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Abstract

The ability to explain and understand the prediction behaviour of complex machine learning
(ML) models such as deep neural networks is of large interest to developers, users and
researchers. It allows them to verify the system’s decision making and gain new insights into
the data and the model, including the detection of its malfunctioning. Moreover, it can also
help to improve the overall training process, e.g., by removing detected biases. However, due
to the large complexity and highly nested structure of deep neural networks, it is non-trivial
to obtain these interpretations for most of today’s models. This chapter describes Layer-wise
Relevance Propagation (LRP), a propagation-based explanation technique that can explain
the decisions of a variety of ML models, including state-of-the-art convolutional and recurrent
neural networks. As the name suggests, LRP implements a propagation mechanism that
redistributes the prediction outcome from the output to the input, layer by layer through the
network. Mathematically, the LRP algorithm can be embedded into the framework of Deep
Taylor Decomposition and the propagation process can be interpreted as a succession of first-
order Taylor expansions performed locally at each neuron. The result of the LRP computation
is a heatmap visualizing how much each input variable (e.g., pixel) has contributed to the
prediction. This chapter will discuss the algorithmic and theoretical underpinnings of LRP,
apply the method to a complex model trained for the task of Visual Question Answering
(VQA), and demonstrate that it produces meaningful explanations, revealing interesting
details about the model’s reasoning. We conclude the chapter by commenting on the general
limitations of current explanation techniques and interesting future directions.

1.1 Introduction

Over the years machine learning (ML) models have steadily grown in complexity, gaining
predictivity often at the expense of interpretability. Deep neural networks are a prime
example of this development. These models typically contain millions of parameters and tens
or even hundreds of non-linearly interwoven layers of increasing abstraction. After being fed
with vast amounts of data, these models can achieve record performances on complex tasks
such as vision (Cireşan et al. 2011; Lu and Tang 2015), language understanding (Bahdanau
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et al. 2014; Devlin et al. 2018), strategic game playing (Mnih et al. 2015; Silver et al. 2017;
Moravčík et al. 2017), medical diagnosis (Esteva et al. 2017; Hannun et al. 2019; Jurmeister
et al. 2019) or scientific data analysis (Baldi et al. 2014; Mayr et al. 2016; Schütt et al. 2017).
The complexity of state-of-the-art convolutional neural networks (CNNs) can be illustrated
on the popular VGG-16 model (Simonyan and Zisserman 2014). This model consists of 16
layers of increasing abstraction and 138M weight parameters, moreover, it requires 15.5G
elementary operations (MACs) to classify a single 224× 224 image. Clearly, for such a large
model it becomes very difficult to explain why and how it arrived at its decision, i.e., to find
the relevant parts in the input (e.g., pixels), which have triggered an individual decision.
Such analysis becomes even more complicated for models with an internal state, e.g., Long
Short-Term Memory (LSTM) networks (Hochreiter and Schmidhuber 1997) which are often
used to process time series data or textual input, because the internal state influences the
model’s decision making in complex ways. Unsurprisingly until recently, state-of-the-art
CNNs, LSTMs and deep models in general have been commonly regarded as “black boxes”.

Although the wish to understand and interpret the decision making process of an AI
system is as old as the technology itself, the field of explainable AI (XAI) has seen a significant
revival in the last years. With the many advancements in the area of deep learning, also
various methods have been recently proposed to make these models more interpretable (Samek
et al. 2019). While some of these works aim to construct and train ML models which are by
design more interpretable, e.g., by incorporating sparsity priors or disentangling the learned
representation, other authors propose methods that are capable of explaining a given (trained)
ML model post-hoc. This chapter will focus exclusively on the latter methods. We will
consider the problem of Visual Question Answering (VQA), where a deep model is trained
to answer questions about a given image. In order to do so, the model consists of a LSTM
and a CNN part, which process the question and the image, respectively. Thus, explaining
decisions of the VQA model requires a XAI technique which can explain both types of models.
In this chapter we will introduce such a technique, termed Layer-wise Relevance Propagation
(LRP) (Bach et al. 2015). LRP is a generic method to explain individual predictions of ML
models by meaningfully redistributing the decisions backwards onto the input variables. The
result of this explanation process is a heatmap visualizing how much each input variable has
contributed to the prediction. In the context of VQA, LRP will thus highlight the relevant
words in the question and the part in the image which is relevant for answering the question.
Analysing and interpreting these explanations allows us to get insights into the functioning
of the VQA model, and in particular helps us understand failure modes of it.

In the remainder of this chapter we motivate the need for explainability (Section 1.2),
formalize the explanation problem for simple linear models and discuss the difficulties
occurring when extending this concept to deep neural networks (Section 1.3). Then, in
Section 1.4 we introduce LRP for convolutional neural networks, demonstrate that it can
be theoretically embedded into the framework of Deep Taylor Decomposition (Montavon
et al. 2017), and present extensions of the method suited for LSTM architectures. In Section
1.5 we demonstrate experimentally that LRP provides meaningful explanations and helps to
understand the reasoning of a model, which was trained on a Visual Question Answering
task. We conclude the chapter in Section 1.6 with a discussion of the limitations of current
explanation techniques and open research questions.
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1.2 Why Explainability ?

This section motivates the need for explainability in machine learning and shows that being
able to explain and understand the reasoning of a ML model is highly beneficial for at least
three different reasons. For a detailed discussion on the risks and challenges of transparency
we refer the interested reader to Weller (2019).

1) Practical advantages of explainability
Explanations can be seen as an additional tool for inspecting and debugging ML models.
In this role they help us to identify models which are malfunctioning or have learned a
strategy which does not match our expectations. In the extreme case, this may lead to
an unmasking of “Clever Hans” predictors1, i.e., models that rely on spurious correlations
and artifacts in the data and do not solve the task they were trained for (Lapuschkin et al.
2019). Such models appear to perform well, but would fail if put to a real test. Explanations
largely facilitate quickly identifying such invalid prediction strategies and finding biases in
the training data (Anders et al. 2020), something which would be very cumbersome or even
practically impossible if using standard performance metrics such as cross-validation. Overall,
being able to explain predictions is of high value to ML practitioners.

2) Social and legal role of explainability
The acceptance of AI technology in sensitive domains such as medicine or autonomous driving
may very much depend on the ability to explain its decisions. Not only users (e.g., patients)
may mistrust a decision or feel uncomfortable if confronted with a black box system, also
for experts (e.g., medical doctors) comprehending the reasoning of an AI-based assistant
system and being able to verify its prediction is an important requirement for accepting new
technologies, in particular if they are the ones who are finally responsible. But even for a
perfect AI system, explanations are very valuable, simply because they are part of human
interaction and enable the users to make informed decisions. Also from a legal perspective,
explainability is of utmost importance, because it concerns anti-discrimination and fairness
aspects. For instance, explanations are a direct way to check that the model does not base
its predictions on certain features (e.g., age or social status) or that it implements consistent
prediction strategies for different groups (e.g., men and women). The EU’s General Data
Protection Regulation (GDPR) explicitly mentions the right to explanation for users subjected
to decisions of an automated processing system (Goodman and Flaxman 2017).

3) Theoretical insights through explainability
Explanations provide also new insights into the data and the model. For instance, Lapuschkin
et al. (2019) analysed the neural network training process on a reinforcement learning task
(Atari Breakout game), and found out that the depth of the architecture and the size of
the replay memory both have a strong effect on the effectivity of the network to learn to

1Clever Hans was a horse that was supposed to be able to perform simple calculations. However, as turned
out later that Hans was not doing the math, but selected the correct answers by watching the body language
of the human who asked the questions and presented the candidate answers. Similar behaviours have been
reported for a competition-winning ML model, which turned out to classify images of a horse by the presence
of a copyright tag (Lapuschkin et al. 2016a); in sequel many further Clever Hans incidents were observed
across the board of various deep learning and other ML models (Lapuschkin et al. 2019).
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focus on the relevant elements (i.e., ball, paddle) of the game. Besides providing insights into
the learned strategies of a model, explanations also allow us to better understand the data.
For instance, knowing that the network is focusing on particular features (e.g., genes) when
predicting the survival times of a patient, may help to discover unknown causal relationships
between these two. The ability of machine learning to uncover such hidden patterns in data
has been demonstrated in the past, e.g., in the context of the Go game (Silver et al. 2016).
Since explanations make learned prediction strategies accessible for human experts, they have
the potential to lead to new scientific insights. Therefore, XAI methods have already been
used in various scientific disciplines (e.g., Thomas et al. (2019); Horst et al. (2019); Schütt
et al. (2017); von Lilienfeld et al. (2020); Reyes et al. (2018)).

