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Abstract

In the supplementary material, we provide more experiments, qualitative results, and VQA discussions for the interested reader.
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1. Introduction

In Section 2, we provide additional experiments of baselines and
variants of the DRAU model. In Section 3, additional qualitative
results with comparisons to MCB (Fukui et al., 2016), including a
closer look at the counting questions, are presented. In Section 4,
we discuss drawbacks related to our model and most VQA models,
in general. Finally, we mention some criticisms about the current
state of VQA datasets and discuss future improvements in Section
5.

2. Additional Experiments

We show experiments that we have done during our work on
the VQA datasets. During early experiments, the VQA 2.0 dataset
was not yet released. Thus, the baselines and early models were
evaluated on the VQA 1.0 dataset. While building the final
model, several parameters were changed, mainly, the learning rate,
activation functions, dropout value, and other modifications which
we discuss in this section. All baselines use ResNet image features
unless explicitly stated. We will ocassionally refer to the modules
in Figure 2 in the paper when describing the models’ architectures.

2.1. Baselines
Early Baselines. We started by designing three baseline
architectures. The first baseline produced predictions solely
from the question while totally ignoring the image. The model
used the same question representation in the main paper as
described by Fukui et al. (2016) and passed the output to a softmax
3000-way classification layer. The goal of this architecture was to
assess the extent of the language bias present in VQA.

The second baseline is a simple joint representation of the image
features and the question representation. The representations were
combined using the compact bilinear pooling from Gao et al.
(2016). We chose this method specifically because it was shown
to be effective by Fukui et al. (2016). The main objective of this
model is to measure how a robust pooling method of multimodal
features would perform on its own without a deep architecture or
attention. We refer to this model as Simple MCB.
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Table 1: Evaluation of the baseline models on the VQA 1.0 and 2.0 validation splits.

VQA 1.0 Validation Split

Baselines All Y/N Num. Other

Language only 48.3 78.56 27.98 30.76
Simple MCB 54.82 78.64 32.98 39.79
Joint LSTM 59.34 79.90 36.96 49.58

VQA 2.0 Validation Split

Baselines All Y/N Num. Other

Joint LSTM 56.00 72.04 37.95 48.58
Joint LSTM + PReLU 59.74 79.61 36.21 50.77
Joint LSTM + Pos. 57.71 79.68 36.52 46.59
Joint LSTM + Norm Pos. 59.75 79.69 36.36 50.69
Joint LSTM + High dropout 57.59 79.03 34.84 47.25
Joint LSTM + Extra FC 56.51 78.86 33.51 45.57

For the last baseline, we substituted the compact bilinear pooling
from Simple MCB with an LSTM consisting of hidden states equal
to the image size. A 1 × 1 convolutional layer followed by a tanh
activation were used on the image features prior to the LSTM,
while the question representation was replicated to have a common
embedding size for both representations This model is referred to
as Joint LSTM. Note that this model does not use attention.

We begin by testing our baseline models on the VQA 1.0
validation set. As shown in Table 1, the language-only baseline
model managed to get 48.3% overall. More impressively, it scored
78.56% on Yes/No questions. The Simple MCB model further
improves the overall performance, although little improvement is
gained in the binary Yes/No tasks. Replacing MCB with our basic
Joint LSTM embedding improves performance across the board.

Modifications to the Joint LSTM Model. We test several variations
of the Joint LSTM baseline which are highlighted in Table 1.
Using PReLU activations has helped in two ways. First, it
reduced time for convergence from 240K iterations to 120K.
Second, the overall accuracy has improved, especially in the Other
category. Therefore, we include it in all the following models.
The next modifications were inspired by the results from Kazemi
and Elqursh (2017). We experimented with appending positional
features (Pos.) which can be described as the coordinates of each
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Table 2: Evaluation of the recurrent attention models on the VQA 2.0 validation
split.

