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Abstract. Objective: The reliable estimation of parameters such as mean or covariance
matrix from noisy and high-dimensional observations is a prerequisite for successful
application of signal processing and machine learning algorithms in Brain-Computer
Interfacing (BCI). This challenging task becomes significantly more difficult if the data set
contains outliers, e.g., due to subject movements, eye blinks or loose electrodes, as they may
heavily bias the estimation and the subsequent statistical analysis. Although various robust
estimators have been developed to tackle the outlier problem, they ignore important structural
information in the data and thus may not be optimal. Typical structural elements in BCI
data are the trials consisting of a few hundred EEG samples and indicating the start and
end of a task. Approach: This work discusses the parameter estimation problem in BCI and
introduces a novel hierarchical view on robustness which naturally comprises different types
of outlierness occurring in structured data. Furthermore, the class of minimum divergence
estimators is reviewed and a robust mean and covariance estimator for structured data is
derived and evaluated with simulations and on a benchmark data set. Main results: The
results show that state-of-the-art BCI algorithms benefit from robustly estimated parameters.
Significance: Since parameter estimation is an integral part of various machine learning
algorithms, the presented techniques are applicable to many problems beyond BCI.

1. Introduction

Parameter estimation is one of the key tasks in statistics, signal processing and machine
learning and has a substantial influence on the performance of algorithms in these fields. The
robustness of an estimator is of central importance as data are not only noisy but often also
contaminated by outliers. Although the sample mean and covariance estimators are known
to be vulnerable to outliers [1], they are integral part of many popular algorithms. Various
robust alternatives (e.g., [1, 2, 3, 4]) have been developed to improve parameter estimation in
the presence of outliers, however, these works do not consider the application to structured
data, i.e., data that can be divided into meaningful units consisting of groups of samples.
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One example of structured data are pooled data sets. Here samples coming from different
sources (e.g., recordings sites, subjects) make up meaningful units which may largely vary in
quality. In this case not only individual samples may be regarded as outliers, but all data from
a specific recording site or subject may need to be discarded if this data source systematically
biases the parameter estimation.

Another example of structured data are EEG recordings from a Brain-Computer
Interfacing (BCI) (e.g. [5, 6]) experiment. In these experiments subjects are asked to perform
certain tasks such as motor imagination over a limited period of time (i.e., a trial) and the
mental state present in the EEG is decoded in real-time. Each trial consists of a few hundred
EEG samples and is a meaningful unit in the data, because it indicates the start and end
of a task. This structure naturally leads to a multi-scale definition of outlierness which is
illustrated in Figure 1. Two types of outliers can be identified in this example. First, the
sample at the beginning of trial 1 has a significantly larger value than all other samples in the
data, thus it can be easily identified as outlier sample. Second, also trial 4 can be regarded
as outlier, because it lacks the high-variance response in the middle of the trial which is
present in all other trials. However, without the structural information one can not identify
this trial as outlier, because its samples are not different from the other samples in the data
set. This example shows that by grouping samples into larger units one can identify outliers
which are fundamentally different from individual outlier samples. Such outlier trials can
only be identified after aggregating the information within each trial and comparing the trial
distributions (or resp. summary statistics). As shown later sample-based estimators such as
[1, 2, 3, 4] are not robust‡ to these second-level outliers.

A proper and robust analysis of EEG data in general and BCI data in particular is
a necessary prerequisite from the data analysis side for moving experiments out of a lab
environment for general tasks of man-machine interaction [7, 8, 9, 10, 11, 12, 13, 14].
While this review is driven by the general motivation to set the scenes for BCI or more
general neuroscience experiments beyond the lab, we will focus here on a selected subset
of mathematical aspects of this challenge, hoping that it will be of use for the community.
Specifically, we will focus on the class of minimum divergence parameter estimators and
will derive novel mean and covariance matrix estimators which are tailored to structured data,
demonstrating that a multi-level treatment of outliers is important when estimating parameters
in structured data. Naturally, we will draw from own work, hoping that we have appropriately
maintained the balance to the literature, providing the necessary pointers for further reading.

The remaining paper is organized as follows: At first, we briefly review robust methods
in BCI. Then we formulate parameter estimation as divergence minimization problem and
show that using particular classes of divergences results in robust estimates. In Section 4, we
present the minimum β-divergence estimators for the Gaussian and Wishart distribution model
and discuss the application to structured data. In Section 5 we investigate the advantages and
limitations of our estimators using simulations and discuss their relations to state-of-the-art
estimators. We evaluate and compare the estimators on a large BCI data set with 80 subjects.

‡ Note that Riemannian geometry-based estimators tend to be more robust, but are not discussed in this paper.
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Figure 1: Illustrative example of different types of outlierness in structured data. The outlier
sample significantly deviates from all other samples in the data, thus can be identified even
when ignoring the trial structure. The outlier trial can only be identified by using summary
statistics as its samples do not deviate from the majority of the samples in the data.

Finally, Section 6 concludes this paper with a discussion and an outlook on future work.

2. Robust Methods in Brain-Computer Interfacing

EEG signals are often affected by electrical sources which are unrelated to brain activity, but
produce very larger potential differences. These artifacts can be of physiological origin, e.g.,
eye blinks or muscle contractions, or be due to technical reasons such as loose electrodes
or power grid noise. In either case artifacts contaminate the recorded EEG signals and
heavily bias the estimation of parameters at all stages of the BCI processing pipeline. Since
poorly estimated parameters do not well represent the underlying neural processes, artifacts
negatively affect BCI performance. This section provides an overview of recent techniques
which tackle the outlier problem in BCI.

2.1. Artifact Removal

Removing artifactual components from the recorded data is a common strategy to robustify
BCI systems. Most of the artifact removal methods exploit the assumption that artifactual
and neural activity are independent. These algorithms first decompose the EEG signal into
independent source components (ICs) and then discard the artifactual ICs. Especially, ICs
related to ocular artifacts can be easily identified with this approach. Other artifact types
produce ICs that are often less consistent, but can be distinguished from neural activity.
Various methods have been proposed for automatic or semi-automatic identification of ICs
representing EEG artifacts [15, 16, 17, 18, 19, 20, 21]. An automatic and adaptive artifact
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detection method based on Riemannian geometry has been proposed in [22]. Surveys on
artifact removal can be found in [23, 24] and the effects of different artifact types on motor
imagery BCI are investigated in [25, 26].

2.2. Trial and Channel Selection

An alternative to discarding artifactual ICs is to focus on the identification and removal of
artifactual trials and channels. This approach is advantageous when individual channels are
unreliable (e.g., loose electrode) or when only few trials are contaminated by artifacts (e.g.,
by subject movements). The authors of [27] proposed a sparsity-aware method to eliminate
low-quality trials from a BCI data set. Other researchers used M-estimators [28, 29], robust
divergences [30] and Riemannian Geometry [31] for robust estimation of covariance matrices.
Since these methods implicitly perform some kind of trial weighting, they also reduce the
impact of artifactual trials. The identification of reliable and informative channels is a topic
which has received a lot of attention in the BCI community. Various techniques have been
suggested to identify the optimal channel configuration [32, 33, 34, 35]. Sparsity enforcing
methods (e.g., [36, 37]) have also been successfully applied in this context.

2.3. Robust Spatial Filtering

Common Spatial Patterns (CSP) [38, 39] is a popular algorithm for optimizing spatial filters
in motor imaginary BCIs. Since the algorithm relies on class covariance matrices which
have to be estimated on the calibration data, it can be severely affected by artifacts. Trial
and channel selection can significantly improve the performance of CSP in the presence of
outliers. Another approach to increase robustness, especially in small-sample settings, is
based on regularization of the covariance matrices [40, 41, 42, 43, 44]. Researchers have
also formulated CSP as a maxmin optimization problem [45], proposed a CSP variant based
on Student-t distribution [46], applied trial pruning [47] and used generalized norms [48] to
robustify the algorithm. Other work increases robustness by adding regularization to the CSP
objective [44, 49, 50] or by formulating the algorithm as divergence maximization problem
[51, 52] and utilizing the robustness property of particular divergences.

