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ABSTRACT

With the availability of large databases and recent improve-
ments in deep learning methodology, the performance of AI
systems is reaching or even exceeding the human level on an
increasing number of complex tasks. Impressive examples
of this development can be found in domains such as image
classification, sentiment analysis, speech understanding or
strategic game playing. However, because of their nested
non-linear structure, these highly successful machine learn-
ing and artificial intelligence models are usually applied in
a black box manner, i.e., no information is provided about
what exactly makes them arrive at their predictions. Since
this lack of transparency can be a major drawback, e.g., in
medical applications, the development of methods for visual-
izing, explaining and interpreting deep learning models has
recently attracted increasing attention. This paper summa-
rizes recent developments in this field and makes a plea for
more interpretability in artificial intelligence. Furthermore,
it presents two approaches to explaining predictions of deep
learning models, one method which computes the sensitiv-
ity of the prediction with respect to changes in the input and
one approach which meaningfully decomposes the decision
in terms of the input variables. These methods are evaluated
on three classification tasks.

Index Terms— Artificial intelligence, deep neural networks,
black box models, interpretability, sensitivity analysis, layer-
wise relevance propagation

1. INTRODUCTION

The field of machine learning and artificial intelligence has
progressed over the last decades. A driving force for this
development were earlier improvements in support vector
machines and more recent improvements in deep learning
methodology [22]. Also the availability of large databases
such as ImageNet [9] or Sports1M [17], the speed-up gains
obtained with powerful GPU cards and the high flexibility of
software frameworks such as Caffe [15] or TensorFlow [1]
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were crucial factors to success. Today’s machine learning-
based AI systems excel in a number of complex tasks ranging
from the detection of objects in images [14] and the under-
standing of natural languages [8] to the processing of speech
signals [10]. On top of that, recent AI1 systems can even out-
play professional human players in difficult strategic games
such as Go [34] and Texas hold’em poker [28]. These im-
mense successes of AI systems, especially deep learning
models, show the revolutionary character of this technology,
which will have a large impact beyond the academic world
and will also give rise to disruptive changes in industries and
societies.
However, although these models reach impressive predic-
tion accuracies, their nested non-linear structure makes them
highly non-transparent, i.e., it is not clear what information
in the input data makes them actually arrive at their decisions.
Therefore these models are typically regarded as black boxes.
The 37th move in the second game of the historic Go match
between Lee Sedol, a top Go player, and AlphaGo, an artifi-
cial intelligence system built by DeepMind, demonstrates the
non-transparency of the AI system. AlphaGo played a move
which was totally unexpected and which was commented on
by a Go expert in the following way:

“It’s not a human move. I’ve never seen a
human play this move.” (Fan Hui, 2016).

Although during the match it was unclear why the system
played this move, it was the deciding move for AlphaGo to
win the game. In this case the black box character of the
AlphaGo did not matter, but in many applications the impos-
sibility of understanding and validating the decision process
of an AI system is a clear drawback. For instance, in medical
diagnosis, it would be irresponsible to trust predictions of a
black box system by default. Instead every far reaching de-
cision should be made accessible for appropriate validation
by a human expert. Also in self-driving cars, where a sin-
gle incorrect prediction can be very costly, the reliance of the
model on the right features must be guaranteed. The use of
explainable and human interpretable AI models is a prereq-
uisite for providing such a guarantee. More discussion on the

1The terms artificial intelligence and machine learning are used synony-
mously.



necessity of explainable AI can be found in Section 2.
Not surprisingly, the development of techniques for “open-
ing” black box models has recently received a lot of attention
in the community [6, 35, 39, 5, 33, 25, 23, 30, 40, 11, 27].
This includes the development of methods which help to bet-
ter understand what the model has learned (i.e., it’s represen-
tation) [12, 24, 29] as well as techniques for explaining indi-
vidual predictions [19, 35, 39, 5, 26]. A tutorial on methods
from these two categories can be found in [27]. Note that ex-
plainability is also important for support vector machines and
other advanced machine learning techniques beyond neural
networks [20].
The main goal of this paper is to foster awareness for the
necessity of explainability in machine learning and artificial
intelligence. This is done in Section 2. After that in Sec-
tion 3, we present two recent techniques, namely sensitivity
analysis (SA) [6, 35] and layer-wise relevance propagation
(LRP) [5], for explaining the individual predictions of an AI
model in terms of input variables. The question of how to
objectively evaluate the quality of explanations is addressed
in Section 4 and results from image, text and video classi-
fication experiments are presented in Section 5. The paper
concludes with an outlook on future work in Section 6.