VQA 2.0 Validation Split

Model All Y/N Num. Other

Joint LSTM 56.00 72.04 37.95 48.58

RVAU 59.02 74.59 37.75 52.81
RVAUmultilabel 53.67 77.53 36.05 40.18

DRAUHadamard fusion 59.58 76.62 38.92 52.09
DRAUanswer vocab = 5k 59.27 76.33 38.21 51.85
DRAUReLU 54.11 72.69 34.92 45.05
DRAUno final dropout 58.69 77.02 38.26 50.17
DRAUhigh final dropout 59.71 76.47 38.71 52.52

Table 3: Evaluation of DRAU-based models on the VQA 2.0 test-dev split.

VQA 2.0 Test-Dev Split

Model All Y/N Num. Other

DRAUHadamard fusion 62.24 78.27 40.31 53.57
DRAUsmall 60.03 77.53 38.78 49.93
DRAUno genome 61.88 79.63 39.55 51.81
DRAUMCB fusion 63.41 78.97 40.06 55.47

pixel to the depth/feature dimension of the image representation.
When unnormalized with respect to the other features, it worsened
results significantly, dropping the overall accuracy by over 2 points.
Normalizing positional features (Norm Pos.) did not have enough
of a noticeable improvement (0.01 points overall) to warrant its
effectiveness. Next, increasing dropout values from 0.3 to 0.5
deteriorated the network’s accuracy, particularly in the Number
and Other categories. The final modification was inserting a fully
connected layer with 1024 hidden units before the classifier, which
surprisingly dropped the accuracy massively.

2.2. RAU Networks

RVAU Evaluation. Our first network with explicit visual attention,
RVAU, uses the standard image and question representation in the
paper (IR and QR) while only having one attention branch (RVAU).
The output of RVAU is sent to the reasoning module (RM). RVAU
shows an accuracy jump by almost 3 points compared to the Joint
LSTM model in Table 2. This result highlights the importance
of attention for good performance in VQA. Training the RVAU
network as a multi-label task (RVAUmultilabel), i.e. using all available
annotations at each training iteration, drops the accuracy horribly.
This is the biggest drop in performance so far. This might be caused
by the variety of annotations in VQA for each question which
makes the task for optimizing all answers at once much harder.

DRAU Evaluation. The addition of RTAU marks the creation of
our DRAU network. As mentioned in the paper, the output of
both RAUs is combined using fusion operation. All subsequent
models use Hadamard fusion unless explicitly stated. In Table 2,
the DRAU model shows favorable improvements over the RVAU
model. Adding textual attention improves overall accuracy by
0.56 points. Substituting the PReLU activations with ReLU
(DRAUReLU) massively drops performance. While further training
might have helped the model improve, PReLU offers much faster

convergence. Increasing the value of the dropout layer after the
fusion operation (DRAUhigh final dropout) improves performance by
0.13 points, in contrast to the results of the Joint LSTM model on
VQA 1.0. Note that on the VQA 1.0 tests, we changed the values
of all layers that we apply dropout on, but here we only change the
last one after the fusion operation. Totally removing this dropout
layer worsens accuracy (DRAUno final dropout). This suggests that the
optimal dropout value should be tuned per-layer.

Next, we test a few variations of DRAU on the Test-Dev
set. For this test set, we use the Train, Validation, and Visual
Genome data for training. We can observe that VQA benefits
from more training data; the same DRAU network performs better
(62.24% vs. 59.58%) thanks to the additional data. Reducing
the image feature size from 2048 × 14 × 14 to 2048 × 7 ×
7 adversely affects accuracy as shown in Table 3 (DRAUsmall).
Removing the extra data from Visual Genome hurts the model’s
accuracy (DRAUno genome). That supports the fact that VQA is
very diverse and that extra data helps the model perform better.
Finally, substituting Hadamard product of MCB in the final fusion
operation boosts the network’s accuracy significantly by 1.17
points (DRAUMCB fusion).

2.3. DRAU variants vs. state-of-the-art

After examining the results from the previous experiments, we
evaluate some variants of the DRAU model on the test/test-dev
splits of VQA 1.0/2.0 in Tables 4 and 5. Contrary to Kim et al.
(2017) results, we found that MCB performs significantly better in
our model. This seems to be consistent since we are able to repeat
these results in both VQA 1.0 and 2.0 test splits. Furthermore, we
can see the performance uplift from switching ResNet global image
features to the object-level visual features from Ren et al. (2015).

