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ABSTRACT

The areas of machine learning and communication technol-
ogy are converging. Today’s communications systems gener-
ate a huge amount of traffic data, which can help to signifi-
cantly enhance the design and management of networks and
communication components when combined with advanced
machine learning methods. Furthermore, recently developed
end-to-end training procedures offer new ways to jointly op-
timize the components of a communication system. Also in
many emerging application fields of communication technol-
ogy, e.g., smart cities or internet of things, machine learn-
ing methods are of central importance. This paper gives an
overview over the use of machine learning in different areas
of communications and discusses two exemplar applications
in wireless networking. Furthermore, it identifies promising
future research topics and discusses their potential impact.

Index Terms— Communications, wireless networks, ma-
chine learning, artificial intelligence

1. INTRODUCTION

We are currently observing a paradigm shift towards “smart”
communication networks that take advantage of network
data. In fact, modern communication networks, and in par-
ticular mobile networks, generate a huge amount of data
at the network infrastructure level and at the user/customer
level. The data in the network contain a wealth of useful
information such as location information, mobility and call
patterns. The vision of network operators is to either enable
new businesses through the provisioning of this data (or the
information contained in it) to external service providers
and customers or to exploit the network data for in-house
services such as network optimization and management.
In order to make the vision reality, there is a strong need for
the development and implementation of new machine learn-
ing methods for big data analytics in communication net-
works. The objective of these methods is to extract useful
information from the network data while taking into account
limited communication resources, and then to leverage this
information for external or in-house services.
Moreover, machine learning methods are core part in many
emerging applications of communication technology, e.g.,
smart cities [47] or internet of things [46]. Here, topics such
as monitoring, fault prediction and scheduling are addressed

with modern learning algorithms. The use of machine learn-
ing methods in communications may provide information
about individuals that affect their privacy. Therefore, various
privacy-preserving approaches to data analysis have been
recently proposed (e.g., [1]). Machine learning methods are
also widely applied to tackle security-related problems in
communications, e.g., as part of defense mechanisms against
spam attacks and viruses [21].
The increasing convergence can be also observed in spe-
cific domains of communications such as image and video
communication. While the direct approach to designing
compression algorithms using autoencoders has provided
very limited results compared to the state-of-the-art, the use
of machine learning as an enhancing component for aspects
like video encoding, bit allocation or other parts became a
promising research direction [55]. As most video signals are
stored as compressed data, the topic of object recognition
and tracking in the compressed domain is also of high rel-
evance [41]. Video streaming is another application which
benefits from the use of learning algorithms [28].
Despite the successful use of machine learning methods in
various communications applications, there are still many
challenges and questions that need to be addressed. For in-
stance, the large size and high computational demands of
modern machine learning algorithms prevent the large-scale
use of these models in embedded devices. Also 5G networks
call for novel machine learning-based approaches to radio
resource management and network management approaches
that can cope with uncertainties and incomplete channel and
network state information. Other problems concern reliabil-
ity, privacy and security aspects of machine learning models.
The following sections review the literature (Section 2),
present two applications (Section 3) and discuss future re-
search topics in machine learning and communications (Sec-
tion 4). The paper concludes with a summary (Section 5).

2. MACHINE LEARNING IN COMMUNICATIONS

This section reviews the use of machine learning algorithms
in different application fields of communications (see Fig. 1).

2.1. Communication Networks

Routing has a significant impact on the network’s perfor-
mance and is a well-studied topic in communications. Ma-



Fig. 1. Applications on machine learning in different areas of communications.

