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Abstract
Purpose The quantitative detection of failure modes is important for making deep
neural networks reliable and usable at scale. We consider three examples for common
failure modes in image reconstruction and demonstrate the potential of uncertainty
quantification as a fine-grained alarm system.
MethodsWe propose a deterministic, modular and lightweight approach called Inter-
val Neural Network (INN) that produces fast and easy to interpret uncertainty scores
for deep neural networks. Importantly, INNs can be constructed post-hoc for already
trained prediction networks. We compare it against state-of-the-art baseline methods
(MCDrop, ProbOut).
Results We demonstrate on controlled, synthetic inverse problems the capacity of
INNs to capture uncertainty due to noise as well as directional error information.
On a real-world inverse problem with human CT scans we can show that INNs
produce uncertainty scores which improve the detection of all considered failure
modes compared to the baseline methods.
Conclusion Interval Neural Networks offer a promising tool to expose weaknesses of
deep image reconstruction models and ultimately make them more reliable. The fact
that they can be applied post-hoc to equip already trained deep neural network models
with uncertainty scores makes them particularly interesting for deployment.
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1 Introduction

The reconstruction of unknown signals from indirectmeasurements plays an important
role in many applications, including medical imaging [14,2]. Typically, such tasks are
modelled as finite-dimensional linear inverse problems

y = Gx + (, (1)

where x ∈ R= is the signal of interest, G ∈ R<×= denotes the forward operator
representing a physical measurement process, and ( ∈ R< is modelling noise in
the measurements. Important examples include magnetic resonance imaging and
computed tomography, where A is a subsampled discrete Fourier or Radon transform
respectively. Solving the inverse problem (1) requires computing an approximate
reconstruction of x from the observed measurements y.

Classical reconstruction methods, e.g., based on sparse regularization models,
constitute the state-of-the-art for solving (1) in many cases and are backed by theo-
retical guarantees [8]. Recently, data-driven deep learning methods are increasingly
gaining attention and are repeatedly able to outperform traditional solvers in terms of
empirical reconstruction performance or speed, see for example [2].

Despite the advantages, the use of deep learning methods in sensitive applications
such as clinical diagnosis is still a concern [23], due to questions regarding the
reliability and robustness of the obtained reconstructionswhen compared to traditional
approaches [13,1]. What is more, erroneous artifacts in the reconstructed signals can
be hard to detect as they tend to “blend in” well with the rest of the signal.

Various approaches for incorporating uncertainty quantification (UQ) into deep
learning have been proposed to address these issues [22,16,10,18]. However, as we
demonstrate, existing UQ approaches come with limitations regarding their capacity
to detect failure modes or their post-hoc applicability to trained deep learning models.

In this work, we consider a straight-forward approach to solving (1) by employing
a neural network to post-process a standard model-based inversion as in [14]. This
reconstruction is given by

xrec =
(
� ◦ G†

)
(y),

where� : R= → R= is a neural network trained to minimize the loss ‖x−�(G† (y))‖22
and G† : R< → R= denotes the non-learned model-based inversion (e.g., the filtered
back-projection in the case of Radon measurements). We will denote z = G† (y) in
the following. Given y or z, a UQ method is supposed to extend the predicted recon-
struction�(z) by a component-wise uncertainty score u(z) that provides additional
information regarding the reliability of the reconstruction. Therefore, u(z) should
be correlated with the component-wise error |x −�(z) |. We evaluate this for three
different failure modes [7] that can arise during inference (see Sections 4.2.1 to 4.2.3
for more details):

(i) Errors caused solely by the ill-posedness of (1), which is mostly determined
by the strength of measurement noise and the amount of undersampling,

(ii) Errors caused by adversarial perturbations to the network inputs,
(iii) Errors caused by atypical artifacts that have not been seen during the training.
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Fig. 1 A schematic overview of the proposed Interval Neural Networks for image reconstruction.

Our main contributions can be summarized as follows: We present a deterministic,
modular and fast UQ-method for deep neural networks (DNNs), called Interval Neural
Networks (INN). We evaluate INNs for the detection of the three different image
reconstruction failure modes and demonstrate that they provide improved results
compared to two existing UQ methods.

