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Abstract—Algorithms using concepts from information geometry 
have  recently  become  very  popular  in  machine  learning  and 
signal  processing.  These  methods  not  only  have  a  solid 
mathematical  foundation  but  they  also  allow  to  interpret  the 
optimization  process  and  the  solution  from  a  geometric 
perspective.  In  this  paper  we  apply  information  geometry  to 
Brain-Computer Interfacing (BCI). More precisely, we show that 
the  spatial  filter  computation  in  BCI  can  be  cast  into  an 
information  geometric  framework  based  on  divergence 
maximization. This formulation not only allows to integrate many 
of the recently proposed CSP algorithms in a principled manner, 
but  also  enables  us  to  easily  develop novel  CSP variants  with 
different  properties.  We  evaluate  the  potentials  of  our 
information  geometric  framework  on  a  data  set  containing 
recordings from 80 subjects.
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I.  INTRODUCTION 

Brain-Computer  Interface  (BCI) systems [1]  [2]  translate 
recorded brain signals, e.g. EEG, into control commands for a 
computer.  A  crucial  step  in  this  translation  process  is  the 
extraction  of  relevant  brain  activity  from  high-dimensional 
electroencephalographic  recordings  [3]  [4]  [5].  In  motor 
imagery based BCIs a very popular algorithm for this feature 
extraction step is Common Spatial Patterns (CSP) (e.g. [6] [7]). 
Spatial  filters  computed  with  CSP  allow  to  discriminate 
between different mental states induced by motor imagery as 
they focus on the ERS/ERD effect. Many extensions of CSP 
have been proposed robustifying the solution against artifacts 
(e.g. [8] [9]), aiming for stationarity of the features (e.g. [10] 
[11])  or incorporating data from other sessions/subjects (e.g. 
[12] [13]).

Recently,  the authors  of  [14] [15] showed that  Common 
Spatial  Patterns  can  be  cast  into  an  information  geometric 
framework.  Information  geometry  [16]  is  a  branch  of 
mathematics  that  studies  questions  of  probability  theory  by 
means of differential  geometry.  A key concept  are so-called 
divergence functions. A divergence function [17] measures the 
discrepancy between two points in some parameter space, e.g. 
the points  may represent  probability distributions lying on a 
statistical manifold. Note that divergences are always positive 
(or zero), but do not have to be symmetric. Various machine 
learning  (ML)  algorithms  can  be  formulated  in  terms  of 
divergences [18] [19] [20] and optimized using methods from 
differential geometry 

In this paper we review the recently proposed information 
geometric  spatial  filtering  framework  and  comment  on  the 
potentials  of  information  geometry  for  BCI.  An 
implementation  of  our  framework  is  available  at 
http://www.divergence-methods.org.

II. INFORMATION GEOMETRIC SPATIAL FILTERING

Spatial filtering is a crucial step in motor imagery BCI as it 
reduces dimensionality of the data while increasing its signal-
to-noise  ratio.  Spatial  filters  w computed  by  CSP are  well-
suited  to  decode  imagined  movements  as  they 
maximize/minimize the variance ratio between the two motor 
imagery classes (ERD/ERS effect). The filters  w1 . . .  wd that 
best discriminate between the classes can be computed as

where  Σ1 ,  Σ2 ∈ RD × D  are the average covariance matrices of 
condition 1 and 2, respectively.  With this definition the CSP 
filters  are  ordered  according  to  their  ability  to  capture  the 
differences between both classes. 

One can prove (see [15]) that the spatial filters computed by 
CSP have a special property, namely they span a subspace with 
maximum  symmetric  Kullback-Leibler  (KL)  divergence 
between  the  distributions  of  both  classes  (estimated  as  zero 
mean multivariate Gaussians). More formally, we can say 

with span(W) being the subspace spanned by the top  d CSP 
filters W  R∈ D × d and V*  R∈ D × d (decomposable into whitening 
and  orthogonal  projection)  maximizing  the  symmetric  KL 
divergence between Gaussians 

The symmetric KL divergence between distribution p(x) and 
q(x) is defined as

A geometrical interpretation of the theorem is given in Fig. 1. 
The left plot depicts the manifold of D×D covariance matrices 



(symmetric,  positive  definite  matrices)  and the red  and  blue 
dots represent the class-covariance matrices Σ1 and Σ2 . The 

Fig. 1: The left plot shows the class-covariance matrices, represented as two 
points, lying on the manifold of D×D covariance matrices. The spatial filtering 
step projects the points to the submanifold of d×d covariance matrices while 

maximizing the discrepancy (symmetric KL divergence) between them.

“distance”  (measured  as  symmetric  KL divergence)  between 
these points is relatively small in this space as the covariance 
structures  of  both  classes  are  largely  affected  by  common, 
motor imagery unrelated activity. The spatial filters computed 
by  CSP  project  the  data  to  a  subspace.  The  projected 
covariance matrices now lie on the manifold of d×d symmetric, 
positive  definite  matrices.  The CSP criterion  maximizes  the 
symmetric Kullback-Leibler divergence between the projected 
points, thus the projected class-covariance matrices are as far 
apart as possible. In other words the spatial filtering step (in the 
optimal case) focuses on BCI related activity in the data that is 
expected to be different for the two motor imagery classes. 

