlierness computation is more amenable to explanation.
In the top layer, the pooling operation can be attributed based on the summands.
In order words, we can apply

Rj =
hj∑
j hj

î(x)

for the first step of redistribution of î(x). More importantly, in the first layer,
the random features have now a clear directionality (given by the vectors (ωj)j),
which we can use for attribution on the input features. In particular, we can apply
the propagation rule:

Ri =
∑
j

[ωj ]
2
i

‖ωj‖2
·Rj .

Compared to the direct approach of Section 3.2, the explanation produced here
assigns different scores for each input feature. Moreover, while the estimate of
inlierness î(x) converges to the true KDE inlierness score i(x) as more random
features are being drawn, we observe similar convergence for the explanation
associated to the inlier prediction.

4 K-Means Clustering

Another important class of unsupervised models is clustering. K-means is a pop-
ular algorithm for identifying clusters in the data. The k-means model represents
each cluster c with a centroid µc ∈ Rd corresponding to the mean of the cluster
members. It assigns data onto clusters by first computing the distance between
the data point and each cluster, e.g.

dc(x) = ‖x− µc‖ (4)

and chooses the cluster with the lowest distance dc(x). Once the data has been
clustered, it is often the case that we would like to gain understanding of why a
given data point has been assigned to a particular cluster, either for validating
a given clustering model or for getting novel insights on the cluster structure of
the data.

4.1 Explaining Cluster Assignments

As a starting point for applying our explanation framework, we need to identify
a function fc(x) that represents well the assignment onto a particular cluster c,
e.g. a function that is larger than zero when the data point is assigned to a given
cluster, and less than zero otherwise.

The distance function dc(x) on which the clustering algorithm is based is how-
ever not directly suitable for the purpose of explanation. Indeed, dc(x) tends to
be inversely related to cluster membership, and it also does not take into account
how far the data point is from other clusters. In [18], it is proposed to contrast



10 G. Montavon et al.

the assigned cluster with the competing clusters. In particular, k-means cluster
membership can be modeled as the difference of (squared) distances between the
nearest competing cluster and the assigned cluster c:

fc(x) = min
k 6=c

{
d2k(x)

}
− d2c(x) (5)

The paper [18] shows that this contrastive strategy results in a two-layer neural
network. In particular, Eq. (5) can be rewritten as the two-layer neural network:

hk = w>k x+ bk (layer 1)

fc(x) = min
k 6=c

{
hk
}

(layer 2)

where wk = 2(µc−µk) and bk = ‖µk‖2−‖µc‖2. The first layer is a linear layer
that depends on the centroid locations and provides a clear directionality in input
space. The second layer is a hard min-pooling. Once the neural network structure
of cluster membership has been extracted, we can proceed with explanation
techniques such as LRP by first reverse-propagating cluster evidence in the top
layer (contrasting the given cluster with all cluster competitors) and then further
propagating in the layer below. In particular, we first apply the soft argmin
redistribution

Rk =
exp(−βhk)∑
k 6=c exp(−βhk)

· fc(x)

where β is a hyperparameter to be selected. An advantage of the soft argmin
over its hard counterpart is that this does not create an abrupt transition be-
tween nearest competing clusters, which would in turn cause nearly identical
data points with the same cluster decision to result in a substantially different
explanation. Finally, the last step of redistribution on the input features can be
achieved by leveraging the orientation of linear functions in the first layer, and
applying the redistribution rule:

Ri =
∑
k 6=c

[wk]2i
‖wk‖2

Rk.

Overall, these two redistribution steps provide us with a way of meaningfully
attributing the cluster evidence onto the input features.

5 Experiments

We showcase the neuralization approaches presented above on two examples
with two types of data: standard vector data representing wholesale customer
spending behavior, and image data, more specifically, industrial inspection and
scene images.