1.3 From Explaining Linear Models to General Model Explainability

This section will introduce the problem of explanation and discuss a simple and mathematically
well-founded technique for explaining predictions of linear (and mildly nonlinear) ML models.
After explaining why the generalization of this simple XAI technique to deep neural networks
fails, we will conclude this section with a brief review of state-of-the-art explanation techniques
for deep learning models.

1.3.1 Explainability of Linear Models

Let us consider a simple binary classification setting. Assume we are given a trained ML
model with parameters θ, i.e.,

fθ : Rd → R, (1)

which estimates the class membership of a given input vector X = [x1, . . . , xd]> ∈ Rd by the
sign of the output, i.e., inputs with fθ(X) > 0 are classified as “class 1”, other inputs are
classified as “class 2”. In the following, we assume that fθ is a linear classifier trained to solve
the binary classification task. Thus, fθ has the form

fθ(X) =
d∑
i=1

wixi + b, (2)

with parameters θ = {w1, . . . , wd, b} ∈ Rd+1.

Problem of Explanation: Explaining the prediction of the model for a specific input X
means to determine how much the ith input feature xi (e.g., pixel) has contributed to the
classification decision fθ(X). Thus, an explanation (or heatmap) is a collection of relevance
values of same dimensionality as the input, i.e., [R1, . . . , Rd] ∈ Rd. We want explanations to
have some faithfulness (Swartout and Moore 1993; Samek et al. 2017) w.r.t. the function
fθ(X): in other words, each relevance value Ri ∈ R should indicate how much the ith input
feature xi has contributed to the overall classification decision fθ(X). Although there may
be different ways to measure such a contribution, the explanation must identify and highlight
the features actually used by the model, otherwise it is useless. Consequently, for faithful
explanations we may assume that a perturbation of the relevant features has a detrimental
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effect on the model’s prediction (Samek et al. 2017). Specific quantifiable aspects of the
explanation that relate to faithfulness are:

1. Conservation: The conservation property, e.g. Bach et al. (2015), establishes a
connection between the explanation and the model’s output. Thus, a conservative
explanation allows to interpret the summed up relevance values as the total evidence at
the output of the network:

d∑
i=1

Ri ≈ fθ(X). (3)

Note that the approximate rather than strict equality accounts for potentially unex-
plainable elements of the function such as biases in the linear model in Eq. (2).

2. Model-Data-Interaction: Furthermore, an explanation should reflect the interaction
between the feature and its usage by the model. That means that for one data point
X(1) the ith feature may be present and used by the model (i.e., be relevant for the
decision), whereas for another data point X(2) it may be present but not used by the
model (i.e., be irrelevant for the decision). Thus, in contrast to feature selection (Guyon
and Elisseeff 2003) an input feature can not per se be regarded as relevant or irrelevant.
This property leads to individual explanations.

3. Signed Relevance: Finally, we want relevance values to have a meaningful sign. More
precisely, a positive Ri should indicate a feature xi which is relevant to the prediction
whereas a negative Ri should mark a feature contradicting the decision. For example,
when classify images into urban vs. rest, visual features such as buildings, cars, and
pedestrians would be assigned positive relevance scores, whereas trees or wild animals
would be assigned negative scores as they tend to contradict the predicted class.

For linear models we can easily find an explanation, which fulfills all the above properties,
when defining the contribution of the ith feature as the ith summand in (2), i.e.,

Ri = wixi. (4)

There are numerous other desirable properties of explanations proposed in the literature
(Swartout and Moore 1993; Baehrens et al. 2010; Shrikumar et al. 2016; Montavon et al. 2018;
Robnik-Šikonja and Bohanec 2018), however, a commonly accepted mathematical definition
of what explanations are and which axioms they need to fulfill is still lacking. Therefore, we
do not aim to introduce a rigorous axiomatic definition of an explanation in this chapter.
However, we would like to note that many popular explanation techniques do not fulfill
the properties described above, even for linear models. For instance, sensitivity analysis
(e.g., Baehrens et al. (2010); Simonyan et al. (2013)) computes values Ri indicating how
much changes in an input feature translate in changes in the output. For linear models the
sensitivity score for the ith input feature is simply wi, i.e., it is constant with respect to the
input X. Thus, sensitivity-based explanations neither reflect the interaction between the
feature and the model nor are they convervative or provide a meaningful interpretation of
the sign.
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1.3.2 Generalizing Explainability to Non-Linear Models

Practical machine learning models are often nonlinear. For example, kernel machines expose
the input features through a nonlinear feature map and deep neural networks interleave linear
projections with nonlinear activation functions. The resulting output is a complex, interwoven
mixture of the input features which are often more capable of learning the prediction task.

When the function is nonlinear but remains locally linear, explanations can be obtained
using the well-known Taylor expansion. The latter offers a generic tool to decompose the
prediction in terms of elements of a linear sum. If the function fθ : Rd → R is twice
continuously differentiable at the reference point X̃ ∈ Rd, then it can be decomposed as

fθ(X) = fθ(X̃) +
d∑
i=1

(xi − x̃i) · [∇fθ(X̃)]i︸ ︷︷ ︸
Ri

+ ε (5)

with ε = O(‖X − X̃‖2) as X → X̃, (6)

where contributions Ri can be identified from the first-order terms, and where ε denotes the
higher-order terms. For a well-chosen reference point with fθ(X̃) = 0 (i.e., root point) and
small enough higher-order terms, we can explain the predictions of the non-linear model in
terms of relevance values Ri, while retaining approximately the conservation property

fθ(X) ≈
d∑
i=1

Ri, (7)

which we also had for the linear case (up to the linear function’s bias term). Note that the
solution in (4) can be regarded as a special case of the Taylor-based decomposition with
reference point X̃ = 0.

Thus, Taylor expansion offers a generic mathematical tool to decompose a prediction
into dimension-wise contributions. But does this method produce meaningful explanations
for any nonlinear function? Unfortunately this is not the case. The Taylor approach only
provides meaningful decompositions for simple (e.g., locally linear) nonlinear models. It fails
to produce meaningful explanations for functions which are highly nonlinear.

For example, the function f(x, y) = x · y is dominated by second-order terms near the
origin (x and y only matter jointly). Also for piecewise linear models, e.g., deep neural
networks with ReLU activations, this naive Taylor-based decomposition has been shown to
provide low-quality explanations (Montavon et al. 2018; Samek et al. 2020). The first problem
arises from the complexity of the neural network function and the high-dimensional space to
which it is applied. In these high dimensions many root points X̃ are potentially reachable,
however, only a few of them are truly meaningful (close enough, lying on data manifold etc.).
Deep neural networks are known to lack robustness to inputs lying outside the data manifold
(i.e., adversarial examples), thus selecting a reference point which lies even slightly outside of
this complex manifold can lead to unintended behaviour of the model, resulting in noisy and
uninformative explanations. For ReLU-based networks without bias, choosing a reference
point X̃ = δX is valid2 for any positive value of δ, and the non-explainable zero-order term

2The resulting reference point X̃ lies on the same linear region as the point X (Montavon et al. 2018).
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vanishes in the limit of δ → 0, hence leading to an explanation that satisfies conservation.
We note however that the reference point is in most cases quite far away from the input
sample X, and hence, it does not sufficiently contextualize the prediction, causing spurious
negative relevance scores. Furthermore, due to the multiscale and distributed nature of neural
network representations, its predictions are a combination of local and global effects. The
combination of the two effects introduces a nonlinearity, which is impossible to capture by
one single linear expansion. Finally, the high complexity of today’s deep models often results
in a shattered gradients effect (Balduzzi et al. 2017). Thus, methods relying on gradients (as
the Taylor expansion in (5)) will systematically produce noisy explanations.

In summary, one can say that the Taylor-based decomposition provides a principled way to
decompose a function into dimension-wise contributions, but it only works well for relatively
simple (nonlinear) functions.

