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Abstract. Classifying motion intentions in Brain-Computer Interfacing (BCI) is

a demanding task as the recorded EEG signal is not only noisy and has limited

spatial resolution but it is also intrinsically non-stationary. The non-stationarities

in the signal may come from many different sources, for instance electrode artifacts,

muscular activity or changes of task involvement, and often deteriorate classification

performance. This is mainly because features extracted by standard methods like

Common Spatial Patterns (CSP) are not invariant to variations of the signal properties,

thus should also change over time. Although many extensions of CSP were proposed

to, for example, reduce the sensitivity to noise or incorporate information from other

subjects, none of them tackles the non-stationarity problem directly. In this paper

we propose a method which regularizes CSP towards stationary subspaces (sCSP)

and show that this increases classification accuracy, especially for subjects who are

hardly able to control a BCI. We compare our method with the state-of-the-art

approaches on different data sets, show competitive results and analyse the reasons

for the improvement.
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1. Introduction

Brain-Computer Interface (BCI) systems (see e.g. [1, 2, 3, 4, 5, 6]) aim to decode the

intent of a subject measured from brain signals, e.g. EEG is translated into control

commands for a computer application or a neuroprosthesis. A popular paradigm for BCI

communication is motor imagery (MI). In this paradigm the user encodes a command by

imagining the execution of a movement with a particular limb, this alters the rhythmic

activity in locations over the sensorimotor cortex which correspond to this limb and

the BCI system detects these differences and decodes the intended command. A major

problem in EEG-based BCI systems is the limited quality and resolution of the signal

due to volume conduction effects, a low signal-to-noise ratio and the non-stationary

nature of EEG [1].

Variations of the signal properties over time i.e. non-stationarities may arise from

many sources and have different time scales, for instance changes in impedance occur

when an electrode gets loose or the skin prepping gel dries out, muscular activity or

eye movements lead to artifacts in the signal and we often observe a decreasing task

involvement and changes in the user’s background activity due to tiredness or lack of

attention [1]. Further changes in the recorded EEG signal can be caused by differences

between sessions e.g. no feedback in the calibration session vs. feedback in later sessions

or small differences in electrode positions between sessions [7]. The result of all these

variations is a feature distribution that changes over time. This violates the assumption

of most statistical learning algorithms that data come from a non-changing underlying

distribution and may therefore give rise to deteriorated classification performance [8].

A particularly popular and powerful signal processing technique used for feature

extraction in EEG-based BCIs is Common Spatial Patterns (CSP) (see e.g. [9, 10]). The

CSP algorithm computes spatial filters that aim at achieving optimal discrimination

when using band power features, thus it increases the signal-to-noise ratio and

reduces adverse effects of volume conduction [9]. However, CSP is also known to

be sensitive to noise and prone to overfitting [11]. Several extensions of CSP have

been proposed to overcome this problem. Some recent examples include the use of

regularization and utilization of information from other subjects [12] or incorporation of

additional measurements [13]. These extensions have shown their advantage to improve

classification performance, however, none of them tackles the non-stationarity problem

directly.

In this paper we propose a method called stationary Common Spatial Patterns

(sCSP) which regularizes the CSP solution towards stationary subspaces i.e. we extend

CSP to be invariant to non-stationarities in the data. In other words, our goal is to

reduce variations of the extracted features as we assume that they come from processes

which are not task-related like eye movements or electrode artifacts. We provide results

on three different data sets and compare our approach to the state-of-the-art CSP

methods and show that sCSP is competitive. In addition, the performance improvement

is put into neuroscientific context for a selected subject.
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This paper is organized as follows. In Section 2 we introduce the Common Spatial

Patterns method, its extensions and our stationary CSP algorithm. Section 3 describes

the experimental setup and presents and analyses the results. In Section 4 we conclude

with a short summary and future research ideas.

1.1. Related Work

Recently, several methods have been proposed to robustify BCIs against noise and non-

stationary changes in the data. The approaches can be divided into two main groups,

namely methods extracting robust or invariant features and approaches adapting to

changes in the data.

Many methods from the first group were proposed to robustify CSP against noise

and artifacts. Lotte et al. [12] give an overview over different CSP variants. One

promising approach is called Tikhonov Regularized CSP (TRCSP) where a multiple of

the identity matrix is added to the CSP denominator in order to regularize the solution

i.e. to restrict the norm of the filters. This avoids overfitting and is especially useful

when only few labeled trials are available. The best method in [12] is called weighted

Tikhonov Regularized CSP (WTRCSP) and applies a weighted regularization to the

CSP filters and the weights are computed from other subjects. Grosse-Wentrup et al.

[14] propose to compute CSP on regions of interest in order to incorporate a priori

neurophysiological knowledge (see also [15]). Lotte and Guan [16] penalize spatially

non smooth filters and Blankertz et al. [13] propose a method called invariant CSP

which allows to learn invariances by incorporating extra measurements e.g. from an

eye movement session. Several other variants of CSP exist which aim at robustifying

the original CSP algorithm [7, 17, 18, 19]. A different approach extracts invariant

features by projecting the data to a stationary subspace before applying CSP [20, 21].

Finally Tomioka and Müller [22] propose to learn, select and combine robust features

and perform classification in an unified framework.

The other class of methods aiming at robustifying BCIs against noise and non-

stationary changes are based on adaptation. In contrast to the approaches presented

above, adaptive methods can handle changes which occur in subsequent sessions i.e.

after CSP has been computed and the classifier has been trained. Some of the proposed

approaches focus on bias adaptation [23, 24], others update classifiers or the CSP filters

[25, 7]. A recent method which uses techniques for co-adaptive learning of user and

machine was proposed by Vidaurre et al. [26]. Li et al. [27] and Sugiyama et al. [28]

apply covariate shift adaptation to account for shifts of the features. The method of

Hasan et al. [29] uses additional measures to improve the performance of the classifier

when rotations in the feature space occur. Other work like Li and Guan [30] propose

adaptive classifiers which are based on expectation-maximization procedure. Buttfield

et al. [31] use supervised online learning for adaptation.