Explaining Unsupervised Learning Models 11

5.1 Wholesale Customer Analysis

Our first use case is the analysis of a wholesale customer dataset [11]. The
dataset consists of 440 instances representing different customers, and for each
instance, the annual consumption of the customer in monetary units (m.u.) for
the categories ‘fresh’, ‘milk’, ‘grocery’, ‘frozen’, ‘detergents/paper’, ‘delicatessen’
is given. Two additional geographic features are also part of this dataset, however
we do not include them in our experiment. We will place our focus on two
particular data points with feature values shown in the table below:

Table 1. Excerpt of the Wholesale Customer Dataset [11] where we show feature
values, expressed in monetary units (m.u.), for two instances as well as the average
values over the whole dataset.

index fresh milk grocery frozen
detergents /

paper delicatessen

338 9351m.u. 1347m.u. 2611m.u. 8170m.u. 442m.u. 868m.u.
339 3m.u. 333m.u. 7201m.u. 15601m.u. 15m.u. 550m.u.

AVG 12000m.u. 5796m.u. 7951m.u. 3072m.u. 2881m.u. 1525m.u.

Instance 338 has rather typical levels of spending across categories, in general
slightly lower than average, but with high spending on frozen products. Instance
339 has more extreme spending with almost no spending on fresh products and
detergents and very high spending on frozen products.

To get further insights into the data, we construct a KDE model on the
whole data and apply our analysis to the selected instances. Each input feature
is first mapped to the logarithm and standardized (mean 0 and variance 1). We
choose the kernel parameter γ = 1. We use a leave-one-out approach where the
data used to build the KDE model is the whole data except the instance to be
predicted and analyzed. The number of random features is set to H = 2500 such
that the computational complexity of the inlier model stays within one order of
magnitude to the original kernel model. Predictions on the whole dataset and
analysis for the selected instances is shown in Fig. 4.

Instance 338 is predicted to be an inlier, which is consistent with our initial
observation that the levels of spending across categories are on the lower end but
remain usual. We can characterize this instance as a typical small customer. We
also note that the feature ‘frozen’ contributes less to inlierness according to our
analysis, probably due to the spending on that category being unusually high
for a typical small customer.

Instance 339 has an inlierness score almost zero, which is consistent with the
observation in Table 1 that spending behavior is extremal for multiple product
categories. The decomposition of an inlierness score of almost zero on the dif-
ferent categories is rather uninformative, hence, for this customer, we look at
what explains outlierness (bottom of Fig. 4). We observe as expected that cat-
egories where spending behavior diverges for this instance are indeed strongly
represented in the explanation of outlierness, with ‘fresh’, ‘milk’, ‘frozen’ and



12 G. Montavon et al.

inlierness

outlierness

t-
S
N

E
 1

t-SNE 2

t-
S
N

E
 1

t-SNE 2

Fig. 4. Explanation of different predictions on the Wholesale Customers Dataset. The
dataset is represented on the left as a t-SNE plot (perplexity 100) and each data point
is color-coded according to its predicted inlierness and outlierness. On the right, expla-
nation of inlierness and outlierness in terms of input features for two selected instances.
Large bars in the plot correspond to strongly contributing features. For explanation of
inlierness, error bars are computed over 100 trials of newly drawn random features.

‘detergents/paper’ contributing almost all evidence for outlierness. Surprisingly,
we observe that extremely low spending on ‘fresh’ is underrepresented in the
outlierness score, compared to other categories such as ‘milk’ or ‘frozen’ where
spending is less extreme. This apparent contradiction will be resolved by a cluster
analysis.

Using the same logarithmic mapping and standardization step as for the KDE
model, we now train a k-means model on the data and set the number of clusters
to 6. Training is repeated 10 times with different centroid initializations, and we
retain the model that has reached the lowest k-means objective. The outcome
of the clustering is shown in Fig. 5 (left).

We observe that Instance 338 falls somewhere at the border between the
green and red clusters, whereas Instance 339 is well into the yellow cluster at the
bottom. The decomposition of cluster evidence for these two instances is shown
on the right. Because Instance 338 is at the border between two clusters, there
is no evidence of membership to one or another cluster, and the decomposition
of such (lack of) evidence results in an explanation that is zero for all categories.



