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Abstract
The quantitative detection of failure modes is im-
portant for making deep neural networks reliable
and usable at scale. We consider three exam-
ples for failure modes in image reconstruction
problems and demonstrate the potential of un-
certainty quantification as a fine-grained alarm
system. We propose a deterministic, modular and
lightweight approach, called Interval Neural Net-
works, that produces fast and easy to interpret
uncertainty scores which improve the detection
of failure modes across four out of five image
reconstruction experiments.

1. Introduction
Deep neural networks (DNNs) play an important role in
many computational imaging tasks. Conceptually, these
tasks can often be modelled as finite-dimensional linear in-
verse problems x = Ay+η where y ∈ Rn is the unknown
signal of interest,A ∈ Rm×n denotes the forward operator
representing a physical measurement process, and η ∈ Rm
is modelling noise in the measurements. Solving the inverse
problem amounts to computing an approximate reconstruc-
tion of y from its observed measurements x1. Many popular
applications such as image translation (domain mapping),
super-resolution, denoising or image synthesis, fall in this
problem category. Medical imaging technologies such as
computed tomography (CT) or magnetic resonance imaging
in particular are oft cited examples for the promise of DNN
image reconstruction technology, see (Kang et al., 2017;
Jin et al., 2017; Hammernik et al., 2018; Adler & Öktem,
2018; Arridge et al., 2019) for recent examples. Despite
this progress, it has been demonstrated that the reliability of
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DNN based reconstructions are a concern (Adler & Öktem,
2018; Ardizzone et al., 2018; Huang et al., 2018; Antun
et al., 2019; Gottschling et al., 2020) when compared to
traditional, model-based approaches. Erroneous artifacts in
the output image can be hard to detect when they blend in
well with the rest of the output image. What is more, lo-
cal reliability assessment of individual outputs can quickly
become expensive and stifles the deployment of DNNs at
scale. In this work we explore the automatic detection of
DNN failure modes (Dietterich, 2019) using uncertainty
quantification (UQ). We consider three failure modes during
inference: adversarial noise artifacts, atypical input artifacts
and prediction errors on benign inference data. We present
a deterministic, modular and fast approach, called Interval
Neural Networks (INN), to obtain uncertainty scores which
improve the detection of failure modes across four out of
five inverse problem experiments.

2. Related Work
Whereas a number of methods from classical statistical
learning theory, such as Gaussian processes and approxi-
mations thereof (Denker et al., 1987; MacKay, 1992; Neal,
1996; Williams, 1996), come with built-in uncertainty es-
timates, DNNs have been limited in this regard. A surge
of efforts to treat neural networks from a variational per-
spective (Barber & Bishop, 1998; Srivastava et al., 2014;
Blundell et al., 2015; Kingma et al., 2015) started to change
that. In addition, there exist strands of research in deep
learning explicitly occupied with the detection of failure
modes caused by adversarial and out of distribution (OoD)
inputs. These include Maximum Mean Discrepancy, Kernel
Density Estimation and other tools, see (Carlini & Wagner,
2017) or the Minimum Covariance Determinant method
(Rousseeuw, 1984), Support Vector Data Description (Tax
& Duin, 2004), ODIN (Liang et al., 2019), Outlier Expo-
sure (Hendrycks et al., 2019), or detection in latent space
(Gómez-Bombarelli et al., 2018). The detection of adversar-
ial and OoD inputs in these works is typically done in the
classification setting. We emphasize that image-to-image re-
gression is a fundamentally different task: While classifica-
tion is inherently discontinuous, image-to-image regression
addresses a problem that allows for stable reconstruction
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methods in many cases, e.g. by sparse regularization. Fur-
thermore, we are not interested in a crude, outright rejection
of data points in the input space but rather seek to obtain
fine-grained information about erroneous artifacts in the
output space. More closely related to our goal is the work
of (Gal & Ghahramani, 2016; Kendall & Gal, 2017), Monte
Carlo dropout (MCDROP), and (Gast & Roth, 2018), di-
rect variance estimation (PROBOUT), where epistemic and
aleatoric uncertainty quantification, respectively, was con-
sidered for segmentation and depth-estimation tasks. Hence,
we include their approaches as baseline detection methods.
See Section E.1 in the appendices for a detailed description.