2.4. Nonstationarity & Robust Classification

A significant fraction of errors in BCI can be attributed to the nonstationarity of the
EEG [53, 54, 55] which leads to a changing feature distributions and compounds the
classification problem. Various adaptation strategies (e.g., [56, 57]) have been proposed
to cope with nonstationarity in BCI. Researchers have also tackled the nonstationarity
problem by regularizing the spatial filters [50, 58] towards stationarity, i.e., by trading-off
the discriminativity and stationarity of the extracted features, and by applying an importance-
weighted covariance estimator [59]. Other approaches project the signals into a stationary
subspace prior to spatial filter computation by using the stationary subspace analysis (SSA)
algorithm [60, 61], it’s geometry-aware extension [62] or a methods based on principal
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components [63]. The authors of [64, 43] jointly perform feature extraction and classification,
others [65, 66, 67] directly perform classification on the manifold of covariance matrices.
Shrinkage is a common approach to robustify the covariance matrix estimation and the
Linear Discriminant Analysis (LDA) classifier [68, 69, 70]. Recent works apply deep
neural networks [71, 72, 73, 74] for classification of EEG motor imagery signals. These
powerful nonlinear methods have recently become interpretable [75, 74, 76], which is an
important aspect in BCI research because it allows to make sure that the model relies on
neurophysiological features.

3. Parameter Estimation based on Divergence Minimization

In the following we will lay out the basis for robust estimation methods that implements a
further direction beyond nonstationarity and regularization, essentially providing the basis
for all discussed algorithmic directions: if the parameters (e.g., mean, covariance matrix) are
estimated better, many of the variants discussed above can improve.

3.1. Minimum Divergence Estimator

In parameter estimation a common assumption is that the observationsD = {xi : i = 1 . . . n}
come from an underlying statistical model q with unknown parameter θ∗. A standard
procedure to estimate this parameter is to maximize the log-likelihood function L(θ | D) of
the parameter given observations

L(θ | D) = log

(
n∏
i=1

qθ(xi)

)
=

n∑
i=1

`(xi; θ). (1)

In an alternative formulation of parameter estimation, also known as the minimum disparity
estimation or minimum divergence estimation (MDE) [4], one aims to minimize the
divergence D(p || qθ) between the empirical distribution p of the observations and the model
distribution qθ. Note that a divergence [77] is a non-negative measure from information
geometry (c.f. [78, 79]) used to quantify the disparity between two probability distributions.
A divergence is in general asymmetric and has value zero iff the distributions coincide.
When using a specific divergence, namely the Kullback-Leibler divergence§, the minimum
divergence estimator coincides with the maximum likelihood estimator (MLE) [4], i.e.,

θ̂ = argmaxθL(θ | D) = argminθDkl(p || qθ). (2)

The formulation of the parameter estimation problem in terms of divergence
minimization has one important advantage, namely it allows to impose additional properties
such as robustness on the estimator by using specific divergences [80, 52]. For instance, in
the case of β-divergence (with β > 0)

Dβ (p || q) =
1

β

∫
(pβ − qβ)pdx− 1

β + 1

∫
(pβ+1 − qβ+1)dx

§ The Kullback-Leibler divergence between distribution p and q is defined as Dkl (p(x) || q(x)) =∫
p(x) log p(x)

q(x)
dx
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one can prove [81] increased robustness of the estimator, i.e., reduced vulnerability to outliers
in the data. Note that for β −→ 0 the β-divergence coincides with the KL-divergence and
loses its robustness property. Beta divergence is an instance of a general class of divergences
termed Bregmann divergences [82] and has many interesting properties (see [77] for more
details).

Minimum divergence estimators have also been applied with other measures of disparity
such as Hellinger distance [83], power divergences [84] or γ-divergence [85]. Note that
although we limit our discussion to β-divergence in this paper, the proposed ideas are
applicable to all other measures of disparity in probability distributions.

3.2. Iterative Algorithm

The minimization of a divergence D(p || qθ) between the empirical and model distribution
with respect to parameter θ is in general a non-convex problem and can be solved (up to local
optimality) iteratively by using a fixed point algorithm. For a specific class of divergences,
termed Ψ-divergences, the estimating equation reduces to (see [81, 86])

1

n

n∑
i=1

ψ(`(xi; θ
(k)))S(xi; θ

(k+1)) = E[ψ(`(x; θ(k+1)))S(x; θ(k+1))], (3)

where ψ(x) = ∂
∂x

Ψ(x), S(x; θ) = ∂
∂θ
`(x; θ) and E[ · ] denotes the expectation over the

whole input space. Ψ is assumed to be monotonically increasing, convex and differentiable
scalar function. Note that Eq. (3) is related to the update equation of M-estimators [1] and the
parameter θ(k+1) is determined iteratively as solution of Eq. (3) starting from an initial value
θ(0). For the function

Ψβ(z) =
exp(βz)

β
(4)

the fix point equation (3) minimizes the β-divergence between the empirical and model
distribution as Ψ-divergence reduces to β-divergence (see [81] for more details).

The steps of the minimum divergence estimator (MDE) can be summarized as follows.
First, we initialize the parameter θ(0) by either a random value or the value obtained when
applying the MLE. Then, we use Eq. (3) to iteratively compute the parameter θ(k+1). Note that
fix point equation (3) will be different for different underlying models qθ and Ψ-functions. In
this work we use the Gaussian and Wishart model for qθ and the Ψ-function defined in Eq. (4).
We stop the iteration after kmax steps or when a stopping criterion, e.g., relative change in
estimate below a threshold, has been reached. Note that this algorithm converges to a local
optimum [81], thus several restarts may be required in practice. Among the several restarts
one has to select the solution, e.g., by preferring parameters with a specific property such
as minimum determinant, by using cross-validation, or by applying stability related selection
criteria. The joint estimation of several parameters such as mean and covariance matrix can
be performed easily by keeping one parameter fix at a time.
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3.3. Robustness Property

The goal of robust estimators is to reliably estimate the parameter of the underlying model
when data is heavily contaminated. Formally, we aim to estimate the density qθ̂(x) with
θ̂ ≈ θ∗ while observing data generated from

pθ∗(x) = (1− η)qθ∗(x) + ηε(x) (5)

where ε(x) is the contamination probability density and qθ∗(x) is the true probability density.
A common assumption is that an outlier sample xout has a very low probability to be
generated by the true model, i.e., qθ∗(xout) ≈ 0. This implies that the log-likelihood
term becomes extremely small for this sample, i.e., `(xout; θ∗) ≈ −∞, consequently the
maximum likelihood method will not estimate the true parameter θ∗, but a parameter θ̂ with
a significantly larger log-likelihood term `(xout; θ

∗) << `(xout; θ̂) for the outlier sample.
Instead of ignoring the outlier xout, the maximum likelihood estimator tries to compensate for
its very small log-likelihood term. Thus, the outlier introduces a huge bias in the estimation.

The authors of [81] have shown that minimizing β-divergence is equivalent (up to a
normalizing constant) to maximizing the Ψβ-likelihood, i.e.,

∑n
i=1 Ψβ(`(xi; θ)). Since Ψβ

is an exponential function (for β > 0), it reduces the influence of outliers to zero, i.e.,
Ψβ(`(xout; θ

∗)) ≈ 0. This property makes the minimum β-divergence estimator very robust,
because extreme unlikely samples are being effectively discarded. For more formal discussion
of robustness we refer to [81, 4, 1, 87].