3. Additional qualitative results

In this section, we discuss the strengths and weaknesses of our
DRAU network. Then, we mention some drawbacks of the VQA
dataset.

To do so, we compare DRAU with the MCB model in a subset
of VQA questions and offer some qualitative comparisons of the
attention maps created by each model. Next, we discuss some
drawbacks of our architecture and show some situations where
DRAU fails. Finally, we provide instances where the inter-human
consensus evaluation of VQA causes false evaluations.

3.1. DRAU versus MCB

Closer look at counting questions. The strength of RAUs is
notable in tasks that require sequentially processing the image
or relational/multi-step reasoning. In the same setting, DRAU
outperforms MCB in counting questions. Since annotations for the
test sets are not publicly available, we train both networks using
the Train and Visual Genome sets and test on the validation set.
This DRAU model uses Hadamard product for the fusion operation
and ResNet for the image features. Around 10% of the questions
start with ”how many” which can be considered to require solving
a counting task. Figure 1 shows a comparison of both models on
the above-mentioned type of questions as well as the two largest
subsets ”how many people are” and ”how many people are in”.

It is clear that DRAU outperforms MCB in all three subsets.
Since we use the same input representation to MCB (Fukui
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Table 4: DRAU models compared to the state-of-the-art on the VQA 1.0 dataset. N corresponds to the number of models used for prediction. WE indicates whether the
method uses a pre-trained word embedding. VG indicates whether the method uses external data from the Visual Genome dataset.

VQA 1.0 Open Ended Task

Test-dev Test-standard
Model N WE VG All Y/N Num. Other All Y/N Num. Other

SAN (Yang et al., 2016) - - - 58.7 79.3 36.6 46.1 - - - 58.9
DMN+ (Xiong et al., 2016) 1 - - 60.3 80.5 36.8 48.3 60.4 - - -
MRN (Kim et al., 2016) - 7 - 61.68 82.28 38.82 49.25 61.84 82.39 38.23 49.41
HieCoAtt (Lu et al., 2016) 1 - - 61.8 79.7 38.7 51.7 62.1 - - -
RAU (Noh and Han, 2016) 1 - - 63.3 81.9 39.0 53.0 63.2 81.7 38.2 52.8
DAN (Nam et al., 2017) 1 - - 64.3 83.0 39.1 53.9 64.2 82.8 38.1 54.0
MCB (Fukui et al., 2016) 7 X X 66.7 83.4 39.8 58.5 66.47 83.24 39.47 58.00
MLB (Kim et al., 2017) 1 X 7 - - - - 65.07 84.02 37.90 54.77
MLB (Kim et al., 2017) 7 X X 66.77 84.57 39.21 57.81 66.89 84.61 39.07 57.79
MUTAN (Ben-younes et al., 2017)) 5 X X 67.42 85.14 39.81 58.52 67.36 84.91 39.79 58.35
MFH (Yu et al., 2017) 1 X X 67.7 84.9 40.2 59.2 67.5 84.91 39.3 58.7

DRAUResNet + Hadamard fusion 1 7 7 64.3 82.73 38.18 54.43 - - - -
DRAUResNet + MCB fusion 1 7 7 65.1 82.44 38.22 56.30 65.03 82.41 38.33 55.97
DRAUFRCNN + MCB fusion 1 X 7 66.86 84.92 39.16 57.70 67.16 84.87 40.02 57.91

Table 5: DRAU models compared to the current submissions on the VQA 2.0 dataset. N corresponds to the number of models used for prediction. WE indicates whether
the method uses a pre-trained word embedding. VG indicates whether the method uses external data from the Visual Genome dataset.