2 Related Work

Whereas a number of methods from classical statistical learning theory, such as Gaus-
sian processes and approximations thereof [6,19], come with built-in uncertainty
estimates, DNNs have been limited in this regard. A surge of efforts to treat neural
networks from a variational perspective [3,16] started to change that. In addition,
there exist strands of research in deep learning explicitly occupied with the detection
of failure modes caused by adversarial and out of distribution (OoD) inputs. These
include Maximum Mean Discrepancy, Kernel Density Estimation and other tools,
see [5] or the Minimum Covariance Determinant method [26], Support Vector Data
Description [28], among others. We refer to [27] for a comprehensive overview. The
detection of adversarial and OoD inputs in these works is typically done in the clas-
sification setting. We emphasize that image-to-image regression is a fundamentally
different task: While classification is inherently discontinuous, image reconstruction
addresses a problem that allows for stable solution methods in many cases, e.g. by
sparse regularization. Furthermore, we are not interested in a crude, outright rejection
of data points in the input space but rather seek to obtain fine-grained information
about erroneous artifacts in the output space. More closely related to our goal isMonte
Carlo dropout (MCDrop) [10], and direct variance estimation (ProbOut) [12], where
epistemic and aleatoric uncertainty quantification was considered for segmentation
and depth-estimation tasks. Hence, we include their approaches as baseline compari-
son methods, see Section 3.4.

3 Methods

Popular existing UQ frameworks for DNNs place parametric densities, most com-
monly Gaussian densities, over the DNN parameters or predictions. Instead of using
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specific parametrized densities, our INN method relies on bounding distributions
using intervals. This results in a flexible and modular method that can be applied
post-hoc to a given DNN � that has already been trained. A schematic illustration
is provided in Fig. 1: the INN is formed by wrapping additional weight and bias in-
tervals around the weights and biases of the underlying prediction DNN. This allows
us to equip the DNN � with uncertainty capabilities without the need to modify �
itself. After training the INN we obtain prediction intervals that are guaranteed to
contain the original prediction of the underlying network and are easy to interpret.
They provide exact upper and lower bounds for the range of possible values that the
DNN prediction may take when slightly modifying the network parameters within the
prescribed weight and bias intervals.

Previously, the capacity of neural networks with interval weights and biases was
evaluated for fitting interval valued functions [11]. In contrast to [11] our targets x8 are
neither interval-valued nor univariate, leading to a different loss function which allows
us to equip trained neural networks with uncertainty capabilities post-hoc. For a direct
comparison see Equation (3) in Section 3.2 and Equation (18) in [11]. Further, [30,17]
explored neural networks implementing interval arithmetic for robust classifications.
However, in their setting, the focus is purely on representing the inputs or outputs as
intervals but not the weights and biases. In contrast, our proposed INNs determine
interval bounds for all network parameters with the goal of providing uncertainty
scores for the predictions of an underlying DNN.

3.1 Arithmetic of Interval Neural Networks

We will now give a description of those INN mechanisms that deviate from standard
DNNs. The forward propagation of a single input z through a DNN is replaced by
the forward propagation of a component-wise interval valued input [z, z] through the
INN. This can be expressed similarly to standard feed-forward neural networks but
using interval arithmetic instead. For interval valued weight matrices [],]] and bias
vectors [b, b] the propagation through the ℓ-th network layer can be expressed as

[
z, z

] (ℓ+1)
= r

( [
],]

] (ℓ) [
z, z

] (ℓ) + [
b, b

] (ℓ) )
. (2)

For non-negative [z, z] (ℓ) , for example when using a non-negative activation function
r such as the ReLU in the previous layer, we can explicitly rewrite (2) as

z (ℓ+1) = r
(
min

{
]
(ℓ)
, 0

}
z (ℓ) +max

{
]
(ℓ)
, 0

}
z (ℓ) + b (ℓ)

)
,

z (ℓ+1) = r
(
max

{
] (ℓ) , 0

}
z (ℓ) +min

{
] (ℓ) , 0

}
z (ℓ) + b (ℓ)

)
,

where the maximum and minimum are computed component-wise. Similarly, for
point intervals z (ℓ) = z (ℓ) =: z (ℓ) , for example as inputs to the first network layer, we
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can rewrite (2) as

z (ℓ+1) = r
(
]
(ℓ) max{z (ℓ) , 0} +] (ℓ) min{z (ℓ) , 0} + b (ℓ)

)
,

z (ℓ+1) = r
(
] (ℓ) max{z (ℓ) , 0} +] (ℓ) min{z (ℓ) , 0} + b (ℓ)

)
,

regardless of whether z (ℓ) is non-negative or not. Optimizing the INN parameters
requires obtaining the gradients of these operations. This can be achieved using
automatic differentiation (backpropagation) in the same way as for standard neural
networks.