chine learning methods have been used to tackle different
types of routing problems in the past, including shortest path
routing, adaptive routing and multicasting routing. The au-
thors of [7] proposed an algorithm for package routing in dy-
namically changing networks based on reinforcement learn-
ing. This algorithm learns a routing policy which balances
between the route length and the possibility of congestion
along the popular routes. Extensions on this idea have been
proposed in [27]. Other researchers approached the rout-
ing problem with genetic algorithms [34]. Here alternative
routes are created by crossover and mutation of the existing
routes. Genetic algorithms have been also used for tackling
the multicasting routing problem which emerges when data is
send to multiple receivers through a communication network
[54]. Also in mobile ad hoc networks the construction of
multicast trees has been addressed using genetic algorithms.
Here additional objectives such as bounded end-to-end delay
and energy efficiency are added to the optimization [30].
Several works (e.g., [17]) have also used machine learning
techniques for throughput or traffic prediction in communi-
cation networks. This is an important topic as with a dy-
namic throughput control and allocation one can fulfill the
quality of service (QoS) requirements while efficiently uti-
lizing the network resources. For instance, the authors of
[28] applied neural networks for variable-bit-rate video traf-
fic prediction in order to dynamically allocate throughput
for real-time video applications. Traffic identification is an-
other important topic for network operators as it helps them
to manage their networks, to assure the QoS and to deploy
security measures. Here, machine learning methods recog-
nize statistical patterns in the traffic data by analyzing packet
header and flow-level information. An excellent review of
traffic classification with machine learning methods is [35].

2.2. Wireless Communications

To achieve a high efficiency at the desired QoS, it is essen-
tial in wireless systems to continuously adapt different pa-

rameters of MIMO-OFDM systems, in particular the link
parameters, to the variations in the communication environ-
ment. Various works (e.g., [52]) tackle this parameter selec-
tion problem using machine learning. Due to the dynamic
nature of the wireless communication environment, there is
also a strong need for adapting hardware parameters, e.g., to
select a suitable set of transmit and receive antennas [25].
The problem of reducing the peak-to-average power ratio
(PAPR) is one of the key aspects in the design of OFDM-
based wireless systems. Therefore, the problem has attracted
much attention for many years. Application examples of ma-
chine learning to the PAPR reduction problem include neural
networks [23] and set-theoretic approaches [10] that are par-
ticularly suitable for online learning. Methods of machine
learning and compressive sensing can also provide a key in-
gredient in enhancing the efficiency of OFDM channel esti-
mation. For instance, the authors of [13] address the problem
by considering a neural network with known pilot signals at
its input and the corresponding channel response at its out-
put. Other works (e.g., [39]) turn their attention towards the
problem of channel estimation in MIMO systems in the pres-
ence of nonlinearities. Learning-based approaches have been
also applied for the estimation of mmWave channels [32].
In order to enable an efficient and reliable opportunistic spec-
trum access, several approaches based on supervised, unsu-
pervised, or reinforcement learning have been proposed in
the literature. For instance, the study [44] considers a cog-
nitive radio system with cooperative spectrum sensing where
multiple secondary users cooperate to obtain robust spectrum
sensing results. Other approaches [8] apply distributed adap-
tive learning to tackle this problem.
Power control is a key mechanism for resource allocation in
wireless systems. Machine learning has attracted some atten-
tion in the context of MIMO power control (e.g., [31]). Var-
ious learning-based approaches (e.g., [19]) have also been
proposed to tackle the inter-cell interference problem, which
may have a detrimental impact on the performance of wire-
less users in mobile networks. Furthermore, human super-



vision is still an indispensable element of current network
management tools that are used to operate and manage mo-
bile networks. Much research effort has been spent in the last
decade to fully automate the network management process
and with it to realize the vision of self-organizing networks
that operate without human intervention (see [2]).
Information on the position of wireless devices is a key pre-
requisite for many applications. Machine learning methods
have been used for localization [53] as well as navigation and
positioning in car-to-car communication systems [40].

2.3. Security, Privacy & Communications

Machine learning methods play a pivotal role in tackling
privacy- and security-related problems in communications.
For instance, they monitor various network activities and
detect anomalies, i.e., events that deviate from the normal
network behavior. Various machine learning methods have
been applied for network anomaly detection in the past (see
[45]). Other security applications are automatic spam fil-
tering [21] and phishing attack detection [4]. Preserving
data privacy is an important security aspect in communica-
tions, especially when sensitive data is involved. The design
of machine learning algorithms that respect data privacy
has recently gained increased attention. The authors of [1]
demonstrated that it is possible to build a decision-tree clas-
sifier from corrupted data without significant loss in accuracy
compared to the classifiers built with the original data, while
at the same time it is not possible to accurately estimate the
original values in the corrupted data records. This way one
can hide private information from the algorithm, but still
obtain accurate classification results.