Using this information geometric formulation of CSP one can 
easily regularize the solution by introducing a penalty term ∆. 
Note that regularizing the solution is very useful in practice as 
the  extracted  subspace  with  maximum  divergence  between 
both classes may be the result of overfitting, contain artifacts or 
BCI unrelated discriminative activity (e.g. eye movements) or 
be  very  subject-specific.  The  penalty  term  can  be  easily 
incorporated into our framework when measured as (sum of) 
divergence(s).  The  objective  function  of  the  proposed 
regularized information geometric CSP method is

Thus  the  goal  is  to  find  a  subspace  where  the  projected 
covariance  matrices  are  as  far  apart  as  possible  while 
minimizing the penalty. The regularization parameter λ trades 
off  the  influence  of  the  CSP  objective  function  and  the 
regularization term. Table I shows different penalty terms. 

The first term, called  ∆-WS (Within-Session), regularizes 
the  solution  towards  stationarity  (c.f.  [21]  [10]  [11])  by 
minimizing the deviations of the trial-wise covariance matrices 
Σi

c from  the  class  average  Σc.  Another  regularization  term, 
called ∆-BS (Between-Session) is shown in the second row and 
minimizes the difference between projected training  Σk

tr,c and 
test covariance matrices Σk

te,c by using data from other subjects 
k (as  done in  [22]).  The third penalty  scheme,  called  ∆-AS 
(Across-Subject), regularizes the projected covariance matrices 
of the subject of interest Σ ℓ

tr,c towards the covariance matrices 
of other subjects  Σk

tr,c , whereas the last regularization matrix, 
called  ∆-MS (Multi-Subject), solves the CSP problem jointly 
for all subjects i.e. it aims to make the extracted spatial filters 
more subject-independent. Many other regularization schemes 
are possible and can be easily incorporated into the framework.

TABLE I. INFORMATION GEOMETRIC SPATIAL FILTERING METHOD

III. ROBUSTNESS THROUGH BETA DIVERGENCE

An advantage of the information geometric formulation of 
the CSP algorithm is the unified view on the regularization. 
Since  all  terms  in  the  objective  function  have  a  common 
interpretation, namely as divergences between two zero mean 
Gaussian  distributions,  it  is  easy  to  compare  and  combine 
different divergence-based CSP variants. 

Another  advantage  that  is  even  more  important  is  the 
generic formulation of the spatial filtering problem in terms of 
divergence maximization. Similar to the “kernel-trick” that is 
often  applied  to  perform  classification  in  other  spaces  [23], 
[24],  we can change the geometry and the properties  of  the 
solution (without changing the mathematical  formulation) by 
considering different divergences. Other divergences induce a 
geometry that may be advantageous for BCI application e.g. 
because it is robust to outliers. A divergence that has been used 
in machine learning, e.g. in Independent Component Analysis 
[20], is the so-called beta divergence [25] [26]. Beta divergence 
Dβ (p(x) || q(x)) between distributions p(x) and q(x) has been 
proposed in [25] [26] and is defined (for β > 0) as

Beta divergence is known to be robust to outliers as it is related 
to the Ψ-likelihood principle in statistics [25]. By applying beta 
divergence to the CSP problem we can decrease the influence 
of  outliers  on  the  spatial  filter  computation  (see  [14])  or 
robustly  compute  the  regularization  terms,  e.g.  in  the  ∆-MS 
case  we  rather  prefer  subspaces  with  relatively  high 
divergences for many subjects over subspaces with very high 
divergences  for  few  subjects;  a  simple  averaging  without 
downweighting (β = 0) may give preference to the latter case.

IV. EXPERIMENTAL RESULTS

In  this  section  we  evaluate  the  across-subject  (AS) 
regularization scheme. The idea of finding a subspace where 
the  class-distributions  are  similar  across  subjects  is  a  novel 
regularization strategy. We compare the performance results to 
standard CSP and to the method proposed in [27]. We denote 
the method of  [27] as  covCSP because  it  applies  CSP with 



regularized covariance matrices, i.e. the covariance matrix of 
subject ℓ and class c is estimated as

We use a data set  [28] containing EEG recordings  from 80 
subjects performing motor imagery tasks with the left and right 
hand or with the feet. The data contain a calibration session and 
a (1D visual) feedback session. We select the two best motor 
imagery classes for each subject, resulting in 150 calibration 
and  300  feedback  trials.  We manually  select  62  electrodes, 
apply band pass filtering (8-30 Hz) with a 5-order Butterworth 
filter and extract a time segment from 750ms to 3500ms after 
the trial start. We extract six spatial filters and apply the LDA 
classifier. The parameters λ and β are selected from the sets {0, 
0.1, 0.2, . . ., 1} and {0, 0.5, 1} by 5-fold cross-validation on 
the  calibration  data  using  minimal  error  rate  as  selection 
criterion.  We  use  the  deflation  algorithm  (see  [15])  for 
optimizing the objective function in Eq. (6), i.e. we extract the 
spatial filters sequentially (we do not extract  the subspace in 
one  run).  The  parameter  α  is  selected  from  the  set  {0, 
10−5 ,  .  .  .  ,  10−1 ,  0.2, .  .  .  ,  0.9, 1} by using 5-fold cross-
validation with same selection criterion.