3.2 Training Interval Neural Networks

Let ] (ℓ) and b (ℓ) be the weights and biases of the underlying prediction network
� and let � : R= → R= and � : R= → R= denote the functions mapping a point
interval input z to the upper and the lower interval bounds in the output layer of the
INN respectively. Given data samples {z8 , x8}<8=1 the INN parameters [],]] (ℓ) and
[b, b] (ℓ) are trained by minimizing the empirical loss

<∑
8=1

max{x8 −�(z8), 0}22 + max{�(z8) − x8 , 0}22 + V · �(z8) −�(z8)1, (3)

subject to the constraints ] (ℓ) ≤ ] (ℓ) ≤ ] (ℓ) and b (ℓ) ≤ b (ℓ) ≤ b (ℓ) for each
layer. This way �(z) ≤ �(z) ≤ �(z) is always guaranteed. The first two terms
in (3) encourage that the predicted interval [�(z8),�(z8)] should contain the target
signal x8 , while penalizing each component that lies outside with the squared distance
to the nearest interval bound. The second term penalizes the interval size, so that
the predicted intervals cannot grow arbitrarily large. While a quadratic penalty of
the interval size is also possible and leads to similar theoretical bounds as in (4),
we choose to minimize the ℓ1-norm to make the intervals more outlier inclusive. In
addition, the tightness parameter V > 0 can further tune the outlier-sensitivity of the
intervals. This allows for a calibration of the INN uncertainty scores according to
an application specific risk-budget. In practice, we found that choosing V similar to
the mean absolute error of the underlying prediction network yields a good trade-off
between coverage [9] and tightness.

3.3 Properties of Interval Neural Networks

The uncertainty estimate of an INN is given by the width of the prediction interval, i.e.,
u(z) = �(z) −�(z). In terms of computational overhead, INNs scale linearly in the
cost of evaluating the underlying prediction DNNwith a constant factor 2. In contrast,
the popular MCDrop [10] scales linearly with a factor ) which is proportional to
the number of stochastic forward passes and at least ) = 10 is recommended by the
authors, see Section 3.4.
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Further, INNs come with theoretical coverage guarantees that can be derived from
the Markov inequality: Assuming that the loss (3) is optimized during training to
yield an INN with vanishing expected gradient with respect to the data distribution,
we obtain

P(z,x)
[
�(z)8 − _V < x8 < �(z)8 + _V

]
≥ 1 − 1

_
, (4)

for any _ > 0. In other words, for input and target pair (z, x) the probability of
any component of the target lying inside the predicted interval enlarged by _V is at
least 1 − 1

_
. As V is usually very small, this ensures a fast decay of the probability

of the components of x lying outside the predicted interval bounds. Consequently,
a component with a small uncertainty score was correctly reconstructed up to small
error with a high probability. Of course, the training distribution needs to be well
representative of the true data distribution to extrapolate this property to unseen data.

Finally, the optimization of the loss (3) yields additional information: If the pre-
diction �(z) lies closer to one boundary of the predicted interval, the true target
x has a higher probability of lying on the other side of the interval. Consequently,
INNs can provide directional uncertainty scores. A quantitative assessment of this
capability is given in Fig. 3c+d. We note that it is also possible to explore asymmetric
uncertainty estimates in the probabilistic setting, e.g., via exponential family distribu-
tions [29] or quantile regression [24]. In contrast to INNs, these methods cannot be
applied post-hoc as they require substantial modifications to the underlying prediction
network.