Explaining Unsupervised Learning Models 13

cluster
membership

t-
S

N
E
 1

t-SNE 2

Fig. 5. On the left, a t-SNE representation of the Wholesale Customers Dataset, color-
coded by cluster membership according to our k-means model, and where opacity
represents evidence for the assigned cluster, i.e. how deep into its cluster the data
point is. On the right, explanation of cluster assignments for two selected instances.

The decomposition of the cluster evidence for Instance 339, however, reveals
that its cluster membership is mainly due to a singular spending pattern on the
category ‘fresh’. To shed further light into this decision, we look at the cluster
to which this instance has been assigned, in particular, the average spending of
cluster members on each category. This information is shown in Table 2.

Table 2. Average spending per category in the cluster to which Instance 339 has been
assigned.

cluster fresh milk grocery frozen
detergents /

paper delicatessen

Yellow 616m.u. 3176m.u. 6965m.u. 1523m.u. 1414m.u. 135m.u.

We observe that this cluster is characterized by low spending on fresh prod-
ucts and delicatessen. It may be a cluster of small retailers that, unlike super-
markets, do not have substantial refrigeration capacity. Hence, the very low level
of spending of Instance 339 on ‘fresh’ products puts it well into that cluster, and
it also explains why the outlierness of Instance 339 is not attributed to ‘fresh’ but
to other features (cf. Fig. 4). In particular, what distinguishes Instance 339 from
its cluster is a very high level of spending on frozen products, and this is also
the category that contributes the most to outlierness of this instance according
to our analysis of the KDE model.

Traditionally, cluster membership has been characterized by more basic ap-
proaches such as population statistics of individual features (e.g. [8]). Fig. 6
shows such analysis for Instances 338 and 339 of the Wholesale Customer Dataset.
Although similar observations to the ones above can be made from this simple
statistical analysis, e.g. the feature ‘frozen’ appears to contradict the member-
ship of Instance 339 to Cluster 4, it is not clear from this simple analysis what



14 G. Montavon et al.

−5 0 5

cluster 6

cluster 5

cluster 4

cluster 3

cluster 2

cluster 1

fresh

−5 0 5

milk

−5 0 5

grocery

−5 0 5

frozen

−5 0 5

detergents/paper

−5 0 5

delicatessen

Fig. 6. Population statistics of individual features for the 6 clusters. The black cross
in Cluster 2 is Instance 338, the black cross in Cluster 4 is Instance 339. Features are
mapped to the logarithm and standardized.

makes Instance 339 a member of Cluster 4 in the first place. For example, while
the feature ‘grocery’ of Instance 339 is within the inter quartile range (IQR) of
Cluster 4 and can therefore be considered typical of that cluster, other clusters
have similar IQRs for that feature. Moreover, Instance 339 falls significantly out-
side Cluster 4’s IQR for other features. In comparison, our LRP approach more
directly and reliably explains the cluster membership and outlierness of the con-
sidered instances. Furthermore, population statistics of individual features may
be misleading on non-linear models (such as kernel clustering) and does not scale
to high-dimensional data, such as image data.

Overall, our analysis allows to identify on a single-instance basis features that
contribute to various properties relating this instance to the rest of the data, such
as inlierness/outlierness and cluster membership. As our analysis has revealed,
the insights that are obtained go well beyond a traditional data analysis based
on looking at population statistics for individual features, or a simple inspection
of unsupervised learning outcomes.

5.2 Image Analysis

Our next experiment looks at explanation of inlierness, outlierness, and cluster
membership for image data. Unlike the example above, relevant image statistics
are better expressed at a more abstract level than directly on the pixels. A
popular approach consists of using a pretrained neural model (e.g. the VGG-16
network [46]), and use the activations produced at a certain layer as input.