Our novel stationary Common Spatial Patterns method belongs to the first group

as its main goal is to extract features that are robust and stationary. We first proposed
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the stationary CSP algorithm in [32] and [33]. In this paper we describe the method in

more detail, extend it and apply it to more data sets. Furthermore we perform extensive

comparison to other regularization approaches like weighted and unweighted Tikhonov

Regularized CSP [12], invariant CSP [13] and SSA+CSP [21].

2. Common Spatial Patterns Algorithms

Common Spatial Patterns (CSP) have been widely used in BCI systems [9, 10] as they

are well suited to discriminate different motor imagery patterns. A CSP spatial filter

w maximizes the variance of band-pass filtered EEG signals in one condition while

minimizing it in the other condition (or equivalently minimizing the common variance).

Since the variance of a band-pass filtered signal is equal to band power, CSP enhances

the differences in band power between two conditions. The CSP problem can be solved

for condition 1 by maximizing the Rayleigh quotient

R(w) =
w>Σ1w

w>{Σ1 + Σ2}w
, (1)

where Σ1 and Σ2 are the average covariance matrices from class 1 and 2, respectively.

Note that the maximization of the Rayleigh quotient can be reformulated as a

constrained optimization problem

max
w

w>Σ1w (2)

subject to w>{Σ1 + Σ2}w − C = 0 (3)

where C is an arbitrary constant (norm of w can be chosen so that equation 3 holds), and

solved using Lagrange multipliers. The solution w∗1 satisfies Σ1w
∗
1 = λ(Σ1+Σ2)w∗1, thus

it has the form of a generalized eigenvalue problem where the generalized eigenvector

with largest eigenvalue corresponds to the spatial filter w∗1 that maximizes the variance

of class 1 while minimizing the common variance. One can show that the optimal filter

w∗2 for condition 2 can also be obtained from equation 1, it is simply the generalized

eigenvector with smallest eigenvalue [34].

2.1. Regularization of CSP

Regularization of the CSP objective function can be performed by adding a penalty

term P (w) = w>Kw to the denominator of the Rayleigh quotient of equation 1 (see

the work of Blankertz et al. [13] and Lotte et al. [12]). Note that in this case the best

filter for class 2 does not equal the eigenvector with the smallest eigenvalue, i.e. the

Rayleigh quotients needs to be maximized separately for each class

w∗1 = arg max
w

w>Σ1w

w>{Σ1 + Σ2}w + αP (w)
, (4)

w∗2 = arg max
w

w>Σ2w

w>{Σ1 + Σ2}w + αP (w)
, (5)
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Figure 1. The computation of the CSP objective function can be reformulated as

maximization of the objective w>Σ1w subjected to certain constraints. The goal in

this case is to find the largest red ellipse while satisfying the constraints represented

by the other ellipses. The cyan curve stands for the standard CSP denominator i.e. it

represents the common variance term. The magenta ellipse stands for the general

penalty term P (w) = w>Kw used e.g. by our sCSP method. The green circle

represents the Tikhonov regularization which mitigates the influence of artifacts and

reduces the tendency to overfitting as filters with large norm are penalized. This kind of

regularization stabilizes the solution when the matrix Σ1+Σ2 is not estimated properly

or does not have full rank i.e. the eigenvalue λ1 or λ2 is zero. The constants C1, C2

and C3 depend on the scale of w and are related with each other as C = C1 +C2 +C3

can be arbitrarily chosen, but not all combination of C1, C2 and C3 can be obtained

by choosing the norm of w.

The penalty term translates to an additional constraint in equation 3, but the

maximization can still be performed by solving a generalized eigenvalue problem.

Figure 1 visualizes the maximization process. Mika et al. [35] showed that this general

form of regularization can be used to compute invariant features. In the following

subsections five CSP variants with different penalty terms P (w) are described.

2.2. Invariant CSP

Invariant CSP (iCSP) [13] allows to add general invariances to the CSP

features by incorporating additional measurements like Electrooculography (EOG) or

Electromyography (EMG) or using extra sessions for the computation of the penalty

matrix K. In order to robustify CSP features against eye movement artifacts, we

compute the artifact covariance matrix K from EEG data recorded in an extra

artifact session consisting of different eye movements, namely “eyes open”, “look left”,

“look right”, “look up” and “look down”. The extra recordings are filtered in the same

frequency band as the motor imagery data, they are cut into epochs of 1.5 sec length and

the average covariance matrix K is computed and normalized. Adding P (w) = w>Kw

to the denominator of the CSP objective function results in features which are invariant

against changes generated by eye movements.
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2.3. Tikhonov Regularized CSP

Tikhonov Regularized CSP (TRCSP) penalizes solutions with large weights (see Lotte

and Guan [12]). In this approach K is set to the identity matrix I, thus P (w) reduces to

||w||2. The result of such regularization is mitigation of the influence of artifacts and a

reduced tendency to overfitting as filters with large norm are avoided. It must be noted

here that TRCSP penalizes all channels equally i.e. no distinction is made whether a

channel captures a lot of BCI-related activity or is completely irrelevant. However, if

a channel is likely to contain a lot of useful information, one should not prevent CSP

from giving it high weights.

2.4. Weighted Tikhonov Regularized CSP

Weighted Tikhonov Regularized CSP (WTRCSP) [12] makes exactly the above

distinction between channels i.e. it penalizes channels which are less important for BCI

stronger than channels which capture a lot of BCI relevant information. This leads to

a penalty matrix K = uI, where u is a vector capturing the level of penalty assigned to

each channel and I is the identity matrix. The vector u can be obtained in a manual

fashion using neurophysiological knowledge i.e. looking up the literature for brain regions

(and thus channels) which are expected to be useful for a specific task. However, since

it is not easy to select an appropriate penalty value by hand, one can compute u by

using data from other subjects as done in [12]. The penalty value of a channel is simply

set to the inverse of the average absolute value of the normalized weight of this channel

in the CSP filters obtained from other subjects. Formally, this is

u =

 1

2×Nf × |Ω|
∑
i∈Ω

2×Nf∑
f=1

∣∣∣∣∣ wi
f

||wi
f ||

∣∣∣∣∣
−1

, (6)

where wi
f is the f -th spatial filter obtained using CSP (among the eigenvectors

corresponding to the Nf largest and lowest eigenvalues) for the i-th additional subject

available. Thus WTRCSP assigns higher penalties to channels with low average channel

weights.