The scatter plots in Fig. 2 compare the error rates of CSP 
and  covCSP to  our  divergence-based  ∆-AS algorithm.  Each 
square represents the error rate of one of the 80 subjects and the 
p-value of the one-sided Wilcoxon sign rank test is shown in 
the lower right corner. The error rates of our method are shown 
on the y-axis, i.e. if a square is below the dashed line then our 
method outperforms the baseline. Note that p < 0.05 indicates 
significant performance gain for our method.

Fig. 2: Scatter plots comparing the error rates of the proposed divergence-
based CSP method with AS regularization to CSP and covCSP. Each square 

represents one subject and if the square is below the solid line then our 
method outperforms the baseline for this subject. The p-value of the one-sided 

Wilcoxon signed rank test is shown in the right bottom corner.

One can clearly see that  utilizing information from other 
subjects significantly improves the quality of the spatial filters. 
Our  method significantly  outperforms  the  CSP baseline  and 
(almost significantly) decreases error rates when comparing the 
results  to  covCSP.  This  suggests  that  regularizing  the 
divergences  gives  better  performance  than  regularizing  the 
covariance  matrices  (as  done  by  covCSP)  prior  to  CSP 
computation. In other words it seems that regularization in the 
projected space is more effective than regularization in the full 
covariance  space.  Note  that  the  covCSP  algorithm  applies 
regularization to the covariance matrices inside the divergence 
function (i.e. prior to CSP computation) whereas our method 

applies  regularization  to  the  divergences  (i.e.  after  the  non-
linear divergence function was applied).

Let  us  consider  the  single  filter  case.  We can  write  the 
covCSP objective as

being the average class-covariance matrix computed on other 
subjects’ data. On the other hand our method maximizes the 
following term

We compare  the  behaviour  of  both objective  functions  in  a 
simulation experiment for v  [−1  1] × [−1  1] and different α∈  
and λ parameters. Let ℓ = 1 and

One can see in Fig. 3 (green color stands for higher values) that 
covCSP  prefers  the  spatial  filter   vT =  [1   0]  for  small  α 
parameters but if the regularization of the covariance matrices 
Σ1 and Σ2 increases (large α) it switches its preference to vT = 
[0  1]  because  the  second  source  of  subject  2  is  more 
discriminative than the first source (ratio 1.5/0.5 compared to 
1.3/0.7). The divCSP-AS regularization on the other hand aims 
to  find  discriminative  sources  that  are  similar  between  both 
subjects thus it always prefers the filter vT = [1 0] that extracts 
source 1 which is discriminative and common to both users. 
Depending on the particular application scenario the covCSP 
regularization or the divCSP-AS regularization scheme may be 
more advantageous.

V. DISCUSSION

Applying  information  geometric  methods  to  BCI  is  a  new 
direction of  research  with high potentials.  But  also classical 
methods of differential geometry have been recently applied to 
BCI,  e.g.  the  authors  of  [29]  directly  classify  trials  on  the 
manifold  of  covariance  matrices.  It  would  be  interesting  to 
connect  both  research  directions,  information  geometry  and 
Riemannian geometry, in the future. A question that may also 
be  relevant  for  future  research  on  divergence-based  spatial 
filtering algorithms for BCI is whether it  is advantageous to 
extend the Gaussian approximation and use more complicated 
(higher  moments)  distributions  to  compute  the  CSP  filters. 
Restricting  the  analysis  to  variance  makes  sense  when only 
considering the ERD/ERS effect, however,  higher moments 



Fig. 3: Values of covCSP and divCSP-AS objective function for v  [−1  1] ×∈  
[−1  1] and different α and λ parameters. Green color represents larger values. 
The upper left (right) corner represents vT = [-1  -1]  (vT = [-1  1]), the lower 

left (right) one stands for vT = [1  -1]  (vT = [1  1]).

may  contain  valuable  information  e.g.  when  it  comes  to 
minimizing  non-stationarity  of  the  extracted  sources  or 
considering  statistical  independence.  Our  information 
geometric  framework  can  be  used  for  arbitrary  probabilistic 
distributions as it is based on divergences.

Finally one may also apply other divergences [30] to the CSP 
problem.  Although  other  divergences  may  impose  different 
valuable properties  on the solution, the optimization process 
may become more difficult.
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