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Abstract

Visual question answering (VQA) requires AI models to comprehend data in two domains, vision and text. Current
state-of-the-art models use learned attention mechanisms to extract relevant information from the input domains to
answer a certain question. Thus, robust attention mechanisms are essential for powerful VQA models. In this paper, we
propose a recurrent attention mechanism and show its benefits compared to the traditional convolutional approach. We
introduce a baseline VQA model with visual attention and compare the performance difference between convolutional
and recurrent attention on the VQA 2.0 dataset. Furthermore, we experiment replacing attention mechanisms in state-
of-the-art models with our recurrent attention units (RAUs) and show increased performance. Additionally, we design
an architecture for VQA which utilizes recurrent attention units to highlight the benefits of RAUs. Our single model
outperforms the first place winner on the VQA 2016 challenge and to the best of our knowledge, it is the second best
performing single model on the VQA 1.0 dataset. Furthermore, our model noticeably improves upon the winner of
the VQA 2017 challenge.

Keywords: Visual Question Answering, Attention Mechanisms, Multi-modal Learning, Machine Vision, Natural
Language Processing

1. Introduction

Although convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) have been successfully
applied to various image and natural language processing
tasks (cf. He et al. (2015); Bosse et al. (2018); Bahdanau
et al. (2015); Nallapati et al. (2016)), these breakthroughs
only slowly translate to multimodal tasks such as
visual question answering (VQA) where the model
needs to create a joint understanding of the image and
question. Such multimodal tasks require designing highly
expressive joint visual and textual representations. On the
other hand, a highly discriminative multi-modal feature
fusion method is not sufficient for all VQA questions,
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since global features can contain noisy information for
answering questions about certain local parts of the input.
This has led to the use of attention mechanisms in VQA.

Attention mechanisms have been extensively used in
VQA recently (Anderson et al., 2017; Fukui et al., 2016;
Kim et al., 2017). They attempt to make the model
selectively predict based on segments of the spatial or
lingual context. However, most attention mechanisms
used in VQA models are rather simple, consisting of two
convolutional layers and a softmax function to generate
the attention weights which are summed over the input
features. These shallow attention mechanisms could
fail to select the relevant information from the joint
representation of the question and image for complex
questions. Creating attention for complex questions,
particularly sequential or relational reasoning questions,
requires processing information in a sequential manner
which recurrent layers are better suited due to their
intrinsic ability to capture relevant information over an
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input sequence.
In this paper, we propose a RNN-based attention

mechanism for visual and textual attention. We argue that
embedding an RNN in the attention mechanism helps the
model process information in a sequential manner and
determine what is relevant to solve the task. We refer
to the combination of RNN embedding and attention as
Recurrent Textual Attention Unit (RTAU) and Recurrent
Visual Attention Unit (RVAU) respective of their purpose.
Furthermore, we employ these units in a fairly simple
network, referred to as Dual Recurrent Attention Units
(DRAU) network, and show improved results over several
baselines. Finally, we enhance state-of-the-art models by
replacing their default attention mechanism with RAUs.

Our main contributions are the following:

• We introduce a novel approach to generate soft
attention in VQA. To the best of our knowledge, this
is the first attempt to generate attention maps using
recurrent neural networks for VQA.

• We conduct a direct comparison between two
identical models except for their attention
mechanism. In this controlled environment, the
recurrent attention outperforms the convolutional
attention significantly (4% absolute difference).
Moreover, we provide qualitative results showing
subjective improvements over the default attention
used in most VQA models.

• Our attention units are modular, thus, they can
substitute existing attention mechanisms in most
models fairly easily. We show that state-of-the-art
models with RVAU or RTAU “plugged-in” perform
consistently better than their standard counterparts.

• We propose a network that utilizes RAUs to co-
attend the multi-modal input. We show that our
network outperforms the VQA 2016 and 2017
challenge winners and performs close to the current
state-of-the-art single models.

In Section 2, we review related work for VQA
methods. In Section 3, we break down the components
of the DRAU network and explain the components of
a RAU. In Section 4, we compare convolutional and

recurrent attention in a baseline model, conduct ablation
experiments, and report our models’ performance on the
VQA datasets (Antol et al., 2015; Goyal et al., 2017).
Then, we report the results of substituting attention
mechanisms of state-of-the-art models with our RAUs.
Furthermore, we compare our model against the state-
of-the-art on the VQA 1.0 and 2.0 datasets. In Section
5, we compare the difference in attention maps between
standard and recurrent attention with qualitative examples
to illustrate the effect of RAUs. Finally, we conclude the
paper in Section 6.