4. Robust Parameter Estimators for Structured Data

Samples in a data set are often naturally grouped into meaningful units. This type of structured
data can be analyzed in two ways, namely with respect to the individual samples or the groups.
Consequently, we can define robustness with respect to both levels of analysis. Figure 2
visualizes the difference between sample-level and group-level estimation. In the former case
parameters are estimated directly from the samples, whereas in the latter approach, parameters
are estimated from summary statistics that have been computed from the groups. In the
following we present robust mean and covariance matrix estimators for both the sample-
and the group-level view. We assume that all samples except outliers are generated from a
Gaussian distribution.

4.1. Sample-level Estimators

When estimating parameters on sample-level we discard structural information in the data and
assume that all observations come from a Gaussian distribution q with unknown parameters
µ∗ and Σ∗. For minimum β-divergence estimator in such data generation model, the iteration
formula in Eq. (3) reduces to

µ(k+1) =
1
n

∑n
i=1 ψβ(`(xi; µ

(k),Σ(k)))xi
1
n

∑n
i=1 ψβ(`(xi; µ(k),Σ(k)))

(6)
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Figure 2: Two ways of robustly estimating parameters from data: (i) direct estimation of
parameters from the samples and (ii) estimation of parameters from summary statistics that
have been computed from the samples and capture the structural information in the data.

Σ(k+1) =
1
n

∑n
i=1 ψβ(`(xi; µ

(k),Σ(k)))(xi − µ(k+1))(xi − µ(k+1))>

1
n

∑n
i=1 ψβ(`(xi; µ(k),Σ(k))) − β/(β + 1)D/2+1

(7)

Note that µ(k) and Σ(k) stand for the parameter estimates in kth iteration step and

ψβ(`(xi; µ
(k),Σ(k))) = e−

1
2
β(xi−µ(k))>(Σ(k))−1(xi−µ(k)) (8)

is a factor downweighting the influence of outlier samples xi. From the formula we can
see that if the sample xi is an outlier, i.e., it is very unlikely that it has been generated
by a Gaussian with parameters µ(k) and Σ(k), then its influence on the update of the
parameters is very small due to vanishing ψβ(`(xi; µ

(k),Σ(k))). Since ψβ(`(xi; µ
(k),Σ(k)))

is a monotonically decreasing function (for β > 0), it limits the influence of extreme
outliers. Note that for β → 0 these estimators reduce to the maximum likelihood estimators
µ̂ = 1

n

∑n
i=1 xi and Σ̂ = 1

n

∑n
i=1(xi − µ)(xi − µ)>, i.e., all samples have uniform

weight ψβ(`(xi; µ
(k),Σ(k))) = 1. As mentioned before we can estimate both parameters

simultaneously by alternating equations (6) and (7). Note that this estimator has been
proposed in [81]. We refer to it as Gaussian-MDE or G-MDE.

The middle panel of Figure 3 visualizes the downweighting effect of G-MDE. We
sample 10 trials with 250 samples each (circles) from a distribution with (almost) the same
covariance matrix and 1 trial from a distribution with completely different covariance matrix
(crosses). The thick black line represents the estimated covariance matrix at each iteration of
the algorithm and the color represents the weight ψβ (see Eq. (8)) assigned to each sample.
Note that red color stands for small weights and gray color represents weights close to 1.
One can see that as the outlier samples are more and more downweighted the estimated
covariance matrix captures the structure of the clean data. The speed of this downweighting
depends on the initialization value and the β parameter. The top panel of Figure 3 visualizes
the estimation error (log scale), i.e., Frobenius norm between estimated and true covariance
matrix, at different iterations. It should be noted that some of the samples generated by the
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Figure 3: Visualization of the downweighting effect on sample- and trial-level. Top row:
Estimation error (log scale), i.e., Frobenius norm between estimated and true covariance
matrix, at different iterations. Middle row: The 2500 circles represent samples coming
from 10 trials of the model distribution whereas the 250 crosses are samples from an outlier
distribution. The ellipse in the 0th iteration represents the sample covariance matrix which is
highly affected by the outliers. After several iterations the outlier samples are downweighted
(red color), thus the estimated covariance matrix captures the true data distribution. Some
of the crosses (i.e., samples generated by the outlier trial) still have gray color and are not
downweighted. Bottom row: The same example for the Wishart model. In 3rd iteration
the estimated covariance matrix (thick black ellipse) approaches the true covariance matrix
as the outlier trial is being effectively discarded (red color). Top right: Average number of
iterations until convergence (100 repetitions). Bottom right: Estimation error, i.e., Frobenius
norm between estimated and true covariance matrix, at convergence (100 repetitions).

outlier trial (crosses) are not downweighted by G-MDE at convergence point‖, i.e., still have
gray color. In our experiment the G-MDE with β = 0.1 requires 25 iterations on average (100
repetition) to reach this point.

4.2. Group-level Estimators

In structured data sets it may be advantageous to downweight groups of samples, e.g., outliers
trials, rather than individual samples. To this end, we first compute summary statistics for each
group, and treat them as second-level samples. Summary statistics should be chosen based on
the assumption on the distribution of each trial. Since we assume that non-outliers are i.i.d.
Gaussian, a natural choice is the sufficient statistics for Gaussian, i.e., sample average and

‖ We assume that the estimator converges if ||Σ
(k+1)−Σ(k)||
||Σ(k)|| < 10−8.
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sample covariance. To obtain group-level robust estimators, we apply Eq. (3) to each of the
summary statistics. The sample mean again follows a Gaussian distribution, and therefore,
we can directly apply Eq. (6) to estimate the mean parameter from the second-level samples

µ(k+1) =
1
m

∑m
j=1 ψβ(`(zj; µ

(k),Σ(k)))zj
1
m

∑m
j=1 ψβ(`(zj; µ(k),Σ(k)))

(9)

where m is the number of groups and zj is the average of all samples in group j.
On the other hand, we cannot use Eq. (7) to estimate the covariance parameter from the

second-level sample covariances. In the following we derive an update rule for the group-
level estimator for the covariance parameter. It is known that the sample covariance follows
the Wishart distribution [88], defined as

q(S; Σ, ν) =
1

2
νD
2 |Σ| ν2 ΓD

(
ν
2

) |S| ν−D−1
2 e−tr( 1

2
Σ−1S) (10)

where

S =
N∑
t=1

(xt − µ)(xt − µ)> (11)

is the scatter matrix¶ and ΓD is the multivariate gamma function defined as

ΓD

(ν
2

)
= π

D(D−1)
4

D∏
j=1

Γ

[
ν

2
+

(1− j)
2

]
(12)

with Γ[t] =
∫∞

0
yt−1e−ydy. Thus, in order to robustly (wrt group-level outliers) estimate

a covariance matrix we compute the scatter matrices
{
Sj ∈ RD×D : j = 1 . . .m

}
for each

group and treat them as samples of an unknown Wishart distribution with parameters Σ and
ν. Note that Σ denotes the true covariance matrix which we want to estimate and ν (under the
assumptions that the samples are i.i.d.) equals the number N (or N − 1 if mean is subtracted)
of samples within a group (which we assume to be fix). The maximum likelihood estimator
for the Wishart distribution is

Σ̂ =
1

νm

m∑
j=1

Sj, (13)

or equivalently it is the average covariance matrix. We robustly estimate a covariance matrix
Σ̂ from the scatter matrices Sj of trials j = 1 . . .m by minimizing β-divergence using the
following iterative formula

Σ(k+1) =

∑m
j=1 ψβ

(
`
(
S

(k)
j ; Σ(k), ν

))
S

(k+1)
j

ν
∑m

j=1 ψβ

(
`
(
S

(k)
j ; Σ(k), ν

))
− γ|Σ(k)|

(ν−D−1)β
2

(14)

where

ψβ

(
`(S

(k)
j ; µ(k),Σ(k), ν)

)
= |S(k)

j |
(ν−D−1)β

2 e
−tr

(
β
2

(Σ(k))−1S
(k)
j

)
(15)

¶ Up to a constant the scatter and covariance matrices are equivalent.
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is a factor downweighting the influence of outlier trials and γ = nβ(D+1)ΓD(γ0)

2
νD
2 ΓD( ν2 )(β+1)

(
2

β+1

)Dγ0

and γ0 = ν(β+1)
2
− (D+1)β

2
are constants. Note that we write S

(k)
j and S

(k+1)
j to indicate that

these scatter matrices depend on µ(k) and µ(k+1), respectively. For β → 0 this estimator gives
the maximum likelihood solution in Eq. (13). As before we may simultaneously estimate the
mean and covariance matrix parameter by alternating Eq. (9) (which depends on Σ(k)) and
Eq. (14) (which depends on µ(k+1) through the estimation of the scatter matrices S

(k+1)
j ).

