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Abstract— The non-stationary nature of neurophysiological
measurements, e.g. EEG, makes classification of motion inten-
tions a demanding task. Variations in the underlying brain
processes often lead to significant and unexpected changes in
the feature distribution resulting in decreased classification ac-
curacy in Brain Computer Interfacing (BCI). Several methods
were developed to tackle this problem by either adapting to
these changes or extracting features that are invariant. Recently,
a method called Stationary Subspace Analysis (SSA) was
proposed and applied to BCI data. It diminishes the influence
of non-stationary changes as learning and classification is
performed in a stationary subspace of the data which can be
extracted by SSA. In this paper we extend this method in two
ways. First we propose a variant of SSA that allows to extract
stationary subspaces from labeled data without disregarding
class-related variations or treating class-differences as non-
stationarities. Second we propose a discriminant variant of
SSA that trades-off stationarity and discriminativity, thus it
allows to extract stationary subspaces without losing relevant
information. We show that learning in a discriminative and
stationary subspace is advantageous for BCI application and
outperforms the standard SSA method.

I. INTRODUCTION

In Brain-Computer Interfacing (BCI) [1] one major chal-
lenge is to understand the non-stationarities in the signal of
interest e.g. EEG and to develop methods that are invariant
to those of them that decrease the signal to noise ratio. The
sources and time scales of non-stationarities in the signal
can be very different e.g. changes in electrode impedance
may occur when an electrode gets loose or the skin prepping
gel dries out, muscular activity or eye movements lead to
artefacts in the signal and we often observe changes of task
involvement and attention over the course of an experiment.
Additionally, differences between sessions may exist, e.g. the
way the stimulus is presented or feedback is provided to the
user may be different or the positions of the electrodes may
vary slightly.

Several methods were proposed to reduce the impact of
non-stationarities in BCI applications. The approaches can be
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divided into two main groups, namely methods extracting
robust or invariant features and approaches adapting to
changes in the data. One of the first approaches to extract
invariant features was the invariantCSP method [2]. A very
recent work addressing the non-stationarity problem on the
feature extraction level is [3]. A lot of work on adaptation has
been published in the past, e.g. [4] uses techniques for co-
adaptive learning of user and machine, [5] applies covariate
shift adaptation to account for changes of the features and
[6], [7]1, [8] use other unsupervised adaptation approaches.

Recently, Biinau et al. [9] proposed a novel technique
called Stationary Subspace Analysis (SSA) that finds low-
dimensional projections having stationary distributions from
high-dimensional observations. This method can be applied
to EEG data as a preprocessing step in order to extract the
stationary part of the signal as done in [10]. The authors
showed that restricting the BCI to the stationary sources
found by SSA can significantly increase the classification
accuracy. However, SSA is a general purpose method and
its usage is limited when applying it to multi-class data. The
distinctive different tasks can be considered as non-stationary
components of the signal (it is expected that the statistical
properties of the data change with the task) and therefore
disregarded by SSA. Furthermore SSA is an unsupervised
method and thus does not differentiate between discriminant
and non task-relevant directions. In other words SSA may
remove information that is essential for classification in
subsequent steps.

In this paper we extend the work of Biinau et al. [10]
and propose a method that allows to compute the stationary
subspace from multi-class data (groupSSA) without disre-
garding class-related variations or treating class-differences
as non-stationarities. Furthermore we propose a discriminant
variant of SSA (dSSA) that trades-off stationarity and dis-
criminativity, thus it allows to extract stationary subspaces
without losing relevant information. We analyse the emerging
stationarity and non-stationarity patterns obtained from five
subjects and show that our method is better suited for BCI
data and consequently outperforms SSA.

This paper is organized as follows. In the next section we
present SSA and introduce the two extensions. After that
in Section III we evaluate the methods on a dataset of five
subjects performing motor imagery and analyse the results.
We conclude in Section IV with a discussion.

