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Abstract Developers proposing new machine learning for health (ML4H) tools often
pledge to match or even surpass the performance of existing tools, yet the reality
is usually more complicated. Reliable deployment of ML4H to the real world is
challenging as examples from diabetic retinopathy or Covid-19 screening show. We
envision an integrated framework of algorithm auditing and quality control that
provides a path towards the effective and reliable application of ML systems in
healthcare. In this editorial, we give a summary of ongoing work towards that vision
and announce a call for participation to the special collection Machine Learning for
Health: Algorithm Auditing & Quality Control in this journal to advance the practice
of ML4H auditing.

Keywords Machine learning · Artificial intelligence · Algorithm · Health ·
Auditing · Quality control

1 Introduction

Machine learning (ML) technology promises to automate, speed up or improve medi-
cal processes. A large number of institutions and companies are ambitiously working
on fulfilling this promise spanning tasks such as medical image classification [23],
segmentation [80] or reconstruction [3], protein structure prediction [65] and elec-
trocardiography interpretation [73], among others1. However, the deployment of ma-
chine learning for health (ML4H) tools into real-world applications has been slow
because existing approval processes [77] may not account for the particular failure
modes and risks that accompany ML technology [56,21,54,10,5]. Certain changes
to image data that may not change the decision of a human expert can completely
alter the output of an image classification [68] or regression [41,51] model. Model
performance estimates are often not valid for the types of varying input distribution
that can occur during real world deployment [26,69,75]. The decision heuristics a
model learns can differ from the heuristics we may expect a human to use [46,39,23,
47], and model predictions may come with ill-calibrated statements of confidence [22,
6,44] or no estimate of uncertainty altogether [37]. Developers proposing new ML4H
technologies sometimes promise to match or even surpass the performance of existing
methods [58] yet the reality is often more complicated. Classical ML performance
evaluation does not automatically translate to clinical utility as examples from large
diabetic retinopathy projects [25] or Covid-19 diagnosis illustrate [49]. The reliable
and integrated management of these risks remains an open scientific and practical
hurdle.

In order to overcome this hurdle, we envision a framework of algorithm auditing
and quality control that provides a path towards the effective and reliable appli-
cation of ML systems in healthcare. In this editorial we give a brief summary of
ongoing work towards that vision from our open collective of collaborators. Many
of the considerations presented here originate from a consensus finding effort by
the International Telecommunication Union (ITU) and World Health Organization
(WHO) which started in 2018 as the Focus Group on Artificial Intelligence for Health
(FG-AI4H) [74].

1 The larger machine learning community maintains a good overview of tasks, benchmarks
and state-of-the-art methods at https://paperswithcode.com/.

https://paperswithcode.com/
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We are convinced that success on this path heavily depends on practical feedback.
Auditing processes that are developed on paper have to be put to the test to ensure
that they translate to utility in the actual auditing practice [50]. That is why we are
introducing the special collection Machine Learning for Health: Algorithm Auditing
& Quality Control in this journal (see the Call for Participation for more details2).
The special collection will provide a platform for the submission, discussion and
publication of audit methods and reports. The resulting compendium is intended to
be a useful resource for users, developers, vendors and auditors of ML4H systems to
manage and mitigate their particular risks.

2 ML4H Algorithm Auditing & Quality Control

From a bird’s eye view, many ML tools share a set of core components comprising
data, an ML-model and its outputs, as visualized in Figure 1 A . The typical ML
product life cycle goes through stages of planning, development, validation and,
potentially, deployment under appropriate monitoring (see Figure 1 B ). Feedback
loops between stages, for example from product validation back to development, are
commonplace3.

An audit entails a detailed assessment of an ML4H tool at one or more of the ML
life cycle steps. It can be carried out to anticipate, monitor, or retrospectively review
operations of the tool [66,38]. The audit output should consist of a comprehensive
standardized report that can be used by different stakeholders to efficiently com-
municate the tool’s strengths and limitations [50]. We envision a process by which
an independent body, for example appointed by a government, carries out the audit
using the methods and tools outlined below. Further, they can also be used by man-
ufacturers and researchers themselves to carry out internal quality control [59]. In
either scenario, the assessment is carried out with respect to a dynamic set of tech-
nical, clinical and regulatory considerations (see Figure 1 C ) that depend on the
concrete ML technology and the intended use of the tool. Audit teams should thus
comprise expertise in all these dimensions and have to be able to synthesize related
requirements across disciplines. In the following, we list a selection of considerations
for all three of these auditing dimensions, tools that can be used to aid the auditing
process as well as the role so called trial audits can play in advancing ML4H quality
control.

