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Abstract Locality sensitive hashing (LSH) is a powerful tool in data science,
which enables sublinear-time approximate nearest neighbor search. A variety
of hashing schemes have been proposed for different dissimilarity measures.
However, hash codes significantly depend on the dissimilarity, which prohibits
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users from adjusting the dissimilarity at query time. In this paper, we propose
multiple purpose LSH (mp-LSH) which shares the hash codes for different
dissimilarities. mp-LSH supports L2, cosine, and inner product dissimilarities,
and their corresponding weighted sums, where the weights can be adjusted at
query time. It also allows us to modify the importance of pre-defined groups of
features. Thus, mp-LSH enables us, for example, to retrieve similar items to a
query with the user preference taken into account, to find a similar material to
a query with some properties (stability, utility, etc.) optimized, and to turn
on or off a part of multi-modal information (brightness, color, audio, text,
etc.) in image/video retrieval. We theoretically and empirically analyze the
performance of three variants of mp-LSH, and demonstrate their usefulness on
real-world data sets.

Keywords Locality Sensitive Hashing · Approximate Near Neighbor Search ·
Information Retrieval · Collaborative Filtering

1 Introduction

Statistics and probability theory have been playing the central role in machine
learning, artificial intelligance, and related application fields, e.g., text analytics,
computer vision, information retrieval, computational biology, and data mining
[16,7]. When the data size and the complexity of the statistical model were
moderate, typical machine learning problems such as clustering, regression, and
classification were solved by (explicitly or implicitly) estimating the probability
distribution.

In recent years when those research fields are generically called data sci-
ence, large amounts of data are used to train statistical models with very
high complexity. This arose from the rapid progress of semiconductor devices
(CPUs/GPUs, memory, communication devices, etc.), and the breakthrough
with deep neural networks, where complex deep architectures have been proven
to learn highly non-linear fine structure of data from massive data, further
accelerated the demand of large models that can be trained on big data [19,4,
29,23,5,35].

Rapid increase of data size also necessitated new technologies for basic tools
in data analysis. Nearest neighbor search (NNS), which is intensively used in
data science, is one of them. In retrieval systems and recommender systems,
NNS is used to find items which are closest to (or best match) a given query.
NN classifiers have been shown to perform comparably to the state-of-the-art
multi-class classifiers [43], which implies that NNS can well approximate (or
reflect) the probability distribution when the number of training samples is
sufficiently large. NNS has also shown to be useful in extreme classification,
where the number of classes is extremely large [42].

Since NNS is required to perform on millions to billions of samples within a
few seconds in some real time applications, a naive implementation with linear
complexity can be too slow. Thus sublinear methods have become important
analysis tools. Locality sensitive hashing (LSH), one of the key technologies
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for big data analysis, enables approximate nearest neighbor search (ANNS)
in sublinear time [20,44]. With LSH functions for a required dissimilarity
measure in hand, each data sample is assigned to a hash bucket in the pre-
processing stage. At runtime, ANNS can be performed by restricting the search
to the samples that lie within the hash bucket, to which the query point is
assigned, along with the samples lying in the neighbouring buckets. Probability
theory provided theoretical guarantees of ANNS performance with LSH [20]. A
variety of LSH schemes have been proposed for different dissimilarity measures,
including Jaccard distance [8], Lp distance [12], cosine distance [10], chi-squared
distance [15], distance to a hyperplane [21], and inner product dissimilarity
(maximum inner product search) [36,2,37,32].

A drawback of the existing LSH schemes is that each LSH scheme is
specialized for each dissimilarity measure. This can limit the flexibility of the
use of LSH. For some data collections, the objective can be clearly expressed
from the start, for example, text/image/video/speech analysis. In such cases,
the dissimilarity measure can be fixed when LSH codes are given to each sample.
However, in other cases such as drug discovery, the material genome project,
or climate analysis, the ultimate query structure to such data may still not be
fully fixed. In other words, measurements, simulations or observations may be
recorded without being able to spell out the full specific purpose (although the
general goal, e.g., producing better drugs, finding more potent materials, or
detecting anomaly, is clear). Motivated by the latter case, we consider how one
can use LSH schemes without defining any specific dissimilarity at the data
acquisition and pre-processing phase.

A challenge in developing LSH without defining specific purpose is that the
existing LSH schemes, designed for different dissimilarity measures, provide
significantly different hash codes. Therefore, a naive realization requires us
to prepare the same number of hash tables as the number of possible target
dissimilarities, which is not realistic if we need to adjust the importance of
multiple criteria. In this paper, we propose three variants of multiple purpose
LSH (mp-LSH), which support L2, cosine, and inner product (IP) dissimilarities,
and their weighted sums, where the weights can be adjusted at query time.

The first proposed method, called mp-LSH with vector augmentation (mp-
LSH-VA), maps the data space into an augmented vector space, so that the
squared-L2-distance in the augmented space matches the required dissimilarity
measure up to a constant. This scheme can be seen as an extension of recent
developments of LSH for maximum IP search (MIPS) [36,2,37,32]. The signifi-
cant difference from the previous methods is that our method is designed to
modify the dissimilarity by changing the augmented query vector. We show
that mp-LSH-VA is locality sensitive for L2 and IP dissimilarities and their
weighted sums. However, its performance for the L2 dissimilarity is significantly
inferior to the standard L2-LSH [12]. In addition, mp-LSH-VA does not support
the cosine-distance.

Our second proposed method, called mp-LSH with code concatenation (mp-
LSH-CC), concatenates the hash codes for L2, cosine, and IP dissimilarities,
and constructs a special structure, called cover tree [9], which enables efficient
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NNS with the weights for the dissimilarity measures controlled by adjusting
the metric in the code space. Although mp-LSH-CC is conceptually simple and
its performance is guaranteed by the original LSH scheme for each dissimilarity,
it is not memory efficient, which also results in increased query time.

Considering the drawbacks of the aforementioned two variants led us to our
final and recommended proposal, called mp-LSH with code augmentation and
transformation (mp-LSH-CAT). It supports L2, cosine, and IP dissimilarities
by augmenting the hash codes, instead of the original vector. mp-LSH-CAT
is memory efficient, since it shares most information over the hash codes for
different dissimilarities, so that the augmentation is minimized.

We theoretically and empirically analyze the performance of mp-LSH meth-
ods, and demonstrate their usefulness on real-world data sets. Our mp-LSH
methods also allow us to modify the importance of pre-defined groups of fea-
tures. Adjustability of the dissimilarity measure at query time is not only useful
in the absence of future analysis plans, but also applicable to multi-criteria
searches. The following lists some sample applications of multi-criteria queries
in diverse areas:
1. In recommender systems, suggesting items which are similar to a user-

provided query and also match the user’s preference.
2. In material science, finding materials which are similar to a query material

and also possess desired properties such as stability, conductivity, and
medical utility.

3. In video retrieval, we can adjust the importance of multimodal information
such as brightness, color, audio, and text at query time.

Related Work: After the theoretical relation between the performance of ap-
proximate nearest neighbor search and the locality sensitivity of hash functions
was established [20], a lot of LSH schems have been proposed for different
dissimilarity measures, including Jaccard distance [8], Lp distance [12], cosine
distance [10], chi-squared distance [15], distance to a hyperplane [21], and inner
product dissimilarity (maximum inner product search) [36,2,37,32]. They are
categorized as data independent hashing methods where each sample is given a
hash code, independently from the other samples [44].

On the other hand, data dependent hashing methods have recently been
intensively developed, where the code is optimized for the sample distribution.
Some of those methods learn the sample distribution by using unsupervised
machine learning tools, e.g., PCA [27] and ICA [17], while others additionally
use label information by supervised methods, e.g., LDA [41], kernel methods
[25], and neural networks [24]. In general, data dependent methods improve
the accuracy of the data independent counterpart by learning the sample
distribution, while they are less flexible because hashing procedure is fixed
only after most of the samples are captured, i.e., they are not suitable for the
streaming setting where each sample should be given a hash code right after it
is acquired, without waiting the whole data collection process to be completed.
In this paper, we propose data independent LSH methods, and therefore, the
data dependent methods are out of scope.
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Some hashing methods cope with multi-modal data [40,31,45], most of
which however are data dependent and do not offer adjustability of the im-
portance weights at query time. To the best of our knowledge, no existing
hashing methods can cope with different dissimilarity measures with the weights
adjustable at query time.

2 Background

In this section, we briefly overview previous locality sensitive hashing (LSH)
techniques.

