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Abstract

The quantitative detection of failure modes is im-
portant for making deep neural networks reliable
and usable at scale. We consider three exam-
ples for failure modes in image reconstruction
problems and demonstrate the potential of un-
certainty quantification as a fine-grained alarm
system. We propose a deterministic, modular and
lightweight approach, called Interval Neural Net-
works, that produces fast and easy to interpret
uncertainty scores which improve the detection
of failure modes across four out of five image
reconstruction experiments.

1. Introduction

Deep neural networks (DNN5s) play an important role in
many computational imaging tasks. Conceptually, these
tasks can often be modelled as finite-dimensional linear in-
verse problems @ = Ay + 1 where y € R" is the unknown
signal of interest, A € R™*"™ denotes the forward operator
representing a physical measurement process, and n € R™
is modelling noise in the measurements. Solving the inverse
problem amounts to computing an approximate reconstruc-
tion of y from its observed measurements ='. Many popular
applications such as image translation (domain mapping),
super-resolution, denoising or image synthesis, fall in this
problem category. Medical imaging technologies such as
computed tomography (CT) or magnetic resonance imaging
in particular are oft cited examples for the promise of DNN
image reconstruction technology, see (Kang et al., 2017;
Jin et al., 2017; Hammernik et al., 2018; Adler & Oktem,
2018; Arridge et al., 2019) for recent examples. Despite
this progress, it has been demonstrated that the reliability of
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DNN based reconstructions are a concern (Adler & Oktem,
2018; Ardizzone et al., 2018; Huang et al., 2018; Antun
et al., 2019; Gottschling et al., 2020) when compared to
traditional, model-based approaches. Erroneous artifacts in
the output image can be hard to detect when they blend in
well with the rest of the output image. What is more, lo-
cal reliability assessment of individual outputs can quickly
become expensive and stifles the deployment of DNNs at
scale. In this work we explore the automatic detection of
DNN failure modes (Dietterich, 2019) using uncertainty
quantification (UQ). We consider three failure modes during
inference: adversarial noise artifacts, atypical input artifacts
and prediction errors on benign inference data. We present
a deterministic, modular and fast approach, called Interval
Neural Networks (INN), to obtain uncertainty scores which
improve the detection of failure modes across four out of
five inverse problem experiments.

2. Related Work

Whereas a number of methods from classical statistical
learning theory, such as Gaussian processes and approxi-
mations thereof (Denker et al., 1987; MacKay, 1992; Neal,
1996; Williams, 1996), come with built-in uncertainty es-
timates, DNNs have been limited in this regard. A surge
of efforts to treat neural networks from a variational per-
spective (Barber & Bishop, 1998; Srivastava et al., 2014;
Blundell et al., 2015; Kingma et al., 2015) started to change
that. In addition, there exist strands of research in deep
learning explicitly occupied with the detection of failure
modes caused by adversarial and out of distribution (OoD)
inputs. These include Maximum Mean Discrepancy, Kernel
Density Estimation and other tools, see (Carlini & Wagner,
2017) or the Minimum Covariance Determinant method
(Rousseeuw, 1984), Support Vector Data Description (Tax
& Duin, 2004), ODIN (Liang et al., 2019), Outlier Expo-
sure (Hendrycks et al., 2019), or detection in latent space
(Gémez-Bombarelli et al., 2018). The detection of adversar-
ial and OoD inputs in these works is typically done in the
classification setting. We emphasize that image-to-image re-
gression is a fundamentally different task: While classifica-
tion is inherently discontinuous, image-to-image regression
addresses a problem that allows for stable reconstruction
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methods in many cases, e.g. by sparse regularization. Fur-
thermore, we are not interested in a crude, outright rejection
of data points in the input space but rather seek to obtain
fine-grained information about erroneous artifacts in the
output space. More closely related to our goal is the work
of (Gal & Ghahramani, 2016; Kendall & Gal, 2017), Monte
Carlo dropout (MCDROP), and (Gast & Roth, 2018), di-
rect variance estimation (PROBOUT), where epistemic and
aleatoric uncertainty quantification, respectively, was con-
sidered for segmentation and depth-estimation tasks. Hence,
we include their approaches as baseline detection methods.
See Section E.1 in the appendices for a detailed description.