2.1 Auditing dimensions

The technical validation of an ML4H tool comprises the application of data and
ML model quality assessment methods to detect possible failure modes in the model’s
behavior. These include model-oriented metrics, such as predictive performance, ro-
bustness [8,27], interpretability [61,23], disparity [60] or uncertainty [37,52,41] but
also data-oriented metrics related to sample size determination [2], sparseness [43],

2 In the supplement and at this address https://aiaudit.org/joms/
3 Both representations A and B in Figure 1 are high level abstractions. A granular taxon-

omy of ML tools or their life cycles is beyond the scope of this editorial. We refer the interested
reader to [24] and our documentation [34] for an in-depth treatment.

https://aiaudit.org/joms/
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Fig. 1 Process overview. A : Most ML tools share a set of core components comprising data,
a ML-model and its outputs B : The typical ML life cycle goes through stages of planning,
development, validation and, potentially, deployment under appropriate monitoring C : An
ML4H audit is carried out with respect to a dynamic set of technical, clinical and regulatory
considerations that depend on the concrete ML technology and the intended use of the tool.

bias [48] distribution mismatch [55,42] and label quality [5]. Rigorous statistical anal-
ysis of the model metrics is a common pitfall in both research and industry, and thus
plays an important role during technical validation [53]. FG-AI4H has formulated a
standardized quality assessment framework based on existing good practices [34,70,
17] and provides practical guidance and examples for performing technical validation
audits on three ML4H tools [50].

Clinical evaluation comprises an “ongoing procedure to collect, appraise and
analyse clinical data pertaining to a medical device and to analyse whether there
is sufficient clinical evidence to confirm compliance with relevant essential require-
ments for safety and performance when using the device according to the manufac-
turer’s instructions for use” [13]. The EQUATOR-network, including STARD-AI [67],
CONSORT-AI [40] and SPIRIT-AI [57], as well as different scientific journals and
associations [4,64,29,63], have developed guidelines for the design, implementation,
reporting and evaluation of AI interventions in various study designs. Key concerns
are whether the ML4H tool delivers utility in clinical pathways, how cost-effective
the clinician-tool interaction is [62] and whether it provides the desired benefits for
the intended users [19]. To demonstrate reliable performance, it is important to look
beyond common machine learning performance statistics such as accuracy and to
evaluate in addition whether the ML4H tool is suited to the clinical setting in which
it will be used; for example, whether the training and test data represent patient
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populations that are similar to the intended use population [5,35] and whether the
output translates to medically meaningful parameters [45].

Regulatory assessment comprises the systematic evaluation of ML4H tools
with respect to the applicable regulatory requirements found in laws (MDR [12],
IVDR [11], 21 CFR [15], among others), to international standards (such as IEC
62304 [30], IEC 62366-1 [31] and ISO 14971 [33]), to guidelines by regulatory bodies
(for example FDA [16], IMDRF [32]) or to guidelines and drafts by other organi-
zations (for example AAMI [1] or European Commission [14]). Such guidance is of
practical concern for stakeholders in the ML4H ecosystem including manufacturers
(e.g. product managers, developers, developers and data scientists, quality and regu-
latory affairs managers) and for regulatory bodies (authorities, notified bodies). The
FG-AI4H has identified and critically reviewed general yet fundamental regulatory
considerations related to ML4H. This overview of regulatory considerations assess-
ment have been converted into specific and verifiable requirements and subsequently
published as a comprehensive assessment checklist entitled “Good practices for health
applications of machine learning: Considerations for manufacturers and regulators”
[34] which covers the entire life cycle outlined in Figure 1 B at a higher resolu-
tion. It includes checklist items which should be given high priority in the presence
of limited time - an important practical constraint for real-world audits. Examples
and comments give further guidance to users. New regulatory developments, such as
predetermined change control plans [71], imply faster software update cycles and po-
tentially more frequent audits. Hence, good tooling can become an important means
to make effective as well as efficient audits possible.