Assume that we have a sample pool X = {x(n) ∈ RL}Nn=1 in L-dimensional
space. Given a query q ∈ RL, nearest neighbor search (NNS) solves the following
problem:

x∗ = argmin
x∈X

L(q,x), (1)

where L(·, ·) is a dissimilarity measure. A naive approach computes the dis-
similarity from the query to all samples, and then chooses the most similar
samples, which takes O(N) time. On the other hand, approximate NNS can be
performed in sublinear time. We define the following three terms:

Definition 1 (S0-near neighbor) For S0 > 0, x is called S0-near neighbor of
q, if L(q,x) ≤ S0.

Definition 2 (c-approximate nearest neighbor search) Given S0 > 0, δ > 0,
and c > 1, c-approximate nearest neighbor search (c-ANNS) reports some cS0-
near neighbor of q with probability 1− δ, if there exists an S0-near neighbor
of q in X .

Definition 3 (Locality sensitive hashing) A family H = {h : RL → K} of
functions is called (S0, cS0, p1, p2)-sensitive for a dissimilarity measure L :
RL × RL → R, if the following two conditions hold for any q,x ∈ RL:

• if L(q,x) ≤ S0 then P (h(q) = h(x)) ≥ p1,
• if L(q,x) ≥ cS0 then P (h(q) = h(x)) ≤ p2,

where P(·) denotes the probability of the event (with respect to the random
draw of hash functions).

Note that p1 > p2 is required for LSH to be useful. The image K of hash
functions is typically binary or integer. The following proposition guarantees
that locality sensitive hashing (LSH) functions enable c-ANNS in sublinear
time.

Proposition 1 [20] Given a family of (S0, cS0, p1, p2)-sensitive hash func-
tions, there exists an algorithm for c-ANNS with O(Nρ logN) query time and
O(N1+ρ) space, where ρ = log p1

log p2
< 1.
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Below, we introduce three LSH families. Let NL(µ,Σ) be the L-dimensional
Gaussian distribution, UL(α, β) be the L-dimensional uniform distribution with
its support [α, β] for all dimensions, and IL be the L-dimensional identity
matrix. The sign function, sign(z) : RH 7→ {−1, 1}H , applies element-wise,
giving 1 for zh ≥ 0 and −1 for zh < 0. Likewise, the floor operator b·c applies
element-wise for a vector. We denote by ^(·, ·) the angle between two vectors,
and by a semicolon the row-wise concatenation of vectors, like in matlab.

Proposition 2 (L2-LSH) [12] For the L2-distance LL2(q,x) = ‖q − x‖2, the
hash function

hL2a,b(x) =
⌊
R−1(a>x+ b)

⌋
, (2)

where R > 0 is a fixed real number, a ∼ NL(0, IL), and b ∼ U1(0, R), satisfies
P(hL2a,b(q) = hL2a,b(x)) = FL2

R (LL2(q,x)), where

FL2
R (d) = 1− 2Φ(−R/d)− 2√

2π(R/d)

(
1− e−(R/d)2/2

)
.

Here, Φ(z) =
∫ z
−∞

1√
2π
e−

y2

2 dy is the standard cumulative Gaussian.

Proposition 3 (sign-LSH) [14,10] For the cosine-distance Lcos(q,x) = 1−
cos^(q,x) = 1− q>x

‖q‖2‖x‖2 , the hash function

hsigna (x) = sign(a>x), (3)

where a ∼ NL(0, IL), satisfies P
(
hsigna (q) = hsigna (x)

)
= F sign(Lcos(q,x)),

where

F sign(d) = 1− 1
π cos−1(1− d). (4)

Proposition 4 [32] (simple-LSH) Assume that the samples and the query are
rescaled so that maxx∈X ‖x‖2 ≤ 1, ‖q‖2 ≤ 1. For the inner product dissimilarity
Lip(q,x) = 1− q>x (with which the NNS problem (1) is called maximum IP
search (MIPS)), the asymmetric hash functions

hsmp−q
a (q) = hsigna (q̃) = sign(a>q̃) where q̃ = (q; 0), (5)

hsmp−x
a (x) = hsigna (x̃) = sign(a>x̃) where x̃ = (x;

√
1− ‖x‖22), (6)

satisfy P (hsmp−q
a (q) = hsmp−x

a (x)) = F sign(Lip(q,x)).

These three LSH methods above are standard and state-of-the-art (among
the data-independent LSH schemes) for each dissimilarity measure. Although
all methods involve the same random projection a>x, the resulting hash codes
are significantly different from each other.
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3 Proposed Methods and Theory

In this section, we first define the problem setting. Then, we propose three
LSH methods for multiple dissimilarity measures, and conduct a theoretical
analysis.

3.1 Problem Setting

Similarly to the simple-LSH (Proposition 4), we rescale the samples so that
maxx∈X ‖x‖2 ≤ 1. We also assume ‖q‖2 ≤ 1.1 Let us assume multi-modal data,
where we can separate the feature vectors into G groups, i.e., q = (q1; . . . ; qG),
x = (x1; . . . ;xG). For example, each group corresponds to monochrome, color,
audio, and text features in video retrieval. We also accept multiple queries
{q(w)}Ww=1 for a single retrieval task. Our goal is to perform ANNS for the
following dissimilarity measure, which we call multiple purpose (MP) dissimi-
larity:

Lmp({q(w)},x) =
∑W
w=1

∑G
g=1

{
γ
(w)
g ‖q(w)

g − xg‖22

+ 2η
(w)
g

(
1− q(w)>

g xg

‖q(w)
g ‖2‖xg‖2

)
+ 2λ

(w)
g

(
1− q(w)>

g xg

)}
, (7)

where γ(w),η(w),λ(w) ∈ RG+ are the feature weights such that
∑W
w=1

∑G
g=1(γ

(w)
g +

η
(w)
g + λ

(w)
g ) = 1. In the single query case, where W = 1, setting γ =

(1/2, 0, 1/2, 0, . . . , 0),η = λ = (0, . . . , 0) corresponds to L2-NNS based on
the first and the third feature groups, while setting γ = η = (0, . . . , 0),λ =
(1/2, 0, 1/2, 0, . . . , 0) corresponds to MIPS on the same feature groups. When
we like to down-weight the importance of signal amplitude (e.g., brightness
of image) of the g-th feature group, we should increase the weight η(w)

g for
the cosine-distance, and decrease the weight γ(w)

g for the squared-L2-distance.
Multiple queries are useful when we mix NNS and MIPS, for which the queries
lie in different spaces with the same dimensionality. For example, by setting
γ(1) = λ(2) = (1/4, 0, 1/4, 0, . . . , 0),γ(2) = η(1) = η(2) = λ(1) = (0, . . . , 0), we
can retrieve items, which are close to the item query q(1) and match the user
preference query q(2). An important requirement for our proposal is that the
weights {γ(w),η(w),λ(w)} can be adjusted at query time.

Our target application is an interactive system, like the demonstration in
Section 4.3, where the users modify the weights according to the result with
the previous weight setting. Optimizing the weights for some meta objective is
out of scope of this paper.

1 This assumption is reasonable for L2-NNS if the size of the sample pool is sufficiently
large, and the query follows the same distribution as the samples. For MIPS, the norm of
the query can be arbitrarily modified, and we set it to ‖q‖2 = 1.
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3.2 Multiple purpose LSH with Vector Augmentation (mp-LSH-VA)

Our first method, called multiple purpose LSH with vector augmentation (mp-
LSH-VA), is inspired by the research on asymmetric LSHs for MIPS [36,2,37,
32], where the query and the samples are augmented with additional entries, so
that the squared-L2-distance in the augmented space coincides with the target
dissimilarity up to a constant. A significant difference of our proposal from the
previous methods is that we design the augmentation so that we can adjust
the dissimilarity measure (i.e., the feature weights {γ(w),λ(w)} in Eq.(7)) by
modifying the augmented query vector. Since mp-LSH-VA, unfortunately, does
not support the cosine-distance, we set η(w) = 0 in this subsection. We define
the weighted sum query by

q = (q1; · · · ; qG) =
∑W
w=1

(
φ
(w)
1 q

(w)
1 ; · · · ;φ(w)

G q
(w)
G

)
,

where φ(w)
g = γ(w)

g + λ(w)
g .

