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Abstract— Combining information from different sources is
a common way to improve classification accuracy in Brain-
Computer Interfacing (BCI). For instance, in small sample set-
tings it is useful to integrate data from other subjects or sessions
in order to improve the estimation quality of the spatial filters or
the classifier. Since data from different subjects may show large
variability, it is crucial to weight the contributions according to
importance. Many multi-subject learning algorithms determine
the optimal weighting in a separate step by using heuristics,
however, without ensuring that the selected weights are optimal
with respect to classification. In this work we apply Multiple
Kernel Learning (MKL) to this problem. MKL has been widely
used for feature fusion in computer vision and allows to
simultaneously learn the classifier and the optimal weighting.
We compare the MKL method to two baseline approaches and
investigate the reasons for performance improvement.

I. INTRODUCTION

Extracting robust and informative features from data is
a crucial step for successful decoding of the user’s inten-
tion in Brain-Computer Interfacing (BCI) [1]. One of the
most popular feature extraction methods in BCI is Common
Spatial Patterns (CSP) [2]. It is well suited to discriminate
between different mental states induced by motor imagery as
it enhances the ERD/ERS effect [1] by maximizing the dif-
ferences in band power between two conditions. Since CSP
is a data driven approach it is prone to overfitting and may
provide suboptimal results if data is scarce, non-stationary or
affected by artefacts. Recently, several extensions have been
proposed to robustify the algorithm, e.g. [3], [4], [5], [6],
[7], [8], [9]. One of the strategies to improve the estimation
quality of the spatial filters is to utilize data from other
subjects, e.g. by regularizing the estimated covariance matrix
towards the covariance matrices of other users. However, it
has been shown [9] that inclusion of other subjects’ data
may harm CSP performance if the discriminative subspaces
of the different data sets do not match. Therefore it is crucial
to weight the contributions from other users according to
importance1. The optimal weighting is usually computed in
a separate step by applying a heuristic, e.g. the composite
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CSP method (cCSP) [5] uses weights that are proportional
to the similarity, measured by Kullback-Leibler divergence,
between subjects. Note that such heuristics do not ensure that
the selected weights are optimal with respect to classification.

In this work we apply Multiple Kernel Learning (MKL)
[10], [11] to the data integration problem in BCI. This
method allows to simultaneously learn the classifier and the
optimal weighting and has been successfully applied to the
problem of feature fusion in computer vision [12]. Note that
the MKL approach has been applied to BCI before [13], but
in a completely different scenario, namely as single subject
classifier with different kernels and not for solving the data
integration problem.

This paper is organized as follows. In the next section
we present the Multiple Kernel Learning method and its
application to BCI. In Section III we compare it with two
baseline approaches on a data set of 30 subjects performing
motor imagery. We conclude in Section IV with a discussion.

II. MULTIPLE KERNEL LEARNING FOR BCI

A. Multiple Kernel Learning

Support Vector Machines (SVM) [14], [15] are binary
classifiers that learn a linear decision hyperplane with a
separating margin between the two classes e.g. left and right
hand motor imagery. They have been widely used in many
different areas and can be extended to non-linear decision
boundaries by applying the “kernel trick”. The SVM decision
function can be written as

f(xnew) =

n∑
i=1

αik(x
i,xnew) + b, (1)

where xnew is the trial to be classified, xi is a training trial,
k(·, ·) denotes the kernel function and αi and b are param-
eters which are determined when training the SVM. The
integration of data from different sources can be achieved
by computing a kernel for each source and combining them.
The decision function in this case is

f(xnew) =

n∑
i=1

αi

m∑
j=1

βjkj(x
i,xnew) + b, (2)

where βj ≥ 0 are the kernel weights assigning an importance
value to each source j. Multiple Kernel Learning (MKL)
[10] simultaneously optimizes for the parameters αi, b and
βj . Note that the degree of sparsity of the weight vector β =
[β1 . . . βm] can be controlled by adding a `p-norm constraint
||β||p = 1 (see [11], [16] for details).



B. Application to BCI
The data integration problem in Brain-Computer Interfac-

ing can be solved on different levels. The simplest approach
is to pool data extracted from different sources and to apply
the learning algorithms to the combined set. An alternative
is to train a model on each data set separately, to apply all
models to the data of interest and to combine the classifier
outputs (see e.g. [17], [18], [19]). Finally one can combine
the information from different sources on a medium level
of representation, namely on the feature level. In this work
we propose to perform data integration on this level by
computing a set of features and a kernel for each source.
Multiple Kernel Learning (MKL) then combines the kernels
in a way that is optimal for classification.