2. WHY DO WE NEED EXPLAINABLE AI ?

The ability to explain the rationale behind one’s decisions to
other people is an important aspect of human intelligence.
It is not only important in social interactions, e.g., a person
who never reveals one’s intentions and thoughts will be most
probably regarded as a “strange fellow”, but it is also crucial
in educational context, where students aim to comprehend
the reasoning of their teachers. Furthermore, the explanation
of one’s decisions is often a prerequisite for establishing a
trust relationship between people, e.g., when a medical doc-
tor explains the therapy decision to his patient.
Although these social aspects may be of less importance for
technical AI systems, there are many arguments in favor of
explainability in artificial intelligence. Here are the most im-
portant ones:

• Verification of the system: As mentioned before, in
many applications one must not trust a black box sys-
tem by default. For instance, in health care the use
of models which can be interpreted and verified by
medical experts is an absolute necessity. The authors
of [7] show an example from this domain, where an
AI system which was trained to predict the pneumo-
nia risk of a person arrives at totally wrong conclu-
sions. The application of this model in a black box
manner would not reduce but rather increase the num-
ber of pneumonia-related deaths. In short, the model
learns that asthmatic patients with heart problems have
a much lower risk of dying of pneumonia than healthy
persons. A medical doctor would immediately rec-
ognize that this can not be true as asthma and hearth

problems are factors which negatively affect the prog-
nosis for recovery. However, the AI model does not
know anything about asthma or pneumonia, it just in-
fers from data. In this example, the data were system-
atically biased, because in contrast to healthy persons
the majority of asthma and heart patients were under
strict medical supervision. Because of that supervi-
sion and the increased sensitivity of these patients, this
group has a significant lower risk of dying of pneu-
monia. However, this correlation does not have causal
character and therefore should not be taken as basis for
the decision on pneumonia therapy.

• Improvement of the system: The first step towards
improving an AI system is to understand its weak-
nesses. Obviously, it is more difficult to perform such
weakness analysis on black box models than on mod-
els which are interpretable. Also detecting biases in
the model or the dataset (as in the pneumonia example)
is easier if one understands what the model is doing
and why it arrives at its predictions. Furthermore,
model interpretability can be helpful when comparing
different models or architectures. For instance, the
authors of [20, 2, 3] observed that models may have
the same classification performance, but largely differ
in terms of what features they use as the basis for their
decisions. These works demonstrate that the iden-
tification of the most “appropriate” model requires
explainability. One can even claim that the better
we understand what our models are doing (and why
they sometimes fail), the easier it becomes to improve
them.

• Learning from the system: Because today’s AI sys-
tems are trained with Millions of examples, they may
observe patterns in the data which are not accessible
to humans, who are only capable of learning with a
limited number of examples. When using explainable
AI systems, we can try to extract this distilled knowl-
edge from the AI system in order to acquire new in-
sights. One example of such knowledge transfer from
AI system to human was mentioned by Fan Hui in
the quote above. The AI system identifies new strate-
gies to play Go, which certainly now have also been
adapted by professional human players. Another do-
main where information extraction from the model can
be crucial are the sciences. To put it simple, physi-
cists, chemists and biologists are rather interested in
identifying the hidden laws of nature than just predict-
ing some quantity with black box models. Thus, only
models which are explainable are useful in this domain
(c.f., [37, 32]).

• Compliance to legislation: AI systems are affecting
more and more areas of our daily life. With that also le-
gal aspects, e.g., the assignment of responsibility when
the systems makes a wrong decision, have recently re-
ceived increased attention. Since it may be impossible
to find satisfactory answers for these legal questions



when relying on black box models, future AI systems
will necessarily have to become more explainable. An-
other example where regulations may become a driv-
ing force for more explainability in artificial intelli-
gence are individual rights. Persons immediately af-
fected by decisions of an AI system (e.g., persons re-
jected for loan by the bank) may want to know why the
systems has decided in this way. Only explainable AI
systems will provide this information. These concerns
brought the European Union to adapt new regulations
which implement a “right to explanation” whereby a
user can ask for an explanation of an algorithmic deci-
sion that was made about her or him [13].

These examples demonstrate that explainability is not only
of important and topical academic interest, but it will play a
pivotal role in future AI systems.

