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Abstract

In this paper we present an extension of the recently proposed Stationary Subspace Analy-
sis (SSA). This novel method solves the problem how to group signals from different conditions
and/or subjects to find stationary subspaces. The original SSA approach does not offer a nat-
ural way to group data and therefore better define the non-stationarities of interest. This
drawback is solved with group-wise SSA (gwSSA) and demonstrated with a simple but illus-
trative example: the classification of BCI data. If not treated correctly the BCI tasks are
considered as non-stationarities in SSA, which complicates its use for classification purposes.
We show how, by correctly defining groups, non-stationarities of interest can be extracted. In
this paper, the application is in multi-class signals, where the groups are properly defined to
even improve classification performance.

1 Introduction

In Brain-Computer Interfacing (BCI) [1] one major challenge is to understand the non-stationarities
in the signal of interest e.g. EEG and to develop methods which are invariant to them. The sources
and time scales of non-stationarities in the signal can be very different e.g. changes in electrode
impedance may occur when an electrode gets loose or the gel dries out, muscular activity or eye
movements lead to artefacts in the signal and we often observe changes of task involvement as
subjects get tired. Further changes in the EEG can be caused by differences between sessions e.g.
no feedback in the calibration session vs. feedback in later sessions (or different kinds of feedback)
or small differences in electrode positions between sessions. Several approaches were proposed to
reduce the impact of non-stationarities in BCI applications. For example [2, 3, 4, 5] use techniques
for co-adaptive learning of user and machine, [6] uses extra measurement like EOG or EMG to be
invariant against muscular or ocular artefacts and [7] applies covariate shift adaptation to account
for changes of the features. Recently, Bünau et al. [8] proposed a novel technique called Sta-
tionary Subspace Analysis (SSA) which finds the low-dimensional projections having stationary
distributions from high-dimensional observations. This method can be applied to EEG data as a
preprocessing step in order to extract the stationary part of the signal as done in [9]. The authors
showed that restricting the BCI to the stationary sources found by SSA can significantly increase
the classification accuracy. However, SSA is a general purpose method and its usage is limited
when applying it to multi-class data because the distinctive different tasks can be considered as
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non-stationary components of the signal (it is expected that the statistical properties of the data
change with the task) and therefore disregarded. To avoid this, the data needs to be carefully
preprocessed. In this paper we extend the work of Bünau et al. [9] and propose a group-wise Sta-
tionary Subspace Analysis (gwSSA) method which allows to compute the stationary subspace from
different conditions and/or subjects. We analyse the emerging stationarity and non-stationarity
patterns obtained from five volunteers and show that our method is better suited for multi-class
data and consequently outperforms SSA.

This paper is organized as follows. In the next section we present SSA and introduce our
group-wise approach. After that in Section 3 we apply it to a dataset of five subjects performing
motor imagery and analyse the results in Section 4. We conclude in Section 5 with a discussion.

2 Group-wise Stationary Subspace Analysis

Stationary Subspace Analysis (SSA) [8] is a novel method to factorize a high-dimensional multi-
variate time-series into its stationary and non-stationary components. Its underlying assumption
is that the observed signal x(t) is a linear superposition of the stationary ss(t) and non-stationary
sn(t) sources

x(t) = A s(t) =
[
As An

] [ss(t)
sn(t)

]
, (1)

and A is an invertible matrix. The goal of SSA is to find a linear transformation Â−1 that
separates the s-sources from the n-sources. For that the signal x(t) is divided into epochs and
an optimization criterion is employed to recover the sources. More precisely, SSA minimizes the
distance measured as Kullback-Leibler-Divergence DKL, between the distribution of the estimated
s-sources in each epoch (described by first two moments) and the standard normal distribution.

The idea behind group-wise SSA (gwSSA) is to consider groups of epochs1 in order to find
projections which are as stationary as possible in each group. This does not necessarily imply
stationarity across all epochs, however, it has the important advantage that one can combine
data from many subjects to conduct group studies or one can group different conditions for a
single subject, for example for classification. Since the objective function of gwSSA measures the
distances between the distribution of the epoch and the mean distribution of the group, it can be
written as

L(R) =

M∑
i=1

Ni∑
j=1

DKL

[
N (µ̂s

ij , Σ̂
s
ij) || N (µs

j ,Σ
s

j)
]
, (2)

where M is the number of groups, Ni is the number of epochs in group i, N (µ̂s
ij , Σ̂

s
ij) is the

distribution of epoch j in group i and N (µs
j ,Σ

s

j) is the average distribution in group i. As with
SSA it is possible minimize the objective function by conjugate gradient descend in the space of
antisymmetric matrices (see [8] for details).