3. Method
Popular existing UQ frameworks for DNNs rely on placing
parametric densities, most commonly a Gaussian density,
over DNN parameters or predictions. Our INN method
relies on bounding this distribution using intervals. The rea-
son for exploring INNs for the detection of failure modes
lies in their flexibility. They are modular and can be con-
structed post hoc for a trained prediction network that may
already be in use. Thus INNs do not require to touch or
modify the prediction network itself. Given a trained, un-
derlying prediction DNN Φ we construct an interval neural
network around it. A schematic illustration is provided in
Appendix A. Finally, the produced intervals are simple to
interpret: they provide a range of values a DNN output node
may take with exact upper and lower bounds. (Garczarczyk,
2000) have previously investigated the capacity of neural
networks with interval weights and biases for fitting interval
valued functions. Note that (Yang & Wu, 2012; Kowalski
& Kulczycki, 2017) also explored interval neural networks
for robust classification although in their setting the focus
is purely on representing the inputs or outputs as intervals.
Our resulting INN is different in that interval bounds are de-
termined for all parameters of the network with the goal of
providing uncertainty scores for the outputs. INNs have the
following mechanisms that deviate from the usual arithmetic.
The forward propagation of a component-wise interval val-
ued input [x,x] through the INN can be expressed similarly
to standard feed-forward neural networks but using inter-
val arithmetic instead. For interval valued weight matrices[
W ,W

]
and bias vectors

[
b, b
]

the propagation through
the l-th layer can be expressed by

[x,x]
(l+1)

= %
([
W ,W

](l)
[x,x]

(l)
+
[
b, b
](l))

.

For positive values of [x,x](l), for example when using a
non-negative activation function like ReLU, we can simplify
this operation to

x(l+1)=%
(

min
{
W

(l)
,0
}
x(l)+max

{
W

(l)
,0
}
x(l)+b

(l)
)
,

x(l+1)=%
(

max
{
W (l),0

}
x(l)+min

{
W (l),0

}
x(l)+b(l)

)
,

where the maximum and minimum functions are applied
component-wise. Assuming x(l) = x(l) =: x(l) for the
input layer before the first ReLU the same operation can be
represented as follows to also process negative values:

x(l+1)=%
(
W

(l)
max{x(l),0}+W (l)min{x(l),0}+b(l)

)
,

x(l+1)=%
(
W (l)max{x(l),0}+W (l)

min{x(l),0}+b(l)
)
.

These formulas can then easily be used in existing deep
learning frameworks to optimize the bounds of the interval
parameters using backpropagation. As we want the output
intervals to contain the target values after training, we define
the interval loss to be zero if a target lies inside the interval
and the squared distance to the interval boundary if it lies
outside the interval. As this alone would lead to output
intervals expanding until they cover the whole range of
target values, we additionally employ a linear penalty on
the interval size. For the data set {xi,yi}

m
i=1 consisting

of inputs xi ∈ X and targets yi ∈ Y , this leads to the
following INN loss. Here, Φ : X → Y , Φ : X → Y are
the functions that map the input to the upper and the lower
interval bounds in the output of the INN:

L(Φ,Φ) =

m∑
i=1

max{yi −Φ(xi), 0}2

+ max{Φ(xi)− yi, 0}2 + β ·
(
Φ(xi)−Φ(xi)

)
. (1)

The tightness parameter β > 0 determines how outlier-
sensitive the intervals are trained. In practice, choosing β
similar to the mean absolute error made by the underly-
ing prediction network works well. The output uncertainty
estimates of an INN are then given by the width of the pre-
diction interval, i.e., uINN(x) = Φ(x)−Φ(x). In terms of
run time, INNs scale linearly in the number of underlying
prediction DNN operations K with a constant factor of 2.
In contrast, (Gal & Ghahramani, 2016) scales linearly with
a factor T which is proportional to the number of stochastic
forward passes and T = 10 is recommended by the authors
as a rule of thumb.

The coverage bounds represented by the intervals are the-
oretically justified. Assuming the loss in Equation (1) is
optimized during training to yield an INN for which the
expected gradient with respect to the data distribution is
zero, we can give the following bound using the Markov In-
equality: Let the training data be represented by the random
variable (x∗,y∗) distributed on X × Y according to the
training data distribution. Then, for any λ > 0, we obtain

P(Φ(x∗)− λβ < y∗ < Φ(x∗) + λβ |x∗) ≥ 1− 1

λ
,

i.e. for any input and target sampled form the distribution of
training samples, the probability of the target lying inside
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Figure 1. Results of three UQ methods for the ADVDETECT and ARTDETECT experiments for one exemplary data sample of the Limited
Angle CT task. The plotting windows are slightly adjusted for better contrast.