3. METHODS FOR VISUALIZING, INTERPRETING
AND EXPLAINING DEEP LEARNING MODELS

This section introduces two popular techniques for explain-
ing predictions of deep learning models. The process of ex-
planation is summarized in Fig. 1. First, the system correctly
classifies the input image as “rooster”. Then, an explanation
method is applied to explain the prediction in terms of input
variables. The result of this explanation process is a heatmap
visualizing the importance of each pixel for the prediction. In
this example the rooster’s red comb and wattle are the basis
for the AI system’s decision.

3.1. Sensitivity Analysis

The first method is known as sensitivity analysis (SA) [6, 35]
and explains a prediction based on the model’s locally evalu-
ated gradient (partial derivative). Mathematically, sensitivity
analysis quantifies the importance of each input variable i
(e.g., image pixel) as

Ri =
∣∣∣∣∣∣ ∂
∂xi

f(x)
∣∣∣∣∣∣.

This measure assumes that the most relevant input features
are those to which the output is most sensitive. In contrast
to the approach presented in the next subsection, sensitivity
analysis does not explain the function value f(x) itself, but
rather a variation of it. The following example illustrates
why measuring the sensitivity of the function may be subop-
timal for explaining predictions of AI systems.
A heatmap computed with sensitivity analysis indicates
which pixels need to be changed to make the image look
(from the AI system’s perspective) more/less like the pre-
dicted class. For instance, in the example shown in Fig.
1 these pixels would be the yellow flowers which occlude
part of the rooster. Changing these pixels in a specific way
would reconstruct the occluded parts of the rooster, which
most probably would also increase the classification score,
because more of the rooster would be visible in the image.

Note that such heatmap would not indicate which pixels are
actually pivotal for the prediction “rooster”. The presence
of yellow flowers is certainly not indicative of the presence
of a rooster in the image. Because of this property SA does
not perform well in the quantitative evaluation experiments
presented in Section 5. More discussion on the drawbacks of
sensitivity analysis can be found in [27].

3.2. Layer-Wise Relevance Propagation

In the following, we provide a general framework for de-
composing predictions of modern AI systems, e.g., feed-
forwards neural networks and bag-of-words models [5],
long-short term memory (LSTM) networks [4] and Fisher
Vector classifiers [20], in terms of input variables. In con-
trast to sensitivity analysis, this method explains predictions
relative to the state of maximum uncertainty, i.e., it iden-
tifies pixels which are pivotal for the prediction “rooster”.
Recent work [26] also shows close relations to Taylor de-
composition, which is a general function analysis tool in
mathematics.
A recent technique called Layer-wise relevance propagation
(LRP) [5] explains the classifier’s decisions by decompo-
sition. Mathematically, it redistributes the prediction f(x)
backwards using local redistribution rules until it assigns a
relevance score Ri to each input variable (e.g., image pixel).
The key property of this redistribution process is referred to
as relevance conservation and can be summarized as∑

i

Ri = . . . =
∑
j

Rj =
∑
k

Rk = . . . = f(x) (1)

This property says that at every step of the redistribution pro-
cess (e.g., at every layer of a deep neural network), the total
amount of relevance (i.e., the prediction f(x)) is conserved.
No relevance is artificially added or removed during redistri-
bution. The relevance scores Ri of each input variable de-
termines how much this variable has contributed to the pre-
diction. Thus, in contrast to sensitivity analysis, LRP truly
decomposes the function value f(x).
In the following we describe the LRP redistribution process
for feed-forward neural networks, redistribution procedures
have also been proposed for other popular models [5, 4, 20].
Let xj be the neuron activations at layer l, Rk be the rele-
vance scores associated to the neurons at layer l+1 and wjk

be the weight connecting neuron j to neuron k. The simple
LRP rule redistributes relevance from layer l+1 to layer l in
the following way:

Rj =
∑
k

xjwjk∑
j xjwjk + ε

Rk (2)

where a small stabilization term ε is added to prevent division
by zero. Intuitively, this rule redistributes relevance propor-
tionally from layer l + 1 to each neuron in layer l based on
two criteria, namely (i) the neuron activation xj , i.e., more
activated neurons receive a larger share of relevance, and (ii)
the strength of the connection wjk, i.e., more relevance flows
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Fig. 1. Explaining predictions of an AI system. The input image is correctly classified as “rooster”. In order to understand
why the system has arrived at this decision, explanation methods such as SA or LRP are applied. The result of this explanation
is an image, the heatmap, which visualizes the importance of each pixel for the prediction. In this example the rooster’s red
comb and wattle are the basis for the AI system’s decision. With the heatmap one can verify that the AI system works as
intended.

through more prominent connections. Note that relevance
conservation holds for ε = 0.