We augment the queries and the samples as follows:

q̃ = (q; r), x̃ = (x;y),

where r ∈ RM is a (vector-valued) function of {q(w)}, and y ∈ RM is a function
of x. We constrain the augmentation y for the sample vector so that it satisfies,
for a constant c1 ≥ 1,

‖x̃‖2 = c1, i.e., ‖y‖22 = c21 − ‖x‖22. (8)

Under this constraint, the norm of any augmented sample is equal to c1, which
allows us to use sign-LSH (Proposition 3) to perform L2-NNS. The squared-
L2-distance between the query and a sample in the augmented space can be
expressed as

‖q̃ − x̃‖2
2
= −2

(
q>x+ r>y

)
+ const. (9)

For M = 1, only the choice satisfying Eq.(8) is simple-LSH (for r = 0), given
in Proposition 4. We consider the case for M ≥ 2, and design r and y so that
Eq.(9) matches the MP dissimilarity (7).

The augmentation that matches the MP dissimilarity is not unique. Here,
we introduce the following easy construction with M = G+ 3:

q̃ =
(
q̃′;
√
c22 − ‖q̃

′‖22
)
, x̃ = (x̃′; 0) where (10)

q̃′ =
(
q1; · · · ; qG︸ ︷︷ ︸

q∈RL

;
∑W
w=1 γ

(w)
1 ; · · · ;

∑W
w=1 γ

(w)
G ; 0;µ︸ ︷︷ ︸

r′∈RG+2

)
,

x̃′ =
(
x1; · · · ;xG︸ ︷︷ ︸

x∈RL

; −‖x1‖22
2 ; · · · ;−‖xK‖22

2 ; ν; 1
2︸ ︷︷ ︸

y′∈RG+2

)
.
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(a) L2NNS (γ = 1, λ = 0) (b) MIPS (γ = 0, λ = 1) (c) Mixed (γ = 0.5, λ = 0.5)

Fig. 1 Theoretical values ρ = log p1
log p2

(lower is better), which indicates the LSH performance
(see Proposition 1). The horizontal axis indicates c for c-ANNS.

Here, we defined

µ = −
∑W
w=1

∑G
g=1 γ

(w)
g ‖q(w)

g ‖22,

ν =

√
c21 −

(
‖x‖22 + 1

4

∑G
g=1 ‖xg‖42 +

1
4

)
,

c21 = maxx∈X

(
‖x‖22 + 1

4

∑G
g=1 ‖xg‖42 +

1
4

)
,

c22 = maxq ‖q̃′‖22.

With the vector augmentation (10), Eq.(9) matches Eq.(7) up to a constant
(see Appendix A):

‖q̃ − x̃‖2
2
= c21 + c22 − 2q̃>x̃ = Lmp({q(w)},x) + const.

The collision probability, i.e., the probability that the query and the sample
are given the same code, can be analytically computed:

Theorem 1 Assume that the samples are rescaled so that maxx∈X ‖x‖2 ≤ 1
and ‖q(w)‖2 ≤ 1 for w = 1, . . . ,W . For the MP dissimilarity Lmp({q(w)},x),
given by Eq.(7), with η(w) = 0 for w = 1, . . . ,W , the asymmetric hash functions

hVA−qa ({q(w)}) = hsigna (q̃) = sign(a>q̃),

hVA−xa (x) = hsigna (x̃) = sign(a>x̃),

where q̃ and x̃ are given by Eq.(10), satisfy

P
(
hVA−qa ({q(w)}) = hVA−xa (x)

)
= F sign

(
1 +

Lmp({q(w)},x)−2‖λ‖
1

2c1c2

)
.

(Proof) Via construction, it holds that ‖x̃‖2 = c1 and ‖q̃‖2 = c2, and simple
calculations (see Appendix A) give q̃>x̃ = ‖λ‖

1
− Lmp({q(w)},x)

2 . Then, applying
Propostion 3 immediately proves the theorem. 2

Figure 1 depicts the theoretical value of ρ = log p1
log p2

of mp-LSH-VA, computed
by using Thoerem 1, for different weight settings for G = 1. Note that ρ
determines the quality of LSH (smaller is better) for c-ANNS performance (see
Proposition 1). In the case for L2-NNS and MIPS, the ρ values of the standard
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LSH methods, i.e., L2-LSH (Proposition 2) and simple-LSH (Proposition 4),
are also shown for comparison.

Although mp-LSH-VA offers attractive flexibility with adjustable dissim-
ilarity, Figure 1 implies its inferior performance to the standard methods,
especially in the L2-NNS case. The reason might be a too strong asymmetry
between the query and the samples: a query and a sample are far apart in the
augmented space, even if they are close to each other in the original space.
We can see this from the first G entries in r and y in Eq.(10), respectively.
Those entries for the query are non-negative, i.e., rm ≥ 0 for m = 1, . . . , G,
while the corresponding entries for the sample are non-positive, i.e., ym ≤ 0
for m = 1, . . . , G. We believe that there is room to improve the performance
of mp-LSH-VA, e.g., by adding constants and changing the scales of some
augmented entries, which we leave as our future work.

In the next subsections, we propose alternative approaches, where codes are
as symmetric as possible, and down-weighting is done by changing the metric
in the code space. This effectively keeps close points in the original space close
in the code space.

3.3 Multiple purpose LSH with Code Concatenation (mp-LSH-CC)

Let γg =
∑W
w=1 γ

(w)
g , ηg =

∑W
w=1 η

(w)
g , and λg =

∑W
w=1 λ

(w)
g , and define

the metric-wise weighted average queries by qL2g =
∑W

w=1 γ
(w)
g q(w)

g

γg
, qcosg =∑W

w=1 η
(w)
g

q(w)
g

‖q(w)
g ‖2

, and qipg =
∑W
w=1 λ

(w)
g q

(w)
g .

Our second proposal, called multiple purpose LSH with code concatenation
(mp-LSH-CC), simply concatenates multiple LSH codes, and performs NNS
under the following distance metric at query time:

DCC({q(w)},x) =
∑G
g=1

∑T
t=1

(
γgR

√
π
2

∣∣hL2t (qL2g )−hL2t (xg)
∣∣

+ ‖qcosg ‖2
∣∣∣hsignt (qcosg )− hsignt (xg)

∣∣∣
+ ‖qipg ‖2

∣∣hsmp−q
t (qipg )− h

smp−x
t (xg)

∣∣ ), (11)

where h—t denotes the t-th independent draw of the corresponding LSH code
for t = 1, . . . , T . The distance (11) is a multi-metric, a linear combination of
metrics [9], in the code space. For a multi-metric, we can use the cover tree
[6] for efficient (exact) NNS. Assuming that all adjustable linear weights are
upper-bounded by 1, the cover tree expresses neighboring relation between
samples, taking all possible weight settings into account. NNS is conducted
by bounding the code metric for a given weight setting. Thus, mp-LSH-CC
allows selective exploration of hash buckets, so that we only need to accurately
measure the distance to the samples assigned to the hash buckets within a small
code distance. The query time complexity of the cover tree is O(κ12 logN),
where κ is a data-dependent expansion constant [18]. Another good aspect of
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the cover tree is that it allows dynamic insertion and deletion of new samples,
and therefore, it lends itself naturally to the streaming setting. Appendix F
describes further details.

In the pure case for L2, cosine, or IP dissimilarity, the hash code of mp-
LSH-CC is equivalent to the base LSH code, and therefore, the performance
is guaranteed by Propositions 2–4, respectively. However, mp-LSH-CC is not
optimal in terms of memory consumption and NNS efficiency. This inefficiency
comes from the fact that it redundantly stores the same angular (or cosine-
distance) information into each of the L2-, sign-, and simple-LSH codes. Note
that the information of a vector is dominated by its angular components unless
the dimensionality L is very small.

3.4 Multiple purpose LSH with Code Augmentation and Transformation
(mp-LSH-CAT)

Our third proposal, called multiple purpose LSH with code augmentation and
transformation (mp-LSH-CAT), offers significantly less memory requirement
and faster NNS than mp-LSH-CC by sharing the angular information for all
considered dissimilarity measures. Let

qL2+ip
g =

∑W
w=1(γ

(w)
g + λ

(w)
g )q

(w)
g .