the predicted interval, which is enlarged by λβ, is at least
1− 1

λ . See Appendix C for a full proof. We devised a toy
inverse problem 1D Deconvolution (1DDECONV), inspired
by a one-dimensional deconvolution, to illustrate this point.
The task for the DNN is to reconstruct the original signal
from the blurred measurements (see top of Figure 4 for an
illustration). Indeed, we can observe that 89% of ground
truth values lie inside the output intervals. This type of
assessment is not possible with the popular Gaussian-based
UQ methods. Further, INNs are able to capture noise con-
tained in the inputs using the interval bias parameters in the
last layer: the average interval size increases with increasing
noise levels as summarized in Figure 5 for the controlled
1DDECONV simulation. Note how the MCDROP approach
is not able to capture these deviations in the output. This
difference can also be observed in the right column of Fig-
ure 4 for the 1DDECONV task with independent Gaussian
noise (σ = 0.05) added to the inputs and targets. Thus, we
place INNs at the intersection of epistemic and aleatoric
uncertainty: we are able to capture and propagate model

uncertainty via interval weights while at the same time ac-
commodating observation noise. Finally, if the prediction
from the underlying network lies closer to one boundary
of the output interval, one can infer directional information
about the error. The directional information contained in
INN uncertainty scores leads to direction accuracy that is
12 to 25 percentage points above chance for the 1DDE-
CONV task as documented in Figure 6. This is in contrast
to symmetric uncertainty score approaches like MCDROP
and PROBOUT. We note that it is possible to explore asym-
metry, e.g. via exponential family distributions (Wang et al.,
2016), and intervals, e.g. via quantile regression (Koenker
& Hallock, 2001; Rodrigues & Pereira, 2020), in the prob-
abilistic setting, too, but in contrast to INNs this would
imply substantial modifications to and retraining of the un-
derlying prediction network. For completeness we provide a
formal comment on how to treat INNs from a probabilistic,
Bayesian perspective in Appendix D. Next, we demonstrate
how these mechanisms can be successfully used for the
detection of failure modes in image reconstructions.
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Table 1. Mean test results (± standard deviation) averaged over three experimental runs. Pearson correlation coefficients for the Adversarial
Artifact Detection and Atypical Artifact Detection experiments and PWCC with MSE for the EC experiment.

ADVDETECT ARTDETECT EC
UQ Method CT DENOISE CT DENOISE PWCC MSE

INN 0.56± 0.05 0.77± 0.008 0.52± 0.03 0.69± 0.006 2211± 403 7.4± 0.65× 10−4

MCDROP 0.28± 0.02 0.20± 0.001 0.26± 0.01 0.44± 0.02 2170± 513 7.4± 0.65× 10−4

PROBOUT 0.48± 0.12 0.81± 0.002 0.34± 0.04 0.44± 0.01 190± 28 6.7± 2× 10−3

4. Experiments
Two image reconstruction tasks are considered for the fail-
ure mode detection experiments: using a DNN to enhance
the reconstructions of subsampled CT measurements (CT)
and using a DNN to remove Gaussian noise from grayscale
images (DENOISE). We consider a straight-forward ap-
proach to solving the reconstruction tasks, which is based
on post-processing a standard model-based inversion by
a neural network (Zhang et al., 2016; Kang et al., 2017;
Jin et al., 2017). Thus, the reconstruction is given by
yrec = Φ(A†x) where Φ : Rn → Rn denotes the predic-
tion network (trained to minimize the loss ‖y−Φ(A†x)‖22),
x̃ = A†x denotes the model-based inversion and A† the
non-learned model-based inversion operator (filtered back-
projection (Natterer, 2001) for the CT task and identity for
the DENOISE task). More details about the data and neu-
ral network architectures used for both tasks can be found
Appendix E. We consider three failure modes during infer-
ence: adversarial noise artifacts, atypical input artifacts and
prediction errors on benign inference data. First, in the Ad-
versarial Artifact Detection (ADVDETECT) experiments we
assess the capacity of UQ to capture artifacts in the output
that were caused by adversarial noise. To that end, we create
perturbed inputs for each measurement sample y in the test
set by employing the box-constrained L-BFGS algorithm
(Byrd et al., 1995) to minimize