We refer to this novel minimum divergence estimator as Wishart-MDE or W-MDE. The
derivation of the estimator can be found in the appendix.

The lower panel of Figure 3 visualizes the downweighting effect ofW-MDE and color
encodes the value of ψβ from Eq. (15). As before our algorithm arrives at a good estimate
of the true covariance matrix by downweighting the outlier trial. In contrast to G-MDE the
proposed estimator downweights all samples from the outlier trial (crosses). Furthermore, it
needs only 9 iterations on average with β = 0.001 (G-MDE requires 25 iterations) to reach the
convergence point, i.e., the point where the relative change in Frobenius norm between the two
consecutively estimated covariance matrices is less than 10−8. At the point of convergence the
covariance matrix estimated byW-MDE is significantly closer to the true covariance matrix
(in terms of Frobenius norm) than the covariance estimate provided by G-MDE (see bottom
right panel in Figure 3). We recomputed the results for a range of β values, but did not
observe any qualitative change; in all casesW-MDE was the more efficient and more precise
estimator.

Finally, we would like to note that other approaches to robust group level parameter
estimation exist. For instance, instead of the formula in Eq. 9 one could also rely on trimming
and use the median in order to compute a robust average. Also the covariance matrices could
be naturally fitted into a Karcher averaging if a covariance matrix is estimated for each epoch
and the Riemannian geometry is concerned. An empirical evaluation of such averaging has
been performed in [89].

4.3. Combined Estimator

The W-MDE uses scatter matrices S which are computed for each trial (see Eq. 11). Of
course outlier samples may negatively affect the estimation of these matrices. A robust
estimator which considers both, sample and trial outliers, can be obtained by applying G-
MDE for computing of the scatter matrices for each trial and W-MDE for computing the
final covariance matrix. We will refer to such estimator asWG-MDE. For simplicity we use
the same β parameter for both estimation steps (G-MDE andW-MDE), however, a separate
parametrization of both steps may be beneficial in practice.

4.4. Use in Practice

In the discussion so far we have assumed that the parameter of the Wishart distribution ν

equals the number of samples used to estimate the scatter matrix (sample size). However, this
assumption only holds if the samples are i.i.d. which is often not the case in real-world data



On Robust Parameter Estimation in Brain-Computer Interfacing 12

sets, e.g., in EEG recordings. If samples are correlated then the parameter ν should be set to
the effective sample size [90, 91] which is smaller than the number of samples within a group.

Another practical recommendation concerns the computation of the ratio of Gamma
functions in γ. A naive computation of this ratio leads to numerical problems because of
the very high values of the Gamma function. A common trick which is applied to stabilize
the computation is to log-transform the ratio, compute the difference of the log terms and
transform back via an exponential map.

Depending on how the scatter matrices and mean parameter are computed, there exist
multiple variants of theW-MDE. If data is sampled from a zero mean distribution, then there
is no need to perform mean estimation at all. In this case µ should be set to 0 and Eq. (14)
should be applied iteratively. If the mean parameter is assumed to be same across all groups,
then we recommend to compute the scatter matrices of groups j as describe above, namely
Sj =

∑N
t=1(xjt − µ)(xjt − µ)>. If different groups have different means, then one should

compute the scatter matrices of group j as Sj =
∑N

t=1(xjt − zj)(x
j
t − zj)

> where zj denotes
the group average. In both cases we may alternate between Eq. (9) and Eq. (14) or only apply
the latter formula iteratively. The choice of the rightW-MDE variant largely depends on the
problem.

5. Experimental Evaluation

In the following we compare the performance of four parameter estimators, namely sample
estimator (SE), minimum covariance determinant estimator (MCDE)+ [2], G-MDE and W-
MDE, using simulations and evaluate these estimators on two motor imaginary BCI datasets.
Our results show that state-of-the-art BCI algorithms largely benefit from robustly estimated
parameters and that, in some cases, group-level estimation is clearly advantageous.

5.1. Simulations

5.1.1. Single Outlier Simulation In the first experiment we evaluate the downweighting
effect of the three robust estimators, MCDE, G-MDE andW-MDE, when adding one outlier
trial to a data set consisting of 20 clean trials with 100 samples each. Note that the clean data
is generated from the same distribution as the circles in Figure 3. After application of the
three robust estimators we display the ratio

ρ(α, σ) =

∑
ψβ(`(xout; Σ̂α,σ))∑
ψβ(`(xclean; Σ̂α,σ))

(16)

i.e., the weights assigned to the samples xout of the outlier trial relative to the weights assigned
to the samples of the clean trials xclean. Note that for MCDE these weights are either 1 (if
the sample is among the selected h samples) or 0 (otherwise). For W-MDE we show the
corresponding trial weights. Note that a small ρ value means that the outlier trial has been
effectively discarded. In the experiment we add outliers by (i) rotating and (ii) uniformly
+ MCDE finds h ≤ n samples which have a covariance matrix with the lowest possible determinant, thus MCDE
resists (n− h) outliers. We refer the reader to [92] for a critical discussion on MCDE.
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scaling the true covariance matrix. Figure 4 visualizes ρ(α, σ) for a range of rotation α and
scaling σ parameters. Note that black color represents small and white color large ρ values.
The optimal robust estimator is shown in the left panel. It assigns ρ = 0 (discards outlier trial)
to all scale and angle combinations except the true distribution (scale 1 and angle 0). One
can see that all three estimators downweight the outlier trial if its covariance matrix is much
larger than the true covariance matrix or if it is rotated. However, only the estimator using
the Wishart model identifies the trial with significantly smaller variance (scale < 1) as outlier.
Both MCDE and G-MDE do not identify this trial (or more precisely its samples) as outliers
even when the covariance matrix is largely rotated. Since the variance of samples coming
from this outlier trial is significantly smaller than the variance of the clean data, the samples
are within the range of the clean data (even when the outlier trial has a rotated covariance
matrix), thus they are not identified as outliers on the sample-level. Only the trial information
makes these samples distinguishable from the clean data.