2. Related Work

This section discusses common methods that have been
explored in the past for VQA.

Bilinear pooling representations. Fukui et al. (2016)
use compact bilinear pooling to attend over the image
features and combine it with the language representation.
The basic concept behind compact bilinear pooling is
approximating the outer product by randomly projecting
the embeddings to a higher dimensional space using
Count Sketch projection (Charikar et al., 2004) and
then exploiting Fast Fourier Transforms to compute an
efficient convolution. An ensemble model using MCB
won first place in VQA (1.0) 2016 challenge. Kim
et al. (2017) argues that compact bilinear pooling is still
expensive to compute and shows that it can be replaced
by element-wise product (Hadamard product) and a linear
mapping (i.e. fully-connected layer) which gives a lower
dimensional representation and also improves the model
accuracy. Ben-younes et al. (2017) proposed using Tucker
decomposition (Tucker, 1966) with a low-rank matrix
constraint as a bilinear representation. Yu et al. (2017a)
utilize matrix factorization tricks to create a multi-modal
factorized bilinear pooling method (MFB). Later, Yu
et al. (2017b) generalizes the factorization for higher-
order factorized pooling (MFH).

Attention-based. Lu et al. (2016) were the first to feature
a co-attention mechanism that applies attention to both
the question and image. Nam et al. (2017) use a Dual
Attention Network (DAN) that employs attention on both
text and visual features iteratively to predict the result.
The goal behind this is to allow the image and question
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attentions to iteratively guide each other in a synergistic
manner. Both methods use convolutional layers to learn
the attention mechanisms.

RNNs for VQA. Using recurrent neural networks (RNNs)
for VQA models has been explored in the past, but, to the
best of our knowledge, has never been used as an attention
mechanism. Xiong et al. (2016) build upon the dynamic
memory network from Kumar and Varaiya (2015) and
proposes DMN+. DMN+ uses episodic modules which
contain attention-based Gated Recurrent Units (GRUs).
Note that this is not the same as what we propose; Xiong
et al. generate soft attention using convolutional layers
and uses the output to substitute the update gate of the
GRU. In contrast, our approach uses the recurrent layers
to generate the attention. Noh and Han (2016) propose
recurrent answering units in which each unit is a complete
module that can answer a question about an image. They
use joint loss minimization to train the units. However
during testing, they use the first answering unit which was
trained from other units through backpropagation.

3. Dual Recurrent Attention in VQA

In this section, we define our attention mechanism.
Then, we describe the components of our VQA model in
this section.

3.1. Recurrent Attention Units

The recurrent attention unit (RAU)receives a multi-
modal multi-channel representation of the inputs, X. To
reduce the input representation, a RAU starts with a 1 × 1
convolution and PReLU activation:

ca = PReLU
(
Wa X

)
,

X ∈ RK×φ (1)

where Wa is the 1 × 1 convolution weights, X is the
multimodal input to the RAU, K is the shape of the target
attention (e.g. image size or question length), and φ is the
number of channels in the input.

Furthermore, we feed the previous output into an
unidirectional LSTM:

ha,n = LSTM
(
ca,n

)
(2)

where ha,n is the hidden state at time n. Each hidden
state processes the joint features at each location/word of
the input and decides which information should be kept
and propagated forward and which information should be
ignored.

To generate the attention weights, we feed all the
hidden states of the previous LSTM to a 1×1 convolution
layer followed by a softmax function. The 1 × 1
convolution layer could be interpreted as the number of
glimpses the model sees.

Watt,n = softmax
(
PReLU

(
Wg ha,n

))
(3)

where Wg is the glimpses’ weights and Watt,n is the
attention weight vector.

Next, we use the attention weights to compute a
weighted average of the image and question features.

atta,n =

N∑
n=1

Watt,n fn (4)

where fn is the input representation and atta,n is the
attention applied on the input. Finally, the attention maps
are fed into a fully-connected layer followed by a PReLU
activation. Figure 2 illustrates the structure of a RAU.

yatt,n = PReLU
(
Wout atta,n

)
(5)

where Wout is a weight vector of the fully connected layer
and yatt,n is the output of the RAU.