We essentially use sign-hash functions that we augment with norm information
of the data, giving us the following augmented codes:

HCAT−q({q(w)}) =
(
H(qL2+ip);H(qcos);0>G

)
, (12)

HCAT−x(x) =
(
H̃(x);H(x); j>(x)

)
, (13)

where

H(v) =
(
sign(A1v1), . . . , sign(AGvG)

)
, (14)

H̃(v) =
(
‖v1‖2sign(A1v1), . . . , ‖vG‖2sign(AGvG)

)
,

j(v) =
(
‖v1‖2

2
; . . . ; ‖vG‖2

2

)
,

for a partitioned vector v = (v1; . . . ;vG) ∈ RL and 0G = (0; · · · ; 0) ∈ RG.
Here, each entry of A = (A1, . . . ,AG) ∈ RT×L follows At,l ∼ N (0, 12).

For two matrices H ′,H ′′ ∈ R(2T+1)×G in the transformed hash code space,
we measure the distance with the following multi-metric:

DCAT(H
′,H ′′) =

∑G
g=1

(
αg
∑T
t=1

∣∣H ′t,g −H ′′t,g∣∣+ βg
∑2T
t=T+1

∣∣H ′t,g −H ′′t,g∣∣
+ γg

T
2

∣∣H ′2T+1,g −H ′′2T+1,g

∣∣ ), (15)

where αg = ‖qL2+ip
g ‖

2
and βg = ‖qcosg ‖2.
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Although the hash codes consist of (2T+1)G entries, we do not need to store
all the entries, and computation can be simpler and faster by first computing
the total number of collisions in the sign-LSH part (14) for g = 1, . . . , G:

Cg(v′,v′′) =
∑T
t=1

{(
H(v′)

)
t,g

=
(
H(v′′)

)
t,g

}
. (16)

Note that this computation, which dominates the computation cost for evalu-
ating code distances, can be performed efficiently with bit operations. With
the total number of collisions (16), the metric (15) between a query set {q(w)}
and a sample x can be expressed as

DCAT

(
HCAT−q({q(w)}),HCAT−x(x)

)
=
∑G
g=1

(
αg

(
T + ‖xg‖2

(
T − 2Cg(qL2+ip,x)

))
+ 2βg

(
T − Cg(qcos,x)

)
+ γg

T
2 ‖xg‖

2
2

)
. (17)

Given a query set, this can be computed from H(x) ∈ RT×G and ‖xg‖2 for
g = 1, . . . , G. Therefore, we only need to store the pure TG sign-bits, which is
required by sign-LSH alone, and G additional float numbers.

Similarly to mp-LSH-CC, we use the cover tree for efficient NNS based on
the code distance (15). In the cover tree construction, we set the metric weights
to their upper-bounds, i.e., αg = βg = γg = 1, and measure the distance
between samples by

DCAT

(
HCAT−x(x′),HCAT−x(x′′)

)
=
∑G
g=1

( ∣∣‖x′g‖2 − ‖x′′g‖2∣∣ Cg(x′,x′′)
+ (‖x′g‖2 + ‖x

′′
g‖2 + 2)

(
T − Cg(x′,x′′)

)
+ T

2

∣∣∣‖x′g‖22 − ‖x′′g‖22 ∣∣∣ ). (18)

Since the collision probability can be zero, we cannot directly apply the
standard LSH theory with the ρ value guaranteeing the ANNS performance.
Instead, we show that the metric (15) of mp-LSH-CAT approximates the MP
dissimilarity (7), and the quality of ANNS is guaranteed.

Theorem 2 For η(w) = 0 for w = 1, . . . ,W , it holds that

limT→∞
DCAT

T = 1
2Lmp({q(w)},x) + const.+ error,

with |error| ≤ 0.2105
(
‖λ‖

1
+ ‖γ‖

1

)
.

(proof is given in Appendix C).
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Theorem 3 For γ(w) = λ(w) = 0 for w = 1, . . . ,W , it holds that

limT→∞
DCAT

T = 1
2Lmp({q(w)},x) + const.+ error,

with |error| ≤ 0.2105‖η‖
1
.

(proof is given in Appendix D).

Corollary 1 It holds that

2 limT→∞
DCAT

T = Lmp({q(w)},x) + const.+ error,

with
|error| ≤ 0.421.

Note that Corollary 1 does not state that the distance in the code space
converges to the multiple purpose dissimilarity even in the asymptotic limit
T → ∞—there can be a constant worst case error. However, the constant
error is bounded by 0.421, which ranges one order of magnitude below the MP
dissimilarity having itself a range of 4. The following theorem guarantees ANNS
to succeed with mp-LSH-CAT for pure MIPS case with specified probability
(proof is given in Appendix E):

Theorem 4 Let S0 ∈ (0, 2), cS0 ∈ (S0 + 0.2105, 2) and set

T ≥ 48
(t2−t1)2 log(

n
ε ),

where t2 > t1 depend on S0 and c (see Appendix E for details). With probability
larger than 1− ε−

(
ε
n

) 3
2 , mp-LSH-CAT guarantees c-ANNS with respect to Lip

(MIPS).

It is straightforward to show Theorem 4 for squared-L2- and cosine-distance.
Because of the constant error, the guarantee by Theorem 4 is applied for

c such that cS0 ∈ (S0 + 0.2105, 2). In Section 4, we will empirically show the
good performance of mp-LSH-CAT, which supports that the constant error is
not very harmful in practice.

3.5 Memory Requirement

For all LSH schemes, one can trade off the memory consumption and accuracy
performance by changing the hash bit length T . However, the memory con-
sumption for specific hashing schemes heavily differs from the other schemes
such that a comparison of performance is inadequate for a globally shared T .
In this subsection, we derive individual numbers of hashes for each scheme,
given a fixed memory budget.

We count the theoretically minimal number of bits required to store the hash
code of one data point. The two fundamental components we are confronted with
are sign-hashes and discretized reals. Sign-hashes can be represented by exactly
one bit. For the reals we choose a resolution such that their discretizations take



14 Wiktor Pronobis et al.

(a) L2NNS (γ = 1, λ = 0) (b) MIPS (γ = 0, λ = 1) (c) Mixed (γ = 0.5, λ = 0.5)

Fig. 2 Precision recall curves (higher is better) on MovieLens10M data for K = 5 and
T = 256.

(a) L2NNS (γ = 1, λ = 0) (b) MIPS (γ = 0, λ = 1) (c) Mixed (γ = 0.5, λ = 0.5)

Fig. 3 Precision recall curves on NetFlix data for K = 10 and T = 512.

values in a set of fixed size. The L2-hash function hL2a,b(x) =
⌊
R−1(a>x+ b)

⌋
is

a random variable with potentially infinite, discrete values. Nevertheless we can
come up with a realistic upper-bound of values the L2-hash essentially takes.
Note that R−1(a>x) follows a N (µ = 0, σ = (R‖x‖

2
)−1) distribution and

‖x‖
2
≤ 1. Then P(|R−1(a>x)| > 4σ) < 10−4. Therefore L2-hash essentially

takes one of 8
R discrete values stored by 3−log2(R) bits. Namely, for R = 2−10 ≈

0.001, L2-hash requires 13 bits. We also store the norm-part of mp-LSH-CAT
using 13 bits.

Denote by storCAT(T ) the required storage of mp-LSH-CAT. Then storCAT(T ) =
TCAT + 13, which we set as our fixed memory budget for a given TCAT. The
baselines sign- and simple-LSH, so mp-LSH-VA are pure sign-hashes, thus
giving them a budget of Tsign = Tsmp = TVA = storCAT(T ) hashes. As dis-
cussed above, L2-LSH may take TL2 = storCAT(T )

13 hashes. For mp-LSH-CC
we allocate a third of the budget for each of the three components giving
TCC = (TL2

CC, T
sign
CC , T smp

CC ) = storCAT(T ) · ( 1
39 ,

1
3 ,

1
3 ). This consideration is used

when we compare mp-LSH-CC and mp-LSH-CAT in Section 4.2.

4 Experiment

Here, we conduct an empirical evaluation on several real-world data sets.
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Table 1 ANNS Results for mp-LSH-CC with TCC = (TL2
CC, T

sign
CC , T smp

CC ) =
(1024, 1024, 1024).

Recall@k Query time (msec) Storage
per sample1 5 10 1 5 10

L2 0.53 0.76 0.82 2633.83 2824.06 2867.00 4344 bytes
MIPS 0.69 0.77 0.82 3243.51 3323.20 3340.36 4344 bytes
L2+MIPS (.5,.5) 0.29 0.50 0.60 3553.63 3118.93 3151.44 4344 bytes

Table 2 ANNS Results with mp-LSH-CAT with TCAT = 1024.