The “alpha-beta” rule is an alternative redistribution rule in-
troduced in [5]:

Rj =
∑
k

(
α · (xjwjk)

+∑
j(xjwjk)+

− β · (xjwjk)
−∑

j(xjwjk)−

)
Rk (3)

where ()+ and ()− denote the positive and negative parts,
respectively. The conservation of relevance is enforced by
an additional constraint α − β = 1. For the special case
α = 1, the authors of [26] showed that this redistribution rule
coincides with a “deep Taylor decomposition” of the neural
network function when the neural network is composed of
ReLU neurons.

3.3. Software

The LRP toolbox [21] provides a python and matlab imple-
mentation of the method as well as an integration into pop-
ular frameworks such as Caffe and TensorFlow. With this
toolbox one can directly apply LRP to other peoples’ mod-
els. The toolbox code, online demonstrators and further in-
formation can be found on www.explain-ai.org.

4. EVALUATING THE QUALITY OF
EXPLANATIONS

In order to compare heatmaps produced by different expla-
nation methods, e.g., SA and LRP, one needs an objective
measure of the quality of explanations. The authors of [31]
proposed such a quality measure based on perturbation anal-
ysis. The method is based on the following three ideas:

• The perturbation of input variables which are highly
important for the prediction leads to a steeper decline
of the prediction score than the perturbation of input
dimensions which are of lesser importance.

• Explanation methods such as SA and LRP provide a
score for every input variable. Thus, the input vari-
ables can be sorted according to this relevance score.

• One can iteratively perturb input variables (starting
from the most relevant ones) and track the predic-
tion score after every perturbation step. The average
decline of the prediction score (or the decline of the
prediction accuracy) can be used as an objective mea-
sure of explanation quality, because a large decline
indicates that the explanation method was successful
in identifying the truly relevant input variables.

In the following evaluation we use model-independent per-
turbations (e.g., replacing the input values by random sample
from uniform distribution) in order to avoid biases.



5. EXPERIMENTAL EVALUATION

This section evaluates SA and LRP on three different prob-
lems, namely the annotation of images, the classification
of text documents and the recognition of human actions in
videos.

5.1. Image Classification

In the first experiment we use the GoogleNet model [38], a
state-of-the art deep neural network, to classify general ob-
jects from the ILSVRC2012 [9] dataset.
Fig. 2 (A) shows two images from this dataset, which have
been correctly classified as “volcano” and “coffee cup”, re-
spectively. The heatmaps visualize the explanations obtained
with SA and LRP. The LRP heatmap of the coffee cup im-
age shows that the model has identified the ellipsoidal shape
of the cup to be a relevant feature for this image category.
In the other example, the particular shape of the mountain
is regarded as evidence for the presence of a volcano in the
image. The SA heatmaps are much noisier than the ones
computed with LRP and large values Ri are assigned to re-
gions consisting of pure background, e.g., the sky, although
these pixels are not really indicative for image category “vol-
cano”. In contrast to LRP, SA does not indicate how much
every pixel contributes to the prediction, but it rather mea-
sures the sensitivity of the classifier to changes in the input.
Therefore, LRP produces subjectively better explanations of
the model’s predictions than SA.
The lower part of Fig. 2 (A) displays the results of the per-
turbation analysis introduced in Section 4. The y-axis shows
the relative decrease of the prediction score average over the
first 5040 images of the ILSVRC2012 dataset, i.e., a value of
0.8 means that the original scores decreased on average by
20%. At every perturbation step a 9x9 patch of the image
(selected according to SA or LRP scores) is replaced by ran-
dom values sampled from an uniform distribution. Since the
prediction score decrease is much faster when perturbing the
images using LRP heatmaps than when using SA heatmaps,
LRP also objectively provides better explanations than SA.
More discussion on this image classification experiment can
be found in [31].