3.2. Input Representation

Image representation. We use the 152-layer “ResNet”
pretrained CNN from He et al. (2015) to extract image
features. Similar to (Fukui et al., 2016; Nam et al., 2017),
we resize the images to 448×448 and extract the last layer
before the final pooling layer (res5c) with size 2048×14×
14. Finally, we use l2 normalization on all dimensions.
Recently, Anderson et al. (2017) have shown that object-
level features can provide a significant performance uplift
compared to global-level features from pretrained CNNs.
Therefore, we experiment with replacing the ResNet
features with FRCNN Ren et al. (2015) features with a
fixed number of proposals per image (K = 36) for our
final DRAU model.
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Figure 2: Recurrent Attention Unit.

Question representation. We use a fairly similar
representation as Fukui et al. (2016). In short, the
question is tokenized and encoded using an embedding
layer followed by a tanh activation. We also exploit
pretrained GloVe vectors (Pennington et al., 2014) and
concatenate them with the output of the embedding
layer. The concatenated vector is fed to a two-layer
unidirectional LSTM that contains 1024 hidden states
each. In contrast to Fukui et al., we use all the hidden
states of both LSTMs rather than concatenating the final
states to represent the final question representation.

3.3. 1 × 1 Convolution and PReLU

We apply multiple 1 × 1 convolution layers in the
network for mainly two reasons. First, they learn
weights from the image and question representations in
the early layers. This is important especially for the
image representation, since it was originally trained for

a different task. Second, they are used to generate
a common representation size. To obtain a joint
representation, we apply 1 × 1 convolutions followed by
PReLU activations (He et al., 2015) on both the image and
question representations. Through empirical evidence,
PReLU activations were found to reduce training time
significantly and improve performance compared to
ReLU and tanh activations. We provide these results in
Section 4.

3.4. Reasoning layer

A fusion operation is used to merge the textual
and visual branches. For DRAU, we experiment with
using element-wise multiplication (Hadamard product)
and MCB (Fukui et al., 2016; Gao et al., 2016). The result
of the fusion is given to a many-class classifier using the
top 3000 frequent answers. We use a single-layer softmax
with cross-entropy loss. This can be written as:

Pa = softmax
(
fusion op

(
ytext, yvis

)
Wans

)
(6)

where ytext and yvis are the outputs of the RAUs, Wans

represents the weights of the multi-way classifier, and Pa

is the probability of the top 3000 frequent answers.
The final answer â is chosen according to the following:

â = arg max Pa (7)
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4. Experiments and Results

Experiments are performed on the VQA 1.0 and 2.0
datasets (Goyal et al., 2017; Antol et al., 2015). These
datasets use images from the MS-COCO dataset (Lin
et al., 2014) and generate questions and labels (10 labels
per question) using Amazon’s Mechanical Turk (AMT).
Compared to VQA 1.0, VQA 2.0 adds more image-
question pairs to balance the language prior present in the
VQA 1.0 dataset (Goyal et al., 2017). The ground truth
answers in the VQA dataset are evaluated using human
consensus:

Acc(a) = min
(∑ a is in human annotation

3
, 1

)
(8)

We evaluate our results on the validation, test-dev,
test-std splits of each dataset. Models evaluated on the
validation set use train and Visual Genome for training for
our baselines, but not for our DRAU model using FRCNN
features which only use the train split. For the other splits,
we include the validation set in the training data.

To train our model, we use Adam (Kingma and Ba,
2014) for optimization with β1 = 0.9, β2 = 0.999, and
an initial learning rate of ε = 7 × 10−4. The final
model is trained with a small batch size of 32 for 400K
iterations. We did not fully explore tuning the batch
size which explains the relatively high number of training
iterations. Dropout (p = 0.3) is applied after each LSTM
and after the fusion operation. All weights are initialized
as described in (Glorot and Bengio, 2010) except LSTM
layers which use an uniform weight distribution. Since
VQA datasets provide 10 answers per image-question
pair, we sample one answer randomly for each training
iteration.

4.1. Early baselines

During early experiments, the VQA 2.0 dataset was not
yet released. Thus, the baselines and early models were
evaluated on the VQA 1.0 dataset.

Baselines. We started by designing three baseline
architectures. The first baseline produced predictions
solely from the question while totally ignoring the
image. The model used the same question representation
described in Fukui et al. (2016) and passed the output to
a softmax 3000-way classification layer. The goal of this

architecture was to assess the extent of the language bias
present in VQA.

The second baseline is a simple joint representation
of the image features and the language representation.
The representations were combined using the compact
bilinear pooling from Gao et al. (2016). We chose this
method specifically because it was shown to be effective
by Fukui et al. (2016). The main objective of this
model is to measure how a robust pooling method of
multimodal features would perform on its own without
a deep architecture or attention. We refer to this model as
Simple MCB.