‖Φ(x̃adv)− yadv. tar.‖22 + λ‖x̃adv − x̃‖22, (2)

wrt x̃adv ∈ [0, 1]n, where yadv. tar. represents the adversar-
ial target, and λ ≥ 0 is a parameter for balancing the two
terms in (2). Details about the noise generation process are
documented in Appendix E. In order to assess the detection
capacity for this failure mode, the different UQ schemes
are then used to produce uncertainty heatmaps for the gen-
erated adversarial inputs. A quantitative evaluation is car-
ried out by computing the mean Pearson correlation coef-
ficient between the pixel-wise change in the uncertainty
heatmaps |u(x̃) − u(x̃adv)| and the change of reconstruc-
tions |yrec−Φ(x̃adv)|. The results are summarized in Table 1
and illustrated in Figures 1 and 9. We observe that both INN
and PROBOUT are able to detect the image region of ad-
versarial perturbations, with PROBOUT achieving slightly
higher correlations in the denoising task and INN having
the highest correlation in the CT task. This shows that
both methods are able to visually highlight the effect that
almost imperceptible input perturbations can have on the

reconstructions. The second experiment, Atypical Artifact
Detection (ARTDETECT), is designed analogous to the setup
described by (Gottschling et al., 2020), i.e., an atypical arti-
fact, which was not present in the training data, is randomly
placed in the input to produce x̃OoD. For the DENOISE task
this is achieved by locally changing the noise distribution.
For the CT task the silhouette of a peace dove is inserted in
each image of the test set; see Figure 1. As for the previous
experiments, please see Appendix E for details on the data
manipulation. A quantitative evaluation is carried out by
computing the mean Pearson correlation coefficient between
the change in the uncertainty heatmaps |u(x̃)− u(x̃OoD)|
and a binary mask marking the region of change in the in-
puts. The results are summarized in Table 1 and illustrated
in Figures 1 and 9. All three UQ methods are correlated
with the input change, however INN achieves the highest
correlation in both the DENOISE and CT task. This shows
that UQ in general, and INNs in particular, can serve as a
warning system for inputs containing atypical features that
might otherwise lead to unnoticed and possibly erroneous
reconstruction artifacts. Finally, in the third experiment we
evaluate how helpful UQ scores are in tracking the actual
prediction error on benign inputs on the more challenging
CT task. The performance weighted correlation coefficient
(PWCC) of the uncertainty scores of each UQ method and
the absolute prediction errors are compared. Performance
weighted means the correlation coefficient is weighted by
the mean squared error. This is necessary to discourage
rewards for poor prediction models with high uncertainties
everywhere. For a datapoint (x̃i,yi) and a corresponding
uncertainty map ui, the performance weighted correlation
coefficient (PWCC) is thus computed as:

PWCC(x̃i,yi,ui) = corr(|Φ(x̃i)−yi|,ui)
MSE(Φ(x̃i),yi)

.

The interval size (INN) and standard deviation (MCDROP
and PROBOUT) in the output are used as uncertainty scores.
As documented in Table 1 INN and MCDROP are able to
detect the error prone regions. Apart from this, the INN
method also highlights other regions in the image with high
local intensity variations, see Figure 10 for an example. In
addition, we can again observe the INNs performance with
respect to coverage and directional information. A total
76± 6% of test targets in the CT data are contained in the
produced intervals. In Figure 7 the directional accuracy of
the INN becomes more pronounced from 57% up to 72%
as the interval direction threshold grows.
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Code
Code will be made available at https://github.com/
peglegpete/inn.
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A. INN Schematic Overview
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Figure 2. A schematic overview of INNs. The input (left picture) is interpreted as a point interval in the first layer. It is then propagated
through the network by the interval valued weights and biases (black connections) using interval arithmetic. As the weights are constrained
using the underlying network, the interval valued neurons contain the value from the original prediction (black bar inside intervals) in
every layer. In the output, three images are obtained: the original prediction and the images containing the lower and upper bounds. The
latter two can then be used to construct a pixel-wise uncertainty score from the interval size.

B. Interval Arithmetic in Neural Networks
We give a derivation of the lower and upper interval bounds Φ and Φ in equation (3) of the main paper. Interval Neural
Networks (INNs) make use of interval arithmetic that deviates from customary arithmetic. The forward pass through a
ReLU neural network layer x 7→ %(Wx+ b) in interval arithmetic is as follows: Given a component-wise interval valued
input [x,x] and interval valued weight matrices

[
W ,W

]
and bias vectors

[
b, b
]

the output interval [z, z] after propagation
through the layer is formally expressed as

[z, z] = %
([
W ,W

]
[x,x] +

[
b, b
])
.

In the special case where [x,x] is non-negative—for example image inputs scaled to the intensity range [0, 1] or outputs of a
previous ReLU layer—this can be explicitly calculated via

z = % (max {W , 0}x+ min {W , 0}x+ b) ,

z = %
(
min

{
W , 0

}
x+ max

{
W , 0

}
x+ b

)
,

where the maximum and minimum functions are applied component-wise. Applying this for all network layers finally yields
Φ and Φ.