Recall@k Query time (msec) Storage
per sample1 5 10 1 5 10

L2 0.52 0.80 0.89 583.85 617.02 626.02 224 bytes
MIPS 0.64 0.76 0.85 593.11 635.72 645.14 224 bytes
L2+MIPS (.5,.5) 0.29 0.52 0.62 476.62 505.63 515.77 224 bytes

Table 3 ANNS Results for mp-LSH-CC with TCC = (TL2
CC, T

sign
CC , T smp

CC ) = (27, 346, 346).

Recall@k Query time (msec) Storage
per sample1 5 10 1 5 10

L2 0.35 0.49 0.59 1069.29 1068.97 1074.40 280 bytes
MIPS 0.32 0.56 0.56 363.61 434.49 453.35 280 bytes
L2+MIPS (.5,.5) 0.04 0.07 0.08 811.72 839.91 847.35 280 bytes

4.1 Collaborative Filtering

We first evaluate our methods on collaborative filtering data, the Movie-
Lens10M2 and the Netflix datasets [13]. Following the experiment in [36,37],
we applied PureSVD [11] to get L-dimensional user and item vectors, where
L = 150 for MovieLens and L = 300 for Netflix. We centered the samples so
that

∑
x∈X x = 0, which does not affect the L2-NNS as well as the MIPS

solution.
Regarding the L-dimensional vector as a single feature group (G = 1),

we evaluated the performance in L2-NNS (W = 1, γ = 1, η = λ = 0), MIPS
(W = 1, γ = η = 0, λ = 1), and their weighted sum (W = 2, γ(1) = 0.5, λ(2) =
0.5, γ(2) = λ(1) = η(1) = η(2) = 0). The queries for L2-NNS were chosen
randomly from the items, while the queries for MIPS were chosen from the
users. For each query, we found its K = 1, 5, 10 nearest neighbors in terms of
the MP dissimilarity (7) by linear search, and used them as the ground truth.
We set the hash bit length to T = 128, 256, 512, and rank the samples (items)
based on the Hamming distance for the baseline methods and mp-LSH-VA.
For mp-LSH-CC and mp-LSH-CAT, we rank the samples based on their code
distances (11) and (15), respectively. After that, we drew the precision-recall
curve, defined as Precision = relevantseen

k and Recall = relevantseen
K for different

k, where “relevant seen” is the number of the true K nearest neighbors that
are ranked within the top k positions by the LSH methods. Figures 2 and 3

2 http://www.grouplens.org/

http://www.grouplens.org/
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show the results on MovieLens10M for K = 5 and T = 256 and NetFlix for
K = 10 and T = 512, respectively, where each curve was averaged over 2000
randomly chosen queries.

We observe that mp-LSH-VA performs very poorly in L2-NNS (as bad
as simple-LSH, which is not designed for L2-distance), although it performs
reasonably in MIPS. On the other hand, mp-LSH-CC and mp-LSH-CAT
perform well for all cases. Similar tendency was observed for other values
of K and T . Since poor performance of mp-LSH-VA was shown in theory
(Figure 1) and experiment (Figures 2 and 3), we will focus on mp-LSH-CC and
mp-LSH-CAT in the subsequent subsections.

4.2 Computation Time in Query Search

Next, we evaluate query search time and memory consumption of mp-LSH-CC
and mp-LSH-CAT on the texmex dataset3 [22], which was generated from
millions of images by applying the standard SIFT descriptor [26] with L = 128.
Similarly to Section 4.1, we conducted experiment on L2-NNS, MIPS, and their
weighted sum with the same setting for the weights γ,η,λ. We constructed the
cover tree with N = 107 samples, randomly chosen from the ANN_SIFT1B
dataset. The queries were chosen from the defined query set, and the query for
MIPS is normalized so that ‖q‖2 = 1.

We ran the performance experiment on a machine with 48 cores (4 AMD
OpteronTM6238 Processors) and 512 GB main memory on Ubuntu 12.04.5
LTS. Tables 1–3 summarize recall@k, query time, and required memory storage.
Here, recall@k is the recall for K = 1 and given k. All reported values are
averaged over 100 queries.

We see that mp-LSH-CC (Table 1) and mp-LSH-CAT (Table 2) for T = 1024
perform comparably well in terms of accuracy (see the columns for recall@k).
But mp-LSH-CAT is much faster (see query time) and requires significantly
less memory (see storage per sample). Table 3 shows the performance of
mp-LSH-CC with equal memory requirement to mp-LSH-CAT for T = 1024.
More specifically, we use different bit length for each dissimilarity measure,
and set them to TCC = (TL2

CC, T
sign
CC , T smp

CC ) = (27, 346, 346), with which the
memory budget is shared equally for each dissimilarity measure, according to
Section 3.5. By comparing Table 2 and Table 3, we see that mp-LSH-CC for
TCC = (27, 346, 346), which uses similar memory storage per sample, gives
significantly worse recall@k than mp-LSH-CAT for T = 1024.

Thus, we conclude that both mp-LSH-CC and mp-LSH-CAT perform well,
but we recommend the latter for the case of limited memory budget, or in
applications where the query search time is crucial.

3 http://corpus-texmex.irisa.fr/

http://corpus-texmex.irisa.fr/
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L2 Query 

Trenchcoats

Mips Query

 = 0.6 
 = 0.4

Mixed Query

(a) Trench coats

L2 Query 

Ice creams

Mips Query

 = 0.6 
 = 0.4

Mixed Query

(b) Ice creams

Fig. 4 Image retrieval results with mixed queries. In both of (a) and (b), the top row shows
L2 query (left end) and the images retrieved (by ANNS with mp-LSH-CAT for T = 512)
according to the L2 dissimilarity (γ(1) = 1.0 and λ(2) = 0.0), the second row shows MIPS
query and the images retrieved according to the IP dissimilarity (γ(1) = 0.0 and λ(2) = 1.0),
and the third row shows the images retrieved according to the mixed dissimilarity for
γ(1) = 0.6 and λ(2) = 0.4.

4.3 Demonstration of Image Retrieval with Mixed Queries

Finally, we demonstrate the usefulness of our flexible mp-LSH in an image
retrieval task on the ILSVRC2012 data set [34]. We computed a feature vector
for each image by concatenating the 4096-dimensional fc7 activations of the
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trained VGG16 model [39] with 120-dimensional color features4. Since user
preference vector is not available, we use classifier vectors, which are the weights
associated with the respective ImageNet classes, as MIPS queries (the entries
corresponding to the color features are set to zero). This simulates users who
like a particular class of images.

We performed ANNS based on the MP dissimilarity by using our mp-LSH-
CAT with T = 512 in the sample pool consisting of all N ≈ 1.2M images.
In Figure 4(a), each of the three rows consists of the query at the left end,
and the corresponding top-ranked images. In the first row, the shown black
dog image was used as the L2 query q(1), and similar black dog images were
retrieved according to the L2 dissimilarity (γ(1) = 1.0 and λ(2) = 0.0). In
the second row, the VGG16 classifier vector for trench coats was used as the
MIPS query q(2), and images containing trench coats were retrieved according
to the MIPS dissimilarity (γ(1) = 0.0 and λ(2) = 1.0). In the third row,
images containing black trench coats were retrieved according to the mixed
dissimilarity for γ(1) = 0.6 and λ(2) = 0.4. Figure 4(b) shows another example
with a strawberry L2 query and the ice creams MIPS query. We see that,
in both examples, mp-LSH-CAT handles the combined query well: it brings
images that are close to the L2 query, and relevant to the MIPS query. Other
examples can be found through our online demo.5

5 Conclusion

When querying huge amounts of data, it becomes mandatory to increase
efficiency, i.e., even linear methods may be too computationally involved.
Hashing, in particular locality sensitive hashing (LSH) has become a highly
efficient workhorse that can yield answers to queries in sublinear time, such as
L2-/cosine-distance nearest neighbor search (NNS) or maximum inner product
search (MIPS). While for typical applications the type of query has to be fixed
beforehand, it is not uncommon to query with respect to several aspects in
data, perhaps, even reweighting this dynamically at query time. Our paper
contributes exactly herefore, namely by proposing three multiple purpose
locality sensitive hashing (mp-LSH) methods which enable L2-/cosine-distance
NNS, MIPS, and their weighted sums. A user can now indeed and efficiently
change the importance of the weights at query time without recomputing the
hash functions. Our paper has placed its focus on proving the feasibilty and
efficiency of the mp-LSH methods, and introducing the very interesting cover
tree concept (which is less commonly applied in the machine learning world)
for fast querying over the defined multi-metric space. Finally we provide a
demonstration on the usefulness of our novel technique.