II. STATIONARY AND DISCRIMINATIVE SUBSPACES

A. Stationary Subspace Analysis Method

Stationary Subspace Analysis (SSA) [9] is a novel method
to factorize a high-dimensional multivariate time-series into
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Fig. 1. The red and blue points represent trial-wise covariance matrices
from both classes. Time flow is color-coded from bright to dark and both
classes have opposing trends in the vertical direction and a stable discrimi-
native horizontal direction. Two concatenation strategies are presented. The
concat I method combines trials according to time flow which results in
covariance matrices (upper pink points) without a prominent non-stationary
direction. The other strategy concat II does exactly the opposite, thus
preserves the non-stationarities in the data.

its stationary and non-stationary components. Its underlying
assumption is that the observed signal x(t) is a linear
superposition of stationary s®(t) and non-stationary s"(t)
sources
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x(t) = As(t) = [A* A" [s“(t)] , (1)
and A is an invertible matrix. The goal of SSA is to find
a linear transformation A~! that separates the s-sources
from the n-sources. For that the signal x(¢) is divided into
epochs and an optimization criterion is employed to recover
the sources. More precisely, SSA minimizes the distance
measured as Kullback-Leibler Divergence Dy, between
the distribution of the estimated s-sources in each epoch
(described by first two moments) and the standard normal
distribution.

B. Limitations of SSA for BCI Application

Stationary Subspace Analysis is a general purpose method
that is not optimized for application in a BCI setting. Since
it is expected that the statistical properties of the data change
with the task, one should be very careful when applying SSA
to BCI data as it may treat discriminant variations between
classes as non-stationarity which needs to be removed.
Such preprocessing will negatively affect the classification
performance. On the other hand when applying SSA to each
class separately, one obtains two different projections that
can not be combined in a straight forward manner.

The authors in [10] introduced a different approach to
circumvent this problem, they simply concatenate trials
(SSAconcat) from opposing classes in order to cancel out
the differences between both classes before applying SSA.
Note that concatenation of trials is equal to summation of the
corresponding covariance matrices (assuming zero means)'.
However, concatenation may lead to suboptimal results as

' Assume two trials x and y are concatenated resulting in z = [x y].
The covariance matrix of z is C, = zz” = [x y|[x y]T = xxT +yyT.

it ignores task-specific non-stationarities, e.g. when trends
in both classes propagate in opposite directions. Figure 1
shows covariance matrices from two classes (red and blue
points) with opposing trends in the vertical direction and two
different trial combination scheme concat I and concat II. We
see that concat I cancels out the prominent non-stationary
direction in the data, whereas concat II preserves it.

Note that variations may also occur along discriminative
directions e.g. due to learning effects. A method that does
not differentiate between different kinds of non-stationarities
(task-relevant / not task-relevant) will perform poorly in
a classification setting, especially when many directions
are removed. Therefore we not only propose a principled
approach to treat multi-class data in SSA, but also present a
supervised variant that prevents that discriminative directions
are removed. We show that learning in a discriminative and
stationary subspace is advantageous in a BCI setting.

C. Extension: groupSSA

The idea behind groupSSA is to consider groups of epochs
in order to find projections that are as stationary as possible
within each group. This does not necessarily imply stationar-
ity across all epochs, however, it allows to combine data from
many subjects to conduct group studies and to apply SSA to
multi-class data in a principled way. The objective function
of groupSSA measures the divergence between epochs and
their group averages, thus it can be written as
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where M is the number of groups, NV; is the number of
epochs in group i, N'(ft;, f]fj) is the distribution of epoch
j in group i, N (ﬁj,fj) is the average distribution in group
1 and R is a rotation matrix. Note that the divergence is com-
puted in the projected stationary subspace. In summary, the
goal is to find a rotation (projection), so that the divergence
between the distribution of the estimated s-sources in each
epoch N (ﬂfj, ﬁlfj) and the corresponding mean distribution
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for group j N (75, %;) is minimized.
D. Extension: dSSA

In order to extract subspaces that are not only stationary,
but also contain discriminative information, one needs to add
a discriminativity term to the groupSSA objective function.
Since we measure intra-class variations as Kullback-Leibler
Divergence between the epochs and the group mean, it is
straight forward to measure discriminativity, or inter-class
differences, as divergence between the average distributions
of both classes, namely

D [N (75, 5 1| M (25,55)] 3)

We subtract this term from the groupSSA objective function
and use a trade-off parameter A € [0 1] to control the
amount of discriminativity and stationarity. A small A pushes
the groupSSA objective function towards zero, so that the
discriminativity aspect is overemphasized. On the other hand



if A is equal to one, we obtain the same solution as with
groupSSA. We minimize the objective function by conjugate
gradient descend in the space of antisymmetric matrices [9].