2.4. Smart Services, Smart Infrastructure & IoT

With the recent advances in communication technology the
new field of “smart” applications attracted increased atten-
tion (e.g., smart homes, smart cities, smart grids, internet of
things). Machine learning algorithms are often the core part
of such applications. For instance, the authors of [14] used
a neural network based prediction algorithm to forecast and
manage the power production of a photovoltaic plant. Other
researchers applied similar techniques to traffic light control
[48] in smart cities or context aware computing in IoT [37].
Machine learning can also help detecting malicious events
before they occur, e.g., in smart grid networks [18]. Tasks
such as prediction of a resource usage, estimation of task re-
sponse times, data traffic monitoring and optimal scheduling
have also been tackled with learning algorithms [49].

2.5. Image & Video Communications

Machine learning methods have been used for various tasks
in multimedia communication and processing (e.g., more
than 200 applications of neural networks for images are
summarized in [16]). Signal compression is one important
field of application of these methods as it is part of almost

every multimedia communication system. A survey on im-
age compression methods with neural networks can be found
in [24]. Tracking is another well-studied topic in machine
learning which is also relevant in multimedia communica-
tion. A new generation of object tracking methods based on
deep neural networks have been described in [12]. Track-
ing algorithms which make use of the compressed video
representation have also gained attention recently [41]. In
multimedia applications such as video streaming the quality
of the displayed video is of crucial importance. Different
machine learning methods have been proposed to estimate
the subjective quality of images perceived by a human [5, 6].

3. EXEMPLAR APPLICATIONS IN WIRELESS
NETWORKING

The design and operation of wireless networks is a highly
challenging task. On the road to the fifth generation of mo-
bile networks (5G), researches and practitioners are in par-
ticular challenged by a multitude of conflicting requirements
and promises as ever higher data-rates, lower-latency and
lower energy consumption.
The main cause of the problems and limitations in the con-
text of 5G is the radio propagation channel. This so-called
wireless channel can strongly distort transmission signals in
a manner that varies with frequency, time, space and other
system parameters. The channel distortions are therefore of
random nature and are notoriously difficult to estimate and
predict. In addition, the wireless channel is a shared commu-
nication medium so that different wireless (communication)
links must share the available communication resources. In
modern mobile networks, this leads to interference between
different mobile users, which in turn may have a detrimental
impact on the network operation. As a result, the capacity of
wireless links is of an ephemeral and highly dynamic nature,
and it depends on global channel parameters such as path
loss, path delay and carrier phase shifts, all of which vary
with time, frequency and space.
Against this background, it is not surprising that the problem
of reconstructing, tracking and predicting channel parame-
ters play a prominent role in the design and operation of mod-
ern wireless networks such as 5G. Traditional approaches to
this problem are usually based on the assumptions that 1) the
wireless channel can be modeled with a sufficient accuracy
and 2) a sufficient number of pilot-based channel measure-
ments can be performed in real-time. However, the continu-
ously increasing need for high spectral efficiency and the uti-
lization of extremely high frequencies (above 6 GHz) makes
these assumptions untenable in future networks. A potential
solution will not be an adaptation or extension within an ex-
isting framework, but rather a paradigm shift is necessary to
meet the requirements of 5G networks. This in turn requires
large strides both with respect to theoretical foundations and
practical implementations.
Modern wireless networks collect and process a huge amount
of data and this data (including measurement data) can be
used for tackling the mentioned problem of channel recon-



struction, tracking and prediction. Therefore, in this con-
text, a special attention has been attached to the development
of new machine learning algorithms that are able to process
spatially distributed data in real time while efficiently using
scarce wireless communication resources. This calls for the
development of distributed algorithms that in addition must
provide robust results, have good tracking (online) capabil-
ities, and exhibit a relatively low complexity. Finally, they
need to exploit context and side information such as spatial
and temporal sparsity in the wireless channel.
In the following subsection, we present one promising ma-
chine learning approach to the problem of reconstructing and
tracking path loss maps in cellular networks. Subsection 3.2
exemplifies the possibility of designing deep neural networks
that exploit sparsity in the input data and amenable to real
time implementation.