We first consider the problem of anomaly detection for industrial inspection
and use for this an image of the MVTec AD dataset [6], specifically, an image
of wood where an anomalous horizontal scratch can be observed. The image is
shown in Fig. 7 (left). We feed that image to a pretrained VGG-16 network and
collect the activations at the output of Block 5 (i.e. at the output of the feature
extractor). We consider each spatial location at the output of that block as a
data point and build a KDE model (with γ = 0.05) on the resulting dataset.
We then apply our analysis to attribute the predicted inlierness/outlierness to



Explaining Unsupervised Learning Models 15

the activations of Block 5. In practice, we need to consider the fact that any
attribution on a deactivated neuron cannot be redistributed further to input
pixels as there is no pattern in pixel space to attach to. Hence, the propagation
procedure must be carefully implemented to address this constraint, possibly by
only redistributing a limited share of the model output. The details are given in
Appendix A. As a last step, we take relevance scores computed at the output of
Block 5 and pursue the relevance propagation procedure in the VGG-16 network
using standard LRP rules until the pixels are reached. Explanations obtained for
inlierness and outlierness of the wood image of interest are shown in Fig. 7.

input image inlierness outlierness

Fig. 7. Exemplary image from the MVTec AD dataset along with the explanation
of an inlier/outlier prediction of a KDE model built at the output of the VGG-16
feature extractor. Red color indicates positively contributing pixels, blue color indicates
negatively contributing pixels, and gray indicates irrelevant pixels.

It can be observed that pixels associated to regular wood stripes are the main
contributors to inlierness. Instead, the horizontal scratch on the wood panel is
a contributing factor for outlierness. Hence, with our explanation method, we
can precisely identify, on a pixel-wise basis what are the factors that contribute
for/against predicted inlierness and outlierness.

We now consider some image of the SUN 2010 database [52], an indoor scene
containing different pieces of furniture and home appliances. We consider the
same VGG-16 network as in the experiment above and build a dataset by col-
lecting activations at each spatial location of the output of Block 5. We then
apply the k-means algorithm on this dataset with the number of clusters hard-
coded to 5. Once the clustering model has been built, we rescale each cluster
centroid to fixed norm. We then apply our analysis attribute the cluster mem-
bership scores to the activations at the output of Block 5. As for the industrial
inspection example above, we must adjust the LRP rules so that deactivated neu-
rons are not attributed relevance. The details of the LRP procedure are given in
Appendix A. Obtained relevance scores are then propagated further to the input
pixels using standard LRP rules. Resulting explanations are shown in Fig. 8.



16 G. Montavon et al.

input image cluster 1 cluster 2

cluster 3 cluster 4 cluster 5

Fig. 8. Exemplary image and explanation of cluster assignments of a k-means model
built at the output of the VGG-16 feature extractor. Red, blue and gray indicate
positively contributing, negatively contributing, and irrelevant pixels respectively.

We observe that different clusters identify distinct concepts. For example, one
cluster focuses on the microwave oven and the surrounding cupboards, a second
cluster represents the bottom part of the bar chairs, a third cluster captures the
kitchen’s background with a particular focus on a painting on the wall, the fourth
cluster captures various objects on the table and in the background, and a last
cluster focuses on the top-part of the chairs. While the clustering representation
extracts distinct human-recognizable image features, it also shows some limits
of the given representation, for example, the concept ‘bar chair’ is split in two
distinct concepts (the bottom and top part of the chair respectively), whereas
the clutter attached to Cluster 4 is not fully disentangled from the surrounding
chairs and cupboards.

Overall, our experiments on image data demonstrate that neuralization of
unsupervised learning models can be naturally integrated with existing proce-
dures for explaining deep neural networks. This enables an application of our
method to a broad range of practical problems where unsupervised modeling is
better tackled at a certain level of abstraction and not directly in input space.



Explaining Unsupervised Learning Models 17

6 Conclusion and Outlook

In this paper, we have considered the problem of explaining the predictions of
unsupervised models, in particular, we have reviewed and extended the neural-
ization / propagation approach of [19, 18] which consists of rewriting, without
retraining, the unsupervised model as a functionally equivalent neural network,
and applying LRP in a second step. On two models of interest, kernel density
estimation and k-means, we have highlighted a variety of techniques that can be
used for neuralization. This includes the identification of log-mean-exp pooling
structures, the use of random features, and the transformation of a difference of
(squared) distances into a linear layer. The capacity of our approach to deliver
meaningful explanations was highlighted on two examples covering simple tab-
ular data and images including their mapping on some layer of a convolutional
network.