III. EXPERIMENTAL RESULTS
A. Data

The data used in this paper consists of two calibration (i.e.
without feedback) recordings from five healthy participants.
The volunteers performed motor imagery of two limbs,
specifically ’left hand’ and ’foot’. The cues were presented
either visually (with an arrow appearing in the center of
the screen) or auditory (a voice announcing the task to
be performed), resulting in two different datasets for each
user. In this experiment, the training data (132 trials) was
the calibration with visual stimuli and the testing data (132
trials), the calibration with auditory stimuli. The prepro-
cessing parameters (frequency band and time interval) were
subject-optimized in the training set. The data was recorded
with a multichannel system 85 electrodes densely covering
the motor cortex. After filtering, it was down-sampled to
100 Hz. Subsequently, Common Spatial Patterns (CSP) were
computed and features were extracted using log-band power
on CSP filtered channels (three filters per class). Finally, the
classifier was Linear Discriminant Analysis (LDA). In the
case of SSA or one of its variants the band-pass filtered
training data was used to feed the algorithm. The data was
projected in the resulting stationary dimensions and after
that the same feature extraction method as explained above
was applied. The SSA methods were restarted 50 times in
order to avoid local minima and the dimensionality of the
stationary subspace was selected via 5-fold cross-validation
on the training set using classification accuracy.

B. Results

In order to study the different SSA variants we created two
artificial data sets, one with a task-unrelated non-stationary
direction and one where the dominant direction of variation
is discriminative. The upper row of Figure 2 shows the
distribution of data points (9 epochs per class) for both data
sets. As in Figure 1 we color-code the classes (red and
blue) and the time-flow (bright to dark). For each epoch
we extract the covariance matrix and plot the variances in
the middle row of Figure 2. The data in the left panel
have a discriminative horizontal and a non-stationary vertical
direction (but trends have opposite sign). In contrast, in
the second data set the prominent non-stationary change
coincides with the discriminative direction. In the last row of
Figure 2 we visualize the non-stationary direction obtained
by different methods. We see that not all SSA variants ensure
that the discriminative information remains in the stationary
part. For instance a direct application of SSA would discard
discriminative information in both data sets, whereas the per-
formance of SSAconcat highly depends on the concatenation
scheme used. The groupSSA method performs well in the
first example, but fails when the discriminative and non-
stationary direction coincide. Only dSSA finds a subspace
that is both discriminative and stationary.
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Fig. 2. The first row shows the distribution of points for each epoch of
the two data sets. The classes are represented by red and blue color and the
time-flow goes from bright to dark. The middle row visualizes the variances
of the point distributions, e.g. the red points in the left panel show a trend
downwards which corresponds to the shrinking vertical variance in the point
distributions. The last row shows the non-stationary direction found by
different methods. We see that it often contains discriminative information,
i.e. contributions from the horizontal direction. Only dSSA finds the correct
non-stationary direction, thus avoids that important information is removed.

TABLE I
COMPARISON OF CLASSIFICATION ACCURACIES FOR FIVE SUBJECTS
PERFORMING MOTOR IMAGERY. THE SSA-BASED METHODS ARE
APPLIED AS PREPROCESSING STEP AND DIMENSIONALITY IS SELECTED
VIA 5-FOLD CV. WE SEE THAT LEARNING IN STATIONARY AND
DISCRIMINATIVE SUBSPACES PERFORMS BEST (DSSA\_q.75).