4 We computed histograms on the central crop of an image (covering 50% of the area) for
each rgb color channel with 8 and 32 bins. We normalized the histograms and concatenate
them.

5 http://bbdcdemo.bbdc.tu-berlin.de/

http://bbdcdemo.bbdc.tu-berlin.de/
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Future studies will extend the possibilities of mp-LSH for further including
other types of dissimilarity measure, e.g., the distance from hyperplane [21],
and further applications with combined queries, e.g., retrieval with one complex
multiple purpose query, say, a pareto-front for subsequent decision making.
Another future direction would be to analyze the interpretability of NNS
systems, specifically for recommender systems with nonlinear query mechanism,
in terms of salient features that have led to the query result. This is in the line
of research on “explaining learning machines”, i.e., answering to the question
which part of the data is responsible for specific decisions made by learning
machines [3,38,46,1,33,28,30]. This question is non-trivial when the learning
machines are complex and non-linear. Our mp-LSH enables complex nonlinear
query mechanism, and therefore, it would be a useful tool if we could, for
example, develop a method which can explain why a NNS system with mixed
queries recommended a specific set of items, and analyze the dependency on
the weight setting.
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A Derivation of Inner Product in Proof of Theorem 1

The inner product between the augmented vectors q̃ and x̃, defined in Eq.(10), is given by

q̃>x̃ =
∑W
w=1

∑G
g=1

(
(γ

(w)
g + λ

(w)
g )q

(w)>
g xg − 1

2

∑G
g=1 γ

(w)
g

(
‖q(w)
g ‖22 + ‖xg‖22

))
= − 1

2

∑W
w=1

∑G
g=1

(
− 2λ

(w)
g q

(w)>
g xg + γ

(w)
g

(
(‖q(w)

g ‖22 + ‖xg‖22)− 2q
(w)>
g xg

)
︸ ︷︷ ︸

‖q(w)
g −xg‖22

)

= ‖λ‖
1
− Lmp({q(w)},x)

2
.

B Lemma: Inner Product Approximation

For q,x ∈ RL let
dT (q,x) =

1
T

∑T
t=1

∣∣∣H(q)t1 − H̃(x)t1

∣∣∣
with expectation

d(q,x) = EdT (q,x) = E
∣∣∣H(q)11 − H̃(x)11

∣∣∣
and define

L(q,x) = 1− q>x
‖q‖

2
.

Lemma 1 The following statements hold:
(a): It holds that

d(q,x) = 1− ‖x‖
2
(1− 2

π
^(q,x))

(b): For Ex = 0.2105‖x‖
2
it is

|L(q,x)− d(q,x)| ≤ Ex (19)



22 Wiktor Pronobis et al.

(c): Let b(q,x) = 1− 2
π
q>x
‖q‖

2
, then for L(q,x) ≤ 1 it is

L(q,x) ≤ d(q,x) ≤ b(q,x) ≤ 1

and for L(q,x) ≥ 1 it is
L(q,x) ≥ d(q,x) ≥ b(q,x) ≥ 1

(d): It holds that

|L(q,x)− d(q,x)| ≤ min{(1−
2

π
)|L(q,x)− 1|, Ex}

and for sx = 0.58‖x‖
2
, if |L(q,x)− 1| ≤ sx, it is

(1−
2

π
)|L(q,x)− 1| ≤ Ex.

Proof (a):
Defining pcol = 1− 1

π
^(q,x) we have

E
∣∣∣H(q)11 − H̃(x)11

∣∣∣ = (1− ‖x‖
2

)
pcol +

(
1 + ‖x‖

2

)(
1− pcol

)
= 1− ‖x‖

2

(
2pcol − 1

)
= 1− ‖x‖

2
(1−

2

π
^(q,x)).

Proof (b):

|L(q,x)− d(q,x)| = ‖x‖
2
|

q>x

‖q‖
2
‖x‖

2

− 1 +
2

π
^(q,x)|

≤ ‖x‖
2

max
z∈[−1,1]

|z − 1 +
2

π
arccos(z)|.

For z∗ =
√

1− 4
π2 we obtain the maximum

Ex = ‖x‖
2
|z∗ − 1 +

2

π
arccos(z∗)| ≈ 0.2105‖x‖

2
.

Proof (c):
We treat the case L(q,x) ≤ 1, noting that the others case is analogous due to symmetry.

Observe that q>x
‖q‖

2
≥ 0, providing

b(q,x) = 1−
2

π

q>x

‖q‖
2

≤ 1.

As arccos is a concave function on [0, 1], it is

arccos(z) = arccos(0(1− z) + 1(z))

≥ (1− z) arccos(0) + z arccos(1) =
π

2
(1− z).

Define z = q>x
‖q‖

2
‖x‖

2
. Then we have

d(q,x)− L(q,x) = ‖x‖
2

(
z − 1 +

2

π
arccos(z)

)
≥ 0,

from which L(q,x) ≤ d(q,x) follows. Noting that

max
z∈[0,1]

d arccos

δz
(z) = max

z∈[0,1]

−1
√
1− z2

= −1,
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and arccos(0) = π
2
, it is

arccos(z)− arccos(0) =

∫ z

0

d arccos

δz
(t)dt ≤ −

∫ z

0
dt = −z,

such that

arccos(z) ≤
π

2
− z.

Therefore it is

b(q,x)− d(q,x) = ‖x‖
2

(
1−

2

π
z −

2

π
arccos(z)

)
≥ 0

assuring d(q,x) ≤ b(q,x).
Proof (d):

The inequality follows from (b) and (c). Letting

sx =
Ex

1− 2
π

≈ 0.58‖x‖
2
,

the first bound is tighter than Ex, if |L(q,x)− 1| ≤ sx.
2

Note that dT (q,x)→ d(q,x) as T →∞. Therefore all statements are also valid, replacing
d(q,x) by dT (q,x) with T large enough.

C Proof of Theorem 2

For η(w) = 0 for w = 1, . . . ,W we have

Lmp({q(w)},x) =
W∑
w=1

G∑
g=1

γ
(w)
g ‖q(w)

g − xg‖2
2
+ 2λ

(w)
g

(
1− q(w)>

g xg
)
.

Recall that qL2+ip
g =

∑W
w=1(γ

(w)
g + λ

(w)
g )q

(w)
g . Therefore

1

T
DCAT

(
HCAT−q({q(w)}),HCAT−x(x)

)
=

G∑
g=1

(
γg

2
‖xg‖2

2
+ ‖qL2+ip

g ‖
2

(
1 + ‖xg‖2

(
1−

2

T
Cg(qL2+ip,x)

)))
.

We use that

1−
2

T
Cg(qL2+ip,x) = −1 +

1

T

T∑
t=1

∣∣∣H (x)tg −H(qL2+ip)tg

∣∣∣ = −1 + dT

(
qL2+ip
g ,

xg

‖xg‖2

)

T→∞→ −1 + d

(
qL2+ip
g ,

xg

‖xg‖2

)
(19)
= −1 + L

(
qL2+ip
g ,

xg

‖xg‖2

)
+ eg = −

x>g q
L2+ip
g

‖xg‖2‖q
L2+ip
g ‖

2

+ eg ,
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where |eg | ≤ E1 such that

1

T
DCAT

(
HCAT−q({q(w)}),HCAT−x(x)

)
=

G∑
g=1

(
γg

2
‖xg‖2

2
+ ‖qL2+ip

g ‖
2

(
1−

x>g q
L2+ip
g

‖qL2+ip
g ‖

2

+ ‖xg‖2eg
))

=

G∑
g=1

(
γg

2
‖xg‖2

2
− x>g qL2+ip

g

)
+

G∑
g=1

‖qL2+ip
g ‖

2
+

G∑
g=1

‖qL2+ip
g ‖

2
‖xg‖2eg︸ ︷︷ ︸

error

=
1

2

G∑
g=1

W∑
w=1

[
γ
(w)
g ‖q(w)

g − xg‖2
2
+ 2λ

(w)
g (1− x>g q

(w)
g )

]

+
G∑
g=1

(
‖qL2+ip
g ‖

2
−

1

2

W∑
w=1

(
γ
(w)
g ‖q(w)

g ‖2
2
+ 2λ

(w)
g

))
︸ ︷︷ ︸

const

+ error

=
1

2
Lmp({q(w)},x) + const + error.

We can bound the error-term by

|error| ≤ max
g∈{1,...,G}

|eg |
G∑
g=1

‖qL2+ip
g ‖

2
‖xg‖2

≤ E1
∥∥∥∥(‖qL2+ip

g ‖
2

)
g

∥∥∥∥
2

‖x‖
2
≤ E1

∥∥∥∥(‖qL2+ip
g ‖

2

)
g

∥∥∥∥
1

≤ E1
G∑
g=1

W∑
w=1

(γ
(w)
g + λ

(w)
g )‖q(w)

g ‖2 ≤ E1
(
‖λ‖

1
+ ‖γ‖

1

)
.