C. INN Coverage Bound
For both data sets in the main paper the proportion of ground truth values that lie inside the intervals were documented.
Furthermore, it was argued that this type of coverage bound can be theoretically justified using the Markov Inequality. In the
following this argument from the main paper is formally derived.

For some data distribution X,Y and a tightness parameter β the following loss is used:

L(Φ,Φ) = E
[
max(y − Φ(x), 0)2 + max(Φ(x)− y, 0)2 + β · (Φ(x)− Φ(x))

]
=

∫
X
E
[
max(y − Φ(x), 0)2

∣∣x]+ E
[
max(Φ(x)− y, 0)2

∣∣x]+ β · (Φ(x)− Φ(x)) dPX(x).
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Assuming that this loss is optimized during training yields

0 =

∫
X

∂

∂Φ(x)

(
E
[
max(y − Φ(x), 0)2

∣∣x]+ E
[
max(Φ(x)− y, 0)2

∣∣x]+ β · (Φ(x)− Φ(x))
)

dPX(x)

⇐⇒ 0 = −
∫
X

2E
[

max(y − Φ(x), 0)
]

dPX(x) + β

⇐⇒ 1

2
β =

∫
X
E
[

max(y − Φ(x), 0)
]

dPX(x)

and analogously

1

2
β =

∫
X
E
[

max(Φ(x)− y, 0)
]

dPX(x).

Using the Markov Inequality with h1(ζ) := max(ζ − Φ(x), 0) and h2(ζ) := max(ζ + Φ(x), 0), we obtain that for the
marginalized distribution the following holds true:

P(y ≥ Φ(x) + λβ) ≤
E
[
h1(y)

]
h1(Φ(x) + λβ)

=
E
[

max(y − Φ(x), 0)
]

λβ

and

P(y ≤ Φ(x)− λβ) = P(−y ≥ −Φ(x) + λβ) ≤
E
[
h2(−y)

]
h2(−Φ(x) + λβ)

=
E
[
max(Φ(x)− y, 0)

]
λβ

.

Hence, we conclude that

P(
{

Label is inside interval bounds plus λβ
}

) =

∫
X

P(Φ(x)− λβ ≤ y ≤ Φ(x) + λβ) dPX

= 1−
∫
X

P(y ≤ Φ(x)− λβ) + P(y ≥ Φ(x) + λβ) dPX

≥ 1−
∫
X

E
[
max(y − Φ(x), 0)

]
λβ

+
E
[
max(Φ(x)− y, 0)

]
λβ

dPX

= 1− 1

λ
.

We can furthermore bound the probability that for a given data point x the label y has a probability of more than α to be
outside the interval bounds:

1

λ
≥ EX

[
P(y < Φ(x)− λβ, y > Φ(x) + λβ)

]
≥ EX

[
α1P(y<Φ(x)−λβ, y>Φ(x)+λβ)>α

]
⇐⇒ 1

λα
≥ EX

[
1P(y<Φ(x)−λβ, y>Φ(x)+λβ)>α

]
= 1− EX

[
1P(Φ(x)−λβ≤y≤Φ(x)+λβ)≥1−α

]
⇐⇒ 1− 1

λα
≤ EX

[
1P(Φ(x)−λβ≤y≤Φ(x)+λβ)≥1−α

]
.

In words, for λ > 0 and α > 0 the probability mass of all samples x, for which the corresponding label y has the probability
of at least 1− α to be inside the interval, is at least 1− 1

λα .

D. INNs and the Bayesian View
As described in Section 2 on related work, popular UQ approaches for neural networks have their roots in a Bayesian
treatment of the learning problem. In a nutshell, this involves modelling the unknown data distribution (X,Y ) on X × Y
via a neural network ΦW : X → Y , where W is now also a random variable and represents the collection of all network
parameters. More precisely, one assumes that p(Y |X,W ) follows a simple distribution depending on X and W through
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ΦW (X). A typical choice is a Gaussian distribution Y |X,W ∼ N (ΦW (X), τ−2I) with mean ΦW (X) and some fixed
precision τ . The network training requires the estimation of

p(W |X,Y ) =
p(Y |X,W )p(W )∫
p(Y |X,W )p(W ) dW

, (3)

from given training data (X,Y ) = {(xi,yi)}mi=1 and some prior assumption p(W ) on the network parameters. Inference
for a new input x requires the estimation of the posterior

p(y|x,X,Y ) =

∫
p(y|x,W )p(W |X,Y ) dW. (4)