3.1. Reconstruction of Radio Maps

We consider the downlink of a cellular network in which a
number of base stations (transmitters) send the data to mo-
bile users. While the users move over some geographical
area covered by the network and send periodically their path
loss measurements to the base stations, the problem is to re-
construct and track a (complete) path loss map in an online
fashion from these measurements. The path loss determines
the reduction in the power density of a transmission signal
as it propagates from a base station to some geographic posi-
tion. Note that for every geographical position, its path loss
is defined with respect to the strongest base station, which is
the base station with the smallest path loss. A radio map is
then a function f : R2 7→ R≥0 that assigns to every geo-
graphic position in a given area its path loss associated with
the strongest base station. Fig. 2 shows an example of a path
loss map (the 2-dimensional function over the geographic
area) for the downlink of a cellular network.

Fig. 2. An example of a path loss map for the downlink sce-
nario with multiple base stations. The path loss map is a 2-
dimensional function that assigns to a geographical position
its path loss to the strongest base station.

The general setting is as follows: Each base station collects
path loss measurements sent by a subset of mobile users and

it updates its estimate of the path loss map in an online man-
ner whenever a new measurement arrives. Measurements
may contain errors since geographic location cannot be deter-
mined with arbitrary precision and measured path loss values
can be erroneous. Finally, measurements are not uniformly
distributed over a given geographic area so that more mea-
surements may be available for some subareas than for oth-
ers. The challenge is to reliably reconstruct the path loss
map, including the path loss values for geographic positions
for which no path loss measurements are available.
The problem was considered in [26] where the authors pro-
pose using a multi-kernel approach based on adaptive projec-
tion methods. To be more precise, consider an arbitrary base
station and let (xn, yn) ∈ R2×R be its measurement at time
n ∈ N, where xn ∈ R2 is a sample (position measurement) at
time n and yn ∈ R≥0 is the corresponding response (a noisy
path loss measurement). An estimate f̂ : R2 7→ R≥0 of the
path loss map must be consistent with the available measure-
ments. To this end, we require that ∀n∈N |yn − f̂(xn)| ≤ ε
for some suitably chosen small ε > 0. In [26], this require-
ment is met by projecting the estimate f̂ on the hyperslabs
given by Sn = {f ∈ H : |yn − 〈f, κ(xn, ·)〉}, n ∈ N
where H is a reproducing kernel Hilbert space (RKHS) and
κ : R2 × R2 7→ R is the reproducing kernel for H so that
〈f, κ(xn, ·)〉 = f(xn) (the reproducing property). For lack
of space, we refer the reader to [26] for a rigorous definition
of the concept of RKHS.
Since Sn is a closed convex set, the method of projection on
convex sets (POCS) [20] provides the basis for the develop-
ment of an iterative algorithm. However, the POCS frame-
work cannot be directly applied to our problem at hand be-
cause the number of measurements grows without bound as
time evolves. Therefore, the authors of [26] considered a
different algorithmic approach that is a special case of the
adaptive projected sub-gradient methods (APSM) developed
in [50, 11, 9]. These methods open up the door to distributed
implementation and real-time online processing via adaptive
parallel projections on closed convex sets such as the hyper-
slabs. Moreover, they allow for incorporating context infor-
mation in a systematic manner, while exhibiting relatively
low-complexity and robustness against errors. For more de-
tails the reader is referred to [50, 11, 9, 26].
The main disadvantage of the APSM-based approach is the
need for choosing appropriate kernel functions. In fact, in
practical scenarios, different geographical positions require
different kernel functions that in addition need to be adapted
over time due to the dynamic nature of the wireless environ-
ment. Since a real-time optimization of the kernel functions
is an intricate task, inspired by the work [51], the authors
of [26] developed a multi-kernel approach that adapts kernel
functions over time and space by choosing them from a large
set of pre-defined kernel functions, while maintaining low-
complexity and real-time capabilities. In the following, we
briefly explain this approach.
To this end, let {κm}Mm=1 with κm : R2×R2 7→ R be a given
set of some pre-defined kernel functions, where M � 1
is sufficiently large to include all relevant kernel functions.



Fig. 3. Illustration of the APSM-based approach: Using par-
allel projection methods, the estimate f̂n follows the inter-
sections of the hyperslabs at times n+1 and n+2 to ensure
consistency with new measurements and good tracking capa-
bilities with online processing. At each time, there are two
hyperslabs corresponding to two measurements.