1.3.3 Short Survey on Explanation Methods

To address the challenge of explaining nonlinear models and overcome the difficulties mentioned
above, a number of approaches have been proposed. This section gives a brief overview
of the different approaches proposed in the context of deep neural networks. As done in
Samek and Müller (2019) we categorize the methods into three classes: surrogate-based,
perturbation-based, and propagation-based explanation methods.

We have seen in Section 1.3.1 that simple linear classifiers are intrinsically explainable,
because they can readily be decomposed as a sum over individual dimensions. Surrogate-
based XAI methods utilize this property and explain predictions of complex classifiers by
locally approximating them with a simple surrogate function, which is interpretable. Local
Interpretable Model-agnostic Explanations (LIME) (Ribeiro et al. 2016) is the most popular
explanation technique falling into this category. While LIME has the advantage of being
model-agnostic, i.e., it applies to any black-box model without requiring access to its internal
structure, one needs to collect a sample of input-output pairs to build the surrogate. This
can be computationally expensive and the result may depend on the sample.

The second class of XAI methods constructs explanations from the model’s response to
local changes, e.g. some coarse perturbations (Zeiler and Fergus 2014; Zintgraf et al. 2017;
Lundberg and Lee 2017), or directly the gradient which can be computed cheaply (Baehrens
et al. 2010; Simonyan et al. 2013; Shrikumar et al. 2016). To address the gradient noise and
its locality, averaging approaches such as SmoothGrad (Smilkov et al. 2017) or Integrated
Gradients (Sundararajan et al. 2017) have been proposed, which improve explanation quality
compared to the sole gradient, although averaging incurs an additional computational cost.
Additionally, the perturbation approach can also be expressed as an optimization problem
(Fong and Vedaldi 2017; Chang et al. 2018; Macdonald et al. 2019), for example, by trying to
identify the minimal set of relevant input features, e.g., features which leave the expected
classifier score nearly constant when randomising the remaining (non-relevant) features.

Finally, propagation-based methods, such as Layer-wise Relevance Propagation (Bach
et al. 2015) explain decisions of neural networks by utilizing the internal structure of the
model, specifically, by running a purposely designed backward pass in the network. They
give robust explanations and can be computed quickly in the order of a single backward pass.
Furthermore, they overcome many of the disadvantages of the other explanation techniques,
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e.g., they do not require sampling and do not have the problem of gradient shattering. The
price to pay for the advantageous properties is the reliance on the structure of the model
(i.e., these methods are not model-agnostic and require to carefully design the backward
pass to take into account the specificity of each layer in the network). More recent work has
focused on systematizing the design of the backward pass (Montavon et al. 2017, 2019) and
on extending the approach beyond neural networks (Kauffmann et al. 2019, 2020).

Besides developing novel explanation methods, several works have also focused on com-
paring existing XAI techniques using objective evaluation criteria. For instance, Samek et al.
(2017) measured the quality of explanations using “pixel-flipping”. Some authors consider
proxy tasks for evaluation (Doshi-Velez and Kim 2017), e.g. using the explanation for local-
ization tasks (Zhang et al. 2016). Other authors evaluated explanations using ground-truth
information from a synthetic dataset (Osman et al. 2020). Yet other works assess explanation
methods based on the fulfillment of certain axioms (Sundararajan et al. 2017; Lundberg
and Lee 2017; Montavon 2019). Although the evaluation of XAI is still an ongoing research
topic, propagation-based explanation techniques have already demonstrated their strength in
various practical settings.

A recent trend is also to move from individual explanations to dataset-wide explanations,
that are presented to the user in a way that provides insight into the internal representation
or the set of learned behaviours of the classifier. For instance, Lapuschkin et al. (2019)
propose a technique for (semi-)automatically searching for interesting patterns in a set of
explanations. Other works project explanations of the neural network onto more abstract
semantic concepts that can be understood by a human (Bau et al. 2017; Kim et al. 2018) or
strive for an interaction with the human user (Baehrens et al. 2010; Hansen et al. 2011), etc.

1.4 Layer-wise Relevance Propagation: Better Explanations
by Leveraging Structure

Layer-wise relevance propagation (LRP) (Bach et al. 2015; Montavon et al. 2019) is a XAI
method which assumes that the ML model has a layered neural network structure, and
leverages this structure to produce robust explanations at low computational cost. LRP
implements a reverse propagation procedure from the output of the network to the input
features (Lapuschkin et al. 2016b; Alber et al. 2019). The propagation is implemented as a
collection of redistribution rules applied at each layer of the network. In contrast to many
other XAI methods, which rely on sampling or optimization, LRP computes explanations
in the order of one backward pass. This allows for fast GPU-based implementations (Alber
et al. 2019) where hundreds of explanations can be computed per second. Furthermore, as
we will see in Section 1.4.2, the propagation procedure used by LRP can be embedded in the
framework of deep Taylor decomposition (Montavon et al. 2017), which views the backward
pass as performing a multitude of Taylor expansions at each layer. Each of these Taylor
expansions is simple and tractable, and consequently it conceptually overcomes the various
difficulties (finding good reference points, gradient shattering) encountered with the global
Taylor expansion approach presented in Section 1.3.2.

By viewing LRP from the perspective of Taylor expansions, it is natural that certain
desirable properties of an explanation such as conservation will be inherited. In fact, LRP
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propagation rules will be shown to enforce the conservation locally at each neuron, and by
extension, this also ensures conservation on a coarser level, e.g. between two consecutive
layers, and more globally from the neural network output to the neural network input3. Thus,
LRP ensures that the total evidence for the decision taken by the model is redistributed, i.e.,
no evidence is added or removed through the propagation process. Mathematically, we can
express this layer-wise conservation property of LRP as

f(X) = f(x[0]) ≈
nL∑
k=0

R
[L]
k = . . . =

n0∑
i=0

R
[0]
i , (8)

where [l] and nl denote the superscript index and input dimension of considered layer l, for
l = 0, . . . , L. In the following we show how this redistribution process is implemented in
convolutional and recurrent neural networks and how it can be viewed as a layer-wise Taylor
expansion of the relevance model R[i]

k = r̂k(x[i−1]), i.e., a simple function r̂k which computes
the relevance of entry/channel k at layer i given the feature map x[i−1] of layer i− 1, around
a meaningful root point.

1.4.1 LRP in Convolutional Neural Networks

Figure 1.1 illustrates the propagation procedure implemented by LRP for a convolutional
neural network. First, the neural network classifies the input, e.g., an image of a rooster.
In order to do so, it passes the individual pixel values through a set of convolutional layers,
before the resulting activation pattern is classified using fully-connected layers. At every
layer i, activations are computed as

x
[i]
k = σ

( ni−1∑
j=1

x
[i−1]
j w

[i]
jk + b

[i]
k

)
, (9)

where σ(x) = max (0, x) is the ReLU activation function and the sum runs over all lower-layer
activations x[i−1]

j , plus an extra bias term b
[i]
k . The activation(s) at the output layer can be

interpreted as the total evidence for the presence of a given class. If we aim to explain the
network’s decision, then the prediction output (pre-softmax) is used to initialize the last
layer’s relevance value R[L]

k . If the network’s prediction is wrong or if we want to investigate
the model’s view on alternative decisions (e.g., identify features R[0]

i > 0 speaking for the
presence of a specific class), it may be useful to initialize the last layer’s relevance value in a
different way (e.g., use the ground truth label). In the example illustrated in Figure 1.1 the
classification decision is correct (“rooster”), thus we initialize the last layer’s relevance value
with the pre-softmax value of the neuron associated with the class “rooster”.

In the next step, the backward propagation procedure starts, i.e., the relevance values
from the upper-layer are redistributed to the lower-layer neurons. LRP redistributes the

3Practically, conservation holds only approximately, due to the possible presence of bias terms at each
layer. The latter receive some share of the redistributed evidence (we denote the relevance assigned to the
biases at each layer through the 0th summation index in (8)). Also certain LRP rules dissipate relevance by
design to improve the signal-to-noise ratio of the explanation (e.g., the LRP-ε rule, see later).
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relevance values proportionally to the contribution of neurons in the forward pass, i.e.,

R
[i−1]
j =

ni∑
k=1

z
[i]
jk∑ni−1

l=1 z
[i]
lk + b

[i]
k

R
[i]
k , (10)

where R[i]
k denotes the relevance values of the upper-layer (already known) and R[i−1]

j stands
for the newly computed relevance values of the lower-layer neurons. In this generic formula
z

[i]
jk represents the extent to which neuron j from layer i− 1 has contributed to make neuron
k at layer i relevant.