This effect of lying within the region of clean data is also responsible for the fluctuations
(smearing effect) in the maps produced with MCDE and G-MDE. Since some proportion
of samples (coming from the outlier trial) will always lie in the range of clean data, their
ψβ values will be relatively high as they are no outliers according to the sample-level view.
Therefore the corresponding ρ value will be significantly larger than zero. This effect can
be also seen in Figure 3 where the samples which come from the outlier trial (crosses) but
lie within the range of the clean data stay gray, i.e., are not downweighted by the estimator.
On the other hand when applying W-MDE the outlier trial will have very small ψβ value
irrespectively of whether its samples lie within the range of clean data or not. Thus, the
corresponding ρ value will be close to zero. This results can be observed for a range of β
parameters.
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Figure 4: Comparison of three robust estimators with respect to their ability to discard outlier
trials. The clean data consists of 20 trials with 100 samples per trial coming from a normal
distribution with (almost) fix covariance matrix. We add one outlier trial to these data. The
outlier samples come from a distribution with a covariance matrix which is the scaled and/or
rotated version of the true underlying covariance matrix. The maps represent the ρ value
defined in Eq. (16). Black color stands for small ρ values, white color represents large ρ
values. One can see that all estimators downweight the outliers for large scales and angles,
however, only the Wishart model identifies the outlier trial when small scales are applied.
Furthermore, the Wishart estimator provides much cleaner ρ values.
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5.1.2. Multiple Outliers Simulation In a second experiment we sample 50 trials with 100
samples per trial from a 10 dimensional zero-mean normal distribution. The samples come
either from a clean distribution or from an outlier distribution which is a scaled and rotated
version of the former. We investigate two ways of adding outliers (i) we add outliers sample
by sample (sample-level), i.e., for each sample we throw the dice whether it comes from
the clean or outlier distribution, or (ii) we sample a whole trial from the outlier distribution
(group-level), i.e., the decision whether a trial comes from the clean or outlier distribution
affects all samples of the trial. Furthermore, we use two different scales for the outlier
distribution, namely scale σ = 0.01 and scale σ = 100. The clean covariance matrix
is Σclean = VcleanDcleanV

>
clean with V being a random rotation matrix and D being a

diagonal matrix sampled from the uniform distribution. The covariance matrix of the outlier
distribution Σoutlier = σVoutlierDoutlierV

>
outlier has the same form but it is scaled by σ. Note

that Σoutlier is sampled independently of Σclean and is not fix across trials, i.e., outliers from
different trials may come from different outlier distributions.

Figure 5 displays the results for the different estimators. The y-axis shows the log scaled
error measure which is the distance (Frobenius norm) to the true covariance matrix Σclean.
The different lines represent the median error over 50 repetitions when selecting the best
parameter (among several parameters which have been tested) for each method, repetition and
experimental setting. The first row shows the results for the small scale experiment. One can
see that MCDE performs slightly worse than G-MDE and the sample estimator. Since MCDE
favours covariance matrices with small determinant it naturally focuses on the outlier samples
(coming from trials with small variance), therefore the estimate is worse than when applying
the other estimators. The heuristic used by MCDE fails as the small variance samples are the
outlier samples in this example. G-MDE slightly outperforms theW-MDE in the sample-level
experiment but the difference to SE is not large because the small variance samples do not
affect the sample covariance estimator very much. For the group-level experimentW-MDE
demonstrates its advantages. It gives much better estimates than the other three estimators
even when the probability of outlier is very high. Note that the solid line stands for the
results when initializing the algorithm with the sample covariance matrix, whereas the dashed
line shows the results for random initialization (with scale σ = 1). Since the β-divergence
model depends on the initialization in the sense that all samples/trials are downweighted
which are outliers (wrt the model used for the kth iteration), we can improve the performance
when applying random initialization. In the case of 90% outliers random initialization of the
algorithm performs significantly better than initialization with the sample covariance matrix
because in the former case the initialized matrix has the same scale as the clean data (thus
the outlier trials are being discarded), whereas in the latter case, the initialized matrix has the
scale of the outlier trials (thus the clean data is discarded as outlier). Note that our estimator
resists the presence of 90% outliers (i) because it is model-driven, i.e., penalizes the outliers
based on their likelihood of being generated by the model and not by using heuristics, and
thus is very robust if initialized with a parameter close to the true solution, and (ii) because in
this simulation each outlier trial was sampled from a distribution with a different covariance
parameter, thus no common outlier model exists. Note that other initialization strategies can
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be applied in practice and may positively affect the results.
The bottom row shows the results for the large scale artifacts. Here MCDE shows its

advantages (preference of covariance matrices with small determinant) until the probability
of outlier exceeds 50% (breaking point). After that its error largely increases. For G-MDE
the performance is quite stable until 80% of outliers. Note that this method performs so
well because it iteratively discards the extreme outlier samples even when initialized with the
average covariance matrix. In other words even when the probability of outlier is very high
many samples will lie in the range of the clean data and extreme outlier samples will be rapidly
downweighted because the sample covariance matrix, which is used for initialization, does
not provide enough support for them. Thus, iteratively these samples will have less and less
influence and the final estimate will be better than the sample covariance matrix. Note that the
positive effect of random initialization is limited in the Gaussian model as the extreme outliers
are downweighted anyway. In the group-level scenarioW-MDE performs very well until the
point where more than 20% of the trials become outliers∗. Beyond this point the error largely
increases as the initialization with the sample covariance matrix prefers the outlier trials over
the clean trials (which are treated as outliers). However, when using random initialization the
initial covariance matrix has the same scale as the clean data andW-MDE downweights the
influence of outlier trials until the probability of outlier exceeds 90%. We would like to stress
that in practice it is often impossible to correctly estimate parameters in a 90% outlier setting,
because the outlier model is much more complex and prior information about the scale of the
correct parameter is not available.

5.2. Motor Imagery BCI

This section investigates the impact of robust parameter estimation on spatial filtering
algorithms in BCI, in particular CSP and its variants. These methods are well suited to
discriminate between two motor imagery classes because they enhance the differences in
band power (ERD/ERS] [93, 5]) between the conditions. Mathematically, a CSP spatial filter
w ∈ RD maximizes / minimizes the Rayleigh quotient

R(w) =
w>Σ1w

w>Σ2w
, (17)

where Σ1,Σ2 ∈ RD×D are the estimated (average) covariance matrices of the two conditions,
e.g., left hand and right hand motor imagery. If these covariance matrices are not well
estimated, e.g., due to artifacts in the EEG, then the spatial filters will not be physiologically
meaningful, thus will not extract the BCI related neural activity. Robust covariance matrix
estimators downweight artifactual samples / trials and thus result in better spatial filters.

5.2.1. Data Sets and Setup We use two data sets, namely the Vital BCI data set [94]
consisting of EEG recordings from 80 subjects and the BCI Competition III dataset IVa [95]

∗ This point may vary in different data sets.
] Event-related Desynchronization / Event-related Synchronization occurs in specific locations and frequency
bands after motor imagery.
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Figure 5: Comparison of different robust covariance matrix estimators in four different outlier
scenarios. The proposed W-MDE outperforms all other estimators when whole trials are
sampled from an outlier distribution (right column). When outliers have much higher variance
than clean data and the probability of outlier exceeds a certain value, the performance of the
estimator may largely depend on the initialization. The solid lines stand for initialization with
the sample covariance matrix, whereas the dashed lines represent random matrix initialization.

consisting of 5 users, for the experimental evaluation.
In the Vital BCI data set the experiment started with a calibration session in which

participants were asked to perform motor imagery tasks with the left and right hand or with
the feet. After recording 75 trials for each condition, the best binary combination of motor
imagery tasks was selected and the BCI system was trained. Subsequently, the feedback
session started in which the system decoded the imagined movement. Visual feedback
was provided to the user. The decoding efficiency of the system is measured in terms of
classification accuracy. The signals were recorded from 118 Ag/AgCl electrodes, from which
we manually select 62 electrodes densely covering the motor cortex. We downsample the
signal to 100 Hz and apply a 5th order Butterworth filter with pass-band 8-30 Hz. We use a
fix time segment from 750 to 3500 ms after the trial start for feature extraction.