Methods S1 S2 S3 S4 S5 Mean  Std
No SSA 909 80.0 733 708 942 | 81.8 10.4
SSA 909 60.0 825 708 825 | 77.3 12.0
SSAconcat T 87.8 758 775 741 933 | 81.7 8.3
SSAconcat IT | 88.7 71.7 750 708 78.3 | 76.9 7.2
dSSA—¢g 909 81.7 750 767 950 | 83.9 8.7
dSSAx—_g.25 90.2 783 742 692 942 | 81.2 10.6
dSSAx—o.5 90.2 833 792 708 958 | 83.9 9.7
dSSAx—0.75 909 825 808 783 97.5 | 86.0 8.0
dSSAN—_1 91.7 783 800 775 975 | 85.0 9.0

In order to study how useful it is for a BCI application to
perform learning and classification in a stationary subspace
we apply the SSA variants to the data set described in the
previous subsection and summarize the results in Table I. As
can be seen dSSA outperforms the baseline methods (except
for subject 3) and best performance is achieved for A = 0.75.
This indicates that preserving discriminativity is important
when removing non-stationarities from data. We further see
that different concatenation schemes for SSAconcat lead to
different results. This shows that grouping is important as
it preserves class-specific non-stationarities which may be
cancelled out when applying averaging of opposing trials.
Note that the methods have different sensitivity with respect
to the target dimensionality. Removing few directions may
lead to a significant performances drop in the case of SSA
(e.g. subject 2), whereas dSSA is much more stable in this
respect as it actively prevents that discriminative information
is removed. The question remains why learning in a dis-
criminative and stationary subspace is advantageous. Clearly,
discriminitivity is necessary for subsequent classification, but
why is stationarity favourable ?
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Fig. 3. Scalp plots showing the mean difference in power between the
training and the test data. When no preprocessing is applied there is a
significant change between training and test features, especially in occipital
regions. This is probably due to different cues that are being presented
in training and testing stage. Projecting the data to a stationary subspace
reduces this shift, thus makes the signal more stationary. The effect is
especially large for the subjects 3, 4 and 5.
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One argument is that since different cues are used in the
training (visual) and testing (auditory) stage, one should
remove all cue-related information in order to obtain similar
feature distributions in both stages. In other words we assume
that the visual processing of the stimuli is a non task-related
non-stationarity, thus it is advantageous to remove it as it
will not be present (or will have different form) in the testing
stage which uses auditory stimuli. In fact when comparing
the difference in power between the training and the test data
for the five subjects, we clearly see that the changes become
smaller when learning is performed in a stationary subspace
(see Figure 3). This is especially prominent in occipital areas
which are known for visual processing.

As mentioned before our dSSA method distinguishes non-
stationarities which are discriminative from those that do not
contain class-relevant information. In Figure 4 we visualize
the most (non-)discriminative / (non-)stationary direction
extracted from subject 5. Note that one can extract the
discriminative directions by flipping the sign in the objective
function of dSSA, e.g. adding the discriminativity term to
the objective function of groupSSA instead of subtracting
it. From Figure 4 we see that non-discriminative areas (first
row) are mainly located in the occipital regions and on border
electrodes. The occipital areas are also very non-stationary
(first column), probably because a lot of visual processing
occurs there. Regions of high discriminativity (middle row)
are located over the right motor cortex which is not surprising
as left hand motor imagery is performed by the subject.

IV. DISCUSSION

In this paper we analysed limitations of SSA with respect
to classification of motor imagery data and presented two
extensions of the algorithm, which allow to (1) identify sta-
tionary brain sources from different conditions in a principled
way and (2) trade-off discriminativity and stationarity which
is crucial when classification is performed in a subsequent
step. Note that the grouping of the data is not limited to class
labels, but can be applied to sessions or even multiple users,
thus allowing to extract common non-stationarities even in
the case of opposing trends. In the future we want to use
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+

Fig. 4. Scalp plots showing the most (non-)discriminative / (non-)stationary
directions extracted by dSSA of subject 5. Note that — (or +) stands for low
(or high) discriminativity / stationarity. We see that the occipital area is not
only non-discriminative (first row) but also non-stationary (first column). In
contrast the region around the right motor cortex is discriminative (second
row). This interpretation is in line with the fact that left hand motor imagery
is performed by the subject.

this tool to show how to analyze EEG data in group studies.
Furthermore we want to interpret the non-stationary subspace
neurophysiologically and analyze its stability across subjects
and sessions in order to find out whether it is possible to
perform learning in a discriminative and stationary subspace
extracted from other subjects.
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