Note that none of the regularization techniques discussed so far has tackled the

non-stationarity problem i.e. none of the approaches ensures that the obtained features

are stationary.

2.5. SSA+CSP

Stationarity is a necessary assumption of many machine learning algorithms for optimal

classification [8]. Therefore we introduce an additional preprocessing step which extracts

the stationary part of the EEG signal before computing the CSP features. The

underlying assumption is that the observed signal x(t) is a linear superposition of
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stationary ss(t) and non-stationary sn(t) sources

x(t) = A s(t) =
[
As An

] [ss(t)

sn(t)

]
, (7)

and that the BCI-related information is contained in the stationary subspace. Recently,

von Bünau et al. [20] proposed a method called Stationary Subspace Analysis (SSA) to

separate the s-sources from the n-sources. Before applying SSA we band-pass filter the

EEG data as described in the next section and subsequently compute the CSP features

on the stationary subspace (as done in [21]). Note that we combine trials of opposite

classes into epochs that serve as input to SSA in order to assure that differences between

both classes are not treated as non-stationarities and ignored. The dimensionality d of

the stationary subspace is selected via cross-validation.

2.6. Stationary CSP

The goal of stationary CSP (sCSP) is to extract features that not only discriminate

between two conditions, but are also stationary. In contrast to the two-step SSA+CSP

approach presented above, sCSP optimizes discriminativity and stationarity in a single

objective function. The main idea is to extract filters that maximize or minimize

variances for two different conditions, but at the same time keep the variance estimation

along the projected direction as stable as possible across trials. For that we introduce a

measure of stationarity which is the sum of absolute differences between the projected

average variance and the projected variance in k-th trial. Formally, the following

quantity is minimized for each class c

Dc(w) =
∑
k

∣∣w>Σ(k)
c w −w>Σcw

∣∣ , (8)

where Σ
(k)
c is the covariance matrix of the k-th trial of class c and Σc is the average

covariance matrix of class c. Figure 2 visualizes the quantity to minimize.

Since this penalty can not be introduced directly into the Rayleigh quotient‡, a

related quantity ∆c is used in this paper. For that we compute the difference between

the covariance matrix of each trial and the global average Σ1 or Σ2 and ensure that the

difference matrix is positive definite. Thus for each class we compute

∆
(k)
1 := F

(
Σ

(k)
1 −Σ1

)
, (9)

∆
(k)
2 := F

(
Σ

(k)
2 −Σ2

)
, (10)

where F is an operator to make symmetric matrices be positive definite. More precisely,

if a symmetric matrix M has eigendecomposition M = V diag(di) V>, the operator

‡ The problem is that one can not take the w from the | · |-function i.e. a Rayleigh quotient of the form
wTAw
wTBw

is not obtained.



Stationary Common Spatial Patterns for BCI 8

returns F(M) = V diag(|di|) V>, i.e. the signs of all the negative eigenvalues are flipped.

The intuition behind this operation is to ensure that the penalty term is always positive

(similar to absolute value function in Dc), even in the case that power of a feature in

the k-th trial is smaller than its global average.

Consequently instead using Dc we measure variations in the projected direction w

as w>
∑K

k=1F(Σ
(k)
c −Σc)w. Although the quantities are not equal, they both measure

absolute deviations, in the latter case before and in the case of Dc after projecting. In

fact, it can be shown that our new measure is an upper bound for Dc§. In summary, we

use P (w) = w>(∆1 + ∆2)w as penalty term in sCSP with ∆c := 1
K

∑K
k=1 ∆

(k)
c being

the average (positive definite) difference matrix of class c.

Two extensions will be applied to sCSP in this paper. First, we compute the

covariance matrices not only on a trial-wise basis, but on local chunks of BCI data

sequences (see [32]). More precisely, Σ
(k)
c does no longer denote the covariance matrix

in k-th trial, but the covariance matrix estimated from k-th chunk. A chunk of size ν

is a set of ν consecutive trials from the same class. By using chunks one can take into

account non-stationarities on different time scales e.g. estimating the covariance matrix

from individual trials allows to capture changes like muscular artifact which occur on

a trial-by-trial basis whereas if the chunk size increases the focus shifts towards slower

changes like variations of task involvement or electrode impedance. In this paper the

best chunk size is selected via cross-validation. Note that the way we apply sCSP

chunking here differs from [32]. Firstly, the maximal chunk size is larger here which

allows to capture non-stationarities on a larger time-scale. Secondly, there is a difference

in parameter selection when more than one parameter leads to the same lowest error

rate (see Section 3.2) and finally we normalize the class covariance matrices and the

penalty matrix in order to define a more meaningful range of regularization parameters.

It must be noted that sCSP aims at extracting stationary features, but it is not

able to handle rank deficient matrices and does not reduce the tendency to overfitting

as TRCSP does. Therefore, our second extension is to combine both approaches into a

method called stationary Tikhonov Regularized CSP (sTRCSP). For that we maximize

the following objective function

R(w) =
w>Σcw

w>{Σ1 + Σ2}w + αPsCSP(w) + βPTRCSP(w)
, (11)

where PsCSP(w) is the penalty term of sCSP, PTRCSP(w) is the penalty term of TRCSP

and α and β are determined by cross-validation.

§ Let VDV> be the eigendecomposition of the difference matrix Σ
(k)
c − Σc. In order to prove∣∣∣w>(Σ

(k)
c −Σc)w

∣∣∣ ≤ w>F(Σ
(k)
c − Σc)w we introduce u = V>w. With that

∣∣u>Du
∣∣ ≤ u>|D|u

or
∣∣u21d1 + u22d2 + . . .+ u2ndn

∣∣ ≤ u21|d1|+ u22|d2|+ . . .+ u2n|dn| which follows from Jensen’s inequality.
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(
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Our goal: argminw

∑
k |δk|

with δk = w>(Σ(k) −Σ)w.

Figure 2. Visualization of the idea behind stationary CSP. The goal of sCSP is

to find a projecting direction w with stable variance (features) for each class i.e. to

minimize the quantityDc(w) =
∑

k |w>(Σ
(k)
c −Σc)w|. Since this can not be minimized

directly inside the Rayleigh quotient, we introduce an operator F which recomputes

the difference matrix Σ
(k)
c − Σc by converting negative variations into positive ones

i.e. it makes the difference matrix positive definite by flipping the sign of all negative

eigenvalues. The intuition behind this transformation is to take the “absolute value”

before projecting, which is an upper bound of the absolute value after projecting. This

figure shows the projection direction w (red line) and the projection of the covariance

matrices on w i.e. the variance which is explained by w. Furthermore we see the

variations δi between the average and trial-wise covariance matrices after projection.