The BCI Competition III dataset IVa contains EEG signals from five healthy subjects
performing right hand and foot motor imagery without feedback. Two types of visual cues, a
letter appearing behind a fixation cross and a randomly moving object, shown for 3.5 s were
used to indicate the target class. The presentation of target cues were sandwiched between
periods of random length, 1.75 to 2.25 s, in which the subject could relax. The EEG signal
was recorded from 118 Ag/AgCl electrodes, band-pass filtered between 0.05 and 200 Hz
and downsampled to 100 Hz, so that 280 trials are available for each subject. We manually
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select 68 electrodes densely covering the motor cortex and band-pass filter the signal in the
frequency range 8-30 Hz using a 5th order Butterworth filter.

For both data sets we compute CSP (3 filters per class) with the class-covariance matrices
estimated with SE, MCDE (with parameters h = 0.5:0.05:1), G-MDE (with parameters
β = 2−15:1:0) andW-MDE andWG-MDE (both with parameters β = 2−15:0.5:−8). We select
the parameters by minimizing cross-validation error on the training data. Following spatial
filtering log-variance features are computed and the LDA classifier is applied [39].

5.2.2. Robust Estimation Improves BCI Performance Table 1 displays the error rates
obtained with the different covariance matrix estimators on both datasets. One can see
that all robust estimators clearly outperform the SE baseline and that the lowest error rates
are obtained for the combined estimator WG-MDE. This result shows that both types of
outliers (i.e., sample and trial) occur in the BCI datasets and negatively affect the spatial
filter computation. Since the amount of outliers in the data vary from subject to subject, not
all users benefit from robust estimation (e.g., subjects A2 and A5).

Figure 6 provides an overview of the Vital BCI results using scatter plots. For individual
subjects the improvement over the SE baseline is quite large. For instance, subject 21 has
chance-level performance (i.e., error rate 46 %) when computing spatial filters by using SE,
but the error rate decreases to 17 % when applyingWG-MDE. Similar error rate decreases are
obtained for the other robust estimators. The overall performance improvement ofWG-MDE
over SE, MCDE and G-MDE is significant with p < 0.05 and overW-MDE with p < 0.01

according to the one-sided Wilcoxon sign-rank test. Also when considering the best parameter
for each subject WG-MDE leads to an average error rate of 23.5% and clearly outperforms
MCDE, G-MDE andW-MDE with error rates of 27.4%, 25.1% and 25.1%, respectively. This
result indicates that some subjects benefit more from the trial-level robustification performed
by W-MDE, whereas for others robust sample-level estimation performed by G-MDE (and
MCDE) suffices. For instance, subject 74 has an error rate of 50%, 49%, 37% when
computing spatial filters by using SE, MCDE and G-MDE, respectively, whereas the error rate
decreases to 29% when usingWG-MDE. The error rate of this subject can even be lowered
to 21% when applyingW-MDE with the best parameter, but a comparable performance can
not be obtained with the sample-level estimators. Similarly, the error rate of subject 10 can be
lowered from 49% to 23% when using G-MDE instead of SE, but the improvement obtained
withW-MDE is much smaller (even for the best parameter the error rate stays above 32%).

Since WG-MDE combines the advantages of the trial- and sample-level estimator, it
leads to the best overall performance in the Vital BCI dataset. For BCI Competition dataset
the advantages of the combined estimator over the group-level one are only marginal, i.e.,
both estimators lead almost to the same solution. There are two potential explanations for
this result. First, subjects A1-A5 may be not affected by sample-level outliers (or at least
much less affected than subjects in the Vital BCI dataset), thus applying a robust estimator in
the first step ofWG-MDE does not have any advantage over applying the standard estimator.
This seems not to be the case as G-MDE clearly outperforms the SE baseline. Second, the
parameter β used for the robust estimator in the first step ofWG-MDE may be too small, so
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that the robust sample-level estimator “behaves” like the standard estimator. Note that we use
only one parameter forWG-MDE in our experiments, i.e., the same β is used for estimating
the trial-wise scatter matrices with G-MDE and for estimating the final covariance matrix with
W-MDE. This brings the risk that the parameter may be of optimal scale for the second step
of WG-MDE, but too small for the first one; or of optimal scale for the first step, but too
large for the second one. The two datasets may be differently affected by this scale effect. By
using two separate β parameters (and also adapting ν) theWG-MDE results can be potentially
further improved, but we leave the investigation of more complex parameterizations for future
work.

5.2.3. Robust Estimation Decreases the Condition Number In the following we discuss why
robustly estimated parameters lead to lower error rates in BCI applications. Figure 7 provides
an intuitive explanation for the large performance improvement of subject 21. It shows the
right hand motor imagery patterns computed from the CSP filters with SE andW-MDE. The
pattern obtained by using SE shows activity in the right hemisphere and at the left temporal
electrodes. This activity is due to artifacts and does not have neurophysiological origin.
The signal recorded at C6 electrode shows strong artifacts which negatively influence the
covariance estimation and the spatial filter computation for this subject. The W-MDE (and
also the other robust estimators) downweights these artifactual trials (bottom row) and allows
to extract the true motor imagery related neural activity.

Mathematically, we can show that the robustly estimated covariance matrices have a
significantly smaller condition number compared to the covariance matrices estimated by
SE (t-test, p � 0.001). The condition number of a matrix is defined as the ratio of the
largest and smallest eigenvalue. Also we can show that the decrease of the condition number
is correlated to the error rate decrease (r = 0.2927, p < 0.01). This result provides one
explanation why robustly estimated parameters lead to lower error rates in BCI applications.
The artifacts in the data (if not removed) lead to large condition number of the class-covariance
matrix which negatively affects the stability of the CSP solution. Since CSP is a greedy
algorithm (i.e., computes a maximum likelihood solution), it is largely affected by the over-
and underestimated eigenvalues and thus focuses on the artifacts instead of the true neural
activity.

5.2.4. Sample and Trial Robustness Revisited This section analyzes the relation between
the proposed sample-level and trial-level estimators in more detail. In particular, we show
that the trials considered as outliers by G-MDE and W-MDE only partially overlap. The
left upper panel of Figure 8 shows the normalized weights ψβ assigned to each trial by G-
MDE (computed as average over sample weights) andW-MDE for subject 1. Although the
correlation between the weights is quite high, r = 0.7, some trials are downweighted byW-
MDE but not by G-MDE and vice versa. The two trials marked by the red and green circles
in Figure 8 are almost completely discarded (weight close to zero) by W-MDE but are not
downweighted by G-MDE. The time courses of these trials are shown in the bottom panel
of Figure 8. Obviously channel CPz has a problem (recorded values exactly zero) which
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Table 1: BCI error rates when using different estimators for spatial filter computation.

Estimator BCI Competition Vital BCI
A1 A2 A3 A4 A5 Overall Overall

SE (baseline) 33.9 3.6 41.8 11.2 19.0 21.9 30.4

MCDE 26.8 5.4 40.8 12.1 22.6 21.5 29.6

G-MDE 25.0 3.6 37.2 8.5 13.1 17.5 29.4

W-MDE 19.6 3.6 33.2 9.4 20.2 17.2 29.5

WG-MDE 19.6 3.6 32.7 9.4 20.2 17.1 28.9

negatively affects the spatial filter computation when using the SE (i.e., top CSP filter does
not capture BCI related neural activity). Furthermore, G-MDE does not identify these trials
as outliers, i.e., it does not downweight them. There exist also the opposite case where trials
(right bottom corner of the figure) are downweighted by G-MDE but not penalized by W-
MDE. In general it is not only important to downweight the outliers trials correctly, but also
to assign high weights to representative, non-outlier trials.