The abstract redistribution rule described in (10) is general enough to be applicable to
almost any ML model, including convolutional and recurrent neural networks. In practice,
the choice of propagation rule must be done carefully for the explanation method to properly
handle the different layer types (Montavon et al. 2018, 2019). Table 1.1 summarizes different
redistribution rules proposed for CNNs. Since the last two layers of the network depicted
in Figure 1.1 are fully-connected layers, we instantiate the general formulation with the
LRP-ε redistribution rule. Additionally, for the lower convolutional layers we use a different
redistribution rule, namely the LRP-αβ rule with α = 1 and β = 0. A justification of this
layer type specificity of LRP will be provided in Section 1.4.2. The result of the redistribution
process is a heatmap highlighting the pixels which have contributed the most to the model’s
decision that the image belongs to the class “rooster”. We see that the rooster’s head
and comb are the most relevant features for this decision. In the following we will discuss
specific instances of the redistribution rule for different layer types (fc, conv, input layer)
of a convolutional neural network. Section 1.4.3 will separately treat the redistribution of
relevance through product layers, which are present in LSTM networks.

The Basic Rule (LRP-0) and Epsilon Rule (LRP-ε) (Bach et al. 2015) redistribute
the relevance in proportion to two factors, namely the activations of lower-layer neurons
and the connection strengths (weights). The intuition behind these rules is that neurons
which are more activated during prediction encode something about the input, e.g., features
present in the image such as the rooster’s comb, and should therefore receive a larger share
of relevance than neurons which are not activated (note that with ReLU nonlinearities
activations are positive or zero). Since the activation patterns will vary for different inputs,
these redistribution rules will produce individual explanations for each input. However, since
features may be present but be irrelevant for the task, activations are not the only criterion
to guide the relevance redistribution process. The connections between neurons (weights)
reflect the integration of the encoded low-level features into higher-level concepts (and finally
into the prediction) and should be therefore also taken into account when explaining model
decisions. Therefore, both rules redistribute relevance in proportion to the activations of
lower-layer neurons and the connection strengths (model-data-interaction). The LRP-ε rule
includes a small non-zero term ε in the denominator. This additional term stabilizes the
redistribution process by absorbing some relevance when the contributions to the activation
of neuron k are weak or contradictory.

Two rules which distinguish between the supporting (positive relevance) and contradicting
(negative relevance) explanatory factors are LRP-αβ (Bach et al. 2015) and LRP-γ (Montavon
et al. 2019). These rules are also based on the strength of the activations and the weight
values. By setting the α, β and γ parameters appropriately, we can control how much positive
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LRP backward passforward pass

LRP backward passforward pass

LRP-   redistribution rule

LRP-        redistribution rule

forward pass

Fully-connected layers

forward pass

Convolutional layers

prediction
"rooster"

Input Heatmap

Figure 1.1: Illustration of the LRP procedure for a CNN. Each neuron redistributes as much relevance to the
lower-layer as it has received from the higher layer, i.e., no relevance is lost or artificially added in the explanation
process.

relevance is redistributed relative to the negative one (and vice versa). Note that as the γ
parameter goes to infinity, LRP-γ approaches LRP-αβ with α = 1 and β = 0.

The other rules shown in Table 1.1 are flat redistribution and two redistribution rules
satisfying different requirements on the first layer. While the flat redistribution rule can
be used to reduce the spatial resolution of heatmaps (by simply uniformly redistributing
relevance from some intermediate layer onto the input), the zB- and w2-rule are derived
from the deep Taylor decomposition framework (DTD) (Montavon et al. 2017). Almost all
redistribution rules in Table 1.1 can be embedded into the DTD framework and interpreted
as performing a local Taylor decomposition with specific assumptions on the reference point
(see Section 1.4.2). This theoretic foundation of LRP is a strength of the method, because it
allows one to design specific optimal rules for different neural network layers (see discussion

11
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in Montavon et al. (2019); Kohlbrenner et al. (2020)). Finally, there are two types of layers
that are also commonly encountered in practical convolutional neural networks: pooling
layers and batch normalization layers. For max-pooling layers, we can redistribute based
on a simple winner-take-all scheme. For average pooling layers, we note that they are a
particular instance of a linear layer with positive constant weights and therefore, the rules
that have been defined for linear layers can also be used. Batch-normalization layers are
typically treated by fusing them with the fully-connected or convolution layer they connect
to (Montavon et al. 2019). This fusing is done after training but before applying LRP, so
that LRP only sees an alternation of convolution/fully-connected, ReLU and pooling layers.

Table 1.1: Overview of different LRP redistribution rules for CNNs. For better readability we include a 0th index
term with x[i−1]

0 := 1 and w[i]
0k := b

[i]
k . We use the following notation (x)+ = max(0, x) and (x)− = min(0, x).

Name Redistribution Rule Usage DTD

LRP-0
(Bach et al. 2015) R

[i−1]
j =

ni∑
k=1

x
[i−1]
j w

[i]
jk∑ni−1

l=0 x
[i−1]
l w

[i]
lk

R
[i]
k fc layers X

LRP-ε
(Bach et al. 2015) R

[i−1]
j =

ni∑
k=1

x
[i−1]
j w

[i]
jk

εk +∑ni−1
l=0 x

[i−1]
l w

[i]
lk

R
[i]
k fc layers X

LRP-γ
(Montavon et al.

2019)
R

[i−1]
j =

ni∑
k=1

x
[i−1]
j (w[i]

jk + γ(w[i]
jk)+)∑ni−1

l=0 x
[i−1]
l (w[i]

lk + γ(w[i]
lk )+)

R
[i]
k conv layers X

LRP-αβ
(s.t. α− β = 1)
(Bach et al. 2015)

R
[i−1]
j =

ni∑
k=1

(
α

(x[i−1]
j w

[i]
jk)+∑ni−1

l=0 (x[i−1]
l w

[i]
lk )+
−β

(x[i−1]
j w

[i]
jk)−∑ni−1

l=0 (x[i−1]
l w

[i]
lk )−

)
R

[i]
k conv layers

×
(except α = 1,

β = 0)

flat
(Lapuschkin et al.

2019)
R

[i−1]
j =

ni∑
k=1

1
ni−1

R
[i]
k

decrease
resolution ×

w2-rule
(Montavon et al.

2017)
R

[0]
i =

n1∑
j=1

(w[1]
ij )2∑n0

l=1(w
[1]
lj )2

R
[1]
j

first layer
(Rd) X

zB-rule
(Montavon et al.

2017)
R

[0]
i =

n1∑
j=1

x
[0]
i w

[1]
ij − li(w

[1]
ij )+ − hi(w[1]

ij )−∑n0
l=1 x

[0]
l w

[1]
lj − li(w

[1]
lj )+ − hi(w[1]

lj )−
R

[1]
j

first layer
(pixels) X

1.4.2 Theoretical Interpretation of the LRP Redistribution Process

This section presents the embedding of LRP into the theoretical framework of Deep Taylor
Decomposition (DTD) (Montavon et al. 2017) and shows that the redistribution rules
introduced in the last section correspond to a particular Taylor expansion performed locally
at the neuron. This match between the algorithmic view (LRP) and the theoretic view (DTD)
on the explanation problem gives us the possibility to design redistribution rules tailored to
each specific layer type of the CNN.
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We have seen that Taylor expansion allows to represent a function as a sum of zeroth,
first and high order terms (cf. Eq. (5)). If the reference point X̃ is chosen wisely, one can use
the expansion to decompose the function value in terms of dimension-wise contributions (Eq.
(7)). However, as discussed in Section 1.3.2 most of such Taylor decompositions are unreliable
for deep neural networks due to the gradient shattering problem, the combination of local
and global effects and the difficulty to find a good reference point. Thus, although Taylor
decomposition is an appropriate mathematical tool to determine dimension-wise contributions,
it does not work reliably when trying to explain the deep neural network function in one step,
i.e., when trying to linearly approximate its complex input-output relation.