While our approach delivers good quality explanations at low computational
cost, there are however still a number of open questions that remain to be ad-
dressed to further solidify the neuralization-propagation approach, and the ex-
planation of unsupervised models in general.

A first question concerns the applicability of our method to a broader range
of practical scenarios. We have highlighted how neuralized models can be built
not only in input space but also on some layer of a deep neural network, thereby
bringing explanations to much more complex unsupervised models. However,
there is a higher diversity of unsupervised learning algorithms that are encoun-
tered in practice, including energy-based models [16], spectral methods [44, 33],
linkage clustering [12], non-Euclidean methods [27], or prototype-based anomaly
detection [14]. An important future work will therefore be to extend the pro-
posed framework to handle this heterogeneity of unsupervised machine learning
approaches.

Another question is that of validation. There are many possible LRP prop-
agation rules that one can define in practice, as well as potentially multiple
neural network reformulations of the same unsupervised model. This creates a
need for reliable techniques to evaluate the quality of different explanation meth-
ods. While techniques to evaluate explanation quality have been proposed and
successfully applied in the context of supervised learning (e.g. based on feature
removal [39]), further care needs to be taken in the unsupervised scenario, in
particular, to avoid that the outcome of the evaluation is spuriously affected
by such feature removals. As an example, removing some feature responsible
for some predicted anomaly may unintentionally cause some new artefact to be
created in the data. That would in turn increase the anomaly score instead of
lowering it as it was originally intended [19].

In addition to further extending and validating the neuralization-propagation
approach, one needs to ask how to develop these explanation techniques beyond
their usage as a simple visualization or data exploration tool. For example, it
remains to demonstrate whether these explanation techniques, in combination
with user feedback, can be used to systematically verify and improve the un-



18 G. Montavon et al.

supervised model at hand (e.g. as recently demonstrated for supervised models
[49, 2]). Some initial steps have already been taken in this direction [20, 38].

Acknowledgements

This work was supported by the German Ministry for Education and Research
under Grant 01IS14013A-E, Grant 01GQ1115, Grant 01GQ0850, as BIFOLD
(ref. 01IS18025A and ref. 01IS18037A) and Patho234 (ref. 031LO207), the Eu-
ropean Union’s Horizon 2020 programme (grant no. 965221), and the German
Research Foundation (DFG) as Math+: Berlin Mathematics Research Center
(EXC 2046/1, project-ID: 390685689). This work was supported in part by the
Institute of Information & Communications Technology Planning & Evaluation
(IITP) grants funded by the Korea Government under Grant 2017-0-00451 (De-
velopment of BCI Based Brain and Cognitive Computing Technology for Recog-
nizing User’s Intentions using Deep Learning) and Grant 2019-0-00079 (Artificial
Intelligence Graduate School Program, Korea University).

A Attribution on CNN Activations

Propagation rules mentioned in Sections 3 and 4 are not suited for identifying
relevant neurons at some layer of a neural network when the goal is to propagate
the relevance further down the layers of the neural network, e.g. to obtain a pixel-
wise explanation. What we need to ensure in such scenario is that all relevant
information is expressed in terms of activated neurons as they are the only ones
for which the associated relevance can be grounded to a specific pattern in the
pixel space. One possible approach is to decompose the relevance propagation
into a propagating term and a non-propagating (or ‘dissipating’) one, which
leads to a partial (although still useful) explanation. In the following, we describe
the approaches we have taken to achieve our extension of explanations to deep
models.