2.2 Auditing Tools

The auditing process can be supported by appropriate tools to make it more targeted
and time-efficient. This can include process and requirements descriptions, as men-
tioned above [17,34,19], which help to manage dynamic workflows that may vary by
use case and ML technology. It also includes reporting templates to present the audit
results in a standardized way for the communication between different stakeholders.
[72,50]. In addition, the nature of ML4H tools, as primarily software that interacts
with data, lends itself to the application of test automation and simulations for the
purpose of auditing. This requires software tools which can handle custom evaluation
scripts, the flexible processing of different ML4H model formats and data modalities
as well as security protocols that protect intellectual property and sensitive patient
information [20]. We are working with open source frameworks such as EvalAI [78]
and MLflow [9] to develop solutions for automated auditing4, federated auditing in
remote teams5 and automated report creation. Our first demo platform is available
via http://health.aiaudit.org/6 and hosted on ITU provisioned infrastructure.
While quantitative performance measures can already be provided, it is essential
to also offer qualitative measures. This is realized by requiring the users to fill out
a standardized questionnaire [18]. Quantitative and qualitative performance results
are then provided to the users as a comprehensive and standardized report card [72].

4 https://github.com/aiaudit-org/health-aiaudit-public
5 https://github.com/aiaudit-org/amazon-sagemaker-mlflow-fargate
6 You are welcome to reach out to any of the contributors https://aiaudit.org/

contributors/ for information on how to join the efforts.

http://health.aiaudit.org/
https://github.com/aiaudit-org/health-aiaudit-public
https://github.com/aiaudit-org/amazon-sagemaker-mlflow-fargate
https://aiaudit.org/contributors/
https://aiaudit.org/contributors/


Machine Learning for Health: Algorithm Auditing & Quality Control 7

2.3 Trial Audits

We are convinced that success on the path towards a framework for algorithm audit-
ing and quality control depends heavily on practical feedback. The development and
refinement of auditing processes should routinely be accompanied by trial audits. In
trial audits, draft processes and standards are applied to ML4H tools. The purpose
of such an exercise is to ensure that auditing processes developed on paper translate
to utility in actual auditing practice [50]. In order to facilitate the implementation of
trial audits, we are introducing the special collection Machine Learning for Health:
Algorithm Auditing & Quality Control in this journal. We welcome contributions
pertaining to methods, tools, reports or open challenges in ML4H auditing.

3 Outlook

The materials summarized above bear testimony to the initial progress that has been
made towards the creation of frameworks for ML4H algorithm auditing and quality
control. Nevertheless, new challenges emerge as we collectively pull at the complex
fabric that ML4H systems are.

From the perspective of technical validation, the identification of factors which
bias or deteriorate algorithmic performance is often constrained by the absence of
relevant metadata. For example, the measurement device types (and related acquisi-
tion parameters) used to produce the validation inputs should be available in order
to validate if the model performance is robust under device type changes. This prob-
lem can be alleviated by identifying and routinely recording this information during
data acquisition.

For clinical evaluation, future considerations include extending and refining the
specific requirements related to how the clinical effectiveness of a tool should be
monitored after implementation of the algorithm and with ongoing monitoring [12].
This also requires agreement over the clear and clinically useful procedures to ob-
tain ground truth annotations. It might be necessary to refine the ML algorithm to
the target population, if demographics or clinical character are different from train-
ing settings or if medical guidelines for diagnostics or treatment have changed [36].
Therefore, in order for these insights to be effective it is imperative that auditors
exhibit a solid understanding of the training data, ML algorithm, independent test
data and evaluation metrics specific to the intended use.

A challenge for regulatory assessment is that standardization organizations, no-
tified bodies and manufacturers need to efficiently formulate and parse applicable
regulatory requirements for each individual ML4H tool. Comprehensive assessment
checklists [34,4] can help with that task. However, more support is needed in terms
of workflow management and assisting tools if we consider the limited time and bud-
gets which professional auditors have at their disposal. Future regulatory checklists
should allow for interactive selection of use-case specific sub-checklists, an automated
audit report creation, a collection of standard minimum test cases as well as accom-
panying glossaries and education materials for auditors. We also have to ensure that
protocols are in place which translate the audit insights to actual improvements in
the ML4H tool. Managing the risks presented by the exciting advances of AI in
healthcare is a formidable undertaking, but with collaborative pooling of expertise
and resources we believe we can rise to the task.
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M.A.: Improving uncertainty estimation with semi-supervised deep learning for covid-
19 detection using chest x-ray images. IEEE Access 9, 85442–85454 (2021). DOI
10.1109/ACCESS.2021.3085418