The DTD method, makes use of Taylor expansions, but leverages the deep layered structure
of the model. Specifically, DTD uses Taylor expansion not to attribute directly the network
output on its input (which we have shown to be instable) but at each layer to attribute the
relevance scores R[i]

k to the neurons x[i−1] in the layer just below. This local attribution task
can be interpreted as relevance messages that flow between the neurons of the two consecutive
layers.

Technically, DTD provides the theoretical framework for LRP in the following way: (1)
the relevance R[i]

k at each layer is mainly driven by local activations and we can therefore
approximate it locally using a relevance function R

[i]
k = r̂k(x[i−1]). (2) First-order Taylor

expansion of the relevance function lead to a layer-wise redistribution scheme that corresponds
to various LRP rules for appropriate choices of reference points. These two aspects of DTD
are described in detail in the following.

Relevance Function

The relevance R[i]
k of neuron k at layer i is a deterministic function rk of the activations x[i−1]

at lower-level i− 1, i.e.,

R
[i]
k = rk(x[i−1]). (11)

This is due to the fact that both the forward propagation through the neural network as well
as the backward relevance redistribution are deterministic processes. We only need to know
the activations at layer i − 1 in order to compute all the activations and relevance values
from layer i to the output layer L.

As discussed in Section 1.3.2, Taylor decomposition offers a principled way to determine
the dimension-wise contributions of neurons at layer i−1 to the relevance value R[i]

k . However,
the Taylor-based redistribution only works reliably for simple functions rk(x[i−1]). The
rk(x[i−1]) function is in fact quite complex, because it includes the forward progagation from
layer i to the output layer L as well as the relevance redistribution from the output layer L
to layer i.

A key insight of DTD is that the relevance function rk(x[i−1]) can be approximated locally
by the simple relevance model r̂k(x[i−1]) defined as:

r̂k(x[i−1]) = x
[i]
k · c

[i]
k

= max
(
0,∑ni−1

j=1 x
[i−1]
j w

[i]
jk + b

[i]
k

)
· c[i]
k , (12)
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where c[i]
k is a constant. The approximation holds for the last layer L, where the relevance

of the output neuron is initialized to be the prediction (pre-softmax) output (R[L]
k = x

[L]
k ).

Here the constant c[L]
k is simply 1. Thus, for the last layer we can safely use the Taylor-based

redistribution approach.
The question arises whether the approximation still holds for the lower layers, assuming

that we have applied LRP in the higher layers. Take for example the LRP-γ rule. If the
approximation holds in the layer above, application of LRP-γ result in the relevance scores:

R
[i−1]
j =

ni∑
k=1

x
[i−1]
j (w[i]

jk + γ(w[i]
jk)+)∑ni−1

l=0 x
[i−1]
l (w[i]

lk + γ(w[i]
lk )+)

R
[i]
k

= x
[i−1]
j

ni∑
k=1

(w[i]
jk + γ(w[i]

jk)+)
max

(
0,∑ni−1

l=0 x
[i−1]
l w

[i]
lk

)
∑ni−1
l=0 x

[i−1]
l (w[i]

lk + γ(w[i]
lk )+)

c
[i]
k

where we observe that the activation x
[i−1]
j is multiplied by a term whose dependence on

activations is diluted by two nested sums. This argument supports the modeling of that term
as constant in that lower layer as well. Then, by induction, the approximation continues to
hold at each layer. A similar argument can be made for the propagation rules LRP-0 and
LRP-ε.

Taylor-based Redistribution and LRP Rules

Having shown that application of LRP at each layer produces the desired structure of
relevance, we now focus on the attribution of this relevance on the layer below by means of
a Taylor expansion. The relevance function r̂k(x[i−1]) shown in Eq. (12) is a rescaled ReLU
neuron taking the lower-layer activations as input. Hence, it consists of two linear pieces
corresponding to the activated and deactivated domains. For the deactivated domain, there
is no relevance to redistribute. For the activated domain, we consider some reference point
x̃[i−1] (also on the activated domain), and a Taylor expansion at this point gives:

R
[i]
k ≈ r̂k(x[i−1]) = r̂k(x̃[i−1]) +

ni−1∑
j=1

(x[i−1]
j − x̃[i−1]

j ) · [∇r̂k(x̃[i−1])]j︸ ︷︷ ︸
R

[i]→[i−1]
k→j

+ ε︸︷︷︸
0

. (13)

The first-order terms R[i]→[i−1]
k→j determine how much of R[i]

k should be redistributed on the
neuron j of the lower-layer. Thus, this formulation is equivalent to the one in Eq. (5), however,
here we determine the relevance redistributed between two adjacent layers (i and i − 1),
whereas in (5) we tried to determine the relevance redistributed between the output and
input of the network. The redistribution process between two adjacent layers turns out to be
much simpler than the one between output and input (i.e., no gradient shattering, easy to
find root point etc.). Note that due to the linearity of the ReLU function on its activated
domain (see (12)) higher order terms vanish (i.e., ε = 0). It can be easily seen that the
first-order terms reduce to

R
[i]→[i−1]
k→j = (x[i−1]

j − x̃[i−1]
j ) · w[i]

jk c
[i]
k .
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From this equation, various LRP propagation rules can be recovered. For example, choosing
the reference point x̃[i−1] = δ · x[i−1] with δ a small positive number gives the LRP-ε rule
with δ = ε(x[i]

k + ε)−1 (Montavon et al. 2019), we recover the LRP-0 rule in the limit
of δ → 0. The LRP-γ rule is instead obtained by searching the root point on the line
{x[i−1] − tx[i−1] � (1 + γ1

w
[i]
k
�0)} (Montavon et al. 2019).

This connection between LRP propagation rules and choices of root points in the DTD
framework gives a different perspective on how to choose propagation rules at each layer.
These LRP rules no longer appear to be heuristically defined. For example, we can show
that LRP-0/ε/γ all correspond to a root point whose components are positive. Hence, these
rules can be justified as being suitable for use in layers that receive positive quantities, e.g.
ReLU activations, as input. Furthermore, LRP rules can be designed directly from the DTD
framework, e.g. by choosing root points that satisfy membership to particular domains. For
example, the zB-rule and the w2-rule (shown in Table 1.1) have been originally derived from
the DTD framework, where the root point is chosen in the first case to satisfy pixel values
box-constraints, or in the second case, not subject to any domain constraint. More details on
DTD including proofs can be found in (Montavon et al. 2017).

Choosing LRP Rules in Practice

LRP-0 (Bach et al. 2015) is the simplest rule provided by LRP. It is conservative (except for
biases) and gives equal treatment to positive and negative contributions. In practice, LRP-0
leads to explanations that closely follow the function and its gradient (see also Shrikumar
et al. (2016); Montavon (2019)). When the network becomes complex and deep, LRP-0
becomes exposed to the problem of shattered gradients, which causes the explanation to
become noisy. In the DTD framework, such noisy behavior can be explained by LRP-0 being
associated to a root point at the origin, which is far from actual data point, and thus likely
to bring irrelevant factors into the explanation. Hence, LRP-0 should be reserved only for
simple functions (e.g. the very top layers of a CNN).

The LRP-ε rule (Bach et al. 2015) stabilizes the redistribution process by adding a constant
to the denominator. This has a sparsification effect, where the relevance of neurons with
weak net contributions is driven to zero by the stabilization term. We have observed that the
LRP-ε works well for redistribution in fully-connected layers present in the top layers of the
neural network and also in the top-most convolution layers. In the DTD framework, the gain
in stability can be explained by the fact that the root point lies now closer to the data point
and thus provides a better contextualization for the explanation.

Convolutional layers of a CNN exhibit strong levels of nonlinearity, especially due to the
stacking of many of these layers. In practice, it can be difficult to fully identify the individual
positive or negative effect of each pixel. Instead, it is more practical to assign relevance to
a collection of pixels, modeling their combined relevance. This behavior of the explanation
can be induced by imposing a preference for positive contributions over negative ones. Two
rules that impose a different treatment between the positive and negative contributions are
LRP-αβ (Bach et al. 2015) and LRP-γ (Montavon et al. 2019), and they are both suitable for
these lower-level layers. LRP-γ in particular, has a DTD interpretation and the corresponding
root point is at the ReLU hinge and relatively close to the data point. Hence, like for LRP-ε,
the benefit of LRP-γ can again be understood as better contextualizing the explanation.
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LRP-γ and LRP-αβ assume positive inputs. This is the case for most convolution layers
building on ReLU neurons, but not in the first layer where the input can be e.g. pixel scores
that are potentially negative. For these special input layers, purposely designed propagation
rules such as the w2-rule or the zB-rule (Montavon et al. 2017) (cf. Table 1.1) are more suitable.
Finally, if we simply want to highlight the receptive fields rather than the contributing features
within the receptive field, the ‘flat’ redistribution rule (Lapuschkin et al. 2019) is appropriate.