For the last baseline, we substituted the compact
bilinear pooling from Simple MCB with an LSTM
consisting of hidden states equal to the image size. A 1×1
convolutional layer followed by a tanh activation were
used on the image features prior to the LSTM, while the
question representation was replicated to have a common
embedding size for both representations This model is
referred to as Joint LSTM. Note that this model does not
use attention.

We begin by testing our baseline models on the VQA
1.0 validation set. As shown in Table 1, the language-
only baseline model managed to get 48.3% overall. More
impressively, it scored 78.56% on Yes/No questions.
The Simple MCB model further improves the overall
performance, although little improvement is gained in the
binary Yes/No tasks. Replacing MCB with our basic
Joint LSTM embedding improves performance across the
board.

VQA 2.0. After the release of VQA 2.0, we shifted
our empirical evaluation towards the newer dataset. We
retrain and retest our best performing VQA 1.0 model
Joint LSTM. Since VQA 2.0 was built to reduce the
language prior and bias inherent in VQA, the accuracy of
Joint LSTM drops significantly as shown in Table 1. Note
that all the models that were trained so far do not have
explicit visual or textual attention implemented.

Comparing convolutional versus recurrent attention.
Due to the widespread use of attention in VQA, we
compare using convolution against our recurrent attention
in a simple baseline model. We chose to use an even
simpler model than our previous baselines as an effort to
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Table 1: Evaluation of the baseline models on the VQA 1.0 and 2.0
validation splits.

VQA 1.0 Validation Split

Baselines Y/N Num. Other All

Language only 78.56 27.98 30.76 48.3
Simple MCB 78.64 32.98 39.79 54.82
Joint LSTM 79.90 36.96 49.58 59.34

VQA 2.0 Validation Split

Baselines Y/N Num. Other All

Joint LSTM 72.04 37.95 48.58 56.00
Simple Net (Conv. Attn.) 66.01 28.08 25.51 41.06
Simple Net (Recurrent Attn.) 66.24 28.48 33.46 45.12

reduce the influence of complex network components on
the overall model performance.

This simple VQA model uses the same question
representation as described in the previous section and
the ResNet global image features. The input features are
simply concatenated and sent to the attention mechanism.
The processed attention is fed to the reasoning module.
We refer to this model as Simple Net. The results of
Simple Net in Table 1 show a clear advantage of recurrent
attention outperforming convolutional attention by over
4% absolute overall accuracy.

4.2. Transplanting RAU in other models

To verify the effectiveness of the recurrent attention
units, we replace the attention layers in MCB (Fukui
et al., 2016) and MUTAN (Ben-younes et al., 2017) with
RVAU (visual attention). Additionally, we replace the
textual attention in MFH (Yu et al., 2017b) with recurrent
attention.

For MCB we remove all the layers after the first MCB
operation until the first 2048-d output and replace them
with RVAU. Due to GPU memory constraints, we reduced
the size of each hidden unit in RVAU’s LSTM from 2048
to 1024. In the same setting, RVAU significantly helps
improve the original MCB model’s accuracy as shown in
Table 2.

Furthermore, we test RVAU in the MUTAN model.
The authors use a multimodal vector with dimension size

of 510 for the joint representations. For coherence, we
change the usual dimension size in RVAU to 510. At
the time of this writing, the authors have not released
results on VQA 2.0 using a single model rather than
a model ensemble. Therefore, we train a single-model
MUTAN using the authors’ implementation.1 The story
does not change here, RVAU improves the model’s overall
accuracy.

Finally, we replace the convolution text attention in
MFH with RTAU (text attention). Note that the text
attention in MFH is “self-attending” which means that the
attention is only predicted by just looking at the question.
This is different from our DRAU model where RTAU uses
a joint representation of the question and image to predict
the textual attention. We train two networks, the standard
MFH network and MFH with RTAU, on the VQA 2.0
train split and test on the validation split. It is apparent
that RTAU improves the overall accuracy of MFH from
Table 2. While the performance improvement might not
look large for all the tested models, it is consistent which
shows that RAUs can reliably improve existing state-of-
the-art models with different architectures.

Table 2: Results of state-of-the-art models with RAUs.