3. Evaluation

3.1. Data Sets

The experiments in this paper are based on three different data sets containing EEG

signals recorded while subjects perform motor imagery (MI).

3.1.1. Data set IVa, BCI Competition III This data set [36] from BCI Competition

III [37] contains EEG signals from five healthy subjects performing right hand and foot

MI without feedback. Two types of visual cues, a letters appearing behind a fixation

cross and a randomly moving object, shown for 3.5 s were used to indicate the target

class. The presentation of target cues were intermitted by periods of random length,

1.75 to 2.25 s, in which the subject could relax. The EEG signal was recorded from 118

Ag/AgCl electrodes, band-pass filtered between 0.05 and 200 Hz and downsampled to

100 Hz, so that 280 trials are available for each subject, among which 168, 224, 84, 56

and 28 compose the training set for subject A1, A2, A3, A4 and A5 respectively, the

remaining trials composing their test set.

3.1.2. Data set IIa, BCI Competition IV This data set [38] from BCI Competition IV

[39] consists of EEG recordings from 22 Ag/AgCl electrodes and nine healthy subjects

performing left hand, right hand, foot and tongue MI without feedback. In this study
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we only use the left and right hand motor imagery data. Two sessions on different days

were recorded for each subject. Each session is comprised of 6 runs separated by short

breaks. One run consists of 48 trials (12 for each of the four possible classes), yielding

a total of 288 trials per session. The subjects were sitting in a comfortable armchair in

front of a computer screen. At the beginning of a trial (t = 0 s), a fixation cross appeared

on the black screen. In addition, a short acoustic warning tone was presented. After

two seconds (t = 2 s), a cue in the form of an arrow pointing either to the left, right,

down or up appeared and stayed on the screen for 1.25 s. This prompted the subjects to

perform the desired motor imagery task. No feedback was provided. The subjects were

asked to carry out the motor imagery task until the fixation cross disappeared from the

screen at t = 6 s. A short break followed where the screen was black again. The signals

were sampled with 250 Hz and bandpass-filtered between 0.5 Hz and 100 Hz. Both the

training and the testing set contain 72 trials per class.

3.1.3. Data set from Vital BCI Project This data set [40] comes from a joint study

with University Tübingen and contains EEG recordings from 80 healthy volunteers

(41 female, age 29.9±11.5 years; 4 left-handed) performing motor imagery tasks with

the left and right hand or with the feet. The subjects were sitting in a comfortable

chair with arms lying relaxed on armrests. Brain activity was recorded from the scalp

with multi-channel EEG amplifiers using 119 Ag/AgCl electrodes in an extended 10-20

system sampled at 1000 Hz (downsampled to 100 Hz) with a band-pass from 0.05 to

200 Hz. First, the subjects performed a calibration recording in which every 8s one of

three different visual cues (arrows pointing left, right, down) indicated to the subject

which type of motor imagery to perform: left/right hand or foot. Three runs with 25

trials of each motor condition were recorded. Then, two of the classes were selected

and the subjects performed feedback with three runs of 100 trials each, although for

some subjects only one or two runs were recorded. Each trial of feedback started with

a period of 2s with a black fixation cross in the center of a gray screen. Then an arrow

appeared behind the cross to indicate the target direction of that trial and 1s later

the cross turned purple and started moving according to the classifier output. After 4s

of cursor movement the cross froze at the final position and turned black again. Two

seconds later the cross was reset to the center position and the next trial began. Both

sessions were recorded on the same day. All subjects in this study are BCI novices.

3.2. Experimental Setup

For the BCI competition data sets the same preprocessing is applied as in Lotte and

Guan [12] i.e. the time segment located from 0.5s to 2.5s after the cue instructing

the subject to perform MI is extracted and the signal is band-pass filtered in 8-30

Hz using a 5-th order Butterworth filter. For the Vital BCI data we do not use

fixed preprocessing, but select the best binary task-combination and estimate the most

discriminative frequency band and time segment (typically 750-3500 ms relative to the
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Table 1. Comparison of classification error rates for data set IVa and IIa from BCI

Competition III and IV, respectively. The best results for each subject are displayed

in bold characters. The overall performance of stationary CSP is better than of the

other approaches, especially for subjects lacking BCI efficiency.

BCI Competition III BCI Competition IV Overall

Subject A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 B6 B7 B8 B9 Mean Median Std

CSP 33.9 3.6 41.8 11.2 19.0 7.6 48.6 2.8 34.0 42.4 32.6 19.4 6.3 6.3 22.1 19.2 16.3

TRCSP 25.9 3.6 41.8 20.1 19.0 7.6 48.6 2.8 34.7 42.4 30.6 19.4 6.3 8.3 22.2 19.8 15.5

WTRCSP 20.5 5.4 41.8 15.2 19.0 7.6 40.3 2.8 33.3 41.0 31.3 19.4 6.3 9.0 20.9 19.2 14.2

SSA+CSP 33.9 5.4 39.8 9.4 19.0 7.6 43.1 2.8 29.9 40.3 32.6 30.6 6.3 6.3 21.9 24.5 15.2

sCSP 23.2 3.6 33.7 8.5 19.8 6.9 45.8 2.8 27.8 41.0 33.3 20.1 4.2 6.9 19.8 20.0 14.8

sTRCSP 17.9 5.4 37.2 10.2 20.6 7.6 49.3 2.8 29.2 38.2 30.3 19.4 6.9 8.3 20.2 18.7 14.5

presentation of the visual cue) for each subject using calibration data (as done in [9]).

For the experiments we manually select 68 electrodes‖ densely covering the motor

cortex. We do not apply any manual or automatic rejection of trials or electrodes and

use three filters per class for feature extraction as recommended in [9]. As classifier we

apply Linear Discriminant Analysis (LDA) and use error rate to measure performance.

