
DEEPCABAC: PLUG&PLAY COMPRESSION OF NEURAL NETWORK WEIGHTS AND
WEIGHT UPDATES

David Neumann1 Felix Sattler1 Heiner Kirchhoffer1 Simon Wiedemann1

Karsten Müller1 Heiko Schwarz1,2 Thomas Wiegand1,3 Detlev Marpe1

Wojciech Samek1

1Fraunhofer Heinrich Hertz Institute, Berlin, Germany
2Institute of Computer Science, Free University of Berlin, Germany

3Department of Telecommunication Systems, Technical University of Berlin, Germany

ABSTRACT

An increasing number of distributed machine learning ap-
plications require efficient communication of neural network
parameterizations. DeepCABAC, an algorithm in the current
working draft of the emerging MPEG-7 part 17 standard for
compression of neural networks for multimedia content de-
scription and analysis, has demonstrated high compression
gains for a variety of neural network models. In this paper
we propose a method for employing DeepCABAC in a Fed-
erated Learning scenario for exchange of intermediate differ-
ential parameterizations. Furthermore, we discuss the effi-
ciency of DeepCABAC when compressing trained neural net-
works. Our experiments on large neural networks show that
in both scenarios, DeepCABAC achieves competitive com-
pression rates, without degrading the network accuracy.

Index Terms— Neural Networks, Federated Learning,
Neural Network Compression, CABAC, Distributed Training

1. INTRODUCTION

Neural networks (NNs) have demonstrated impressive results
in a multitude of machine learning (ML) tasks and are now
being applied in a wide variety of applications. At the same
time these models have grown in size with some of the lat-
est state-of-the-art models containing up to multiple billions
of parameters [1, 2]. Many application areas that could ben-
efit from deep learning (DL) solutions however are highly
resource constrained (e.g. mobile phones and IoT devices)
and only have access to bandwidth-constrained communica-
tion channels. This often renders the usage of DL impractical
in these situations.

At the same time, ML and communications are converg-
ing as new distributed training schemes such as peer-to-peer
learning [3] and federated learning (FL) [4] emerge. In these
settings, NN parameterizations need to be frequently commu-
nicated and the resulting communication overhead is typically

the main limiting factor for the performance of distributed
training solutions [5].

Research and industry have realized the need for com-
pact and efficient NN representations and proposed special-
ized compression algorithms for different applications. Popu-
lar approaches for NN compression include pruning [6], dis-
tillation [7], and trained quantization [8], among others. In
FL, quantization and sparsification methods [9, 10, 11] have
been proposed alongside specialized solutions, such as feder-
ated dropout [5]. These methods, however, are all optimized
only towards specific applications (e.g. FL) and/or require
expensive re-training of the NN.

General, easy-to-use, and efficient compression methods
applicable to different NNs within different usage scenarios
are highly desired. Accordingly, a corresponding standard-
ization activity within ISO/IEC MPEG towards compression
of NNs is currently carried out. DeepCABAC [12], a re-
cent algorithm that was adopted to the current working draft
of the MPEG-7 part 17 standardization effort, has demon-
strated great compression gains for a variety of NN models
on the task of (trained) model compression. DeepCABAC
is based on Context-based adaptive binary arithmetic cod-
ing (CABAC) [13], an entropy coding scheme widely used
in video compression standards.

A number of favorable properties make DeepCABAC the
ideal universal compression algorithm.

1. It is designed for the lossless compression of integers
and can thus be combined with arbitrary quantization
schemes.

2. It achieves a high compression efficiency when com-
bined with a simple uniform reconstruction quantizer
that only has one hyperparameter: The quantization
strength.

3. It is adaptive towards any kind of tensor-shaped data,
so many different kinds of neural data, e.g. weights or
weight updates, can be compressed.

Client

Client

Client

ServerServer

Client

Client

Client

On-Device Inference Federated Learning

Training Data Model(-Update)Test Data Prediction

Fig. 1. Two common scenarios of NN communication: In on-
device inference, a (typically fully trained) NN representation
is communicated from a central server to a potentially large
number of distributed devices. In Federated Learning a large
number of devices jointly trains a NN on their combined data
under the orchestration of a central server. This requires fre-
quent down- and upload of NN parameterization from and to
the server. DeepCABAC can accommodate both compression
scenarios.