Besides, while in this section and section 1.4.1 we highlighted the layer-specific application
of the LRP rules on a typical CNN for image classification (according to Montavon et al. (2019);
Kohlbrenner et al. (2020)), another configuration of LRP rules might be more appropriate
for other network architectures or tasks. For example, the LRP-ε rule was found to work well
on a word-embedding based CNN for text classification (Arras et al. 2017a). Furthermore,
while LRP-α1β0 tends to produce explanations with somewhat too low selectivity on a typical
CNN for the task of image classification, the same rule was shown to work very well in the
context of explanation-based pruning of CNNs (Yeom et al. 2019), as well as on the CNN
based Relation Network model (Osman et al. 2020) we will use for visual question answering
in our experimental section 1.5.

More generally, when faced with a novel neural network model or task, and if the network
is built upon ReLU activations, then a default configuration that can be tried is to apply
the LRP-αβ rule with α = 1, β = 0 in every hidden layer. LRP-αβ with parameters fixed
to α = 1 and β = 0 considers only positively contributing neurons and delivers positive-
valued relevances, and compared to LRP-ε and LRP-γ has the advantage of having no
free hyperparameter. Furthermore, if an objective assessement of explanation quality is
available for a given task, then it is possible to try various combinations of LRP rules
and hyperparameters and run an actual hyperparameter selection procedure to optimize
explanation for that particular task. In that sense, the multiple hyperparameters provided
by LRP can prove very useful to address the exact application’s needs.

We now turn to the application of LRP to LSTM networks.

1.4.3 Extending LRP to LSTM Networks

Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) networks are popular
deep models for processing sequential inputs such as biomedical time series, genetic sequences
or textual data. These models consist of a memory cell storing an internal state. Figure 1.2
displays such a LSTM memory cell. In the forward pass this cell processes the input and
sends it through the input gate

zt = g (Wz xt + Uz yt−1 + bz) cell input (14)
it = σ (Wi xt + Ui yt−1 + bi) input gate (15)

where xt is the input vector at time t, and zt and it are the corresponding cell input and
input gate activations, respectively. The input gate together with the forget gate control and
update the cell state

ft = σ (Wf xt + Uf yt−1 + bf ) forget gate (16)
ct = it � zt + ft � ct−1 cell state (17)
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Figure 1.2: Illustration of the LRP procedure for a LSTM. Each neuron, including product neurons, redistributes
to the input neurons as much as it has received from the higher layer (sketch of the LSTM cell from (Arras et al.
2019a)).

which itself has an influence on the output of the LSTM cell

ot = σ (Wo xt + Uo yt−1 + bo) output gate (18)
yt = ot � h (ct) cell output (19)

Thus, the LSTM output yt depends on the actual input xt as well as the cell state ct. Both
factors are connected through a point-wise multiplication (denoted as �). The activation
functions g, h are typically tanh or sigmoid, and the gate activation σ is a sigmoid.

For applying the LRP propagation principle to LSTMs, the same redistribution rules
which were proposed for convolutional neural networks with ReLU activation (as introduced
in Table 1.1) can also be employed in the LSTM to redistribute the relevance through linear
layers followed by an element-wise activation (even though the LSTM network typically uses
different activation functions than ReLU). In particular, previous works relied on the LRP-ε
rule for that purpose (Arras et al. 2017b; Ding et al. 2017; Arjona-Medina et al. 2019), i.e., the
rule which is recommended for dense layers in CNNs, and which provides a signed relevance.
This means that in practice linear layers redirect the higher-layer relevance proportionally to

17



Wojciech Samek, Leila Arras, Ahmed Osman, Grégoire Montavon, Klaus-Robert Müller

the neuron forward pass contributions (i.e., the neuron’s activated value times the connection
weight), while through element-wise activation layers the relevance is backward propagated
identically (no relevance redirection through such layers).

Besides, a novel challenge arises when explaining LSTM networks (as well as other gated
recurrent networks): it comes from the point-wise multiplicative connections. To handle such
non-linearities in the LRP backward redistribution process, authors have proposed several
redistribution rules verifying the layer-wise relevance conservation property of LRP (Arras
et al. 2017b; Ding et al. 2017; Arjona-Medina et al. 2019). Denoting by xk such a product
neuron in the forward pass, we note that it has the form

xk = xg · xj, (20)

where xg denotes a sigmoid activated gate neuron, and xj, the remaining neuron, is a signal
neuron. Per design of the LSTM network (Hochreiter and Schmidhuber 1997), the role of
the gate is to control the flow of the information in the LSTM cell (let the information pass
if open, or don’t pass if closed), while the signal neuron carries the information itself; this
information is either conveyed by the cell input, or stored in the LSTM cell’s memory via
the cell state. A similar configuration for products can also be found in other popular gated
recurrent networks, like e.g., GRUs (Cho et al. 2014).

Given the upper-layer relevance Rk of the neuron xk, three alternatives rules can be used
to redistribute this quantity onto the input neurons xg and xj. These rules are illustrated in
Figure 1.2 (right), for the particular case of the product between input gate i and cell input
z.
LRP-all: One rule proposed by Arras et al. (2017b) assigns all the relevance to the signal
neuron, i.e., Rj = Rk and Rg = 0. This redistribution follows a signal-take-all strategy. It
is based on the idea that gates could be considered as connection weights (although their
value is not constant). Accordingly, they influence the LRP redistribution process through
the computation of Rk (which, via the relevance redistribution in the next higher linear layer,
is proportional to xk and thus also depends on xg), but they don’t get a relevance value
assigned per-se, since their expected role in the LSTM forward pass is only to reweight the
value of the signal xj.
LRP-prop: The rule proposed by Ding et al. (2017) redistributes the relevance proportionally
to the neurons activated values, i.e., Rj = xj

xj+xg
Rk and Rg = xg

xj+xg
Rk.

LRP-half: A rule proposed by Arjona-Medina et al. (2019) redistributes the relevance
equally, i.e., Rj = Rg = 0.5Rk.
On commonly used LSTMs (Greff et al. 2017) that follow the structure given by equations
(14)-(19) and that use the tanh non-linearity for the cell input and output (functions g and
h in (14) and (19)), Arras et al. (2019b,a) carefully compared these three redistribution rules
in simulations and experiments with real-world NLP data. The qualitative and quantitative
results showed a clear superiority of the LRP-all rule4 (Arras et al. 2017b) over LRP-prop
and LRP-half. Independent works also successfully applied the LRP-all redistribution rule

4Note though that on non-standard customized LSTM models, as were introduced in Arjona-Medina et al.
(2019); Arras et al. (2019a), other LRP rules for product neurons can become advantageous over LRP-all.
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to LSTMs on a synthetic task, in the medical domain (Yang et al. 2018), as well as in NLP
(Poerner et al. 2018) and in computer security (Warnecke et al. 2020), demonstrating the
resulting LRP explanations are superior to other explanations methods for recurrent neural
networks.

DTD Interpretation

In the following we will show that the LRP-all rule can further be motivated under the
theoretical framework of Deep Taylor Decomposition (Montavon et al. 2017), as was proposed
in Arras et al. (2019a). Let us introduce the neuron pre-activations zg and zj , for the neurons
xg and xj, respectively, and consider a product of neurons where the signal is tanh activated

xk = sigm(zg) · tanh(zj).