VQA 2.0 Open Ended Task

Test-dev Test-standard
Model N WE VG All Y/N Num. Other All Y/N Num. Other

neural-vqa-attention (Yang et al., 2016) - - - 55.35 70.1 35.39 47.32 55.28 69.77 35.65 47.18
CRCV REU - - - 60.65 73.91 36.82 54.85 60.81 74.08 36.43 54.84
VQATeam MCB (Goyal et al., 2017) 1 X X 61.96 78.41 38.81 53.23 62.27 78.82 38.28 53.36
DCD ZJU(Lin et al., 2017) - 7 - 62.47 79.84 38.72 53.08 62.54 79.85 38.64 52.95
VQAMachine (Wang et al., 2016) - - - 62.62 79.4 40.95 53.24 62.97 79.82 40.91 53.35
UPMC-LIP6 (Ben-younes et al., 2017) 5 X X 65.57 81.96 41.62 57.07 65.71 82.07 41.06 57.12
HDU-USYD-UNCC (Yu et al., 2017) 9 X X 68.02 84.39 45.76 59.14 68.09 84.5 45.39 59.01
Adelaide-Teney (Teney et al., 2017) 1 X X 65.32 81.82 44.21 56.05 65.67 82.20 43.90 56.26
Adelaide-Teney (Anderson et al., 2017) 30 X X - - - - 70.34 86.60 48.64 61.15
FAIR A-STAR (Jiang et al., 2018) 1 X X 70.01 - - - 70.24 - - -
FAIR A-STAR (Jiang et al., 2018) 30 X X 72.12 87.82 51.54 63.41 72.25 87.82 51.59 63.43

DRAUResNet + Hadamard fusion 1 7 7 62.24 78.27 40.31 53.58 62.66 78.86 39.91 53.76
DRAUResNet + MCB fusion 1 7 7 63.41 78.97 40.06 55.48 63.71 79.27 40.15 55.55
DRAUFRCNN + MCB fusion 1 X 7 66.45 82.85 44.78 57.4 66.85 83.35 44.37 57.63
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Figure 1: Results on questions that require counting in the VQA 2.0 validation set.

et al., 2016), the performance gain can be attributed to the
capability of recurrent attention units to capture and accumulate
local information while scanning the input.

Comparison of Attention maps. Figure 2 provides some qualitative
results between DRAU’s and MCB’s attention mechanisms.

In Figure 2, it is clear that the recurrence helps the model attend
to multiple targets as apparent in the difference of the attention
maps between the two models. The top 4 examples give an insight
to why DRAU noticeably performs better in the number category in
VQA, because it creates more precise attention that helps the model
count better. MCB seems to struggle focusing on full-body photos
of humans that leads to an incorrect prediction. DRAU seems to
have a higher quality visual attention that aids it in counting the
correct number of people. For the question “How many animals are
there?”, it is likely that MCB has mistaken the boulders for a large
animal. DRAU does not seem to have any problem in correctly
attending in a multitude of sceneries and attending to multiple
objects. This property also translates to questions that require
relational reasoning. The question “Are the larger elephant’s eye
open?” illustrates that DRAU can attend to all possible elephants
and successfully process the question. Note that MCB’s attention
is not focused on any discernible parts. In the next question “Why
is the cat sitting on the toilet?”, DRAU attends to both the cat
and toilet in a cluttered environment and is not easily fooled by
environmental bias. MCB attends to the sink which might explain
its prediction of “drinking”. The question “What animal does the
vase depict?” demonstrates how DRAU can attend the location
required to answer the question based on the textual and visual
attention maps. Note the high weight given to the word “vase”. It
is important to re-state that these qualitative results were predicted
by a DRAU model which was trained in the same fashion as MCB
and thus, it does not represent our best network.

4. DRAU drawbacks

There is still a lot to improve in the DRAU network. First,
the image representation might not be adequate to capture all the
objects in an image. This is due to the fact that the image features
were trained for image classification. Thus, inter-object relations
are not explicitly captured by the image features.

Another drawback of DRAU — and almost all current VQA
models — is the use of limited vocabulary. In Figure 3, DRAU
fails to predict the correct answer due to its limited vocabulary
of the most 3000 frequent answers seen in training. It is worth
noting though that DRAU predicts a fairly close answer. In the
first example, DRAU manages to predict the time to be ”3:20”
which is close the correct answers ”3:17” and ”3:18”. The two
other examples in Figure 3 can not be attributed to the lack of
vocabulary particularly, since DRAU’s vocabulary contains some
of these words like ”burger, cellphone, food, menu, pig, hot, dog”.
But rather to the naive way of predicting the answer by just a
3000-way classifier. To handle such questions, a model will be
required to ”create” answers by itself. A good candidate could be
a compositional model that first decides the type of task as in (Hu
et al., 2017), then the model would choose a different reasoning
method depending on the task. For example, if the task requires
counting, the model would keep a counter, process the input, and
increase the counter whenever appropriate. If the task requires
description such as in the second example of Figure 3, then it would
use a reasoning method that is similar to image captioning methods
to describe the contents of the plate.