VQA 2.0 Test-dev Split

Model Y/N Num. Other All

MCB 2 78.41 38.81 53.23 61.96
MCB w/RVAU 77.31 40.12 54.64 62.33

MUTAN 79.06 38.95 53.46 62.36
MUTAN w/RVAU 79.33 39.48 53.28 62.45

VQA 2.0 Validation Split
Model Y/N Num. Other All

MFH 82.26 43.49 56.17 64.31
MFH w/RTAU 82.35 43.31 56.3 64.38

1https://github.com/Cadene/vqa.pytorch
2http://www.visualqa.org/roe_2017.html
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4.3. DRAU versus the state-of-the-art

VQA 1.0. Table 3 shows a comparison between DRAU
and other state-of-the-art models. Excluding model
ensembles, DRAU performs favorably against other
models. To the best of our knowledge, Yu et al. (2017b)
has the best reported single model performance of 67.5%
on the test-std split. Our single model (DRAU) comes
a very close second to the current state-of-the-art single
model.

VQA 2.0. The first place submission Anderson et al.
(2017) reports using an ensemble of 30 models. In
their report, the best single model that also uses FRCNN
features achieves 65.67% on the test-standard split which
is outperformed by our single model (DRAU).

Recently, the VQA 2018 challenge results have been
released. It uses the same dataset as the previous
VQA 2017 challenge (VQA 2.0). While we have not
participated in this challenge, we include the challenge
winners results (Jiang et al., 2018) for the sake of
completeness. Jiang et al. builds upon the VQA 2017
challenge winners model by proposing a number of
modifications. First, they use weight normalization and
ReLU instead of gated hyperbolic tangent activation. For
the learning schedule, the Adam optimizer was swapped
for Adamax with a warm up strategy. Moreover, the
Faster-RCNN features have been replaced by the state-of-
the-art Feature Pyramid Networks (FPN) object detectors.
Lastly, they use more additional training data from the
common Visual Genome and the new Visual Dialog
(VisDial) datasets.

4.4. Discussion

DRAU versus MCB. The strength of RAUs is notable
in tasks that require sequentially processing the image
or relational/multi-step reasoning. Figure 3 shows some
qualitative results between DRAU and MCB. For fair
comparison we compare the first attention map of MCB
with the second attention map of our model. We do so
because the authors of MCB (Fukui et al., 2016) visualize
the first map in their work3. Furthermore, the first glimpse
of our model seems to be the complement of the second

3https://github.com/akirafukui/vqa-mcb/blob/master/

server/server.py\#L185

attention, i.e. the model separates the background and the
target object(s) into separate attention maps. We have not
tested the visual effect of more than two glimpses on our
model.

In Figure 3, it is clear that the recurrence helps
the model attend to multiple targets as apparent in the
difference of the attention maps between the two models.
DRAU seems to also know how to count the right
object(s). The top right example in Figure 3 illustrates that
DRAU is not easily fooled by counting whatever object is
present in the image but rather the object that is needed
to answer the question. This property also translates to
questions that require relational reasoning. The second
column in Figure 3 demonstrates how well DRAU can
attend to the location required to answer the question
based on the textual and visual attention maps compared
to MCB.

Attention Quality. Figure 4 shows the model’s prediction
as well as its attention maps for four questions on
the same image. It highlights how DRAU can shift
the attention intelligently based on different multi-step
reasoning questions. To answer the two left questions, a
VQA model needs to sequentially process the image and
question. First, the model filters out the animals in the
picture. Then, the animal in the question is matched to the
visual features and finally counted. The two right-most
attention maps give a glimpse on how the model filters out
the irrelevant parts in the input. Interestingly, inspecting
the visual attention for the top question might indicate a
bias in the VQA model. Even though the question asks
about “horses”, the visual attention filters out all objects
and leaves out the two different backgrounds: sea and
field. Since “horses” are often found on land, the model
predicts “field” without any direct attention on the horses
in the image.

5. Conclusion

We proposed an architecture for VQA with a novel
attention unit, termed the Recurrent Attention Unit
(RAU). The recurrent layers help guide the textual and
visual attention since the network can reason relations
between several parts of the image and question. We
provided quantitative and qualitative results indicating
the usefulness of a recurrent attention mechanism.
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Table 3: DRAU compared to the state-of-the-art on the VQA 1.0 dataset. N corresponds to the number of models used for prediction. WE indicates
whether the method uses a pre-trained word embedding. VG indicates whether the method uses external data from the Visual Genome dataset.