4. It is fast and efficient and does not require the com-
pressed model to undergo expensive re-training.

5. It can be used in a plug & play fashion, i.e. can be
easily integrated, e.g. in an existing FL pipeline.

In this paper, we demonstrate that DeepCABAC, without
harming the performance of the models, provides excellent
compression rates when it is applied to 1) trained NNs, e.g.
reducing the size of a trained VGG16 model by 88.42%, as
well as, 2) when applied to weight updates exchanged in FL
settings, where it reduces the size of the communicated dif-
ferential parameter updates by more than 96.5% on all tested
architectures.

The remainder of this document is organized as follows:
In section 2 we review the two most typical scenarios of NN
communication. In section 3 we describe the DeepCABAC
compression method and discuss how it can be applied in all
these scenarios. Finally, in section 4, we perform experiments
in the neural network compression and federated learning use-
case, by applying DeepCABAC to trained models and differ-
ential parameter updates on a wide variety of neural network
architectures.

2. COMPRESSION SCENARIOS

In the following we describe the most relevant scenarios, in
which NNs need to be communicated. In NNs compression
(figure 1, left), the sender communicates the parametrization
of a (typically fully trained) model θ to one or more recipi-
ents. This form of model communication is often necessary

wn-1
:

w0

Probability
estimate

wj Binarization 10110100 Arithmetic
coding 110

Update

Context
models

…

CABAC

Decision
Tree

Fig. 2. Block diagram of DeepCABAC

if the NN was trained on a centralized server, but the specific
application requires the model to be present on-device. The
goal of model compression is usually to minimize the size of
the NN representation while preserving it’s performance (e.g.
accuracy on the validation data).

If the recipient of the model already possesses an out-
dated parametrization θ′ of the to be communicated model,
it is often advantageous to instead communicate the differ-
ential model ∆θ = θ − θ′ (where the difference is taken
element-wise for every tensor of parameters in the model), as
the differential model typically has a much lower information
content and is thus more amenable to compression.

Federated Learning [14] is a practical application area
where NN models and differential models are communicated
with a high frequency. In FL (figure 1, right), a number of
client devices jointly trains a NN model on their combined
data by alternating between local training and model aggre-
gation. Every such communication round requires the clients
to once download and upload a neural network parametriza-
tion from/to a centralized server. Efficient communication
in FL is of paramount importance, because both the total
number of communication rounds and the number of par-
ticipating devices typically are very high, while at the same
time mobile and embedded devices participating in FL often
only have access to severely bandwidth-constrained mobile
connections.

3. DEEPCABAC: A UNIVERSAL COMPRESSION
ALGORITHM

For the efficient compression of NN parameters, Deep-
CABAC [12] has proven to be the most suitable arithmetic
coding method. It is based on the CABAC scheme of the
very successful video compression standards H.264/AVC and
H.265/HEVC. We use a DeepCABAC configuration which
comprises of the following building blocks (c.f. Figure 2):

• Uniform Reconstruction Quantization (URQ): Param-
eters are quantized to the nearest integer multiple of a
predefined quantization step size. This also opens up
the opportunity for an integer-based model inference,

which is usually less complex as, e.g., using floating-
point operations.

• Binarization: Each quantized (integer) parameter is
converted to a string of binary decisions (called ”bins”).
Concatenating the bin strings of all quantized parame-
ters in a predefined order forms a binary representation
of the model.

• Context modeling: Each non-bypassed bin, that
means each bin that is not assumed to be uniformly
distributed, is associated with one of a number of con-
text models in a way that bins with similar statistics
share the same context model. The context model esti-
mates for each associated bin a probability distribution
to be used for entropy coding in a backward-adaptive
manner.

• Entropy coding: The multiplication-free binary arith-
metic coder of CABAC (M coder), including its fast
bypass mode, is employed to encode the sequence of
bins.

Note that this version of DeepCABAC relies on only
one hyperparameter (namely the quantization strength), and
does not require expensive retraining of the network, which
makes it particularly suitable for the application on resource-
constrained distributed devices. We apply DeepCABAC to
both trained neural networks and and differential parametriza-
tions exchanged in federated learning, without making any
modifications to the algorithm and only adjust the quantiza-
tion step size of the URQ, in order to minimize the size of the
compressed parametrizations while preserving the accuracy.