VQA often demands specific answers, thus, general predictions
will often fail to be answer the question. For example, if a question
asks about the identity of a celebrity in a photo: ”Is this Obama?”,
the model is incapable of solving this task without seeing this
person during training. Since it’s infeasible to account for all
possible objects, zero-shot learning techniques are crucial. Zero-
shot learning refers to the capability of a model to solve a task
despite not seeing any examples of such task in training. Teney
and van den Hengel (2016) propose test-time exemplar retrieval by
using search engine services to retrieve images about every word
in the question and compute global image features which are then
embedded and passed down the architecture pipeline. However,
this approach partially solves the problem. Because if there are no
unique words that identify that task (e.g. ”Who is this? is a vague
question), then the exemplar retrieval would not offer any valuable
information.

5. VQA dataset drawbacks

According to the results in Section 2.1 and recent surveys
(Kafle and Kanan, 2017; Wu et al., 2016), there exists a strong
bias in VQA. This is can be attributed to the fact that when
presented with an image, the humans creating questions for
VQA tend to ask simple questions that often require basic scene
understanding or querying about the presence of a certain object.
Harder questions that require complex relational reasoning are less
common. This can be confusing when evaluating different models
since all questions are weighed equally. Kafle and Kanan (2017)
suggest evaluating every type of question separately and calculate
the accuracy as the mean across the question types rather than
calculating the mean across all questions.

Human consensus offers a good balance between allowing
multiple correct answers and ease of evaluation. However, we
experienced encounters when this does not hold. In Figure 4, we
point out some of the examples. The first and second example
highlight that synonyms will not be taken into account if they don’t
appear in the annotation. This unnecessarily punishes model for
choosing a semantically identical answer and might compound the
bias problem in VQA.
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Figure 2: DRAU vs. MCB Qualitative examples. Attention maps for both models shown, only DRAU has textual attention.
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Image Question Prediction Annotations

What time does the
clock say?

”3:20”

• 3: 8
• 3:18
• 3:17
• 3:19
• 3:17
• 3:17
• 3:18
• 3:18
• 3:18
• 3:17

What is on the table? ”plate”

• burger with fries
• tablecloth cups cell phone food and menu
• onion rings
• bbq brisket sandwich onion rings bbq

sauce menu cell phone
• onion rings and burger
• onion rings and burger
• onion rings and burger
• sandwich with onion rings
• onion rings and hamburger
• onion rings and hamburger

What kind of food is this? ”pastry”

• pig in blanket
• pastry’s
• corn dog
• crescent dogs
• pastry
• pigs in blankets
• pastry
• pig in blanket
• pigs in blanket
• croissants with hot dogs inside

Figure 3: Examples where DRAU fails. DRAU generalizes because of the lack of expressive vocabulary.
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In other cases, the human consensus fails to provide a reliable
annotation. In the last example in Figure 4, the annotators have not
agreed on any common annotation. Thus, any method can never get
100% accuracy in such questions. This appears to be a common
theme for questions that require more effort than usual from the
annotators. It is worth noting that this problem is not an inherent
attribute of human consensus evaluation, but rather specific to the
VQA dataset. We believe it’s possible to alleviate this problem by
using more than ten annotations and providing a well-structured
guideline to help annotators.
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Image Question Prediction Annotations

How many people are there? ”none”

• 0
• 0
• 0
• 0
• 0
• 0
• 0
• 0
• 0
• 0

How many people are there? ”one”

• 1
• 2
• 3
• 1
• 3
• 1
• 1
• 1
• 2
• 1

How many people are there? ”many”

• 150
• yes
• 134
• many
• 100s
• 200
• 200
• crowd
• lots
• 67

Figure 4: Examples where VQA annotations can punish good predictions
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