The right panel of Figure 8 demonstrates the superiority of W-MDE in identifying
representative trials. The dashed line represents the average (over all subjects) test
performance of SE when computing the spatial filters (1 per class) using all 75 calibration
trials per class. The three solid lines stand for the average performance of SE when using
the 2-20 best trials according to G-MDE andW-MDE weighting or random selection. More
precisely, we select 2-20 trials per class with the highest G-MDE and W-MDE weights or
by random selection (50 repetitions) and compute the spatial filters and the classifier using
these trials. Note that the weights ψβ were computed on all calibration trials. Values above
the dashed line stand for an error rate increase relative to the 75 trials baseline. One clearly
sees that the weights computed byW-MDE belong to “better”, i.e., more informative, trials
than the G-MDE weights or random selection. For instance, when selecting the six best trials
according to theW-MDE weighting the average error rate only increase by 4% compared to
the 75 trials baseline, whereas the performance loss is twice as large when using the G-MDE
weights. One intuitive explanation for this result is that it is easier to identify good trials when
looking at the data from trial-level than from sample-level perspective because the average
sample weight of a trial (sample-level perspective) does not well reflect it’s overall quality.
The proposedW-MDE provides this trial-level view and performs better on this task.

Figure 9 displays the C3 channel signal of the 8 best trials according to the G-MDE
and W-MDE weighting of subject 19. A good weighting would select trials with a typical
motor imagery effect over the C3 channel, i.e., high variance in the right hand condition and
low variance in the left hand condition. One can see thatW-MDE selects “better” trials and
produces a neurophysiologically more meaningful CSP pattern when maximizing the ‘right
hand’ condition than G-MDE.
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Figure 6: Scatter plots comparing the error rates obtained when different estimators are used
for spatial filter computation.

5.2.5. Do CSP Variants also Benefit from Robust Estimation ? In the following analysis
we show that robust parameter estimation is also important for more advanced CSP variants.
Table 2 displays the average error rate of the 80 Vital BCI subjects (median error rate is
shown in the brackets). The asterisks indicate significance (0.05, 0.01 and 0.001 level) when
comparing the error rate of the given method to the corresponding (non-robust and robust)
CSP baseline using the Wilcoxon sign-rank test. For simplicity, we apply TRCSP [44] and
sCSP [50] with a fixed parameter of λ = 0.02 and β-CSP [51] with β = 0.1, i.e., we do not
select these parameters for each subject separately. The first row shows the error rates when
estimating the covariance matrices with SE, whereas the second row shows the results when
using the covariance matrices computed byWG-MDE. Also here we rely on the β parameter
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Figure 7: Top: Right hand motor imagery patterns computed from the CSP filters with SE
andW-MDE. Bottom: The signal at C6 electrode is affected by artifacts which influence the
estimation of the sample covariance matrix and the computation of spatial filters. The SE
pattern (top left panel) is clearly affected by these artifacts as it shows activity over the right
hemisphere. W-MDE downweights these artifactual trials and shows a much clearer right
hand motor imagery pattern.

Table 2: Comparison of BCI error rates when using a standard / robust estimators for spatial
filter computation. The asterisks indicate significant improvement over the CSP baseline.

CSP TRCSP [44] sCSP [50] β-CSP [51]

Standard 30.4 (29.7) 28.8 (26.5)∗∗ 29.4 (27.5)∗∗ 29.4 (28.9)∗

Robust 28.9 (29.2) 27.7 (24.2)∗∗∗ 28.7 (28.1)∗ 28.9 (25.8)

which was selected in the above analysis, i.e., we refrain from selecting the optimal parameters
for each of the CSP variants separately.

The results show a significant error rate decrease relative to the CSP baselines. All
methods perform significantly better than CSP in the non-robust as well as in the robust setting
(for β-CSP the error rate decrease is only significant in the non-robust setting). Also in all
cases the results improve when robustly estimating the covariance matrices (i.e., comparing
the first and second row). This result shows that even algorithms such as β-CSP which
are robust by design or TRCSP which stabilize the CSP algorithm (e.g., in the case of
large condition numbers) by restricting the norm of the filters benefit from robust parameter
estimation.

5.2.6. Robust Estimation and Nonstationarity Nonstationarity in EEG is a critical issue,
especially because it aggravates the session-to-session transfer in BCI. The development of
techniques which robustify the signal analysis against nonstationarity is therefore of large
interest to researchers as well as practicians. Data from BCI experiments can be contaminated
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Figure 8: Left: Comparison of the weights of subject 1 computed by G-MDE and W-
MDE. Although a strong correlation exists, one can identify trials which are downweighted
by W-MDE but not by G-MDE and vice versa. Right: The three solid lines represent the
performance (relative to the 75 trials baseline, dashed line) of SE when computed on 2-20
trials per class selected based on the G-MDE andW-MDE weights or random selection. The
weights computed byW-MDE select more representative trials, thus lead to smaller error rate
increase than G-MDE. Bottom: Signal at CPz channel of the two trials marked by the red
and green circles in the top left panel. These artifactual trials are correctly downweighted by
W-MDE.

Figure 9: The best 8 trials (C3 channel) selected byW-MDE and G-MDE. The former method
selects more representative trials and leads to a neurophysiologically more meaningful CSP
pattern.
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with artifacts or be free of outliers; it can be stationary or it’s distribution can change
significantly over time. The robust estimator proposed in this work is designed to tackle
the outlier problem, however, the results in Section 5.2.2 suggest that it also has a positive
effect (because it clearly outperforms the standard estimator) on datasets, which are known
to exhibit nonstationarity between training (calibration data) and test (feedback data) phase.
Here are two potential explanations for this observation.

(1) The smaller condition number of the proposed estimator (see Section 5.2.3) acts as
a regularizer and thus prevents the estimator to overfit on the training data. Thus,
the estimated parameters are less training data specific and better capture the global
properties of the signal which we believe are often more stationary. This reduces the
vulnerability to nonstationarity.

(2) The robust estimator implicitly focuses more on the stationary part of the data, because
it downweights the impact of trials which exhibit the most changes (i.e., outliers) in
the training data (see Eq. (14)). Discarding these trials does not completely remove the
nonstationarity from the data, but it reduces it by a significant amount.

Thus, robust parameters estimation implicitly robustifies the signal analysis against
nonstationarities in the training data, which often also helps in session-to-session transfer.
However, it does so only to a certain extend. The results in Table 2 show that the combination
of robust estimation and an explicit minimization of nonstationarity (by applying sCSP) gives
further improvement over mere robust estimation. Depending on the data, robustness against
outliers or the minimization of nonstationarity may have a larger effect on performance.

6. Conclusion

This work introduced a novel robust covariance matrix estimator based on the minimum
divergence principle and a Wishart distribution model. We demonstrated the advantages of
this estimator for structured data in simulations and on real data sets.

In future work we will consider the use of alternative disparity measures, e.g., optimal
transport [96] or γ-divergence [85], and models, e.g., Multimodal distribution or Dirichlet
distribution, for robust estimation. Furthermore, we aim to provide a Bayesian interpretation
for multi-scale robustness and apply the proposed estimator in the medical domain for clinical
multi-site studies. Furthermore, we will investigate the advantages of robust parameter
estimation for multi-modal data [97, 98] and multi-subject BCI settings [99]. Finally,
we will also study the impact on outliers on BCI performance prediction methods (e.g.,
[100, 101, 102]).
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[70] J. Höhne, D. Bartz, N. Hebart, K.-R. Müller, and B. Blankertz, “Analyzing neuroimaging data with
subclasses: A shrinkage approach,” NeuroImage, vol. 124, pp. 740–51, 2014.

[71] A. Yuksel and T. Olmez, “A neural network-based optimal spatial filter design method for motor imagery
classification,” PLOS ONE, vol. 10, no. 5, p. e0125039, 2015.

[72] N. Lu, T. Li, X. Ren, and H. Miao, “A deep learning scheme for motor imagery classification based on
restricted boltzmann machines,” IEEE Transactions on Neural Systems and Rehabilitation Engineering,
vol. 25, no. 6, pp. 566–76, 2017.