In order to set a meaningful range for the regularization parameters, we normalize the

covariance matrices Σc and K by dividing them by their traces. The α and β parameters

are selected from the set of 10 candidates {0, 2−8, ..., 2−1, 20} by 5-fold cross-validation on

the calibration data. In addition, for sCSP we select the best chunk size ν from {1, 5, 10}
on the calibration data, for sTRCSP we use a fixed chunk size of ν = 5 in order to save

computation time. Note that the parameter selection is performed according to error

rate, but if more than one parameter value leads to the same lowest error, we select

the parameter with highest Fisher Score between the classification output and the true

label¶. All results in this paper are offline results.

3.3. Performance Comparison

At first we compare the performances of our new methods with three state-of-the art

approaches and the CSP baseline. Table 1 shows the error rates of CSP, TRCSP,

WTRCSP, SSA+CSP, sCSP and sTRCSP for the data set IVa and IIa. Note that the

invariant CSP method could not be tested as additional measurements e.g. from an eye

movement session were not available.

From the results we see that on average both stationary CSP methods perform

‖ The electrodes F*, FFC*, FC*, CFC*, C*, CCP*, CP*, PCP*, P*, PPO* and PO* are used.

Electrode higher than 6 according to the International 10-20 system are discarded.

¶ The Fisher Score between two random variables X and Y is defined as FS(X,Y) = (E[X]−E[Y])2

Var[X]+Var[X] with

E[·] and V ar[·] being the mean and variance operator respectively.
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better than the other approaches. The difference in performance between sCSP and

CSP, SSA+CSP or TRCSP is significant up to 95% (using one-sided Wilcoxon signed-

rank test) and sTRCSP is significantly better than CSP and TRCSP when excluding

the participants with very small error rates (< 10%). There is no significant difference

between WTRCSP and stationary CSP, however, our methods do not use information

from other subjects. One observation from the results is that participants who perform

well with CSP benefit less from applying regularization than subjects who can hardly

control a BCI. The largest improvement can be achieved for subjects A1, A3, B4 and

B5. Users lacking BCI efficiency often have a low signal-to-noise ratio and an artifactual

and non-stationary signal, thus CSP may fail to capture neurophysiologically meaningful

information and to produce stable and discriminative features. Regularization alleviates

this problem as it weakens the influence of artifacts, avoids overfitting and/or reduces

variations of the features. It must be noted that we were not able to reproduce the results

of Lotte and Guan [12] for all subjects. The baseline CSP performance of subjects A3,

A4 and A5 is significantly better in our experiments, even when using recordings from

all electrodes and applying the same normalization as Lotte and Guan. Since improving

a better baseline is more challenging, we did not further investigate the deviations.

As a second experiment we tested all methods (including iCSP) on a larger data set,

namely the Vital BCI data set containing 80 BCI novices performing motor imagery.

The results are visualized in Figure 3 and Figure 4. The first figure compares error

rates of different methods using scatter plots. We see that sTRCSP is the winning

method and greatly improves classification results, it is even superior to WTRCSP

which uses information from other subjects. The mean (median) error rates of the

methods are as follows: CSP = 29.5% (31%), TRCSP = 26.9% (23.8%), WTRCSP

= 26.7% (22.8%), iCSP = 29.1% (29%), SSA+CSP = 29.4% (29.8%), sCSP = 27.4%

(25.6%) and sTRCSP = 26.2% (22.7%). From Figure 4 which shows a boxplot of

classification performances one can see that the median performance (red line) is very

similar for sTRCSP, TRCSP and WTRCSP, but sTRCSP has a higher 25% quantile.

In other words sTRCSP (and sCSP) significantly improves classification performance of

subjects lacking BCI efficiency. Astonishingly, invariant CSP and SSA+CSP lead to a

performance decrease (lower 75% quantile) for participants who perform well with CSP.

We compare the effects of regularization and analyse the reasons for improvement and

deterioration in the next subsection.

As before the Wilcoxon signed-rank test is used to evaluate significance. Table 2

shows the p-values (one-sided) of different comparisons using either all subjects or

dividing them into three groups based on their error rates: 0% - 15%, 15% - 30%

and above 30%. Note that the null hypothesis of the signed-rank test states that the

median of the distribution of error rate differences is zero. Therefore one needs to

consider Figure 3 in order to arrive at the hypothesis “Method A is better than Method

B”. As before we see from Table 2 that most significant improvements are obtained

for subjects in the above 30% error rate group. Furthermore it seems advantageous to

combine Tikhonov Regularization and stationarity. In fact, sTRCSP outperforms both
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Figure 3. Nine scatter plots comparing the error rates of different methods on the

Vital BCI data set. Each subject is represented by a blue dot. If the percentage of

points below the diagonal is lower, the method reported in the y-axis performs better.

sTRCSP outperforms all other approaches. sTRCSP outperforms all other approaches.
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Figure 4. Comparison of the classification accuracies using box plots for the Vital

BCI data set. The red lines denote the median classification performance, the lower

and upper sides of the blue box represent the 25% and 75% quantiles and the black line

stands for the outliers. The median values of sCSP, sTRCSP, TRCSP and WTRCSP

are very similar, but the stationary CSP methods perform better on subjects with low

classification accuracy i.e. they have a higher 25% quantile.

sCSP and TRCSP as it finds the right trade-off between discriminative ability of the

filters, stationarity of the features and robustness of the estimation. It must be noted



Stationary Common Spatial Patterns for BCI 14

Table 2. Overview of Wilcoxon signed-rank test p-values (one-sided) for different

comparisons. Bold values indicate significance with 5% level. Grouping is performed

based on the error rates of CSP and Figure 3 is considered to build the hypothesis

“Method A is better than Method B”.