The evidence, that is the denominator in (3), is typically intractable. Variational Bayesian methods try to approximate
p(W |X,Y ) by another distribution qθ(W ) from a family of distributions qθ parametrized by θ. Minimizing the KL-
divergence between p(W |X,Y ) and qθ(W ) is equivalent to maximizing the evidence lower bound (ELBO)∫

qθ(W ) log p(Y |X,W ) dW −KL(qθ(W )||p(W )). (5)

Training the network in this variational setting entails finding the optimal parameter choice θ∗ maximizing (5), and inference
can be approximated by

p(y|x,X,Y ) ≈
∫
p(y|x,W )qθ∗(W ) dW. (6)

In light of this tradition, we want to briefly demonstrate how our Interval Neural Networks can also be viewed within the
framework of variational Bayesian networks.

For an L-layer neural network with weight matricesW (l) and bias vectors b(l), our interval network approach introduces
upper and lower bound parameters θ = {W (l),W

(l)
, b(l), b

(l)}Ll=1. But instead of precisely parametrizing the approximat-
ing distribution by θ, we allow qθ to be any distribution of weights and biases supported within the specified intervals. We
now want to analyze the ELBO in (5) and the approximate posterior in (6) in this situation.

Recall that, given the interval bounds θ, the range of possible values of ΦW (x) for a fixed input x and W distributed
according to qθ(W ) is denoted as [Φ(x),Φ(x)]. Further, for any target y we denote the choice of weights achieving the
best and worst approximation within this range as

W (x,y) = argmin
W∼qθ

‖ΦW (x)− y‖22 and W (x,y) = argmax
W∼qθ

‖ΦW (x)− y‖22.

This allows us to estimate the first term in the ELBO as∫
qθ(W ) log p(Y |X,W ) dW ≤ −m log(C)−

m∑
i=1

τ2d

2
‖ΦW (xi,yi)

(xi)− yi‖22,

where C = (2πτ−2)d/2 is the normalizing constant of the Gaussian density with precision τ . Similarly∫
qθ(W ) log p(Y |X,W ) dW ≥ −m log(C)−

m∑
i=1

τ2d

2
‖ΦW (xi,yi)

(xi)− yi‖22

≥ −m log(C)−
m∑
i=1

τ2d
(
‖ΦW (xi,yi)

(xi)− yi‖22

+ ‖ΦW (xi,yi)
(xi)− ΦW (xi,yi)

(xi)‖22
)

≥ −m log(C)−
m∑
i=1

τ2d
(
‖ΦW (xi,yi)

(xi)− yi‖22 + ‖Φ(xi)− Φ(xi)‖22
)
.

We observe that minimizing the INN loss L(Φ,Φ) with β = 1 corresponds to maximizing a lower bound for one part of
the ELBO. The other part of the ELBO, the KL-divergence to the prior, corresponds to weight regularisation during the
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Φ(x) Φ(x)

Figure 3. A schematic visualization of the lower and upper bounds for the predictive posterior of INN inference derived from variational
Bayesian principles. The INN prediction interval is marked by vertical lines.

network training, e.g. weight decay. Further, the gap between the upper and lower bound on the ELBO is determined by∑
i τ

2d‖Φ(xi)− Φ(xi)‖22. Therefore, the size of the output intervals also corresponds to how far from the true ELBO we
are, when considering the training loss L instead.

During inference, the approximate posterior in (6) can then be estimated from the bounds

1

C
e−

τ2d

2 ‖ΦW (x,y)(x)−y‖22 ≤
∫
p(y|x,W )qθ∗(W ) dW ≤ 1

C
e−

τ2d

2 ‖ΦW (x,y)(x)−y‖22 .

A schematic visualization of these bounds can be seen in Figure 3. Even though the true posterior can lie anywhere between
the bounds, we observe a fast decay of the probability of the target y lying far outside the predicted interval [Φ(x),Φ(x)].
This is line with the findings derived via the Markov bound in Appendix C.

E. Experiments Details
E.1. Baseline Methods

In addition to our Interval Neural Network approach we consider two other fast and lightweight UQ baselines mentioned.
First, there is Monte Carlo dropout (MCDROP) proposed by (Gal & Ghahramani, 2016; Kendall & Gal, 2017). Here,
uncertainty scores are obtained through the sample variance of multiple stochastic forward passes on the same input data
point. In other words, if Φ1, . . . ,ΦT are realizations of independent draws of random dropout masks for the same prediction
network Φ, then the pixel-wise uncertainty estimate is given by

uMCDROP(x̃) = 1
T−1

(∑T
t=1Φt(x̃)2 − 1

T

(∑T
t=1Φt(x̃)

)2
)
.