2

D Proof of Theorem 3

For γ(w) = λ(w) = 0 for w = 1, . . . ,W , we have

Lmp({q(w)},x) = 2

W∑
w=1

G∑
g=1

η
(w)
g

(
1−

q
(w)>
g xg

‖q(w)
g ‖2‖xg‖2

)
.
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Recall that qcosg =
∑W
w=1 η

(w)
g

q
(w)
g

‖q(w)
g ‖

2

. Therefore

1

T
DCAT

(
HCAT−q({q(w)}),HCAT−x(x)

)
=

G∑
g=1

2‖qcosg ‖2
(
1−

1

T
Cg(qcos,x)

)
(19)→

G∑
g=1

‖qcosg ‖2
(
1−

x>g q
cos
g

‖xg‖2‖q
cos
g ‖2

+ eg
)

= −
G∑
g=1

W∑
w=1

η
(w)
g

x>g q
(w)
g

‖xg‖2‖q
(w)
g ‖2

+
G∑
g=1

‖qcosg ‖2 +

G∑
g=1

eg‖qcosg ‖2︸ ︷︷ ︸
error

=

G∑
g=1

W∑
w=1

η
(w)
g

(
1−

x>g q
(w)
g

‖xg‖2‖q
(w)
g ‖2

)
+

G∑
g=1

(
‖qcosg ‖2 −

W∑
w=1

η
(w)
g

)
︸ ︷︷ ︸

const

+ error

=
1

2
Lmp({q(w)},x) + const+ error,

where

|error| ≤ max
g∈{1,...,G}

|eg |
G∑
g=1

‖qcosg ‖2

≤ E1
G∑
g=1

W∑
w=1

η
(w)
g

∥∥∥q(w)
g

/
‖q(w)
g ‖2

∥∥∥
2

= E1‖η‖1.

2

E Proof of Theorem 4

Without loss of generality we prove the theorem for the plain MIPS case with G = 1, W = 1
and λ = 1. Then α = 1 and the measure simplifies to

DCAT

(
HCAT−q({q(w)}),HCAT−x(x)

)
= TdT (q

ip,x).

For C1(qip,x) with µ = EC1(qip,x) = T (1− 1
π
^(x, qip)) and 0 < δ1 < 1, δ2 > 0 we use the

following Chernoff -bounds:

P
(
C1(qip,x) ≤ (1− δ1)µ

)
≤ exp

{
−
µ

2
δ21

}
(20)

P
(
C1(qip,x) ≥ (1 + δ2)µ

)
≤ exp

{
−
µ

3
min{δ2, δ22}

}
(21)

The approximate nearest-neighbor problem with r > 0 and c > 1 is defined as follows:
If there exists an x∗ with Lip(qip,x∗) ≤ r then we return an x̃ with Lip(qip, x̃) < cr.
For cr > r + E1 we can set T logarithmically dependent on the dataset size to solve the
approximate nearest-neighbor problem for Lip, using dT with constant success probability:
For this we require a viable t that fulfills

Lip(qip,x) > cr ⇒ d(qip,x) > t and

Lip(qip,x) ≤ r ⇒ d(qip,x) <= t.
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Namely set t = t1+t2
2

, where

t1 =


r + E1, r ≤ 1− s1
1− 2(1−r)

π
, r ∈ (1− s1, 1)

r, r ≥ 1

and t2 =


cr, cr ≤ 1

1 +
2(cr−1)

π
, cr ∈ (1, 1 + s1)

cr − E1, cr ≥ 1 + s1

.

In any case it is t2 > t1:
First note that t1 and t2 are strictly monotone increasing in r and cr, respectively. It

therefore suffices to show t2 ≥ t1 for the lower bound t2 based on cr = r + E1.
(Case r ≤ 1− s1): It is t1 = r + E1 and t2 = cr, where

t1 = r + E1 = cr = t2

(Case r ∈ (1− s1, 1− E1]): It is t1 = 1− 2
π
(1− r) and t2 = cr such that

t1 = 1−
2

π
(1− r) ≤ r + E1 = cr = t2

⇔(1−
2

π
)(1− r) ≤ E1 ⇔ (1− r) ≤ s1 ⇔ r ≥ 1− s1

(Case r ∈ (1− E1, 1]): It is t1 = 1− 2
π
(1− r) and t2 = 1 + 2

π
(cr − 1) with cr > 1 such

that

t1 = 1−
2

π
(1− r) ≤ 1 ≤ 1 +

2

π
(cr − 1) = t2

(Case r ∈ (1, 1 + s1 − E1]): It is t1 = r and t2 = 1 + 2
π
(cr − 1) such that

t1 = r ≤ 1 +
2

π
(r + E1 − 1) = 1 +

2

π
(cr − 1) = t2

⇔(1−
2

π
)r ≤ (1−

2

π
)− (1−

2

π
)E1 + E1

⇔r ≤ 1 + s1 − E1

(Case r > 1 + s1 − E1): It is t1 = r and t2 = cr − E1, where

t1 = r = cr − E1 = t2

2

Now, define

δ =

∣∣∣∣∣ t− d(qip,x)
1 + ‖x‖

2
− d(qip,x)

∣∣∣∣∣ =
∣∣∣∣∣T t− d(qip,x)2‖x‖

2
µ

∣∣∣∣∣ .
For Lip(qip,x) ≤ r we can lower bound the probability of dT (qip,x) not exceeding the

specified threshold:

P
(
dT (q

ip,x) ≤ t
)
= P

(
C(qip,x) ≥ (1− δ)µ

)
= 1− P

(
C(qip,x) ≤ (1− δ)µ

)
(20)
≥ 1− exp

{
−
µ

2
δ2
}
.

We can show d(qip,x) ≤ t1, using Lemma 1, (c) and (d):
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(Case r ≤ 1− s1):

d(qip,x)− Lip(qip,x) ≤ E1 ⇒ d(qip,x) ≤ r + E1
(Case r ∈ (1− s1, 1)):

d(qip,x)− Lip(qip,x) ≤ (1−
2

π
)(1− Lip(qip,x))

⇒ d(qip,x) ≤ 1−
2

π
(1− Lip(qip,x)) ≤ 1−

2

π
(1− r) = t1

(Case r ≥ 1): For Lip(qip,x) ≤ 1 it is d(qip,x) ≤ 1. Else d(qip,x) ≤ Lip(qip,x) such
that

d(qip,x) ≤ max{1,Lip(qip,x)} ≤ r = t1

Thus we can bound

δ
d(qip,x)≤t1<t

≥
T (t− t1)
2‖x‖

2
µ

‖x‖
2
≤1

≥
T (t− t2)

2µ
=
T (t2 − t1)

4µ

and

δ2µ ≥
T 2(t2 − t1)2

16µ

µ≤T
≥

T (t2 − t1)2

16
,

such that

P
(
dT (q

ip,x) ≤ t
)
≥ 1− exp

{
−
(t2 − t1)2

32
T

}
.

For Lip(qip,x) > cr we can upper bound the probability of dT (qip,x) dropping below
the specified threshold:

P
(
dT (q

ip,x) ≤ t
)
= P

(
C(qip,x) ≥ (1 + δ)µ

)
(21)
≤ exp

{
−
µ

3
min{δ, δ2}

}
.