A.1 Attributing Outlierness

The activations in the first layer of the neuralized outlier model is

hk = ‖a− uk‖2

and the relevance that arrives on the corresponding neuron is given by Rk =

pkLME−γk′ {hk′} with pk = exp(−βhk)∑
k′ exp(−βhk′ )

. Relevance associated to neuron k can

be expressed as:

Rk = pk · a>(a− uk)︸ ︷︷ ︸
Rdot

k

+ pk · (u>k (uk − a) + LME−γk′ {hk′ − hk})︸ ︷︷ ︸
Rres

k



Explaining Unsupervised Learning Models 19

where we have used the commutativity of the LME function and the distribu-
tivity of the squared norm to decompose the relevance in two terms, one that
can be meaningfully redistributed on the activations, and one that cannot be
redistributed. Redistribution in the first layer can then proceed as:

Ri =
∑
k

ai · (ai − uik)∑
i ai · (ai − uik)

Rdot
k

It is easy to demonstrate from this equation that any neuron with ai = 0 (i.e.
deactivated) will not be attributed any relevance.

A.2 Attributing Inlierness

Neurons in the first layer of the inlierness model based on random features, have
activations given by:

hj =
√

2 cos(ω>j a+ bj) · µj
and relevance scores Rj = hj/H. Using a simple trigonometric identity, we can
rewrite the relevance scores in terms of unphased sine and cosine functions as:

Rj =
(
− sin(ω>j a) sin(bj) · cj

)
︸ ︷︷ ︸

Rsin
j

+ cos(ω>j a) cos(bj) · cj︸ ︷︷ ︸
Rcos

j

where cj = 1
H

√
2µj . We propose the redistribution rule:

Ri =
∑
j

aiωij∑
i aiωij

Rsin
j +

∑
j

aiωij
εj +

∑
i aiωij

Rcos
j

where εj is a term set to be of same sign as the denominator, and that ad-
dresses the case where a positive Rcos

j comes with a near-zero response ω>j a, by
‘dissipating’ some of the relevance Rcos

j .

A.3 Attributing Cluster Membership

The activation in the first layer of the neuralized cluster membership model is:

hk = w>k a+ bk

and the relevance score is given byRk = pk mink′ 6=c{hk′} with pk = exp(−βhk)∑
k′ exp(−βhk′ )

.

Similar to the outlier case, we decompose the relevance score as:

Rk = pk · a>wk︸ ︷︷ ︸
Rdot

k

+ pk · (bk + min
k′ 6=c
{hk′ − hk}︸ ︷︷ ︸

Rres
k

)

and only consider the first term for propagation. Specifically, we apply the prop-
agation rule:

Ri =
∑
k

aiwik∑
i aiwik

Rdot
k

where it can again be shown that only activated neurons are attributed relevance.



20 G. Montavon et al.

References

1. M. Alber, S. Lapuschkin, P. Seegerer, M. Hägele, K. T. Schütt, G. Montavon,
W. Samek, K.-R. Müller, S. Dähne, and P. Kindermans. iNNvestigate neural
networks! J. Mach. Learn. Res., 20:93:1–93:8, 2019.

2. C. J. Anders, L. Weber, D. Neumann, W. Samek, K.-R. Müller, and S. Lapuschkin.
Finding and removing Clever Hans: Using explanation methods to debug and im-
prove deep models. Information Fusion, 77:261–295, 2022.

3. S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek. On
pixel-wise explanations for non-linear classifier decisions by layer-wise relevance
propagation. PLoS ONE, 10(7):e0130140, 07 2015.

4. D. Baehrens, T. Schroeter, S. Harmeling, M. Kawanabe, K. Hansen, and K.-R.
Müller. How to explain individual classification decisions. J. Mach. Learn. Res.,
11:1803–1831, 2010.

5. D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

6. P. Bergmann, K. Batzner, M. Fauser, D. Sattlegger, and C. Steger. The mvtec
anomaly detection dataset: A comprehensive real-world dataset for unsupervised
anomaly detection. Int. J. Comput. Vis., 129(4):1038–1059, 2021.

7. A. Blum and P. Langley. Selection of relevant features and examples in machine
learning. Artif. Intell., 97(1-2):245–271, 1997.