7. Candès, E., Fan, Y., Janson, L., Lv, J.: Panning for gold:‘model-x’knockoffs for high di-
mensional controlled variable selection. Journal of the Royal Statistical Society: Series B
(Statistical Methodology) 80(3), 551–577 (2018)

8. Carlini, N., Wagner, D.: Towards evaluating the robustness of neural networks. In: 2017
ieee symposium on security and privacy (sp), pp. 39–57. IEEE (2017)

9. Chen, A., Chow, A., Davidson, A., DCunha, A., Ghodsi, A., Hong, S.A., Konwinski,
A., Mewald, C., Murching, S., Nykodym, T., Ogilvie, P., Parkhe, M., Singh, A., Xie,
F., Zaharia, M., Zang, R., Zheng, J., Zumar, C.: Developments in mlflow: A system to
accelerate the machine learning lifecycle. In: Proceedings of the Fourth International
Workshop on Data Management for End-to-End Machine Learning, DEEM’20. Association
for Computing Machinery, New York, NY, USA (2020). DOI 10.1145/3399579.3399867.
URL https://doi.org/10.1145/3399579.3399867

10. D’Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C.,
Deaton, J., Eisenstein, J., Hoffman, M.D., et al.: Underspecification presents challenges
for credibility in modern machine learning. arXiv preprint arXiv:2011.03395 (2020)

11. EU: Regulation (eu) 2017/746 of the european parliament and of the council on in vitro
diagnostic medical devices (2017). URL https://eur-lex.europa.eu/eli/reg/2017/746/
oj

12. EU: Regulation (eu) 2017/746 of the european parliament and of the council on medical
devices (2017). URL https://eur-lex.europa.eu/eli/reg/2017/745/oj

13. EUROPEAN-COMMISSION: Meddev 2.7/1 revision 4, clinical evaluation: a guide for
manufacturers and notified bodies. https://ec.europa.eu/docsroom/documents/17522/
attachments/1/translations/en/renditions/native (2016). (Accessed on 07/01/2021)

14. EUROPEAN-COMMISSION: Eur-lex - 52021pc0206 - en - eur-lex. https://
eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206 (2021). (Accessed
on 07/01/2021)

15. FDA: Code of federal regulations, title 21 on foods and drugs. URL https:
//www.ecfr.gov/cgi-bin/text-idx?SID=cc74806513924f0197b7809c8efbefc8&mc=
true&tpl=/ecfrbrowse/Title21/21tab_02.tpl

16. FDA: Fda guidance documents. URL https://www.fda.gov/regulatory-information/
search-fda-guidance-documents

17. FG-AI4H: Data and artificial intelligence assessment methods (daisam) reference. Refer-
ence document DEL 7.3 on FG-AI4H server (2020). URL https://extranet.itu.int/
sites/itu-t/focusgroups/ai4h/SitePages/Home.aspx

18. FG-AI4H: Model questionnaire. Reference document J-038 on FG-AI4H server (2020).
URL https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/SitePages/Home.aspx

19. FG-AI4H: Clinical evaluation of ai for health. Reference document DEL 7.4 on FG-
AI4H server (2021). URL https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/
SitePages/Home.aspx

https://store.aami.org/s/store#/store/browse/detail/a152E000006j60WQAQ
https://doi.org/10.1145/3399579.3399867
https://eur-lex.europa.eu/eli/reg/2017/746/oj
https://eur-lex.europa.eu/eli/reg/2017/746/oj
https://eur-lex.europa.eu/eli/reg/2017/745/oj
https://ec.europa.eu/docsroom/documents/17522/attachments/1/translations/en/renditions/native
https://ec.europa.eu/docsroom/documents/17522/attachments/1/translations/en/renditions/native
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206
https://www.ecfr.gov/cgi-bin/text-idx?SID=cc74806513924f0197b7809c8efbefc8&mc=true&tpl=/ecfrbrowse/Title21/21tab_02.tpl
https://www.ecfr.gov/cgi-bin/text-idx?SID=cc74806513924f0197b7809c8efbefc8&mc=true&tpl=/ecfrbrowse/Title21/21tab_02.tpl
https://www.ecfr.gov/cgi-bin/text-idx?SID=cc74806513924f0197b7809c8efbefc8&mc=true&tpl=/ecfrbrowse/Title21/21tab_02.tpl
https://www.fda.gov/regulatory-information/search-fda-guidance-documents
https://www.fda.gov/regulatory-information/search-fda-guidance-documents
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/SitePages/Home.aspx
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/SitePages/Home.aspx
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/SitePages/Home.aspx
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/SitePages/Home.aspx
https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/SitePages/Home.aspx