Comparison 0-15 15-30 >30 all

sCSP better than CSP .3081 .2065 .0021 .0015

sCSP better than TRCSP .5000 .4952 .1197 .1473

WTRCSP better than sCSP .3969 .2312 .0887 .0685

sCSP better than iCSP .0461 .1222 .0087 .0019

sTRCSP better than CSP .0679 .0894 .0000 .0000

sTRCSP better than TRCSP .0851 .2305 .0844 .0303

sTRCSP better than WTRCSP .1986 .4156 .0050 .0596

sTRCSP better than iCSP .0139 .0784 .0000 .0000

sCSP better than SSA+CSP .0584 .2673 .0045 .0015

sTRCSP better than SSA+CSP .0182 .1745 .0000 .0000

sTRCSP better than sCSP .2065 .1600 .0022 .0009

that although its mean absolute improvement over CSP is 3.3%, the decrease in error

rate for some subjects is more significant, e.g. for ten subjects it is larger than 10%

and the maximum improvement is 21.1%. The standard deviation over all subjects is

6.0%. The most popular parameters for sTRCSP are α = 2−5 and β = 2−8. Fixing

the parameters to these values for all subjects still gives a significant improvement over

CSP with mean (median) error rate of 26.9% (25.2 %). However, there is no significant

difference to TRCSP and WTRCSP (with cross-validation) in this case.

3.4. Effects of Regularization

In this subsection we investigate the regularization effects of TRCSP, iCSP, SSA+CSP

and sCSP. We will not include the weighted TRCSP method and sTRCSP in

the analysis as they do not represent an own regularization concept, but are

modifications/combinations of sCSP and TRCSP regularization. The analysis is

conducted with subject 30 performing left vs. foot motor imagery as this user

shows one of the largest improvements in terms of classification accuracy and

the limited CSP performance is not due to a few bad outlier trials, but the

reasons are more general and the effects of regularization can be relatively easily

visualized. Similar analysis was conducted with several subjects and is available at:

http://www.user.tu-berlin.de/wojwoj/research/jne2012.html. An overview over

the error rates and the parameters selected by cross-validation is given in Table 3.

Before comparing the different regularization approaches, one should understand

the sources and effects of the non-stationarities present in subject 30’s data. The scalp
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Table 3. Overview over subject 30’s error rates and the parameters (regularization

parameter α, dimensionality of stationary subspace d and chunk size ν) selected by

cross-validation for different regularization approaches.

CSP TRCSP iCSP SSA+CSP sCSP

Error rates 37% 23.3% 39.7% 28.0% 22.3%

Selected Parameters - α = 2−2 α = 2−4 d = 53 α = 2−2, ν = 10

Class "left"

−37.3

−18.7

0

18.7

37.3

Class "foot"

−1046.4

−523.2

0

523.2

1046.4

Figure 5. Illustration of non-stationarities for subject 30. Upper Figure: Non-

stationarity map for both motor imagery classes “left” and “foot”. For each electrode

the variance of the variances of the trials is computed and plotted. Especially in

the frontal, temporal and occipital areas one can see large changes. Lower Figure:

The bandpass filtered EEG signal is projected using the best performing (normalized)

CSP, TRCSP, iCSP, SSA+CSP and sCSP filter and the mean and standard deviation is

computed at each time point over all 75 trials of class “foot”. The solid line represents

the mean and the dashed lines stand for the mean ± standard deviation interval. The

selected time interval is 850 to 3970 msec. We see that both sCSP and SSA+CSP

produce a stable signal with small standard deviation, whereas in the case of CSP,

TRCSP and iCSP the variations between trials are larger and non-constant.

plots in the upper part of Figure 5 visualize the variations for each electrode and each

class measured as the variance of the variances of the trials. This measure gives an

idea of where the most significant variations of the EEG can be observed. The largest

changes can be found in frontal, temporal and occipital locations. The lower part of
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Figure 6. Calibration and test features for CSP, SSA+CSP and sCSP for both motor

imagery classes “left” (blue) and “foot” (green) for subject 30. The features are

projected to the normal vector of the classifier hyperplane (x-axis) and the largest

PCA-component (y-axis) of the calibration data. The vertical black line represents

the classifier bias which is computed in calibration phase, the dashed line stands for

the optimal feedback bias. We see that the CSP features do not only undergo a shift

between calibration and feedback phase, but their distribution changes. This rotation

can not be resolved by adapting the bias. The SSA+CSP and sCSP features are

more robust, but the SSA+CSP features have a larger overlap between both classes in

feedback phase, thus are less discriminative than in the case of sCSP.

the figure shows the variations of the projected signal for the class “foot”. A clear

difference can be observed between sCSP and SSA+CSP on the one hand and CSP,

TRCSP and iCSP on the other hand. In the first case the variations are small and do

not change over time, thus the extracted features are stationary. In contrast, for the

other methods the variations are larger and non-constant which results in non-stationary

features. Although stationarity of the signal seems to be important, it is not sufficient

to explain the classification results of subject 30. For instance, applying TRCSP and

sCSP leads to very similar classification performance although the TRCSP signal varies

significantly, on the other hand the SSA+CSP signal is very stationary, but the results

are worse than in the sCSP case.

In the following we study the impact of the non-stationarities on the features.

Figure 6 shows subject 30’s calibration and test features for CSP, SSA+CSP and sCSP.

The features, blue points correspond to left hand and green points to foot motor imagery,

are projected to the normal vector of the classifier hyperplane (x-axis) and the largest

PCA-component (y-axis) of the calibration data. The black line represents the bias used

by the classifier (computed in calibration phase), the dashed black line stands for the

optimal feedback bias. The first observation that can be made from Figure 6 is that

in the calibration phase the SSA+CSP and sCSP features are more separable than the



Stationary Common Spatial Patterns for BCI 17

CSP features. This indicates that in the case of SSA+CSP and sCSP the filters better

capture information that helps to discriminate between left hand and foot MI, thus

they are potentially neurophysiologically more meaningful. We will see later that this

is indeed the case for subject 30. Another interesting point in Figure 6 is the difference

in the feature distributions between calibration and feedback. In the case of CSP the

features not only undergo a translation, but the shape of the distribution changes. In

contrast, in the case of SSA+CSP and sCSP there is a shift, but no significant rotation

occurs. A shift in the features can be easily resolved by unsupervised adaptation of the

bias (see [24, 33]), whereas it is much harder to adapt to rotations. Although there is no

significant difference with respect to discriminativity between the SSA+CSP and sCSP

features in calibration phase, the overlap between the “left” and “foot” class in feedback

phase is smaller for sCSP i.e. the sCSP features are more separable. This may be due

to the fact that SSA+CSP (in contrast to sCSP) contains an unsupervised step which

may discard discriminative information. In summary, one can say that sCSP mitigates

the influence of non-stationarities in subject 30’s EEG, thus produces more separable

and stable features than CSP (and SSA+CSP).