Suppose the relevance of the product neuron Rk(zg, zj), as a function of pre-activations, can
be approximated by a simple relevance model of the form:

R̂k(zg, zj) = sigm(zg) · tanh(zj) · ck = xk · ck,

where ck is a constant, such that Rk(zg, zj) = R̂k(zg, zj) locally. This is the generic relevance
form assumed by the DTD framework (Montavon et al. 2017). By performing a Taylor
expansion of this relevance model at a root point (z̃g, z̃j), we obtain:

R̂k(zg, zj) = R̂k(z̃g, z̃j) (= 0)
+ sigm′(z̃g) · tanh(z̃j) · ck · (zg − z̃g) (= Rg)
+ sigm(z̃g) · tanh′(z̃j) · ck · (zj − z̃j) (= Rj)
+ ε

Using the nearest root point in the space of pre-activations (Arras et al. 2019a), which is
given by z̃j = 0 and z̃g = zg, it follows the LRP-all rule: Rg = 0 and Rj = R̂k. Moreover,
using this root point, higher order terms of the form (zg − z̃g)k as well as the interaction
terms (zg− z̃g)...(zj− z̃j)... vanish, thus the error term ε only depends on the signal variable zj .
In other words, if the tanh activation is working near its linear regime, then the error term
ε in the LRP decomposition is negligible (no matter whether the gate’s sigmoid activation
is saturated or not). Lastly, if instead of using a tanh activation for the signal neuron, one
would use a ReLU activation for example, then the approximation error would be exactly
zero in this case (i.e., ε = 0). For more information on the various DTD relevance models for
different signal activation functions we refer to (Arras et al. 2019a).

1.5 Explaining a Visual Question Answering Model

This section demonstrates the ability of LRP to explain the decisions of a complex model
trained for visual question answering (VQA) with the CLEVR dataset (Johnson et al. 2017a).
VQA is a multi-modal task at the intersection between nature language processing and
computer vision: the model is fed with an image and a textual question about that image,
and is asked to predict the answer to that question, either with a single word or in free-form
text.
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Dataset and Model

The CLEVR dataset is a synthetic VQA task which was proposed by Johnson et al. (2017a)
to avoid the biases present in VQA benchmarks based on real-world images (Antol et al.
2015; Goyal et al. 2017): its primary goal was to diagnose the visual reasoning capabilities of
state-of-the-art VQA models. It is based on images of 3D rendered objects, more precisely
geometric shapes positioned on a plane surface with a grey background. Each object has
4 types of attributes (among 8 colours, 2 materials, 2 sizes, and 3 shapes). The questions
are designed to test the following reasoning abilities: spatial relationships between objects,
comparison and recognition of object attributes, object counting, comparison of object sets
sizes. The data consists of 70.000/15.000/15.000 training/validation/test images, and resp.
699.989/149.991/149.988 questions (i.e. there are roughly 10 questions per image). The
prediction problem is framed as a 28-way classification task (the output is a single word
among a vocabulary of size 28).

Early work on this task used complex models, e.g., with stacked attention (Yang et al.
2016) or with an explicit representation of the question generation program (Johnson et al.
2017b), but Santoro et al. (2017) proposed a simpler architecture based on a Relation Network
(RN) that performs even better in terms of prediction accuracy. We re-implement their model
and train it as described in (Santoro et al. 2017). Our trained model reaches a test accuracy
of 93,3% on the CLEVR dataset (the original authors report a performance of 95,5%).

The model architecture is displayed in Fig. 1.3. It consists of a 4-layer CNN to extract
feature maps from the image, a LSTM network to process the question, and a pairwise
concatenation of visual “objects” together with the question representation to fuse the visual
and textual information. Here the “objects” are simply pixels in the CNN last layer feature
maps. Each layer of the CNN has the following structure: conv → relu → batchnorm,
with 24 kernels of size 3 × 3 and stride 2 (no padding). The LSTM part of the network
is a unidirectional LSTM with word embeddings of size 32, and a hidden layer of size 128.
The paired representations (object pair concatenated with the LSTM final hidden state) are
passed to a Relation Network (RN), which is made of a 4-layer MLP of fully-connected layers
of size 256, each followed by ReLU activation, and a final element-wise summation layer.
The resulting representation is passed to a 3-layer MLP with fully-connected layers of size
256, followed each by ReLU activation. The output layer is a fully-connected layer of size 28.
For preprocessing the questions, we removed punctuation and performed lowercasing, the
resulting input vocabulary has size 80. For preprocessing the images, we resized them to 128
× 128 pixels, and rescaled the pixel values to the range [0, 1]. Training was done with the
Adam optimizer.

Methods for Explaining VQA

In order to get insights into the model’s prediction strategies, we compute relevance values
for the question (explaining the LSTM part of the model) and the image (explaining the
CNN part of the model) using LRP. For the LSTM part of the network, we employ the
LRP-all rule for product layers, and the LRP-ε rule (with ε = 0.001) for remaining layers.
For the CNN and RN parts of the network (i.e., on the image processing side), we use the
LRP-αβ rule with α = 1 and β = 0, as this variant was shown to perform best according to
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Figure 1.3: VQA model from (Santoro et al. 2017) used in our experiments.

quantitative experiments performed in (Osman et al. 2020), in comparison to a composite
application of the LRP-αβ/LRP-ε rules for different layers.

In addition, we compute heatmaps using two simple baseline methods, namely Gradient ×
Input (Shrikumar et al. 2016) and Occlusion (Li et al. 2016). The first method computes the
relevance of an input feature by simply using the partial derivative of the prediction function
(pre-softmax) multiplied by the feature’s value, i.e., R[0]

i = ∂fc

∂x
[0]
i

(x[0]) · x[0]
i (where fc is the

prediction function for the target class c, and x[0] is the input), whereas the latter method
computes the relevance value using a difference of probabilities R[0]

i = Pc(x[0])− Pc(x|x[0]
i =0)

(where Pc are the predicted softmax probabilities, respectively, on the original unmodified
input, and on the input where the feature of interest x[0]

i has been set to zero).
For all methods we explain the decision for the model’s predicted class. For the question

heatmaps, in order to get one relevance value per word, we sum up the relevances over the
word embedding dimensions, and take the absolute value for visualization. For the image
heatmaps, we sum up the relevances across the channels, take the absolute value and apply
gaussian blurring (with standard deviation 0.02 times the image size) for visualization of the
original image overlayed with the heatmap. For raw heatmap visualization we just sum the
relevances across the channels.

Results and Insights

In order to see which words are the most relevant per question type, we perform a word
relevance statistic over the CLEVR validation set. For each question we select the 3 most
relevant words, and compile selected words per question type by frequency. Then we retrieve
the words with the highest frequencies for a few question types in Fig. 1.4. We manually
highlighted words that are directly related to the question type, regardless of the image, in
green. Note that the network does not have access to the question types during prediction.

One can see that the nouns shape and colour have been identified (except by Gradient
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Question Type Gradient × Input Occlusion LRP
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Figure 1.4: Most important words for three CLEVR question types, sorted by decreasing frequency over the
validation set. A word is picked as important if it appears in the top 3 relevant words of a question.

× Input) to be relevant to answer questions about the shape or colour of objects. For the
question type count, where the goal is to count objects in a set, Occlusion and LRP both
selected meaningful words, while Gradient × Input attributes high relevance to generic words
like the, things, objects. Similar words were selected by Gradient × Input for the question
type equal_shape, which suggests that the latter method is less suited to find important
words related to the question type.

Additionally, we visualize relevance heatmaps for individual data points in Fig. 1.5 and
Fig. 1.6, using Gradient × Input and LRP (we did not compute heatmaps for Occlusion,
since this method is very expensive to compute on the image side). The exemplary data
points were automatically selected in the following way: we conducted a search over both
correctly and falsely predicted CLEVR validation points with specific question types, and
retrieved the three points with the highest predicted probabilities, i.e., the points where the
model is very confident with its prediction. Indeed we expect the corresponding explanations
to be more focused and insightful on such data points, while on data points where the model
is hesitating the heatmaps might be more diffuse and less informative. For correctly predicted
data points (Fig. 1.5), we considered all questions that query an object’s attribute, i.e., we
used the question types query_material, query_colour, query_size, query_shape. For falsely
predicted data points (Fig. 1.6) we used only the question type query_colour.

From the heatmap visualizations of the textual questions in Fig. 1.5 and Fig. 1.6 we
can not make a clear-cut statement about which explanation method is qualitatively better.
Both methods seem to deliver equally sparse explanations. When the questions are about
an object’s material (Fig. 1.5), the word material is often highlighted (except in the last
question for LRP); when they are about a colour (Fig. 1.6), the word colour is always
highlighted by LRP, and highlighted once by Gradient × Input. However it seems that
Gradient × Input attributes higher relevances to the last words in the question compared to
the question’s beginning (which is probably due to a vanishing gradient effect induced by the
forget gate in the unidirectional LSTM), while LRP is able to assign a high relevance, e.g., to
the word colour (Fig. 1.6), even when it appears at the question’s beginning.