[73] Y. R. Tabar and U. Halici, “A novel deep learning approach for classification of eeg motor imagery
signals,” Journal of Neural Engineering, vol. 14, no. 1, p. 016003, 2016.

[74] I. Sturm, S. Lapuschkin, W. Samek, and K.-R. Müller, “Interpretable deep neural networks for single-trial
eeg classification,” Journal of Neuroscience Methods, vol. 274, pp. 141–145, 2016.

[75] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On pixel-wise explanations
for non-linear classifier decisions by layer-wise relevance propagation,” PLOS ONE, vol. 10, no. 7, p.
e0130140, 2015.

[76] G. Montavon, W. Samek, and K.-R. Müller, “Methods for interpreting and understanding deep neural
networks,” arXiv, no. 1706.07979, 2017. [Online]. Available: https://arxiv.org/abs/1706.07979

[77] A. Cichocki and S. Amari, “Families of alpha- beta- and gamma- divergences: Flexible and robust
measures of similarities,” Entropy, vol. 12, no. 6, pp. 1532–1568, 2010.

[78] S. Amari and H. Nagaoka, “Methods of information geometry,” in Translations of Mathematical
Monographs. Oxford University Press, 2000, vol. 191.

[79] S. Amari, “Information geometry in optimization, machine learning and statistical inference,” Frontiers
of Electrical and Electronic Engineering in China, vol. 5, no. 3, pp. 241–260, 2010.

[80] D. L. Donoho and R. C. Liu, “The ”automatic” robustness of minimum distance functionals,” The Annals
of Statistics, vol. 16, no. 2, pp. 552–586, 06 1988.

[81] S. Eguchi and Y. Kano, “Robustifying maximum likelihood estimation,” Tokyo Institute of Statistical
Mathematics, Tokyo, Japan, Tech. Rep, 2001.

[82] N. Murata, T. Takenouchi, and T. Kanamori, “Information geometry of u-boost and bregman divergence,”

https://arxiv.org/abs/1706.07979


On Robust Parameter Estimation in Brain-Computer Interfacing 28

Neural Computation, vol. 16, pp. 1437–1481, 2004.
[83] R. Beran, “Minimum hellinger distance estimates for parametric models,” The Annals of Statistics, vol. 5,

no. 3, pp. 445–463, 05 1977.
[84] A. Basu, I. R. Harris, N. L. Hjort, and M. C. Jones, “Robust and efficient estimation by minimising a

density power divergence,” Biometrika, vol. 85, no. 3, pp. 549–559, 1998.
[85] A. Notsu, O. Komori, and S. Eguchi, “Spontaneous clustering via minimum gamma-divergence,” Neural

Computation, vol. 26, no. 2, pp. 421–448, 2014.
[86] A. Basu and B. G. Lindsay, “The iteratively reweighted estimating equation in minimum distance

problems,” Computational statistics & data analysis, vol. 45, no. 2, pp. 105–124, 2004.
[87] H. Fujisawa and S. Eguchi, “Robust parameter estimation with a small bias against heavy contamination,”

Journal of Multivariate Analysis, vol. 99, no. 9, pp. 2053 – 2081, 2008.
[88] J. Wishart, “The generalised product moment distribution in samples from a normal multivariate

population,” Biometrika, vol. 20A, pp. 32–52, 1928.
[89] F. Yger, F. Lotte, and M. Sugiyama, “Averaging covariance matrices for eeg signal classification based

on the csp: An empirical study,” in Signal Processing Conference (EUSIPCO), 2015 23rd European.
IEEE, 2015, pp. 2721–2725.

[90] R. V. Lenth, “Some practical guidelines for effective sample size determination,” The American
Statistician, vol. 55, no. 3, pp. 187–193, 2001.
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Appendix

Suppose that we have a set of scatter matrices {S1, . . . ,Sm} where Sj =
∑N

t=1
(xjt − µ)(xjt − µ)> and

Xj = [xj1 . . .x
j
N ] ∈ RD×N consists of the N original D-dimensional observations in the jth group. We aim

to determine Σ by minimizing the beta divergence between the empirical distribution of the observed scatter
matrices and a model Wishart distribution. The following terms can be expressed explicitly

`(S; Σ, ν) = log
1

2
νD
2 |Σ| ν2 ΓD

(
ν
2

)︸ ︷︷ ︸
α

+
ν −D − 1

2
log |S| − 1

2
tr (Σ−1S)

ψβ(`(S; Σ, ν)) = αβ · |S|
β(ν−D− 1)

2 · e− 1
2
βtr(Σ−1S)

Note that in the following we write S(k) and S(k+1) to stress the dependence on µ(k) and µ(k+1), respectively. If
we put these definitions into Eq. (3) and set κ = tr((Σ(k+1))−1S) we obtain

1

m

m∑
j=1

ψβ(`(S(k)
j ; Σ(k), ν))

(
1

2
(Σ(k+1))−1S(k+1)

j (Σ(k+1))−1 − 1

2
ν(Σ(k+1))−1

)
=∫ (

α|S|
(ν−D− 1)

2 e−
1
2
κ
)(

αβ|S|
β(ν−D− 1)

2 e−
1
2
βκ
)(1

2
(Σ(k+1))−1S(Σ(k+1))−1 − 1

2
ν(Σ(k+1))−1

)
dS,

After multiplication of both sides with
√

2Σ(k+1) from the left and from the right we obtain

1

m

m∑
j=1

ψβ(`(S(k)
j ; Σ(k), ν))

(
S(k+1)
j − νΣ(k+1)

)
=

∫ (
αβ+1|S|

(β+1)(ν−D− 1)
2 e−

1
2

(β+1)κ
) (

S − νΣ(k+1)
)
dS,

Let Σ̃(k+1) = 1
β+1

Σ(k+1), ν′ = (β + 1)ν − βD − β and α′ = 1

2
ν′D
2 |Σ̃(k+1)|

ν′
2 ΓD( ν′2 )

. Then we obtain

1

m

m∑
j=1

ψβ(`(S(k)
j ; Σ(k), ν))

(
S(k+1)
j − νΣ(k+1)

)
=

αβ+1

α′

∫ (
α′|S|

ν′ −D− 1
2 e−

1
2

tr((Σ̃(k+1))−1S)
) (

S − νΣ(k+1)
)
dS,

Note that if splitting the integral on the right hand side into two integrals then the first one gives the first moment
of the Wishart distribution and the second one is the zeroth moment times νΣ(k+1). Thus, we obtain

1

m

m∑
j=1

ψβ(`(S(k)
j ; Σ(k), ν))

(
S(k+1)
j − νΣ(k+1)

)
=

αβ+1

α′

(
ν′Σ̃(k+1) − νΣ(k+1)

)
Assuming |Σ(k+1)| = |Σ(k)| at convergence point this is

1

m

m∑
j=1

(
|S(k)
j |

β(ν−D− 1)
2 e−

1
2
βtr((Σ(k+1))−1S
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(
S(k+1)
j − νΣ(k+1)
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= −α(βD + β)

α′(β + 1)
Σ(k+1)

This leads to the iterative formula

Σ(k+1) =
1
m

∑m

j=1
ψ′β(`(S(k)

j ; Σ(k), ν))S(k+1)
j

ν
m

∑m

j=1
ψ′β(`(S(k)

j ; Σ(k), ν)) − α(βD+β)

α′(β+1)

which implicitly depends on µ parameter through the estimation of the scatter matrices Sj . Note that

γ =
α(βD + β)

α′(β + 1)
=

β(D + 1)ΓD
(
ν(β+1)

2
− (D+1)β
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2
νD
2 (β + 1)ΓD

(
ν
2

) (
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2
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