8. P. Chapfuwa, C. Li, N. Mehta, L. Carin, and R. Henao. Survival cluster analysis. In
M. Ghassemi, editor, ACM Conference on Health, Inference, and Learning, pages
60–68. ACM, 2020.

9. G. Ciriello, M. L. Miller, B. A. Aksoy, Y. Senbabaoglu, N. Schultz, and C. Sander.
Emerging landscape of oncogenic signatures across human cancers. Nature Genet-
ics, 45(10):1127–1133, Sept. 2013.

10. M. W. Craven and J. W. Shavlik. Extracting tree-structured representations of
trained networks. In NIPS, pages 24–30. MIT Press, 1995.

11. N. G. C. F. M. de Abreu. Análise do perfil do cliente recheio e desenvolvimento de
um sistema promocional. Master’s thesis, Instituto Universitário de Lisboa, 2011.

12. J. C. Gower and G. J. S. Ross. Minimum spanning trees and single linkage cluster
analysis. Applied Statistics, 18(1):54, 1969.

13. R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi.
A survey of methods for explaining black box models. ACM Comput. Surv.,
51(5):93:1–93:42, 2019.

14. S. Harmeling, G. Dornhege, D. Tax, F. Meinecke, and K.-R. Müller. From outliers
to prototypes: ordering data. Neurocomputing, 69(13-15):1608–1618, 2006.

15. K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In CVPR, pages 770–778. IEEE Computer Society, 2016.

16. G. E. Hinton. Training products of experts by minimizing contrastive divergence.
Neural Comput., 14(8):1771–1800, 2002.

17. A. K. Kau, Y. E. Tang, and S. Ghose. Typology of online shoppers. Journal of
Consumer Marketing, 20(2):139–156, Apr. 2003.

18. J. R. Kauffmann, M. Esders, G. Montavon, W. Samek, and K.-R. Müller. From
clustering to cluster explanations via neural networks. CoRR, abs/1906.07633,
2019.

19. J. R. Kauffmann, K.-R. Müller, and G. Montavon. Towards explaining anomalies:
A deep Taylor decomposition of one-class models. Pattern Recognit., 101:107198,
2020.



Explaining Unsupervised Learning Models 21

20. J. R. Kauffmann, L. Ruff, G. Montavon, and K.-R. Müller. The Clever Hans effect
in anomaly detection. CoRR, abs/2006.10609, 2020.

21. J. Kim and C. D. Scott. Robust kernel density estimation. J. Mach. Learn. Res.,
13:2529–2565, 2012.

22. Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recom-
mender systems. Computer, 42(8):30–37, 2009.

23. A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet classification with deep
convolutional neural networks. In NIPS, pages 1106–1114, 2012.

24. S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, and K.-R.
Müller. Unmasking Clever Hans predictors and assessing what machines really
learn. Nature Communications, 10(1096), 2019.

25. P. Laskov, K. Rieck, C. Schäfer, and K.-R. Müller. Visualization of anomaly detec-
tion using prediction sensitivity. In Sicherheit, volume P-62 of LNI, pages 197–208.
GI, 2005.

26. L. J. Latecki, A. Lazarevic, and D. Pokrajac. Outlier detection with kernel density
functions. In MLDM, volume 4571 of Lecture Notes in Computer Science, pages
61–75. Springer, 2007.

27. F. T. Liu, K. M. Ting, and Z. Zhou. Isolation forest. In Proceedings of the 8th
IEEE International Conference on Data Mining, pages 413–422. IEEE Computer
Society, 2008.

28. N. Liu, D. Shin, and X. Hu. Contextual outlier interpretation. In IJCAI, pages
2461–2467. ijcai.org, 2018.

29. S. M. Lundberg and S. Lee. A unified approach to interpreting model predictions.
In Advances in Neural Information Processing Systems 30, pages 4765–4774, 2017.

30. B. Micenková, R. T. Ng, X. Dang, and I. Assent. Explaining outliers by subspace
separability. In ICDM, pages 518–527. IEEE Computer Society, 2013.