The application of our method to BCI is summarized by
Figure 1. The core idea of it is to provide different “views” on
the data of interest and to automatically select the important
information by combining them in a way that is optimal
with respect to classification. In the following we describe
our method when training a classifier for subject k.

In the first step we compute a set of spatial filters W j =
[wj

1, . . . ,w
j
6] for each subject j (including k) by solving the

generalized eigenvalue problem

Cj
1w

j
i = λiC

j
2w

j
i , (3)

and selecting three filters wj
i with largest λi and three with

smallest λi. Note that Cj
c denotes the estimated covariance

matrix of class c and subject j. Then we apply these filters
(including W k) to the data of subject k and compute log-
variance features f j

i for each trial i as

f j
i = log(var((W j)>Xk

i )). (4)

Note that Xk
i is the band-pass filtered EEG data of trial

i and subject k. By using filters from other subjects we
look at the data of user k through “the lens of” other
subjects. This is advantageous when e.g. spatial filters can
not be reliably computed from subjects’ k data because of
artefacts or a small-sample setting. Pooling data from all
subjects is suboptimal as the different data sets may vary
strongly, i.e. only the information contained in a subset of
other subjects may be relevant. After this feature extraction
step we compute a linear kernel matrix for each view j as

kj(f
j
i ,f

j
l ) = (f j

i )
>f j

l . (5)

The kernels are then combined and a classifier is learned by
solving the following MKL optimization problem

min
β

max
α

n∑
i=1

αi −
1

2

n∑
i,l=1

αiαlyiyl

m∑
j=1

βjkj(f
j
i ,f

j
l ) (6)

s.t. ∀ni=1 : 0 ≤ αi ≤ C;
n∑

i=1

yiαi = 0;

∀mj=1 : βj ≥ 0; ‖β‖p ≤ 1.

where m is the number of views, n is the number of training
trials, βj denotes the kernel weight, yi and yl represent
trial labels and αi, C are SVM parameters. We denote this
approach as mklCSP.

III. EXPERIMENTAL EVALUATION

A. Dataset and Experimental Setup

The experimental evaluation in this work is based on the
Vital BCI data set [20] containing EEG recordings from 80
healthy users performing motor imagery with the left and
right hand or with the feet. We restrict our analysis to the 30
subjects performing left hand vs. right hand motor imagery.
The data set contains measurements from a calibration and
a test session recorded on the same day, the former consists
of 150 trials without feedback and latter consists of 300
trials with 1D visual feedback. All subjects in this study
are BCI novices. The EEG signal was recorded from 119
Ag/AgCl electrodes, band-pass filtered between 0.05 and
200 Hz and downsampled to 100 Hz. We manually select
a set of 62 electrodes densely covering the motor cortex and
extract a time segment located from 750ms to 3500ms after
the cue instructing the subject to perform motor imagery.
Furthermore we band-pass filter the data in 8-30 Hz using a
5-th order Butterworth filter and use six spatial filters.

We compare three algorithms in the experiments, namely
CSP, cCSP [5] and our novel mklCSP approach. Note that
CSP does not perform data integration and the composite
CSP (cCSP) method incorporates data from other subjects
by regularizing the covariance matrix Ck

c as

C̃
k

c = (1− λ)Ck
c + λ

m∑
j=1,j 6=k

αjC
j
c

with αj = 1
Z ·

1

KL[Cj
c||Ck

c ]
, Z =

∑
l 6=k

1
KL[Cl

c||Ck
c ]

and

KL[·||·] is the Kullback-Leibler Divergence2. In order to
allow better comparison we apply two types of classifiers
after filtering the data with CSP and cCSP, namely Linear
Discriminant Analysis (LDA) and Support Vector Machine
(SVM). We use 5-fold cross-validation on the training data
to select the relevant parameters and apply lowest error
rate as selection criterion. Our algorithm has two free pa-
rameters, namely the SVM regularization parameter C and
the norm parameter p. We select C from 10i with i ∈
{−2,−1.5, . . . , 1.5, 2} and p from {1, 1.125, 1.333, 2,∞}
(as done in [12]). We normalize the kernels by the average
diagonal value. For the cCSP method we select λ from
{0, 10−5, 10−4, 10−3, 10−2, 0.1, 0.2, . . . , 1}.