3. Method

Popular existing UQ frameworks for DNNs rely on placing
parametric densities, most commonly a Gaussian density,
over DNN parameters or predictions. Our INN method
relies on bounding this distribution using intervals. The rea-
son for exploring INNs for the detection of failure modes
lies in their flexibility. They are modular and can be con-
structed post hoc for a trained prediction network that may
already be in use. Thus INNs do not require to touch or
modify the prediction network itself. Given a trained, un-
derlying prediction DNN @ we construct an interval neural
network around it. A schematic illustration is provided in
Appendix A. Finally, the produced intervals are simple to
interpret: they provide a range of values a DNN output node
may take with exact upper and lower bounds. (Garczarczyk,
2000) have previously investigated the capacity of neural
networks with interval weights and biases for fitting interval
valued functions. Note that (Yang & Wu, 2012; Kowalski
& Kulezycki, 2017) also explored interval neural networks
for robust classification although in their setting the focus
is purely on representing the inputs or outputs as intervals.
Our resulting INN is different in that interval bounds are de-
termined for all parameters of the network with the goal of
providing uncertainty scores for the outputs. INNs have the
following mechanisms that deviate from the usual arithmetic.
The forward propagation of a component-wise interval val-
ued input [x; Z] through the INN can be expressed similarly
to standard feed-forward neural networks but using inter-
val arithmetic instead. For interval valued weight matrices

W ;W and bias vectors b;b the propagation through
the I-th layer can be expressed by

@ =% wW @z + ud©

For positive values of [z; Z]®, for example when using a
non-negative activation function like ReLU, we can simplify
this operation to

n (@) n (0]
D= min W(l);() z®tmax W(l);O E(l)+5(l) :
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where the maximum and minimum functions are applied
component-wise. Assuming 2 = ZO =: 2® for the
input layer before the first ReLU the same operation can be
represented as follows to also process negative values:

0Dy W(l)max{a:(l);0}+E(l)min{w(l);0}+g(l) :
2D =y E(l)max{a:(l);O}—&—W(l)min{ax(l);O}—&—Q(l) :

These formulas can then easily be used in existing deep
learning frameworks to optimize the bounds of the interval
parameters using backpropagation. As we want the output
intervals to contain the target values after training, we define
the interval loss to be zero if a target lies inside the interval
and the squared distance to the interval boundary if it lies
outside the interval. As this alone would lead to output
intervals expanding until they cover the whole range of
target values, we additionally employ a linear penalty on
the interval size. For the data set {@;;y,}.~, consisting
of inputs ¢; € X and targets y, € ), this leads to the
following INN loss. Here, X 5 Y, P X - Yare
the functions that map the input to the upper and the lower
interval bounds in the output of the INN:

>< _
max{y, — D(z;); 0}

=1

+ max{®(x;) — y;;0}* +

- D(x;) — P(xi) 1 (1)

The tightness parameter > 0 determines how outlier-
sensitive the intervals are trained. In practice, choosing
similar to the mean absolute error made by the underly-
ing prediction network works well. The output uncertainty
estimates of an INN are then given by the width of the pre-
diction interval, i.e., uinn () = @(x) — @(x). In terms of
run time, INNs scale linearly in the number of underlying
prediction DNN operations K with a constant factor of 2.
In contrast, (Gal & Ghahramani, 2016) scales linearly with
a factor T which is proportional to the number of stochastic
forward passes and T = 10 is recommended by the authors
as a rule of thumb.

The coverage bounds represented by the intervals are the-
oretically justified. Assuming the loss in Equation (1) is
optimized during training to yield an INN for which the
expected gradient with respect to the data distribution is
zero, we can give the following bound using the Markov In-
equality: Let the training data be represented by the random
variable (x*;y*) distributed on X’ x Y according to the
training data distribution. Then, for any > 0, we obtain

P(@(z") ~ <y <P(z")+ |z*)=21--;

i.e. for any input and target sampled form the distribution of
training samples, the probability of the target lying inside