Since the number of measurements grows linearly with n, we
take into account only the most relevant data which are con-
tained in the dictionary {(xi, yi)}n∈In where In ⊆ {n, n −
1, . . . , 1} is the dictionary index set at time n. The cardinal-
ity In = |In| of the dictionary must be sufficiently small to
satisfy the hardware limitations on memory size and proces-
sor speed. With these definitions, for an arbitrary time n, the
estimate f̂n(x) of the path loss at position x can be written as
a weighted sum of kernel functions: f̂n(x) = 〈An,Kn〉 =
trace(AT

nKn). Here Kn = Kn(x) ∈ RM×In is a given ker-
nel matrix (evaluated at x) with [Kn]i,m = κm(x, xi), and
An ∈ RM×In is a parameter matrix that needs to be opti-
mized. We point out that since the kernel matrix depends on
the position x ∈ R2, the parameter matrix should be opti-
mized for different geographical positions.
The most obvious requirement on the parameter matrix
A is that it must chosen to fit the estimate to the mea-
surements. This can be achieved by minimizing the dis-
tance (with some suitably chosen metric) of A from the set
Sn = {A ∈ RM×In : |〈A,Kn〉 − yn| ≤ ε} for some
sufficiently small ε > 0. Since M is large, the problem is
however computationally prohibitive for many applications
in wireless networks. Therefore, the authors of [26] extended
the objective function by adding to the distance metric two
regularization terms that impose some sparsity in A when
the new regularized objective function is minimized. As a
result, the approach not only fits the estimate function to
the measurements but also discards irrelevant data in the
dictionary and reduces the impact of unsuitable kernels.
The regularized objective function provides a basis for the
development of new iterative algorithms in [26] based on
the forward-backward splitting methods and sparsity-based
iterative weighting methods. The algorithms provide good
tracking capabilities for the problem of reconstructing and
tracking time-varying path loss maps. For more details, we
refer the reader to [26].

3.2. Deep Neural Networks for Sparse Recovery

Recently, compressed sensing and deep learning have emerged
as theoretical and practical toolsets to unleash full potential

and approach fundamental theoretical bounds - whether it
be for pilot decontamination in channel estimation, user
identification, activity detection or PAPR reduction.

While in many cases researches are well aware of optimal
solutions - e.g. in terms of optimization problems for chan-
nel estimation using minimal number of pilots - implement-
ing these solution in embedded devices is considered infea-
sible due to unpredictable termination times and incalcula-
ble loss of early stopping. In this regard, a provisional so-
lution aimed at large-scale measurement campaigns and uti-
tlizing black-box data-driven machine learning techniques.
While this approach fits well with many imaging problems,
it was soon stripped of its enchantment for communication
systems due to the necessity of measuring and pre-processing
RF-signals under diverse sets of environmental conditions
resulting in extremely large training times and disappoint-
ing performance gains. In addition, there is still no com-
monly accepted neural-network de-facto standard or baseline
architecture for particular communication problems akin to
AlexNet or GoogleNet in the imaging domains. One step to
close this important gap was made in [29] by using multi-
dimensional Laplace transform techniques to design optimal
neural networks for a particular sparse recovery problems re-
vealing a very intriguing connection between commonly em-
ployed neural-networks comprising weights, threshold func-
tions, recitified linear (ReLU) and rectified polynomial (ReP)
activation functions and volume and centroid computation
problems over sparsity inducing sets. We refer the reader

Fig. 4. Geometry of sparse recovery.

to Fig. 4 for a geometric illustration of a small sparse recov-
ery problem. Here, x is to be recovered from dimensional-
ity reduced measurement y = Ax given that x belongs to
a particular sparsity inducing set (blue). Then, the neural-
network of [29] outputs the estimate x̂ that minimizes the
expected error over the uncertainty cet (intersection between
red and blue). Using such geometric ideas in the design of
neural-networks allows for bypassing costly search over ex-
ponential candidate networks that consume large portions of
available computing resources. Indeed, practitioners can still
apply fine-tuning to reduce a possible model-mismatch and
reduce reconstruction errors even further.



4. FUTURE RESEARCH TOPICS

This section discusses four future research topics in machine
learning and communications.