Second, there is direct variance estimation (PROBOUT) proposed by (Nix & Weigend, 1994) and later expanded by (Gast
& Roth, 2018). It comprises a simple recipe for uncertainty scores: the number of output components of the prediction
network is doubled and trained to approximate the mean and variance of a Gaussian distribution.

ΦPROBOUT : Rn → Rn × Rn, x̃ 7→ (Φmean(x̃),Φvar(x̃))

which are trained by minimizing the empirical loss

∑
i

∥∥∥∥yi−Φmean(x̃i)√
Φvar(x̃i)

∥∥∥∥2

2

+ ‖ logΦvar(x̃i)‖1.

The pixel-wise uncertainty score of PROBOUT is then simply given by the variance estimate, i.e., uPROBOUT(x̃) = Φvar(x̃).

E.2. Tasks, Data and Neural Network Architectures

E.2.1. 1D DECONVOLUTION

We chooseA = D>SD ∈ R512×512, whereD ∈ R512×512 is a discrete cosine transform and S ∈ R512×512 is a diagonal
matrix with exponentially decaying values. We consider discretizations of piecewise constant functions with random jump
positions and heights as the signal distribution in R512. The blurred measurements x ∈ R512 corresponding to each signal
sample y are simulated by computing x = Ay + η. The considered data set consists of 2000 sample pairs (xi,yi),
1600 of which were used for training, 200 for validation and 200 for testing. This one-dimensional data allows for good



Detecting Failure Modes in Image Reconstructions with Interval Neural Network Uncertainty

illustration of the different INN characteristics. The prediction DNN for the 1DDECONV task, called DeconvNet, consists
of a convolutional neural network (CNN) trained to directly map x to y. It consists of 10 convolutional layers and three
dropout layers, one with dropout probability 0.2 and the other two with probability 0.5. The number of channels increases
through the first 7 layers to 256 and decreases back to 1 in the successive layers. No pooling is employed and the data size
of each channel is held to be the same as the input size throughout the network. The prediction DNN was trained for 100
epochs using Adam (Kingma & Ba, 2014) with a learning rate of 10−3 and batch size 256. The interval parameters of the
INN were then trained for another 100 epochs and with a learning rate of 10−5 and β = 2 × 10−3. For the MCDROP
comparison, 64 samples were used to estimate mean and variance and for the PROBOUT comparison, the PROBOUT loss
was also optimized for 100 epochs using again the Adam optimizer with a learning rate of 10−4.

E.2.2. LIMITED ANGLE CT

For this task, we consider a simulation of the noiseless Radon transform with a moderate missing wedge of 30◦ for the
forward model. The non-learned inversion A† is based on the filtered backprojection algorithm (FBP) (Natterer, 2001).
The underlying prediction network is a U-Net (Ronneberger et al., 2015) variant. Our experiments are based on a data set
consisting of 512× 512 human CT scans from the AAPM Low Dose CT Grand Challenge data (McCollough, 2016).2 In
total, it contains 2580 images of 10 patients. Eight of these ten patients were used for training (2036 samples), one for
validation (214 samples) and one for testing (330 samples). We use a bit-depth of at least 16 in all steps so that no details of
the 12bit DICOM data are lost. Limited angle measurements are simulated. Input images are full dose reconstructions with
a slice thickness of 3mm.

E.2.3. IMAGE DENOISING

This task consists of removing additive Gaussian noise with standard deviation 25/255 from greyscale images (rescaled to
the intensity range [0, 1]) from the Berkeley Segmentation Dataset (Martin et al., 2001). The prediction network underlying
all uncertainty methods is a fully-convolutional residual network with 17 convolution layers, inspired by (Zhang et al.,
2017).

E.3. Data Preparation

E.3.1. ADVERSARIAL ARTIFACT DETECTION

For the DENOISE data we use λ = 0.5, and the adversarial targets are created by adding noise to a random 50× 50 patch in
the reconstruction yrec = Φ(x̃). Thus, the denoising network is forced to fail its task in that region; see Figure 9. For the CT
task we found that the second term in (2) is not required, i.e., we use λ = 0. Adversarial targets are created by subtracting
1.5 times its mean value from xrec within a random 50× 50 square, leading to clearly visible artifacts in the corresponding
reconstructions; see Figure 1.