After studying the effects of non-stationarities on the signal and the features, we are

now going to compare the different regularization approaches in more detail. Figure 7

shows the spatial filters, i.e. a vector of weights that are assigned to each electrodes, and

spatial patterns , i.e. a vector containing the source activities to the signals acquired at

the different sensors (cf. Blankertz et al. [41]), with best classification performance for

CSP, TRCSP, iCSP, SSA+CSP and sCSP. It can be seen that CSP and iCSP fail to

extract meaningful BCI-related filters, therefore have the largest error rates. The reason

for the limited performance of CSP is the noise and the artifacts contained in subject

30’s signal (see Figure 5) since after removing 7 noisy electrodes and 44 artifactual

trials, the overall error rate of CSP decreases from 37% to 19.3%. We will see later

that although artifact removal helps for subject 30, it is in general inferior to sCSP and

sTRCSP. The fact that CSP is prone to overfitting and can be negatively affected by

artifacts is well known, but regularization approaches mitigate it. However, although

iCSP uses regularization, it is not able to extract a meaningful filter as the penalty

matrix is computed in an extra eye movement session, but eye movements do not seem

to be the main source of non-stationarities in subject 30. Furthermore, during the eye-

movement measure, an idle mu rhythm might appear in the sensorimotor cortex, thus

penalizing these regions may remove discriminant information. In contrast to CSP and

iCSP, the other three methods are able to extract filters that are related to left hand

MI. The TRCSP filter is very smooth due to regularization of the norm, but it is still

affected by noise in electrode FC3. The SSA+CSP filter is less affected by artifacts in the

frontal electrodes than TRCSP as it removes the non-stationarities by applying SSA,

however, its performance is still worse than that of sCSP which effectively manages

to reduce the impact of artifacts in electrode FC3 and to extract the “cleanest” left

hand MI filter. Among all methods only sCSP optimizes for both discriminativity and

stationarity simultaneously.
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Figure 7. Illustration of the best performing patterns (upper row) and filters (lower

row) for subject 30 performing left vs. foot motor imagery. The error rates of the

corresponding dimensions can be seen at the bottom. Although in all cases the

activation patterns can be interpreted as left hand motor imagery activation, i.e. there

is a dipole-like activation over the right motor cortex, they differ significantly. In

the case of CSP and iCSP the filters fail to capture the correct pattern as they are

adversely affected by non-stationarities (see Figure 8). On the other hand TRCSP

and SSA+CSP provide more meaningful filters, thus perform better than CSP and

iCSP, however, they are still affected by artifacts in electrode FC3. Our sCSP method

penalizes non-stationarities and extracts a clean left hand motor imagery filter.

With the filters in Figure 7 we can explain the large variations in the projected signal

of CSP, iCSP and TRCSP (see Figure 5) and the difference in the feature distribution

of CSP and sCSP (see Figure 6). Only sCSP and SSA+CSP extract filters that

capture BCI-related activity and mitigate the influence of artifactual electrodes. These

filters produce stable features as the BCI-related activity is stationary. In contrast,

the other methods extract information from locations that are affected by artifacts,

consequently the features are more non-stationary. In the case of TRCSP the filter is

still discriminative, thus there is no significant performance deterioration.

One can gain more insight into the regularization effects by studying Figure 8 which

visualizes locations that are being penalized by sCSP, iCSP and SSA+CSP. In the first

two rows we apply PCA to the penalty matrix of sCSP and iCSP in order to obtain the

non-stationarity patterns. In the case of sCSP the largest regularization is applied to

the left frontal and temporal electrodes and the right frontal and occipital areas. These

location are highly non-stationary (see Figure 5) and deteriorate performance of CSP,

thus penalizing these electrodes helps to extract neurophysiologically more meaningful

filters. In the second row one can see the effects of regularization with iCSP. Since the

penalized locations do not coincide with the non-stationary regions in the calibration

data, iCSP is not able to improve classification. On the contrary, it deteriorates

performance by removing potentially discriminant information from central electrodes

(probably because of idle mu rhythm over sensorimotor cortex). The bottom row of

Figure 8 shows four projections to the non-stationary subspace computed by SSA. Also

here we see that areas are penalized that coincide with the non-stationarities in the data,

therefore SSA+CSP extracts a more meaningful filter than CSP. Although SSA+CSP
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Figure 8. Illustration of the regularization effects of sCSP, iCSP and SSA+CSP

for subject 30. The first row shows the eigenvectors of the penalty matrix (∆1 +

∆2) i.e. the penalty weights that are put on the electrodes by sCSP. There is a

correspondence between regions with high penalty and locations with large variations

(see Figure 5). The eigenvectors of the iCSP penalty matrix are plotted in the second

row. Since the penalty matrix was computed from an extra session, it does not

capture non-stationaries appearing during the experiment. In contrast, iCSP even

removes potentially important information as it penalizes central electrodes which are

discriminative for the “foot” class. This deteriorates classification performance. The

bottom row visualizes the non-stationary activity patterns that are removed by SSA.

As in the case of sCSP, SSA penalizes regions with large variations, thus it is also able

to improve classification performance.

improves classification accuracy for subject 30, it performs worse than sCSP on average.

This is mainly because SSA is an unsupervised method and may remove BCI-related

information, whereas sCSP optimizes stationarity and discriminativity simultaneously.

3.5. Regularization vs. Artifact Rejection

The last subsection showed that regularization methods may improve subject 30’s

classification performance by mitigating the effects of artifacts. In the following we

study the relationship between regularization and artifact rejection.

The goal of artifact rejection is to clean up the data by removing artifactual trials

and noisy electrodes before computing the features. In this sense artifact rejection is

more flexible than regularization as it can remove individual trials and electrodes. On

the other hand rejection is a 0/1 decision and may result in information loss whereas

regularization methods like sCSP penalize combinations of electrodes and may remove

more complex non-stationarities than simple electrode artifacts. This is in spirit to

weighed averaging found in ERP analysis [42, 43]. It should be noted that sCSP is more

flexible than WTRCSP and TRCSP as it captures the non-stationarities present in the

data (i.e. it is data-driven) and allows to penalize complex patterns whereas (W)TRCSP

only applies an (weighted) uniform penalty. There is a significant correlation of .6421
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(.7015) between the performance increase of sCSP and the gain of (W)TRCSP i.e. there

exist common regularization effects. On the other hand sCSP and TRCSP complement

each other as a combination of both gives significantly better results than each of the

method on its own. In fact, sTRCSP combines the data-driven regularization of sCSP

with the robustifying uniform penalty of TRCSP.