4. EXPERIMENTAL EVALUATION

4.1. Neural Network Compression

In this section, we present compression results for Deep-
CABAC (DC-v2) when applied to the compression of fully
trained large-scale neural networks. We define the com-
pression ratio (CR) as the fraction between the size of the
compressed neural network and the size of the uncompressed
version (for which all parameters are represented as 32 bit
floating point numbers). Fig. 3 displays rate-distortion
curves obtained by compressing three different neural net-
work parametrizations, that were pretrained on the ImageNet
[15] dataset, at different levels of quantization strength. The
tag “DC” denotes networks compressed with DeepCABAC,
whereas “Bl” denotes a baseline compression algorithm, for
which we use bZip compression. As one can see, Deep-
CABAC consistently attains better compression results than
the baseline across all levels of quantization strength. In prac-
tice, one is typically interested in compressed representations
which preserve the accuracy of the original uncompressed
model. We list the corresponding compression rates obtained

by DeepCABAC for the three architectures in Table 1 along
with additional results for Audio-Net and FACE.

Fig. 3. Accuracy vs. byte-size points of different neural net-
works pretrained on the ImageNet dataset. The tag “DC” de-
notes networks compressed with DeepCABAC, whereas “Bl”
denotes the baseline (Zip) compression algorithm. As one can
see, DeepCABAC consistently attains better curves than the
baseline.

Models Org. size Org. Acc.
(top1 [%])

bZip
(CR [%])

Cabac
(CR [%])

Acc.
(top1 [%])

VGG16
553.43

[MB]
70.93 15.52 11.58 70.92

ResNet50
102.23

[MB]
74.98 29.09 22.52 74.99

MobileNet-v2
14.16
[MB]

71.47 36.24 28.57 71.48

Audio-Net
467.27

[KB]
58.27 15.15 10.93 59.51

FCAE
304.72

[KB]

30.13
[PSNR]

39.28 30.63 30.17
[PSNR]

Table 1. Compression ratios achieved at no loss of accuracy
when applying DeepCABAC to a wide set of neural network
architectures trained on different tasks.

For the very popular language model BERT [16] Deep-
CABAC is able to attain a compression ratio of 9% at a
F1-score of 86%, which is competitive with the reported re-
sults from the literature [17] (compression ratio of 11% at
a F1-score of 89%). However, [17] attained these results
after applying expensive retraining/fine-tuning procedures,
plus a compression technique known as distilling [18] which
modifies the network architecture. In contrast, DeepCABAC
achieved the above results by simply applying URQ plus its
entropy coding techniques.

4.2. Federated Learning

In order to evaluate the performance of DeepCABAC on the
federated learning use case, we perform experiments on the
commonly used CIFAR-10 dataset. We randomly split the
training data into 10 disjunct shards, each containing 5000
data points, and assign each shard to a different client. The
clients then jointly train a neural network model using the
federated averaging algorithm [14] described in section 2.
We configure the federated training in such a way that all 10
clients participate in every communication round and perform
one epoch of local training using a batch-size of 128 and a
fixed learning rate of 0.01.

To demonstrate the versatility of DeepCABAC, we train
three different convolutional neural network architectures
and measure the total number of bits communicated from all
clients to the server during execution of the federated averag-
ing protocol. For all networks, we quantize all weight layers
of the differential models ∆θ = θ

′

i − θi to a 2 bit represen-
tation using nearest neighbor quantization and apply Cabac
respectively bZip to the quantized values.

Figure 4 shows the resulting convergence speed in terms
of accuracy per uploaded bits for LeNet, VGG11 and VGG16.
For reference we also show the uncompressed baseline, where
every parameter is communicated as a 32 bit floating point
number. As we can see (c.f. table 2), for all model architec-
tures, DeepCABAC distinctively outperforms bZip as encod-
ing mechanism and is able to reduce the total communication
to less than 4% of the original size on all architectures, with-
out harming the convergence speed or the accuracy achieved
by the final model.

These compression rates are also notably higher than the
ones achieved in neural network compression (sec 4.1).

105 106 107 108 109 1010 1011

Bit-Rate

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

Federated Training Curves

LeNet
2bit zip
2bit CABAC

VGG11
2bit zip
2bit CABAC

VGG16
2bit zip
2bit CABAC

Fig. 4. Convergence speed w.r.t. communicated bits for
LeNet, VGG11 and VGG16 trained using Federated Averag-
ing with 10 Clients on CIFAR-10.

Models
Total

Comm.
Org. Acc.

(top1 [%])

bZip
(CR [%])

Cabac
(CR [%])

Acc.
(top1 [%])

LeNet
197.25

[MB]
64.84 4.84 3.29 66.39

VGG-11
6.98
[GB]

74.91 4.90 2.76 76.15

VGG-16
90.86

[GB]
77.44 3.36 2.30 78.98

Table 2. Federated Learning with 10 Clients on the CIFAR-
10 data set. Compression Results for 2 bit nearest neighbor
quantization encoded with bZip and CABAC.