E.3.2. ATYPICAL ARTIFACT DETECTION

For the DENOISE task this is achieved by locally changing the noise distribution, i.e., we replace the Gaussian noise by
Salt & Pepper noise in one half of each image in the test set; see Figure 9. For the CT task the silhouette of a peace dove
is inserted in each image of the test set; see Figure 1. The simulation of the measurements and model-based inversions is
carried out on the new test set as before.

2See: https://www.aapm.org/GrandChallenge/LowDoseCT/; We would like to thank Dr. Cynthia McCollough, the
Mayo Clinic, and the American Association of Physicists in Medicine as well as the grants EB017095 and EB017185 from the National
Institute of Biomedical Imaging and Bioengineering for providing the AAPM data.

https://www.aapm.org/GrandChallenge/LowDoseCT/
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Table 2. Summary of the technical details regarding the neural network architecures, training, and data sets for the two use cases of
DENOISE and CT. DENOISE data is available at https://github.com/husqin/DnCNN-keras (not affiliated with authors of
this paper).

Image Denoising Limited Angle CT

B
as

e
N

et
w

or
k

based on (Zhang et al., 2017) U-Net of (Ronneberger et al., 2015)
dropout (0.05) after every other conv. dropout (0.7) after down-/up-sampling
trained with Adam(Kingma & Ba, 2014), 50 epochs trained with Adam, 400 epochs
learning rate: 10−4 learning rate: 7.5 · 10−5

mini-batch size: 128 mini-batch size: 12
no batch normalization as in (Zhang et al., 2017)
128 instead of 64 conv. channels, cf. (Zhang et al., 2017)

IN
N

10 epochs with Adam 15 epochs with Adam
learning rate: 10−6 learning rate: 10−6

β = 10−3 β = 10−4

mini batch size: 96 mini batch size: 6
interval arithmetic in last 8 layers interval arithmetic in last 12 layers

M
C

D
R

O
P

T = 128 forward passes T = 16 forward passes

P
R

O
B

O
U

T additional output channel additional output channel
otherwise same setup as base network 400 more epochs with Adam

learning rate: 10−7

mini-batch size: 12

D
at

a

Berkeley Segmentation Dataset (Martin et al., 2001) AAPM Low Dose CT Grand Challenge
400 128× 128-images; see (Schmidt & Roth, 2014; Zhang et al., 2017) 10 patients: 2580 512× 512-images
overlapping 40× 40-patches, stride 10 (8/1/1 for training/validation/testing)
rescaled to intesity range [0, 1] noiseless Radon transform
Gaussian noise, standard dev. 25/255 30◦ missing wedge
testing: 68 images of varying size; cf. (Zhang et al., 2017) Ramp-filter for FBP

https://github.com/husqin/DnCNN-keras
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F. Results: Additional Figures

(I)



(II)



(III)



Figure 4. Results for the 1DDECONV task on the same sample without noise on the left and with Gaussian noise (σ = 0.05) on the right.
The first row shows the input and target vector. The figures below show the target, the network output, together with the uncertainty
estimation for the upper graph and the uncertainty estimation plotted against the absolute error in the lower graph for each corresponding
method; (I) MCDROP, (II) PROBOUT, (III) INN.
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Figure 5. Figure 6. Figure 7.

Figure 8. Illustration of INN properties. Figure 5 displays the relationship of mean uncertainty magnitude measured and additive Gaussian
noise on the data from the 1DDECONV task. The standard deviation of the additive Gaussian noise for the input and target data is
displayed on the x-axis. The mean uncertainty magnitude, which is measured in interval size for INN (in black) and standard deviation
for MCDROP (in blue) and PROBOUT (in green) averaged over the test data, is displayed on the y-axis. Figure 6 and Figure 7 display the
directional information contained in the output intervals for the 1DDECONV and the CT task, respectively. Interval direction thresholds
are displayed on the x-axis. These are computed by dividing the larger interval half by the smaller half. Interval halves are computed
relative to the point prediction. The left y-axis (in red) displays the direction accuracy which is the mean agreement between the interval
directions and the actual position of the target relative to the prediction. Finally, the right y-axis (in blue) displays the proportion of
pixels that are considered at a given threshold and accuracy evaluation. CT results are means and standard deviations across the three
experimental runs.
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Figure 9. Results of three UQ methods for the ADVDETECT and ARTDETECT experiments for one exemplary data sample of the task.
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Figure 10. An example data point from the EC experiment. The first image on the top left displays the input and the second image on the
top right displays the corresponding target. The images below display the corresponding predictions (top row), uncertainty scores as the
standard deviation for MCDROP and PROBOUT and the interval size for INN (middle row) and absolute errors (bottom row) for each of
the three uncertainty methods.