Machine Learning for Health: Algorithm Auditing & Quality Control 9

20. FG-AI4H: Data sharing practices. Reference document DEL 5.6 on FG-AI4H server (2021).
URL https://extranet.itu.int/sites/itu-t/focusgroups/ai4h/SitePages/Home.aspx

21. Gilmer, J., Ford, N., Carlini, N., Cubuk, E.: Adversarial examples are a natural con-
sequence of test error in noise. In: International Conference on Machine Learning, pp.
2280–2289. PMLR (2019)

22. Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks.
In: International Conference on Machine Learning, pp. 1321–1330. PMLR (2017)
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Appendices

Call for Papers

The Journal of Medical Systems (JOMS) and the aiaudit.org collective invite
submissions to the special issue on

Machine Learning for Health: Algorithm Auditing & Quality Control

We invite researchers and practitioners in the fields of machine learning, medicine,
regulation and quality management to submit their work. The scope comprises (trial)
audit reports on ML4H applications as well as work related to methods, tools or
open challenges in ML4H auditing.

The resulting compendium is intended as a useful resource of examples and guidance
for users, developers, vendors and auditors of ML4H systems to better understand,
manage and mitigate their particular risks. Manuscripts which treat topics from an
integrated perspective across disciplines are encouraged. Below you can find a list of
examples for each category as possible guidance:

Audit reports

– External Validation of a Widely Implemented Proprietary Sepsis Prediction Model
in Hospitalized Patients [76]

– ML4H Auditing: From Paper to Practice [50]

Methods

– Benchmarking Neural Network Robustness to Common Corruptions and Pertur-
bations [28]

– Panning for gold:‘model-X’knockoffs for high dimensional controlled variable se-
lection [7]

https://www.springer.com/journal/10916/
https://aiaudit.org/
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Tools

– EvalAI: Towards Better Evaluation Systems for AI Agents [78]
– Developments in MLflow: A System to Accelerate the Machine Learning Lifecycle

[9]

Open challenges

– Understanding deep learning (still) requires rethinking generalization [79]
– Underspecification presents challenges for credibility in modern machine learning

[10]

Manuscripts should be submitted as Original Research Articles (up to 3,000 words)
or Brief Technical Reports (up to 1,500 words) through the JOMS Editorial Man-
ager7 and will, upon successful peer-review and acceptance, be published in JOMS.
You can find more information on the overall submission guidelines of the journal at
the address linked below8. Please use the document template provided by JOMS9,10.

In case of questions you can reach the editorial team via

Ednalyn Reyes
ednalyn.reyes@springernature.com.

We are looking forward to receiving your contributions.

On behalf of the editorial team
Jesse Ehrenfeld, Ednalyn Reyes, Luis Oala
Cyberspace, October 18, 2021

7 https://www.editorialmanager.com/joms/default.aspx
8 https://www.springer.com/journal/10916/submission-guidelines
9 LATEXhttps://static.springer.com/sgw/documents/468198/application/zip/LaTeX_

DL_468198_01072021.zip
10 MS Word https://static.springer.com/sgw/documents/431298/application/zip/

sv-journ.zip

mailto:ednalyn.reyes@springernature.com
https://www.editorialmanager.com/joms/default.aspx
https://www.springer.com/journal/10916/submission-guidelines
https://static.springer.com/sgw/documents/468198/application/zip/LaTeX_DL_468198_01072021.zip
https://static.springer.com/sgw/documents/468198/application/zip/LaTeX_DL_468198_01072021.zip
https://static.springer.com/sgw/documents/431298/application/zip/sv-journ.zip
https://static.springer.com/sgw/documents/431298/application/zip/sv-journ.zip
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