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Abstract

Complex nonlinear models such as deep neural network (DNNs) have become
an important tool for image classification, speech recognition, natural language
processing, and many other fields of application. These models however lack
transparency due to their complex nonlinear structure and to the complex data
distributions to which they typically apply. As a result, it is difficult to fully
characterize what makes these models reach a particular decision for a given
input. This lack of transparency can be a drawback, especially in the context of
sensitive applications such as medical analysis or security. In this short paper,
we summarize a recent technique introduced by Bach et al. [1] that explains
predictions by decomposing the classification decision of DNN models in terms of
input variables.

1 Explaining Predictions by Decomposition

Nonlinear models such as neural networks are an essential component of many practical machine
learning algorithms. These models have solved numerous practical problems such as visual object
recognition, speech recognition, or natural language processing. Deep neural networks in particular,
have been shown recently to perform extremely well on these tasks [2, 3, 4]. A typical limitation
of complex machine learning models is their tendency to predict in a black-box manner, providing
little information on what aspect of the input data supports the actual prediction. The problem of
explaining neural network predictions [5, 6, 1, 7, 8, 9, 10, 11] has received a lot of attention recently,
especially in the context of image recognition with convolutional neural networks. From the multitude
of recently proposed methods for explaining predictions, we can identify decomposition approaches
[12, 13, 1, 14], which seek to redistribute the value of the prediction function on the input variables,
such that the sum of redistributed terms corresponds to the actual function value.

Let us formalize the problem of explaining a prediction from the perspective of decomposition. Let
f : Rd → R be the prediction function, x a data point given as input to the model and f(x) the
prediction for this particular data point. In the context of image classification, the data point is formed
by a set of pixels: x = (xp)p. Explanation through the decomposition framework produces a vector
of scores (Rp)p associated to each pixel, indicating how relevant pixels are to the prediction. These
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relevance scores are a decomposition if they satisfy the conservation equation
∑

pRp = f(x). In
practice, other criteria are necessary to define a good decomposition, for example the ratio between
positive and negative scores, and the relation between the relevance score and the effect of the
corresponding pixel activation on the predicted function value.

In contrast to sensitivity analysis which assigns scores based on the effect of a small or infinitesimal
pixel perturbation on the function value, e.g. (∂f/∂xp)2, thus producing an explanation of a local
variation of f , the decomposition approach on the other hand seeks to explain the whole function
value (i.e. what made the function reach a certain value and not zero). Practically, when considering,
for example, an image of the class “scooter”, sensitivity analysis tells us which pixels in the image, if
modified, makes the image more or less belong to that class. Instead, the decomposition approach
explains what pixels speak in what amount for the presence of the scooter in the image. Figure 1 (a)
shows the qualitative difference between sensitivity analysis and decomposition (with the latter
computed using the LRP method described below).

The difference between decomposition and sensitivity analysis can also be illustrated from the
perspective of a linear classifier f(x) =

∑
p xpwp. A possible decomposition is given by identifying

relevance scores as the terms being summed: Rp = xpwp. Instead, sensitivity analysis will return
Rp = w2

p (or Rp = |wp| depending on the variant), which does not involve the actual pixel activation.
If in particular xp quantifies the presence of a local feature at position p, it would be intuitive that the
feature is considered relevant if not only the classifier reacts to it (wp > 0), but also if that feature is
actually present (xp > 0). Only the decomposition approach takes these two parameters into account.

2 Layer-wise Relevance Propagation

Layer-wise relevance propagation (LRP) [1] is one such method, that operates by building for each
neuron of a deep network a local redistribution rule, and applying these rules in a backward pass in
order to produce the pixel-wise decomposition. LRP has been successfully applied to many different
models and tasks beyond classification of images by convolutional neural networks. For instance,
in [1] and [15] it has been applied to Bag-of-Words models and Fisher Vector / SVM classifiers,
respectively. In [16] it was used for the identification of relevant words in text documents and in
[17] for visualizing facial features related to age, happiness and attractivity. Also the authors of [18]
use LRP for identifying relevant spatio-temporal EEG features in the context of Brain-Computer
Interfacing.

Within the LRP framework, various rules have been proposed for redistributing the relevance assigned
to a neuron onto its input neurons. Let (xi)i be the neuron activations at layer l. Let (Rj)j be the
relevance scores associated to the neurons at layer l+1. Let wij be the weight connecting neuron i to
neuron j. The “alpha-beta” rule [1] redistributes relevance from layer l+ 1 to layer l in the following
way:

Ri =
∑
j

(
α · (xiwij)

+∑
i(xiwij)+

− β · (xiwij)
−∑

i(xiwij)−

)
Rj , (1)

where ()+ and ()− denote the positive and negative parts, respectively. Layer-wise conservation
of relevance (

∑
iRi =

∑
j Rj) is enforced by choosing α, β such that α − β = 1. Choosing the

parameters α = 2 and β = 1 was shown to produce nice-looking and sharp heatmaps. This set of
parameters works well for a wide range of neural network models, and allows to express contradicting
evidence in the input image, through negative relevance scores. Example of heatmaps produced
with these parameters are shown in Figure 1. Choosing instead the parameters α = 1 and β = 0
and assuming positive activations provides connections to other methods. In particular, it yield the
simplified formula:

Ri =
∑
j

xiw
+
ij∑

i xiw
+
ij

Rj (2)

which is equivalent to the z+-rule by [14] and the redistribution rule used by [7] as part of the
Excitation Backprop (EB) method1. Futhermore, [14] showed that this particular redistribution rule

1Compare Eq. (2) in [7] and the z+ rule in [14]. Since the authors of [7] assume the response of the activation
neuron to be non-negative, Eq. (2) in [7] is also equivalent to the alpha-beta LRP rule [1] for α = 1 and β = 0.
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results from a “deep Taylor decomposition” of the neural network function when the neural network
is composed of ReLU neurons. The main concepts used by deep Taylor decomposition and how it
leads to the propagation rule of Equation 2 are outlined in the following.