VQA 1.0 Open Ended Task

Test-dev Test-standard
Model N WE VG Y/N Num. Other All Y/N Num. Other All

DMN+ (Xiong et al., 2016) 1 - - 80.5 36.8 48.3 60.3 - - - 60.4
HieCoAtt (Lu et al., 2016) 1 - - 79.7 38.7 51.7 61.8 - - - 62.1
RAU (Noh and Han, 2016) 1 - - 81.9 39.0 53.0 63.3 81.7 38.2 52.8 63.2
DAN (Nam et al., 2017) 1 - - 83.0 39.1 53.9 64.3 82.8 38.1 54.0 64.2
MCB (Fukui et al., 2016) 7 X X 83.4 39.8 58.5 66.7 83.24 39.47 58.00 66.47
MLB (Kim et al., 2017) 1 X 7 - - - - 84.02 37.90 54.77 65.07
MLB (Kim et al., 2017) 7 X X 84.57 39.21 57.81 66.77 84.61 39.07 57.79 66.89
MUTAN (Ben-younes et al., 2017)) 5 X X 85.14 39.81 58.52 67.42 84.91 39.79 58.35 67.36
MFH (Yu et al., 2017b) 1 X X 84.9 40.2 59.2 67.7 84.91 39.3 58.7 67.5

DRAU 1 X 7 84.92 39.16 57.70 66.86 84.87 40.02 57.91 67.16

How many

lanterns hang

off the clock

tower ?
DRAU: 4

How many
lanterns hang
off the clock

tower?
GT: 4

MCB: 1

How many
camels are in

the photo?
DRAU: 0

How many
camels are in

the photo?
GT: 0

MCB: 1

What is on the
floor leaning on
the bench in

between the

people ?
DRAU: racket

What is on the
floor leaning on

the bench in
between the

people?
GT: racket

MCB: backpack

Figure 3: DRAU vs. MCB Qualitative examples. Attention maps for both models shown. DRAU shows subjectively better attention map quality.

Using a simple VQA model, we have shown the
performance advantage of recurrent attention compared
to the traditional convolutional attention used in most
VQA attention mechanisms. In VQA 1.0, we come a
very close second to the state-of-the-art model. While
using the same image features, our DRAU network
outperforms the VQA 2017 challenge winner Anderson
et al. (2017) in a single-model scenario. Furthermore,
we demonstrated that substituting the visual attention
mechanism in other networks, MCB (Fukui et al., 2016),
MUTAN (Ben-younes et al., 2017), and MFH (Yu et al.,
2017b), consistently improves their performance.

In future work we will investigate implicit recurrent
attention mechanism using recently proposed explanation

methods (Arras et al., 2017; Montavon et al., 2018).
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Table 4: DRAU compared to the current submissions on the VQA 2.0 dataset. N corresponds to the number of models used for prediction. WE
indicates whether the method uses a pre-trained word embedding. VG indicates whether the method uses external data from the Visual Genome
dataset.

VQA 2.0 Open Ended Task

Test-dev Test-standard
Model N WE VG Y/N Num. Other All Y/N Num. Other All

VQATeam MCB (Goyal et al., 2017) 1 X X 78.41 38.81 53.23 61.96 78.82 38.28 53.36 62.27
UPMC-LIP6(Ben-younes et al., 2017) 5 X X 81.96 41.62 57.07 65.57 82.07 41.06 57.12 65.71
HDU-USYD-UNCC(Yu et al., 2017b) 9 X X 84.39 45.76 59.14 68.02 84.5 45.39 59.01 68.09
Adelaide-Teney (Teney et al., 2017) 1 X X 81.82 44.21 56.05 65.32 82.20 43.90 56.26 65.67
Adelaide-Teney (Teney et al., 2017) 30 X X 85.24 48.19 59.88 69.00 85.54 47.45 59.82 69.13
FAIR A-STAR (Jiang et al., 2018) 1 X X - - - 70.01 - - - 70.24
FAIR A-STAR (Jiang et al., 2018) 30 X X 87.82 51.54 63.41 72.12 87.82 51.59 63.43 72.25

DRAU 1 X 7 82.85 44.78 57.4 66.45 83.35 44.37 57.63 66.85

How many

horses are

there ?
DRAU: 3

How many

dogs are

there ?
DRAU: 0

Where are

the horses ?
DRAU: field

Can you see

the horizon ?
DRAU: yes

Figure 4: Four real example results of our proposed model for a single
random image. The visual attention, textual attention, and answer are
shown. Even on the same image, our model shows rich reasoning
capabilities for different question types. The first column shows that the
model is able to do two-hop reasoning, initially identifying the animal
in the question and then proceed to correctly count it in the image. The
second column results highlights the model’s ability to shift its attention
to the relevant parts of the image and question. It is worth noting that all
the keywords in the questions have the highest attention weights.
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