3.4 Baseline UQ Methods

In addition to our INN approach we consider two other related and popular UQ
baseline methods for comparison. First, Monte Carlo dropout (MCDrop) [10] obtains
uncertainty scores as the sample variance of multiple stochastic forward passes of
the same input signal. In other words, if�1, . . . ,�) are realizations of independent
draws of random dropout masks for the same underlying network�, the component-
wise uncertainty estimate is uMCDrop (z) = ( 1) −1 (

∑)
C=1�C (z)2− 1) (

∑)
C=1�C (z))2))1/2.

Second, a direct variance estimation (ProbOut) was proposed in [22] and later
expanded in [12]. Here, the number of output components of the prediction network is
doubled and trained to approximate the mean and variance of a Gaussian distribution.
The resulting network�ProbOut : R= → R= × R=, z ↦→ (�mean (z),�var (z)) is trained
byminimizing the empirical loss

∑
8 ‖(y8−�mean (z8))/

√
�var (z8)‖22+‖ log�var (z8)‖1.

The component-wise uncertainty score of ProbOut is uProbOut (z) = (�var (z))1/2.
Note that, in contrast to INN and MCDrop, the ProbOut approach requires the
incorporation of UQ already during training. Thus, it cannot be employed as a post-
hoc evaluation of an already trained, underlying network �. The role of the actual
prediction network is taken by�mean.
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4 Experiments

We present experiments for two different inverse problems. First, a deconvolution task
with 1D signals, and second a tomography task on real-world 2D image signals. Both
setups are described in more detail below. The description of all hyperparameters
for the experiments is kept brief and we refer to our publicly available code at https:
//github.com/luisoala/inn for full details.

4.1 Case Study A: Deconvolution of 1D Signals

We start with a synthetic, didactic experiment, inspired by a one-dimensional decon-
volution task, to demonstrate the properties of INNs discussed in Section 3.3. For
this purpose, we choose = = < = 512 and G = J>YJ, where J is a discrete cosine
transform (Type I DCT) and Y is a diagonal matrix with entries B 9 =

(
=− 9
=−1

)a
∈ [0, 1],

that decay with a fixed exponent a = 8. We draw synthetically generated signals x
from a distribution of piecewise constant functions with random jump positions and
heights, see Fig. 2. The correspondingmeasurements y are computed according to (1).
We generate a data set consisting of 2000 sample pairs (y8 , x8), 1600 of which were
used for training, 200 for validation and 200 for testing. The underlying prediction
network � is a convolutional neural network (consisting of ten convolutional layers
and three dropout layers in between) trained to directly map y to x, i.e. we use G† = Id
and thus z = G†y = y in this experiment. We trained the underlying network � for
100 epochs using Adam [15]. The interval parameters of the INN were subsequently
trained for another 100 epochs with V = 2 · 10−3. For the MCDrop comparison we
use ) = 64 samples. The ProbOut model was trained in the same way as � using
100 Adam epochs. Note that all subsequent evaluations, as well as the plots in Fig. 2
are computed using test samples.

In order to evaluate the UQ methods’ abilities to capture uncertainty due to noisy
data, we consider additive Gaussian noise ( ∼ N(0, f2 · Id) on the measurements
over a range of noise levels f (Fig. 3a) as well as (1, (2 ∼ N(0, f2 · Id) on the
measurements and targets, where (1) is adjusted to y = G(x + (1) + (2 (Fig. 3b
and right column of Fig. 2). In this case, INNs are able to capture the additional
uncertainty of (1 using the bias parameters of the final network layer. In Fig. 3, it
can be observed how in contrast to MCDrop, our method and ProbOut are able
to capture independent noise in the data with ProbOut reacting to a lesser degree
than the INN. Note also that in Fig. 3 some of the ProbOut evaluations are shifted
to the right, indicating a reduced reconstruction performance compared to the other
methods.

Finally, we determine the directional information of the INN uncertainty scores as
discussed in Section 3.3. For this we define the component-wise directionality ratio by
DR(z) = max{�(z) −�(z),�(z) −�(z)}/min{�(z) −�(z),�(z) −�(z)}, i.e. as
the ratio between the larger and smaller part of the interval [�(z),�(z)] when divided
by the prediction�(z). The directionality accuracy (DA) is the relative frequency of
target components corresponding to a givenDR that are contained in the larger interval

https://github.com/luisoala/inn
https://github.com/luisoala/inn
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Fig. 2 Results for the deconvolution task for one exemplary signal without noise (left) and with additive
Gaussian noise (f = 0.05) on both the measurements y and signal x (right). The first row shows inputs
z = y and targets x. Below the target x, prediction � (z) , and uncertainty score u (z) as well as the
uncertainty compared to the absolute error |� (z) − x | are shown for the three UQ methods.

part. As displayed in Fig. 3c+d, INNs achieve a DA consistently above 0.5 (chance)
indicating that the interval uncertainty scores contain directional information.