5. CONCLUSION

The compression of NN parametrizations is a young research
field, which has recently gained a lot of attention by research,
industry and in standardization. While a number of special-
ized solutions have been proposed for different use-cases over
the last couple of years, there still remains the need for gen-
eral and easy-to-use compression methods. In this paper we
addressed this issue and presented DeepCABAC, a universal
compression tool, which is currently the selected technology
in the Motion Picture Experts Group (MPEG) standardization
effort. We demonstrated that DeepCABAC can easily be inte-
grated with distributed training pipelines and achieves highly
competitive compression rates in both NN compression and
federated learning.

6. REFERENCES

[1] Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever, “Language models
are unsupervised multitask learners,” 2019.

[2] Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catanzaro,
“Megatron-LM: Training Multi-Billion Parameter Lan-
guage Models Using Model Parallelism,” arXiv e-prints,
p. arXiv:1909.08053, Sep 2019.

[3] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and
Farinaz Koushanfar, “Peer-to-peer Federated Learning
on Graphs,” arXiv e-prints, p. arXiv:1901.11173, Jan
2019.

[4] Peter Kairouz, H Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Keith Bonawitz, Zachary Charles, Graham Cormode,
Rachel Cummings, et al., “Advances and open
problems in federated learning,” arXiv preprint
arXiv:1912.04977, 2019.

[5] S. Caldas, J. Konečny, HB. McMahan, and A. Tal-
walkar, “Expanding the Reach of Federated Learning
by Reducing Client Resource Requirements,” arXiv e-
prints, p. arXiv:1812.07210, Dec 2018.

[6] Yann LeCun, John S. Denker, and Sara A. Solla, “Opti-
mal brain damage,” in Advances in Neural Information
Processing Systems 2, D. S. Touretzky, Ed., pp. 598–
605. Morgan-Kaufmann, 1990.

[7] Geoffrey Hinton, Oriol Vinyals, and Jeffrey Dean, “Dis-
tilling the knowledge in a neural network,” in NIPS
Deep Learning and Representation Learning Workshop,
2015.

[8] Song Han, Huizi Mao, and William J. Dally, “Deep
Compression: Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Cod-
ing,” arXiv e-prints, p. arXiv:1510.00149, Oct 2015.

[9] J. Konečný, HB. McMahan, F. X. Yu, P. Richtárik,
A. Theertha Suresh, and D. Bacon, “Federated Learn-
ing: Strategies for Improving Communication Effi-
ciency,” arXiv e-prints, p. arXiv:1610.05492, Oct 2016.

[10] F. Sattler, S. Wiedemann, K. Müller, and W. Samek,
“Sparse binary compression: Towards distributed deep
learning with minimal communication,” in 2019 Inter-
national Joint Conference on Neural Networks (IJCNN),
July 2019, pp. 1–8.

[11] F. Sattler, S. Wiedemann, K. Müller, and W. Samek,
“Robust and communication-efficient federated learning
from non-i.i.d. data,” IEEE Transactions on Neural Net-
works and Learning Systems, pp. 1–14, 2019.

[12] S. Wiedemann, H. Kirchhoffer, S. Matlage, P. Haase,
A. Marban, T. Marinc, D. Neumann, T. Nguyen,
H. Schwarz, T. Wiegand, D. Marpe, and W. Samek,
“Deepcabac: A universal compression algorithm for
deep neural networks,” IEEE Journal of Selected Topics
in Signal Processing, pp. 1–1, 2020.

[13] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based
adaptive binary arithmetic coding in the h.264/avc video
compression standard,” IEEE Trans. Cir. and Sys. for
Video Technol., vol. 13, no. 7, pp. 620–636, July 2003.

[14] HB. McMahan, E. Moore, D. Ramage, Seth Hamp-
son, and B. Agüera y Arcas, “Communication-Efficient
Learning of Deep Networks from Decentralized Data,”
arXiv e-prints, p. arXiv:1602.05629, Feb 2016.

[15] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei, “Imagenet: A large-scale hierarchical
image database,” in 2009 IEEE conference on computer
vision and pattern recognition. Ieee, 2009, pp. 248–255.

[16] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[17] Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut, “Al-
bert: A lite bert for self-supervised learning of language
representations,” arXiv preprint arXiv:1909.11942,
2019.

[18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the
Knowledge in a Neural Network,” arXiv preprint
arXiv:1503.02531, 2015.