Connection to Deep Taylor Decomposition Assume that the relevance score Rj is the product of
the ReLU activation xj and a positive constant term cj . It can then be written as:

Rj = xjcj
= max(0,

∑
i xiwij + bj) · cj

= max(0,
∑

i xiwijcj + bjcj),

where wijcj and bjcj are the weights and bias parameters of a newly defined “relevance neuron”.
A first-order Taylor expansion of the relevance neuron at some reference point (x̃i)i allows to
decompose the neuron value in terms of its input neurons. The reference point is chosen to be the
intersection of the neuron equation

∑
i xiwijcj + bjcj = ε with ε positive and infinitesimally small,

and the search line {(xi)i−t ·(xi1{wijcj>0})i : t ∈ R+}, that is, progressively deactivating positively
contributing inputs until the relevance becomes almost zero. In that case, the relevance “flowing”
from neuron j to neuron i is given by the identification of the corresponding first-order term of the
Taylor expansion and has a closed form solution:

Ri←j =
∂Rj

∂xi

∣∣∣
(xi)i=(x̃i)i

· (xi − x̃i) =
xi(wijcj)

+∑
i xi(wijcj)+

Rj =
xiw

+
ij∑

i xiw
+
ij

Rj .

When we pool the relevance messages coming from the upper-layer neurons (Ri =
∑

j Ri←j), we
recover Eq. (2). We now show that the product structure on which the decomposition relies also holds
approximately for the lower-layer relevance. This can be made visible by rewriting Eq. (2) as

Ri =
∑
j

xiw
+
ij∑

i xiw
+
ij

Rj = xi ·
∑
j

w+
ij ·max(0,

∑
i xiwij + bj) · cj∑

i xiw
+
ij︸ ︷︷ ︸

ci

where ci is positive and can indeed be considered as approximately constant due to its very weak
dependence on xi (diluted by two nested sums). Thus, if the decomposition can be performed at a
certain layer, it can also be performed at the previous layer. For more details we refer the reader to
the original paper [14].

3 LRP in Practice

In this section, we briefly discuss how LRP compares to sensitivity analysis, and how LRP can be
used in practice for comparing machine learning models and testing what strategy these models use
to predict the data.

Comparing sensitivity analysis and LRP A qualitative difference between the explanations pro-
duced by sensitivity analysis and LRP for the prediction of an image of class “scooter” is shown
in Figure 1 (a). The explanations provided by sensitivity analysis are much noisier than the ones
computed with LRP. Regions consisting of pure background, e.g., the empty street, have large sen-
sitivity, although these pixels are not really indicative for this image category. However, if we put
motor-bike like structures at these particular locations, then this change would certainly increase the
classification score. In contrast, the explanation provided by LRP does not highlight the locations
where the classifier is very sensitive, but indicates how much every pixel contributes to the prediction.
Thus, it explains the given prediction and in this example only points to real scooter-like structures
in the image. The explanations provided by LRP are not only better in a qualitative sense, but also
quantitatively. The authors of [19] proposed an objective method for comparing visualizations based
on perturbation analysis. The right plot in Figure 1 (a) displays the drop in classification score when
perturbing regions identified by sensitivity analysis and LRP as being the most relevant ones (i.e.,
high Rp). A fast drop in classification score, i.e., a large AOPC value2, implies a meaningful sorting
of Rp and thus good explanations. The results in Figure 1 (a) clearly show that LRP provides better
explanations than sensitivity analysis for images from the ILSVRC2012 dataset. More details about
this experiment can be found in [19].

2AOPC stand for area over the perturbation curve.
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Measuring importance of context in image classification The explanations provided by LRP
indicate how much every pixel contributes to the prediction. By aggregating the pixel-wise scores,
e.g., inside and outside of an object bounding box, we can quantify the importance of context in
image classification. Figure 1 (b) displays the outside-inside relevance ratio for the 20 categories of
the PASCAL VOC 2007 dataset. For classes like “airplane” or “sheep” the context does not seem to
be important for the DNN prediction as most relevance lies inside the bounding box. This is different
for indoor scene categories such as “chair” or “sofa”. Here the LRP explanations show that context
plays a much more important role for the classification (see [15] for more discussion).

Comparing DNN architectures Finally, we demonstrate the usage of LRP for analyzing differ-
ences between DNN architectures. Figure 1 (c) displays the LRP explanations obtained from BVLC
CaffeNet [20] and GoogleNet [21] when applied to an animal image. One can see that the latter
network focuses more on the face of the animal and its explanation heatmap is significantly sparser
than for BVLC CaffeNet. We observed this phenomenon for many animal images. This analysis
suggests that GoogleNet found a better way to focus on the relevant information in the image, which
is often the animal face and not the body shape or the fur.
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Figure 1: Experimental results. (a) Qualitative and quantitative comparison of sensitivity analysis.
(b) Importance of context measured by LRP. (c) Comparison of predictions by two DNN architectures.
Illustrations are taken and adapted from the papers [15] and [22].

4 Conclusion

The LRP method is a general framework for interpreting the predictions of complex ML systems
such as deep neural networks, that can be used for model comparison, validation, or visualization.
It was successfully applied to various tasks and machine learning models. Some redistribution
rules for DNNs can be viewed as resulting from a deep Taylor decomposition of the neural network
function [14]. Although the alpha-beta LRP rule was shown to work well for DNNs with ReLU
activations, there is not one single LRP rule which serves all machine learning models and datasets
equally well, as different models have specific layer-to-layer nonlinear mappings and input domains,
that need to be considered.
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