3 Data

The data used in this paper consists of two calibration (i.e. without feedback) recordings from
five healthy participants. The volunteers performed motor imagery of two limbs, specifically ’left
hand’ and ’foot’. The cues were presented either visually (with an arrow appearing in the centre
of the screen) or auditory (a voice announcing the task to be performed), resulting in two different
datasets for each user. In this experiment, the training data was the calibration with visual
stimuli and the testing data, the calibration with auditory stimuli. The preprocessing parameters
(frequency band and time interval) were subject-optimized in the training test, which consisted of
132 trials (equally distributed for each class). The testing set contained the same number of trials
as the training dataset. The data was recorded with a multichannel system of 85 electrodes densely

1Epochs can be grouped according to different criteria e.g. each subject and/or condition can represent a group.
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Methods / Subjects Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Without SSA 90.9 80.0 73.3 70.8 94.2
SSA (epoch=1 trial) 90.9 60.0 82.5 70.8 82.5
SSA (epoch=1 trial per class) 87.8 75.8 77.5 74.1 93.3
gwSSA (groups=classes) 91.7 78.3 80.0 77.5 97.5

Table 1: Comparison of classification accuracies for five subjects performing motor imagery. The
SSA-based methods are applied as preprocessing step i.e. the bandpass-filtered EEG data are
projected to the stationary subspace before performing CSP. The target dimensionality is selected
via 5-fold cross-validation on the training data. From the results we see that our group-wise
SSA method performs better than the other approaches, especially on subject 3, 4 and 5. The
direct application of SSA (without trial concatenation) performs very poorly on subject 2 and 5,
probably because it removes the differences between the classes.

covering the motor cortex at 1000 Hz. After filtering, it was down-sampled to 100 Hz. The features
are extracted using log-band power on CSP filtered channels. The CSP filters were computed in the
training test (three filters were selected per class). Finally, the classifier was Linear Discriminant
Analysis (LDA). In the case of applying SSA or gwSSA, the band-pass filtered EEG data of the
training set was used to feed the algorithm. The data was projected in the resulting stationary
dimensions and after that the same feature extraction method as explained above was applied.
SSA and gwSSA were restarted 50 times in order to avoid local minima and the dimensionality of
the stationary subspace was selected via 5-fold cross-validation on the training set.

4 Results

In this section we compare our group-wise SSA to three baselines, namely SSA which takes every
trial as an epoch, SSA which combines trials of opposite classes (as done in [9]) and no SSA. We
apply gwSSA to each subject using two groups i.e. one group consist of trials which are labeled
as ’left hand’ whereas all ’foot’ trials are in the other group. This is to assure that differences
between both classes are not treated as non-stationarities and ignored. In Table 1 we see that
gwSSA greatly improves the classification accuracies of subject 3, 4 and 5 while leaving the other
subjects more or less at baseline level. Although SSA with trial combination also leads to higher
classification accuracies in those subjects, it performs worse than gwSSA. We conjecture that this
is because our method solves the problem in a principled way and does not require heuristics
such as concatenation of trials with opposing labels. As expected the direct application of SSA
(without trial combination) performs poorly as important differences between both classes may be
treated as non-stationarities. In order to understand why group-wise SSA improves classification
performance, we consider the changes which occur between training and test phase. In Figure 1
we plot the mean differences in power between the training and test features. Since we provided
the visual cue only in the training phase, we observe large changes in the occipital areas. Although
our SSA approach is computed on training data only, it greatly reduces these changes providing
more stationary features. The most significant noise reduction can be observed for subjects who
improve the most. By analysing the changes in power for each trial we can identify the locations
of non-stationarities. These locations vary between subjects and can partially explain the results
difference between subjects 1, 2 and 3, 4, 5. The first two subjects do not benefit from applying SSA
as non-stationarities are located in areas which are important for discrimination (i.e. important
information may be discarded), whereas in the other group the changes lie in the occipital area.

5 Conclusion

We presented an extension of the SSA algorithm which can identify stationary brain sources from
groups of subjects and/or conditions. We showed that our group-wise SSA method can be naturally
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Figure 1: Scalp plots showing the mean difference in power between the training and the test data.
When no preprocessing is applied there is a significant change between training and test features,
most likely because the cue is showed with different types of stimuli (visual and auditory). Our
approach reduces the shift, thus makes the signal more stationary but preserves the class related
information contained in the signal. The effect is especially large for the subjects 3 and 4.

applied to multi-class signals and does not rely on heuristics to optimize its use. One important
drawback of the heuristic approach applied in [9] is that it cannot be applied when the classes
are not equally distributed. However, group-wise SSA solves the grouping problem in a principled
way. Furthermore, it outperforms the standard SSA approach and the no SSA baseline for 3 out
of 5 users. Finally, gwSSA can also be applied to group studies, because it optimizes stationarity
in groups irrespectively of the grouping criterion. This means that stationary properties can be
found in neuro-scientific data by simply defining the group of subjects as the target. In the future
we want to use this tool to show how to analyze EEG data in group studies.
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