On the image side however, we clearly see that the LRP heatmaps in Fig. 1.5 and Fig. 1.6
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Question Answer Gradient × Input LRP

there is a large sphere on the left 

side of the big brown shiny object;

what material is it ?

there is a large sphere on the left 

side of the big brown shiny object;

what material is it ?

there is a large sphere on the left 

side of the big brown shiny object;

what material is it ?

True:
metal
Predicted:
metal

there is a big thing left of the 

small sphere; what material is it ?

there is a big thing left of the 

small sphere; what material is it ?

there is a big thing left of the 

small sphere; what material is it ?

True:
metal
Predicted:
metal

there is a large object right of 

the rubber thing that is in front 

of the big cyan metallic cube 

behind the tiny gray matte sphere; 

what is its material ?

there is a large object right of 

the rubber thing that is in front 

of the big cyan metallic cube 

behind the tiny gray matte sphere;

what is its material ?

there is a large object right of 

the rubber thing that is in front 

of the big cyan metallic cube 

behind the tiny gray matte sphere; 

what is its material ?

True:
metal
Predicted:
metal

Figure 1.5: Heatmaps for three CLEVR questions which are correctly predicted. On the image-side, we visualize
the heatmap overlayed with the original image, as well as the raw heatmap (on bottom left).

are qualitatively better than those delivered by Gradient × Input: the LRP explanations
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Question Answer Gradient × Input LRP

the metal object on the left side 

of the blue cylinder is what color ?

the metal object on the left side 

of the blue cylinder is what color ?

the metal object on the left side 

of the blue cylinder is what color ?

True:
purple
Predicted:
gray

what is the color of the object that 

is both on the left side of the cyan 

metal cylinder and in front of the 

large green rubber ball ?

what is the color of the object that 

is both on the left side of the cyan 

metal cylinder and in front of the 

large green rubber ball ?

what is the color of the object that 

is both on the left side of the cyan 

metal cylinder and in front of the 

large green rubber ball ?

True:
green
Predicted:
blue

what is the color of the object that 

is to the right of the blue object 

and in front of the tiny gray matte 

cylinder ?

what is the color of the object that 

is to the right of the blue object 

and in front of the tiny gray matte 

cylinder ?

what is the color of the object that 

is to the right of the blue object 

and in front of the tiny gray matte 

cylinder ?

True:
gray
Predicted:
yellow

Figure 1.6: Heatmaps for three CLEVR questions which are falsely predicted. On the image-side, we visualize the
heatmap overlayed with the original image, as well as the raw heatmap (on bottom left).

are generally less noisier, more concentrated on objects, and provide pertinent clues to the
model’s visual reasoning (as we will see below), while Gradient × Input seems to attribute
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(partly) spurious relevances to background areas.
Let us take a closer look at the LRP heatmaps in Fig. 1.5. In the first question, the

target object of the question is the grey metal sphere at the top left of the scene. In the VQA
question this object is referenced through its spatial location relatively to the brown sphere.
And correspondingly, the LRP visual explanation both highlights the target object, as well
as the referring object of the question. The second question has a similar pattern, where the
target object is the yellow cube, and the referring object is the small blue sphere. Again
the LRP heatmap reveals the two important objects of the question. On the contrary the
Gradient × Input heatmaps are not helpful to understand the model’s decisions for question
1 and 2. Finally in the third question, the target object of the VQA question is the red
cylinder. Here the spatial relationships formulated in the VQA question are more intricate
and involve multiple objects, including a big cyan cube and a small rubber sphere. Thus the
LRP explanation is more diffuse: it highlights several objects, namely the two cyan cubes as
well as all objects on the right of them. Intuitively it makes sense that the model is focusing
on all these objects to answer the given more complex question. Also the target object of the
question (the red cylinder) is identified by the LRP heatmap.

Other useful insights can be revealed by the LRP explanations to understand misclassified
examples in Fig. 1.6. In these questions the colour of a given object is asked. And in all cases,
the object with the highest relevance, as identified by the LRP heatmap, is consistent with the
model’s predicted answer, while the Gradient × Input heatmaps are less distinct. In the first
question, the target object of the question (the small purple object left of the grey cube), as
well as the referring object (the small blue object behind the grey cube) are highly occluded
by the grey cube, which explains why the model did not correctly identify the target object
of the question and made a false prediction by focusing on the grey cube instead. In the
second question the target object of the VQA question is the green cube, however, according
to the LRP heatmap, the model identified instead the blue cube as being the target object
of the question. Thus the model mistakenly interpreted the spatial relationships defined by
the VQA question. A similar phenomenon can be observed in the third question: the target
object of the VQA question is the grey metal sphere, but the LRP heatmap reveals the model
identified instead the yellow metal sphere as being the target object, which again confirms
the model has some difficulty to catch some subtle spatial relationships, here obviously it did
not correctly recognise the “in front of” relationship.

Overall, the LRP visual explanations helped to understand why the VQA model generated
a particular answer. A further interesting point to note is that the considered neural network
model we use (which is based on a Relation Network (Santoro et al. 2017)) does not contain
any explicit attention mechanism in its architecture. Still the LRP heatmaps could reveal
image regions that are important to the model’s decision, and that resemble typical attention
heatmaps (as provided, e.g., by highly customized models towards the CLEVR dataset like
in Mascharka et al. (2018)).

1.6 Discussion

This chapter has presented LRP as a powerful technique to explain predictions of complex
ML models such as convolutional and recurrent neural networks. The redistribution rules of
LRP have been derived from first principles using the Deep Taylor Decomposition framework.
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It has been shown that a careful choice of the redistribution rules (respectively root points
in DTD) is very important when applying LRP to composite architectures, i.e., models
combining layers with different properties. A naive choice of redistribution rule, e.g., LRP-ε
for all layers of an image classification CNN, or LRP-prop for a standard LSTM model,
can produce poor results. However, when applied properly, LRP can produce meaningful
explanations and lead to interesting insights, even for complex and multimodal models such
as the one used for the VQA task.

Besides the successful application of LRP to different scenarios, progress has been recently
also achieved on the development of criteria to objectively assess the quality and utility
of explanations (Samek et al. 2017; Lundberg and Lee 2017; Montavon 2019; Osman et al.
2020). Here several metrics as well as axiomatic approaches have been developed. Still
many challenges exist. For instance, while several general frameworks for XAI have been
developed, e.g., based on Deep Taylor Decomposition (Montavon et al. 2017), Shapley values
(Lundberg and Lee 2017) or rate-distortion theory (Macdonald et al. 2019), a unified theory
of explanation is still lacking.

A limitation of today’s methods is the low semantic level of explanations. For instance,
heatmaps do not allow to distinguish whether a group of features is jointly relevant for a
given classification decision or whether each feature in this group contributes individually.
Pixel-level heatmaps also do not provide any information about the underlying concepts in
the data, e.g., objects in the image. The resulting interpretation gap (i.e., relevant pixels to
relevant object) has to be closed by the recipient of explanations, which can be difficult and
erroneous. Also the vulnerability of explanation to adversarial manipulations (Dombrowski
et al. 2019) is a serious challenge, because it may undermine trust in the explanation results.

Promising future research topics in the field of XAI are the use of explanations beyond
interpretability. For instance, a recent paper by Yeom et al. (2019) demonstrates that LRP
relevance scores can be used to prune a neural network. Other applications of XAI, e.g., in
the detection of adversarial attacks or general model improvement (e.g., by self-supervision)
are interesting future research directions. Also the field of human-machine interaction offers
various opportunities for explainability research. For instance, questions such as “what
type of explanation is most useful for human”, “how can we move towards interactive
explainability” or “how can we prevent that misleading explanations harm performance” need
to be investigated in order to allow for reliable and efficient human-machine interaction, see
e.g., Baehrens et al. (2010); Hansen et al. (2011) for early studies in this spirit. Finally,
bringing the concepts of XAI to other types of models (Lundberg et al. 2020) or ML tasks
(Kauffmann et al. 2019) remains an active area of research.
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