In the following we compare sCSP with a combination of artifact rejection and

CSP using all 80 subjects. Artifactual trials and electrodes are identified in a heuristic

manner by analysing the variance of the EEG signal (see [9]). In addition, an expert

examines the data and if necessary manually removes trials or electrodes. Although,

applying CSP on the cleaned data reduces the mean (median) error rate from 29.5%

(31%) to 28.6% (28.3%), both sCSP and sTRCSP (without artifact rejection) perform

significantly better with p-values .0254 and .0001. A weak correlation of .3514 between

the performance gain of CSP with artifact rejection and sTRCSP exist indicating

some similarity between both artifact rejection and regularization. However, note that

removing trials and electrodes not only improves classification results, but it can also

deteriorate performance e.g. for subjects 18, 24 and 49. In summary one can say that

sCSP is more than an artifact rejection method as it identifies non-stationarities on

different time scales (by using chunks) and mitigates the influence of (combinations

of) noisy electrodes without removing them. Since it is data-driven, it adapts to non-

stationarities present in the data (in contrast to TRCSP).

3.6. Using Stationary CSP in Practice

In this subsection we comment on several issues relevant for the application of sCSP

and its extensions in practice.

The first question which is relevant for the practical application is whether one

should use a fixed chunk size or select it via cross-validation ? Since the optimal chunk

size depends on the time-scale of the non-stationarities present in the data, we expect

to obtain better results when choosing the chunk size for each user individually. Using

a chunk size which is smaller than the non-stationarities present in the data results in

unreliable and noisy estimation of the covariance matrix and may lead to features which

are invariant against task-related fluctuations, thus may be suboptimal. On the other

hand when using too large chunks one may average out the important non-stationarities,

thus the extracted features will not be robust against them. Indeed in our Vital BCI

experiments all chunk sizes were selected quite uniformly, chunk size 1 was selected 36

times, 5 was selected in 20 cases and 10 was selected for 24 subjects. We could also

observe that selecting the chunk size by cross-validation on average outperforms a fixed

setting. In the case of chunk size 1 and 5 the average (relative) gain of using cross-

validation for chunk size selection is 2%, in the case of 10 it is slightly larger, namely

3%. Especially subjects with limited BCI performance showed a preference for smaller

chunk sizes. In fact, these users very often suffer from non-stationaries that can only be

captured on small time-scales like muscle or electrode artifacts. Among the fixed chunk
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sizes the trial-wise case works best. So if it is required to reduce computation time, one

should use a chunk size of 1. In general, however, we recommend to individually select

this parameter.

A different question is whether one should use the extended version of sCSP, namely

sTRCSP, or the original one without Tikhonov Regularization ? On the Vital BCI data

sTRCSP clearly outperformed sCSP, in the case of BCI Competition it had a better

median performance, but a little worse mean error rate. It must be noted that there is

a difference between the BCI Competition data sets and the Vital BCI data in terms

of the noise level and artifacts contained. Furthermore, in the case of Vital BCI the

users are BCI novices and the frequency band and time interval are user optimized,

thus the risk of overfitting might be higher. On such data sets Tikhonov Regularization

reduces the tendency to overfit and robustifies the filters, therefore on the Vital BCI

data set TRCSP improves classification performance compared to CSP. In contrast, on

the BCI Competition data set there is less noise and therefore less need to robustify

the filters, thus using TRCSP does not increase performance. For that reason sTRCSP

does not outperform sCSP, but is on par. In general we recommend to use sTRCSP as

it combines both the advantages of Tikhonov Regularization and stationarity.

Regarding the trade-off between computation complexity and performance, in the

case of sCSP or sTRCSP the additional computation does not exceed the limit of

practicability. Spatial filters are usually computed in the break between calibration

and feedback phase, or maybe during a break after some feedback runs. Therefore, the

selection of one or two additional parameters which may last a couple of minutes more

is acceptable. If one used the method in an online setting were the filters are computed

and adapted regularly then the selection of sCSP or sTRCSP with fixed parameters

would be a better choice.

Finally there is a question about the benefits of sTRCSP over WTRCSP. On

the BCI Competition data sets sTRCSP is significantly better according to sign rank

test when excluding subject B2, whereas in the case of Vital BCI sTRCSP performs

significantly better than WTRCSP for the group of subjects with error rate > 30% and

is almost significantly better in total (p = .0596). The average relative improvement of

sTRCSP over WTRCSP is 2%. However, not only the better performance is an argument

for sTRCSP, but also the fact that it does not use information from other subjects. This

is important as recording data from similar experiments is always time consuming and

costly. Additionally, in contrast to WTRCSP, one can also apply sTRCSP as a tool for

analysis of non-stationarities.

4. Conclusion

In this paper we presented an approach which regularizes the CSP solution towards

stationary subspaces i.e. extracts features that are invariant to variations of the

signal properties. We compared this method with the state-of-the-art approaches and

observed a significant performance gain, especially for subjects lacking BCI efficiency.
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Furthermore we combined the stationary CSP method with Tikhonov Regularization

in order to robustify the features and avoid overfitting. We showed that one reason

for the performance improvement of sCSP and sTRCSP is the penalization of non-

stationary electrodes which can corrupt the CSP filters. When computed on larger

chunk sizes stationary CSP can potentially reduce shifts which occur at a longer time

scale e.g. changes in task involvement or changes in electrode impedance. We analysed

the relations between regularization methods and artifact rejection and showed that

sCSP provides significantly better results than semi-automatic artifact rejection.

Unlike other methods, such as invariant CSP, our method is completely data-driven

and does not need additional recordings or models of the expected changes occurring in

the EEG. In future research we will study other data-driven regularization criteria and

investigate ways to combine the information contained in different penalty matrices and

across different imaging modalities (see Bießmann et al. [44]). Furthermore we plan to

analyse the variability of the sCSP patterns over time in order to gain more insights

into the nature of the changes.
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