4.2 Case Study B: Limited Angle Computed Tomography

Next, we consider a 2D computed tomography (CT) task on real-world data in order to
evaluate the detection capabilities of the UQ methods with respect to the three failure
modes (i)–(iii). More precisely, we consider limited angle CT, which has applications
in dental tomography, breast tomosynthesis or electron tomography. For this, G is a
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(a) (b) (c) (d)

Fig. 3 (a) Mean uncertainty of the three UQ methods for varying levels f of additive Gaussian on
the measurements y for the deconvolution task. (b) Corresponding results for additive noise on both the
measurements y and signals x. (c) Illustration of the directional information contained in the INN output
intervals for the deconvolution task. The additional right axis (in blue) displays the relative frequency of
signal components for each directionality ratio. (d) Corresponding results for the CT task. The mean and
standard deviation across three independent complete experimental runs are shown.

subsampled discrete Radon transform with subsampling corresponding to a moderate
missing wedge of 30◦. Limited angle measurements are simulated according to (1)
and the non-learned inversion G† is based on the filtered backprojection algorithm
(FBP) [21]. The underlying prediction network is a U-Net [25] variant. Our experi-
ments are based on a data set consisting of 512×512 human CT scans from the AAPM
Low Dose CT Grand Challenge data [20]1. In total, it contains 2580 full-dose images
with a slice thickness of 3mm from 10 patients. Eight of these ten patients were used
for training (2036 samples), one for validation (214 samples) and one for testing (330
samples). We trained the underlying network� for 400 epochs using Adam [15]. The
interval parameters of the INN were subsequently trained for another 15 epochs with
V = 10−4. We limited the interval training to the last twelve layers. For the MCDrop
comparison we use ) = 128 samples. The ProbOut model was trained in the same
way as� using 400 Adam epochs.

4.2.1 Experiment B (i): General Prediction Error Detection

First, we evaluate how helpful UQ scores are for estimating the prediction error
caused by the ill-posedness of the challenging CT task, see Fig. 4. The wedge of
missing angles in the measurements results in reconstruction artifacts especially
at vertical edges in the images. In order to best visualize these geometric effects
of the very structured null-space of the limited angle CT forward operator, we
do not add noise in this experiment. INNs are clearly able to reveal the recon-
struction uncertainty along the “missing edges”. For a more quantitative compari-
son of the UQ methods, we use the performance weighted correlation coefficient
PWCC(z, x) = corr( |�(z) − x |, u(z))/‖�(z) − x‖22 between the uncertainty score u
and the absolute prediction error. Performance weighting (normalizing by the mean
squared error of the prediction) is necessary to discourage rewards for poor prediction

1 See: https://www.aapm.org/GrandChallenge/LowDoseCT/. We would like to thank Dr. Cynthia Mc-
Collough, the Mayo Clinic, and the American Association of Physicists in Medicine as well as the grants
EB017095 and EB017185 from the National Institute of Biomedical Imaging and Bioengineering for
providing the AAPM data.

https://www.aapm.org/GrandChallenge/LowDoseCT/
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Fig. 4 Results of three UQ methods for the Error Detection experiment for one exemplary data sample of
the limited angle CT task. The plotting windows are equally adjusted for better contrast.

models with high uncertainties everywhere. The average results over the test set for
three independent complete experimental runs are summarized in Table 1. Both INNs
andMCDrop are able to detect prediction errors, with INNs achieving slightly higher
correlations. In Fig. 3d the directional accuracy of the INN is illustrated analogously
to the corresponding experiment in Section 4.1. Again it is consistently above 0.5
(chance).