31. G. Montavon, A. Binder, S. Lapuschkin, W. Samek, and K.-R. Müller. Layer-wise
relevance propagation: An overview. In W. Samek, G. Montavon, A. Vedaldi, L. K.
Hansen, and K.-R. Müller, editors, Explainable AI: Interpreting, Explaining and
Visualizing Deep Learning, volume 11700 of LNCS, pages 193–209. Springer, 2019.

32. G. F. Montúfar, R. Pascanu, K. Cho, and Y. Bengio. On the number of linear
regions of deep neural networks. In NIPS, pages 2924–2932, 2014.

33. A. Y. Ng, M. I. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In NIPS, pages 849–856. MIT Press, 2001.

34. A. M. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesizing
the preferred inputs for neurons in neural networks via deep generator networks.
In NIPS, pages 3387–3395, 2016.

35. E. Parzen. On estimation of a probability density function and mode. The Annals
of Mathematical Statistics, 33(3):1065–1076, 1962.

36. A. Rahimi and B. Recht. Random features for large-scale kernel machines. In
NIPS, page 1177–1184, 2007.

37. M. T. Ribeiro, S. Singh, and C. Guestrin. “why should I trust you?”: Explaining
the predictions of any classifier. In KDD, pages 1135–1144. ACM, 2016.

38. L. Ruff, J. R. Kauffmann, R. A. Vandermeulen, G. Montavon, W. Samek, M. Kloft,
T. G. Dietterich, and K.-R. Müller. A unifying review of deep and shallow anomaly
detection. Proc. IEEE, 109(5):756–795, 2021.

39. W. Samek, A. Binder, G. Montavon, S. Lapuschkin, and K.-R. Müller. Evaluating
the visualization of what a deep neural network has learned. IEEE Trans. Neural
Networks Learn. Syst., 28(11):2660–2673, 2017.



22 G. Montavon et al.

40. W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller. Explain-
ing deep neural networks and beyond: A review of methods and applications. Proc.
IEEE, 109(3):247–278, 2021.

41. W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R. Müller, editors.
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, volume
11700 of Lecture Notes in Computer Science. Springer, 2019.

42. R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra. Grad-
cam: Visual explanations from deep networks via gradient-based localization. Int.
J. Comput. Vis., 128(2):336–359, 2020.

43. L. S. Shapley. 17. a value for n-person games. In Contributions to the Theory of
Games (AM-28), Volume II. Princeton University Press, 1953.

44. J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 22(8):888–905, 2000.

45. K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks:
Visualising image classification models and saliency maps. In ICLR (Workshop
Poster), 2014.

46. K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale
image recognition. In ICLR, 2015.

47. J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller. Striving for
simplicity: The all convolutional net. In ICLR (Workshop), 2015.

48. E. Strumbelj and I. Kononenko. An efficient explanation of individual classifica-
tions using game theory. J. Mach. Learn. Res., 11:1–18, 2010.

49. J. Sun, S. Lapuschkin, W. Samek, and A. Binder. Explain and improve: Lrp-
inference fine tuning for image captioning models. Information Fusion, 77:233–246,
2022.

50. M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution for deep networks. In
ICML, volume 70 of Proceedings of Machine Learning Research, pages 3319–3328.
PMLR, 2017.

51. U. von Luxburg, R. C. Williamson, and I. Guyon. Clustering: Science or art? In
ICML Unsupervised and Transfer Learning, volume 27 of JMLR Proceedings, pages
65–80. JMLR.org, 2012.

52. J. Xiao, K. A. Ehinger, J. Hays, A. Torralba, and A. Oliva. SUN database: Ex-
ploring a large collection of scene categories. Int. J. Comput. Vis., 119(1):3–22,
2016.

53. M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks.
In ECCV (1), volume 8689 of Lecture Notes in Computer Science, pages 818–833.
Springer, 2014.

54. L. M. Zintgraf, T. S. Cohen, T. Adel, and M. Welling. Visualizing deep neural net-
work decisions: Prediction difference analysis. In ICLR (Poster). OpenReview.net,
2017.