We can show d(qip,x) ≥ t2, using Lemma 1, (c) and (d):
(Case cr ≤ 1): For Lip(qip,x) ≥ 1 it is d(qip,x) ≥ 1. Else d(qip,x) ≥ Lip(qip,x) such

that
d(qip,x) ≥ min{1,Lip(qip,x)} ≥ cr = t2

(Case cr ∈ (1, 1 + s1)):

Lip(qip,x)− d(qip,x) ≤ (1−
2

π
)(Lip(qip,x)− 1)

⇒ d(qip,x) ≥ 1 +
2

π
(Lip(qip,x)− 1) ≥ 1−

2

π
(cr − 1) = t2

(Case cr ≥ 1 + s1):

Lip(qip,x)− d(qip,x) ≤ E1 ⇒ d(qip,x) ≥ cr − E1 = t2

Thus we can bound

δ
d(qip,x)≥t2>t

≥
T (t2 − t)
2‖x‖

2
µ

‖x‖
2
≤1

≥
T (t2 − t)

2µ
=
T (t2 − t1)

4µ
,

such that

P
(
dT (q

ip,x) ≤ t
)
≤ exp

{
−min

{
T (t2−t1)

12
,
T2(t2−t1)2

48µ

}}
µ≤T
≤ exp

{
−min

{
T (t2−t1)

12
,
T (t2−t1)2

48

}}
= exp

{
−T

3
min

{
t2−t1

4
,
(
t2−t1

4

)2}}
t2−t1

4
<1

= exp

{
−T

3

(
t2−t1

4

)2}
= exp

{
− (t2−t1)2

48
T
}
.
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Now, define the events

E1(q
ip,x) : either Lip(qip,x) > r or dT (qip,x) ≤ t, (22)

E2(q
ip) : ∀x ∈ X : Lip(qip,x) > cr ⇒ dT (q

ip,x) > t. (23)

Assume that there exists x∗ with Lip(qip,x∗) ≤ r. Then the algorithm is successful if both,
E1(qip,x∗) and E2(qip) hold simultaneously. Let T ≥ 48

(t2−t1)2
log(n

ε
). It is

P
(
E2(q

ip)
)
=1−P

(
∃x ∈ X : Lip(qip,x)>cr, dT (qip,x∗)≤ t

)
≥ 1−

∑
x∈X

P
(
Lip(qip,x) > cr, dT (q

ip,x) ≤ t
)

≥ 1− n exp
{
− (t2−t1)2

48
T
}
≥ 1− ε.

Also it holds that

P
(
E1(q

ip,x∗)
)
≥ 1−

( ε
n

) 3
2
.

Therefore the probability of the algorithm to perform approximate nearest neighbor search
correctly is larger than

P
(
E2(q

ip), E1(q
ip,x∗)

)
≥ 1− P

(
¬E2(q

ip)
)
− P
(
¬E1(q

ip,x∗)
)
≥ 1− ε−

( ε
n

) 3
2
.

F Details of Cover Tree

Here, we detail how to selectively explore the hash buckets with the code dissimilarity measure
in non-increasing order. The difficulty is in that the dissimilarity D is a linear combination
of metrics, where the weights are selected at query time. Such a metric is referred to as a
dynamic metric function or a multi-metric [9]. We use a tree data structure, called the cover
tree [6], to index the metric space.

We begin the description of the cover tree by introducing the expansion constant and
the base of the expansion constant.

Expansion Constant (κ) [18]: is defined as the smallest value κ ≥ ψ such that every
ball in the dataset X can be covered by κ balls in X of radius equal 1/ψ. Here, ψ is the base
of the expansion constant.

Data Structure: Given a set of data points X , the cover tree T is a leveled tree where
each level is associated with an integer label i, which decreases as the tree is descended. For
ease of explanation, let Bψi (x) denote a closed ball centered at point x with radius ψi, i.e.,
Bψi (x) = {p ∈ X : D(p,x) ≤ ψi}. At every level i of T (except the root), we create a union
of possibly overlapping closed balls with radius ψi that cover (or contain) all the data points
X . The centers of this covering set of balls are stored in nodes at level i of T . Let Ci denote
the set of nodes at level i. The cover tree T obeys the following three invariants at all levels:

1. (Nesting) Ci ⊂ Ci−1. Once a point x ∈ X is in a node in Ci, then it also appears in all
its successor nodes.

2. (Covering) For every x′ ∈ Ci−1, there exists a x ∈ Ci where x′ lies inside Bψi (x), and
exactly one such x is a parent of x′.

3. (Separation) For all x1,x2 ∈ Ci, x1 lies outside Bψi (x2) and x2 lies outside Bψi (x1).

This structure has a space bound of O(N), where N is the number of samples.
Construction: We use the batch construction method [6], where the cover tree T is

built in a top-down fashion. Initially, we pick a data point x(0) and an integer s, such that
the closed ball Bψs (x(0)) is the tightest fit that covers the entire dataset X .

This point x(0) is placed in a single node, called the root of the tree T . We denote the
root node as Ci (where i = s). In order to generate the set Ci−1 of the child nodes for Ci, we
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Algorithm 1 Nearest neighbor search with cover tree
Require: The cover tree T and the query point q.
Ensure: The point x∗ which is the closest to q.
1: Ci ← {x ∈ T .root} . set of points in root node
2: for i← T .root; i 6= T .leaf ; i = i− 1 do . descend T level-wise
3: C ← {children(x) : x ∈ Ci} . candidate set C: children of Ci
4: Ci−1 ← {x ∈ C : D(q,x) ≤ minx′∈C D(q,x′) + ψi} . next cover set
5: if Ci−1 = Ci then . no change in candidate set
6: Exit the loop.
7: end if
8: end for
9: return argminx∈Ci−1

D(q,x)

greedily pick a set of points (including point x(0) from Ci to satisfy the Nesting invariant)
and generate closed balls of radius ψi−1 centered on them, in such a way that: (a) all center
points lie inside Bψi(x(0)) (Covering invariant), (b) no center point intersects with other
balls of radius ψi−1 at level i− 1 (Separation invariant), and (c) the union of these closed
balls covers the entire dataset X . These chosen center points form the set of nodes Ci−1.
Child nodes are recursively generated from each node in Ci−1, until each data point in X is
the center of a closed ball and resides in a leaf node of T .

Note that, while we construct our cover tree, we use our distance function D with all the
weights set to 1.0, which upper bounds all subsequent distance metrics that depend on the
queries. The construction time complexity is O(κ12N lnN).

To achieve a more compact cover tree, we store only element identification numbers
(IDs) in the cover tree, and not the original vectors. Furthermore, we store the hash bits
using compressed representation bit-sets that reduce the storage size compared to a naive
implementation down to T bits.

Querying: The nearest neighbor query in a cover tree is illustrated in Algorithm 1. The
search for the nearest neighbor begins at the root of the cover tree and descends level-wise.
On each descent, we build a candidate set C (Line 3), which holds all the child nodes (center
points of our closed balls). We then prune away centers (nodes) in C (Line 4) that cannot
possibly lead to a nearest neighbor to the query point q, if we descended down them.

The pruning mechanism is predicated on a proven result in [6] which states that for
any point x ∈ Ci−1, the distance between x and any descendant x′ is upper bounded by
ψi. Therefore, on Line 4, the minx′∈C D(q,x′) term on the right-hand side of the inequality,
computes the shortest distance from every center point to the query point q. Any center point
whose distance from q exceeds minx′∈C D(q,x′)+ψi cannot possibly have a descendant that
can replace the current closest center point to q and hence can safely be pruned. We add an
additional check (lines 5–6) to speedup the search by not always descending to the leaf node.
The time complexity of querying the cover tree is O(κ12 lnN).

Effect of multi-metric distance while querying: It is important to note that
minimizing overlap between the closed balls on higher levels (i.e., closer to the root) of the
cover tree can allow us to effectively prune a very large portion of the search space and
compute the nearest neighbor faster.

Recall that the cover tree is constructed by setting our distance function D with all
the weights set to 1.0. During querying, we allow D to be a linear combination of metrics,
where the weights lie in the range [0, 1], which means that the distance metric D used during
querying always under-estimates the distances and reports lower distances. During querying,
the cover tree’s structure is still intact and all the invariant properties satisfied. The main
difference occurs on Line 4 with the minx′∈C D(q,x′) term, which is the shortest distance
from a center point to the query q (using the new distance metric). Interestingly, this new
distance gets even smaller, thus reducing our search radius (i.e., minx′∈C D(q,x′) + ψi)
centered at q, which in turn implies that at every level we manage to prune more center
points, as the overlap between the closed balls also is reduced.
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Streaming: The cover tree lends itself naturally to the setting where nearest neighbor
computations have to be performed on a stream of data points. This is because the cover
tree allows dynamic insertion and deletion of points. The time complexity for both these
operations is O(κ6 lnN), which is faster than querying.

Parameter choice: In our implementation for experiment, we set the base of expansion
constant to ψ = 1.2, which we empirically found to work best on the texmex dataset.
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