5.2. Text Document Classification

In this experiment, a word-embedding based convolutional
neural network was trained to classify text documents from
the 20Newsgroup dataset2.
Fig. 2 (B) shows SA and LRP heatmaps (e.g., a relevance
score Ri is assigned to every word) overlayed on top of a
document, which was classified as topic “sci.med”, i.e., the
text is assumed to be about a medical topic. Both expla-
nation methods, SA and LRP, indicate that words such as
“sickness”, “body” or “discomfort” are the basis for this
classification decision. In contrast to sensitivity analysis,

2http://qwone.com/˜jason/20Newsgroups

LRP distinguishes between positive (red) and negative (blue)
words, i.e., words which support the classification decision
“sci.med” and words which are in contradiction, i.e., speak
for another category (e.g.,“sci.space”). Obviously, words
such as “ride”, “astronaut” and “Shuttle” strongly speak for
the topic space, but not necessarily for the topic medicine.
With the LRP heatmap, we can see that although the classi-
fier decides for the correct “sci.med” class, there is evidence
in the text which contradicts this decision. The SA method
does not distinguish between positive and negative evidence.
The lower part of the figure shows the result of the quantita-
tive evaluation. The y-axis displays the relative decrease of
the prediction accuracy over 4154 documents of the 20News-
group dataset. At every perturbation step, the most important
words (according to SA or LRP score) are deleted by setting
the corresponding input values to 0. Also this result confirms
quantitatively that LRP provides more informative heatmaps
than SA, because these heatmaps lead to a larger decrease in
classification accuracy compared to SA heatmaps.
More discussion on this text document classification experi-
ment can be found in [3].

5.3. Human Action Recognition in Videos

The last example demonstrates the explanation of a Fisher
Vector / SVM classifier [16], which was trained for predict-
ing human actions from compressed videos. In order to re-
duce computational costs, the classifier was trained on block-
wise motion vectors (not individual pixels). The evaluation
is performed on the HMDB51 dataset [18].
Fig. 2 (C) shows LRP heatmaps overlayed onto five exemplar
frames of a video sample. The video was correctly classified
as showing the action “sit-up”. One can see that the model
mainly focuses on the blocks surrounding the upper body of
the person. This makes perfectly sense, as this part of the
video frame shows motion which is indicative of the action
“sit-up”, namely upward and downward movements of the
body.
The curve at the bottom of Fig. 2 (C) displays the distribution
of relevance over (four consecutive) frames. One can see
that the relevance scores are larger for frames in which the
person is performing an upwards and downwards movement.
Thus, LRP heatmaps not only visualize the relevant locations
of the action within a video frame (i.e., where the relevant
action happens), but they also identify the most relevant time
points within a video sequence (i.e., when the relevant action
happens).
More discussion on this experiment can be found in [36].

6. CONCLUSION

This paper approached the problem of explainability in arti-
ficial intelligence. It was discussed why black box models
are not acceptable for certain applications, e.g., in the medi-
cal domain where wrong decisions of the system can be very



Fig. 2. Explaining predictions of AI systems. (A) shows the application of explainable methods to image classification. The
SA heatmaps are noisy and difficult to interpret, whereas LRP heatmaps match human intuition. (B) shows the application
of explainable methods to text document classification. The SA and LRP heatmaps identify words such as “discomfort”,
“body” and “sickness” as the relevant ones for explaining the prediction “sci.med”. In contrast to sensitivity analysis, LRP
distinguishes between positive (red) and negative (blue) relevances. (C) shows explanations for a human action recognition
classifier based on motion vector features. The LRP heatmaps of a video which was classified as “sit-up” show increased
relevance on frames in which the person is performing an upwards and downwards movement.

harmful. Furthermore, explainability was presented as pre-
requisite for solving legal questions which are arising with
the increased usage of AI systems, e.g., how to assign re-
sponsibility in case of system failure. Since the “right to ex-
planation” has become part of the European law, it can be
expected that it will also greatly foster explainability in AI
systems.

Besides being a gateway between AI and society, explain-
ability is also a powerful tool for detecting flaws in the model
and biases in the data, for verifying predictions, for improv-
ing models, and finally for gaining new insights into the
problem at hand (e.g., in the sciences).

In future work we will investigate the theoretical founda-
tions of explainability, in particular the connection between
post-hoc explainability, i.e., a trained model is given and the

goal is to explain it’s predictions, and explainability which
is incorporated directly into the structure of the model. Fur-
thermore, we will study new ways to better understand the
learned representation, especially the relation between gener-
alizability, compactness and explainability. Finally, we will
apply explaining methods such as LRP to new domains, e.g.,
communications, and search for applications of these meth-
ods beyond the ones described in this paper.
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