4.1. Low Complexity Models

State-of-the-art machine learning models such as deep neural
networks are known to work excellently in practice. How-
ever, since the training and execution of these models require
extensive computational resources, they may not be applica-
ble in communications systems with limited storage capabil-
ities, computational power and energy resources, e.g., smart-
phones, embedded systems or IoT devices. Recent work
addressed this problem and proposed techniques for reduc-
ing the complexity of deep neural networks. For instance,
the authors of [22] demonstrated that the size of VGG-16,
a popular deep neural network for image classification, can
be reduced by over 95% with no loss of accuracy. In com-
munications applications such compression techniques can
be used to store and transmit models efficiently. Other au-
thors (e.g., [15]) targeted the problem of weight binarization
in deep neural networks. This type of discretization can be
useful, e.g., when adapting models to processor architectures
which do not allow floating point operations.

Further research on these topics is of high importance as
it can be expected that a large number of new applications
would emerge, if the complexity of state-of-the-art models
can be reduced to a level, which allows their use in computa-
tionally limited environments at minimal performance loss.

4.2. Standardized Formats for Machine Learning

The standardization of algorithms and data formats is of high
importance in communications, because it increases the reli-
ability, interoperability and modularity of a system and it’s
respective components. With the increasing use of learn-
ing algorithms in communications applications, the need for
standardized formats for machine learning is also rising.

For instance, standardized formats could be used to specify
how to train, adapt, compress and exchange machine learn-
ing models in communications applications. Furthermore,
there could be standardized formats for the data and stan-
dards which determine how multiple machine learning mod-
els interact with each other. Other formats could be specifi-
cally designed for ensuring that a model fulfills certain secu-
rity or privacy requirements.

4.3. Security & Privacy Mechanisms

Machine learning models are often used in a black box man-
ner in today’s applications. This prevents the human expert
from comprehending the reasoning of the algorithm and from
validating its predictions. Although recent works [3, 33] pro-
posed techniques for explaining the predictions of a machine

learning model, further research on this topic is of high im-
portance as the lack of transparency can be a large disadvan-
tage in communications applications.
Moreover, it is well-known that deep neural networks can
be easily fooled or may behave in an unexpected way when
being confronted with data with different properties than the
data used for training the model [43]. Thus, the establish-
ment of mechanisms which increase the reliability of the
model is a prerequisite for a large-scale use in communica-
tions applications. Such mechanisms can be implemented
on different levels, e.g., be an integral part of the model, be
integrated into the communication protocol or be part of a
separate inspection process.
Besides interpretability and security aspects, future research
also needs to investigate how to effectively encrypt machine
learning models and how to ensure data privacy during and
after learning.

4.4. Radio Resource and Network Management

The end-to-end performance of mobile networks is strongly
influenced by the choice of radio resource (e.g., beamform-
ing and medium access control parameters) and network
management (e.g., handover parameters, neighborhood lists,
loads and power budgets) parameters. Moreover, some of
the parameters must be continuously adapted on a relatively
short time scale to time-varying radio propagation conditions
and changing network topologies [42].
Current approaches are inadequate to cope with the growth
of autonomous network elements in 5G small cell deploy-
ments based on mobile cloud RAN architectures. Therefore,
5G networks call for new model- and data-driven radio re-
source management and network management methods that
are augmented by machine learning techniques for extract-
ing knowledge from the system and gradual learning in the
presence of inherent uncertainties and the lack of complete
channel and network state information [38]. The realization
of these ideas in the context of 5G will require modifications
of existing protocols and the development of new ones.

5. CONCLUSION

This paper discussed the increasing mutual influence of ma-
chine learning and communication technology. Learning al-
gorithms were not only shown to excel in traditional net-
work management tasks such as routing, channel estimation
or PAPR reduction, but also to be core part of many emerging
application fields of communications technology, e.g., smart
cities or internet of things. The availability of large amounts
of data and recent improvements in deep learning method-
ology will further foster the convergence of these two fields
and will offer new ways to optimize the whole communica-
tion pipeline in an end-to-end manner [36].
However, before resources-intensive models such as deep
neural networks can be applied on a large scale in com-
munications applications, several practical challenges (e.g.,



complexity, security, privacy) need to be solved. Further-
more, more research is required on theoretical topics at the
intersection of communications and machine learning, e.g.,
incremental learning, learning in nonstationary environments
or learning with side information.
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