4.2.2 Experiment B (ii): Adversarial Artifact Detection

Second, we assess the capacity of UQ methods to capture artifacts in the output that
were caused by adversarial perturbations. To that end, we create perturbed inputs for
each input sample z in the test set by employing the box-constrainedL-BFGSalgorithm
[4] to minimize ‖�(zadv) − xadv. tar.‖22 subject to zadv ∈ [0, 1]=. The adversarial
targets xadv. tar. are created by subtracting 1.5 times its mean value from xrec within
a random 50 × 50 square, leading to clearly visible artifacts in the corresponding
reconstructions; see Fig. 5. It is arguable, whether the technical aspects of such an
adversarial perturbation (i.e., attacking subsequently to a model-based inversion) is
a realistic scenario in the context of inverse problems. However, for our purposes,
such a simple setup (see also [13]) is sufficient. We refer to [1], where adversarial
noise is mapped to the measurement domain. In order to assess the detection capacity
for this failure mode, the different UQ schemes are then used to produce uncertainty
heatmaps for the generated adversarial inputs. A quantitative evaluation is carried
out by computing the mean Pearson correlation coefficient between the pixel-wise
change in the uncertainty heatmaps |u(z) −u(zadv) | and the change of reconstructions
|xrec − �(zadv) |. The results are summarized in Table 1 and illustrated in Fig. 5.
We observe that both INN and ProbOut are able to detect the image region of
adversarial perturbations, with INN achieving the highest correlation. This shows that
bothmethods are able to visually highlight the effect that visually almost imperceptible
input perturbations can have on the reconstructions.
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Table 1 Mean test results (± standard deviation) averaged over three experimental runs. Pearson correlation
coefficients for the Adversarial Artifact Detection (AdvDetect) andAtypical Artifact Detection (ArtShort)
experiments and PWCC with MSE for the Error Detection (ErrDetect) experiment.

UQ Method AdvDetect ArtDetect ErrDetect
PWCC MSE

INN 0.56 ± 0.05 0.52 ± 0.03 2211 ± 403 7.4 ± 0.65 × 10−4
MCDrop 0.28 ± 0.02 0.26 ± 0.01 2170 ± 513 7.4 ± 0.65 × 10−4
ProbOut 0.48 ± 0.12 0.34 ± 0.04 190 ± 28 6.7 ± 2 × 10−3
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Fig. 5 Results of three UQ methods for the AdvDetect and ArtDetect experiments for one exemplary
data sample of the limited angle CT task. The plotting windows are equally adjusted for better contrast.

4.2.3 Experiment B (iii): Atypical Artifact Detection

The third experiment is designed analogous to the setup described by [1], i.e., an
atypical artifact, which was not present in the training data, is randomly placed in
the input to produce zOoD. More precisely, the silhouette of a peace dove is inserted
in each image of the test set; see Fig. 5. The simulation of the measurements and
model-based inversions is carried out as before. A quantitative evaluation is carried
out by computing the mean Pearson correlation coefficient between the change in
the uncertainty heatmaps |u(z) − u(zOoD) | and a binary mask marking the region
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of change in the inputs. This evaluation isolates the uncertainty caused by atypical
artifacts and allows us to verify in a controlled manner how the uncertainty scores of
each UQ method react to the artifacts. During deployment such controlled isolation
is not possible. Instead, the joint uncertainty heatmaps u(zOoD) will also capture
other sources of uncertainty, thus providing a more comprehensive alarm system. The
results are summarized in Table 1 and illustrated in Fig. 5. All three UQ methods are
correlated with the input change, however INN again achieves the highest correlation.
This shows that UQ in general, and INNs in particular, can serve as a warning system
for inputs containing atypical features that might otherwise lead to unnoticed and
possibly erroneous reconstruction artifacts.

5 Conclusion

We introduced INNs as a deterministic, post-hoc and fast approach for computing
upper and lower bounds and subsequently uncertainty maps for pre-trained neural
networks. We demonstrated that UQ in general and INNs in particular can be used
to provide a fine-grained detection of failure modes of image reconstruction DNNs.
INNs are able to capture uncertainty due to noise and can be used to obtain directional
information. They perform well as an alarms system for errors due ill-posedness,
adversarial noise and atypical artifacts and thus offer a promising tool to expose the
weaknesses of deep image reconstruction models.
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