B. Results and Evaluation

Fig. 2 compares the different approaches by using scatter
plots. The test error of each subject is represented by a circle.
The error rate of the baseline method is represented by the x-
coordinate, whereas the y-coordinate denotes the error rate
of mklCSP. Thus if the circle is below the solid line than
our method performs better than the baseline. The mklCSP
approach is superior to the CSP baseline methods and it is on
part to the state-of-the-art cCSP approach that also uses data
from other subjects. A potential advantage of our method is

2The Kullback-Leibler Divergence between
Gaussians is defined as DKL(N0‖N1) =
1
2

(
tr

(
Σ−1

1 Σ0

)
+ (µ1 − µ0)> Σ−1

1 (µ1 − µ0)− ln
(

det Σ0
det Σ1

)
− k

)
.



Fig. 1: Application of Multiple Kernel Learning to BCI. The data integration task consists of combining different views on
the data of interest. Looking at the data through “the lens of” spatial filters extracted from other users provides a much richer
picture of the data. The different sources of information are integrated by computing a kernel for each view and performing
a weighted combination of them. The Multiple Kernel Learning algorithm allows to simultaneously train the classifier and
optimize the kernel weights βj .
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Fig. 2: Comparison of the error rates of our mklCSP method
and the CSP and covCSP baselines using an LDA classifier
or SVM. Each circle represents the test error of a subject
and if the circle is below the solid line then our method is
superior to the baseline.

that it selects the importance of each subject by optimizing
a criterion that is relevant for classification, whereas cCSP
uses a similarity heuristic. Furthermore we can control the
sparsity of the solution by changing p.

In the following we investigate the reasons for the im-
proved performance of our method, i.e. the advantages of
looking at the data through the lens of other subjects. Spatial
filters computed on other subjects performing the same motor
imagery task may better capture the important information
than filters extracted from the data of interest, especially
if the data contains artefacts or is very scarce. In order to
understand what information is transferred between subjects

we analyse the MKL kernel weights and the similarity scores
αj of all subjects in Fig. 3. The target subjects, i.e. the
subjects whose motion intentions are decoded and classified,
are shown on the rows, whereas users representing the
additional sources of information are shown on the columns.
We set the diagonal elements of the two matrices to zero
for better visibility. In the case of mklCSP one can see that
many users, e.g. the second one, prefer sparse MKL solutions
and do not incorporate information from other subjects.
On the other hand there are users that show some strong
contributions from one or two subjects and yet others apply
relatively small weights to all sources of information. Note
that the MKL weights do not correlate with the similarity
values αj which are shown in the right matrix. There is
one subject (user 25) that seems to be very similar to other
users, i.e. the divergence between his covariance matrix and
the covariance matrices of other users is small. This means
that his impact on the other participants is relatively large,
however, note that the right matrix in Fig. 3 only shows the
similarity and not the final weights λαj .

In order to investigate what makes a good and bad set of
spatial filters we average the MKL weights over all subjects
and visualize the activity patterns of the most attractive
filters, i.e. the view with the largest average βj , and the least
attractive ones, i.e. the patterns that correspond to the kernel
with smallest average βj . The upper row of Fig. 4 shows
the activity patterns of the subject with the largest weight.
One can clearly see that the first and fourth patterns show
activity which is related to right and left hand motor imagery,
thus it makes sense to apply the corresponding spatial filters
to the data of interest. On the other hand the lower row of
Fig. 4 shows the patterns which were not so useful for the
other subjects. Note that these patterns are not very clean,
thus they do not perform very well and were not selected by
mklCSP.
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Fig. 3: MKL kernel weight βj and similarity score αj matrix.
The rows represents the users of interest and the columns
stand for the other sources of information. The weights
selected by MKL do not correlate with the similarity scores,
but are optimized with respect to the objective function of
the classification problem.
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Fig. 4: Upper row: Activity patterns of the subject that
received the largest attention by mklCSP, i.e. the largest
average weight βj . The first and fourth pattern in the upper
row shows clear motor imagery activity. Lower row: Activity
patterns that received the lowest attention, i.e. the smallest
average kernel weight. This set of patterns does not show
the relevant activity.

IV. DISCUSSION

We showed that Multiple Kernel Learning can be ap-
plied to the data integration problem in BCI. It does not
rely on heuristics, but rather automatically determines the
importance of other data sets in a way that is optimal
for classification. Using spatial filters computed on other
subjects may significantly improve classification accuracy,
however, weighting the data according to importance is
crucial when using multi-subject approaches.

In future research we would like to apply MKL to other
data fusion problems in BCI. For instance, the proposed
method can be used to find the best combination of narrow
frequency bands for a particular subject. In this case one
would look at the data not from the lens of other users,
but from the perspective of different frequency bands. First
experiments show promising results. Furthermore we plan to
investigate the impact of the kernel on classification. As in
computer vision we expect that Brain-Computer Interfacing
may profit from using non-linear classifiers.
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