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A B S T R A C T

Brain-Computer Interfaces (BCIs) provide a novel communication chan-
nel between a human subject and a computer application that does not

rely on peripheral nerves and muscles. The core idea of a BCI is (1) to encode
information by voluntarily inducing certain mental states, (2) to decode these
states from recordings of brain activity and (3) to use this information for con-
trolling a device or communicating with the environment. Reliable decoding of
mental states is a very challenging task as the recorded brain signals, e.g., EEG,
may be noisy, nonstationary and affected by artifacts. Furthermore these sig-
nals are usually of high dimension and for the most part contain background
activity that is not related to the encoded mental state. Thus, robust extraction
of informative features is essential for successful BCI application, especially
when decoding mental states on a single trial basis. In motor imagery BCIs spa-
tial filtering is a crucial step in this feature extraction process. Although many
spatial filtering methods have been proposed, of which the most prominent
representative is Common Spatial Patterns (CSP), these methods rarely take
into account explicitly the influence of artifacts and nonstationarity. The main
goal of this doctoral thesis is to refine current approaches and to develop novel
methods for robust spatial filtering of EEG in nonstationary environments.

This dissertation contributes to the current state of research in several ways.
The first contribution is the development of a novel regularization strategy for
CSP that reduces variability of the extracted features. An algorithm, stationary
CSP, is proposed and its regularization effect is investigated using simulations
and real data sets. The second contribution is the investigation of the possibility
to transfer information about changes in the data between subjects performing
the same experiment. Also here a method, stationary subspace CSP, is developed
and extensively evaluated. A key contribution of this thesis is the formulation
of spatial filter computation as a divergence maximization problem. This novel
view on spatial filter computation and in particular on CSP has several advan-
tages, e.g., it easily allows one to robustify the algorithm against artifacts, to
incorporate data from other subjects into the optimization process and to en-
force different types of invariances on the extracted features. Conceptually, this
generic formulation integrates many state-of-the-art CSP variants in a princi-
pled manner and provides an information geometric interpretation of the algo-
rithm; this formulation also opens the door for new variants by utilizing the
properties of particular divergences. The advantages and limitations of differ-
ent divergence-based spatial filtering algorithms are discussed and evaluated
using simulations and real EEG recordings. The fourth main contribution of
this work is the derivation of a novel robust covariance estimator which takes
into account trial structure and is tailored to BCI application.

All proposed algorithms are compared to several state-of-the-art approaches
and the results are interpreted from a neurophysiological perspective. Future
research directions are discussed at the end of this thesis.
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Z U S A M M E N FA S S U N G

Brain-Computer Interfaces (BCIs) sind neuartige technische Systeme, die
einen Kommunikationskanal zwischen Mensch und Computer zur Verfü-

gung stellen, ohne dabei das periphere Nervensystem oder die Muskulatur
einzubeziehen. Das Arbeitsprinzip eines BCIs basiert auf drei Schritten. (1) Die
Versuchsperson kodiert die zu übermittelnde Anweisung als mentalen Zus-
tand, indem sie sich z.B. das Ausführen einer speziellen Bewegung vorstellt. (2)
Das BCI System dekodiert den mentalen Zustand und damit auch die zu über-
mittelnde Anweisung aus gemessener Hirnaktivität. (3) Das System setzt die
Anweisung zur Steuerung von technischen Geräten oder zur Kommunikation
mit der Umgebung um. Das zuverlässige Dekodieren der mentalen Zustände
ist jedoch schwierig, da die gemessenen elektroenzephalographischen Signale
sowohl verrauscht und nichtstationär sind als auch Artefakte enthalten kön-
nen. Weiterhin sind diese Signale üblicherweise hochdimensional und beste-
hen zum größten Teil aus neuronaler Hintergrundaktivität, die keinen Bezug
zu dem induzierten mentalen Zustand aufweist. Aus diesem Grund ist die Ex-
traktion von robusten und informativen Merkmalen von zentraler Bedeutung
für eine erfolgreiche Anwendung der BCI Technologie, vor allem wenn das Sys-
tem Einzelversuche klassifizieren können soll. Ein wesentlicher Schritt bei der
Merkmalsextraktion in sogenannten motor-imagery BCI Systemen ist die räum-
liche Filterung. Obwohl viele Methoden zur Berechnung von räumlichen Fil-
tern in der Literatur vorgeschlagen wurden – zu nennen ist hier vor allem der
Common Spatial Patterns (CSP) Algorithmus – wurde dem Nichtstationaritäts-
und dem Robustheitsproblem selten ausreichend Beachtung geschenkt. Das
Ziel der vorliegenden Arbeit ist die Entwicklung von neuen Methoden für die
robuste räumliche Filterung von nichtstationären EEG Signalen.

Diese Dissertation trägt in mehrerer Hinsicht zu der aktuellen Forschung
im Bereich BCI bei. Der erste Beitrag dieser Arbeit ist die Entwicklung einer
neuen Regularisierungsstrategie für CSP, welche die Varianz der extrahierten
Merkmale reduziert. Hierfür wird ein neuer Algorithmus – stationary CSP –
vorgeschlagen und die Auswirkungen der Regularisierung werden mit Hilfe
von Simulationen und echten Daten erforscht. Ein weiterer Beitrag dieser Ar-
beit besteht in der Untersuchung von Möglichkeiten für den Austausch von
Nichtstationaritätsinformationen zwischen Versuchspersonen, die am gleichen
BCI-Experiment teilnehmen. In diesem Zusammenhang wird eine neue Meth-
ode – stationary subspace CSP – entwickelt und umfassend evaluiert. Der
zentrale Beitrag der Dissertation ist die Formulierung der Berechnung von
räumlichen Filtern als Divergenzmaximierungsproblem. Diese neue Betrach-
tungsweise der Filterberechnung hat verschiedene Vorteile und erlaubt es z.B.
eine gegenüber Artefakten robuste Variante des CSP Algorithmus zu ver-
fassen, Daten von zusätzlichen Versuchspersonen in den Optimierungsprozess
aufzunehmen und verschiedene Arten von Stationarität zu forcieren. Die diver-
genzbasierte Formulierung der Filterberechnung umfasst viele CSP Varianten
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und erlaubt eine informationsgeometrische Interpretation dieser Algorithmen.
Auch eröffnet diese Formulierung Möglichkeiten neuartige Varianten des Algo-
rithmus unter Ausnutzung der speziellen Eigenschaften anderer Divergenzen
zu entwickeln. Die Vorteile und Grenzen der verschiedenen divergenzbasierten
Methoden zur Berechnung der räumlichen Filter werden in dieser Arbeit disku-
tiert und mit Hilfe von Simulationen und echten EEG Aufnahmen evaluiert.
Der vierte wesentliche Beitrag dieser Arbeit liegt in der Herleitung eines neuen
und robusten Schätzers für Kovarianzmatrizen, welcher speziell auf die Struk-
tur von BCI Daten abgestimmt ist.

Alle vorgeschlagenen Methoden werden mit diversen, dem Stand der Tech-
nik entsprechenden Verfahren verglichen und die Ergebnisse aus neurophysi-
ologischer Perspektive interpretiert. Weiterführende Forschungsmöglichkeiten
werden am Ende der Arbeit diskutiert.

xiv
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1
I N T R O D U C T I O N

Variability is the law of life, and as no
two faces are the same, so no two bod-
ies are alike, and no two individuals
react alike and behave alike under the
abnormal conditions which we know
as disease.
(Sir William Osler, 1903)

The Canadian physician Sir William Osler (1849 - 1919) revolutionized the
medical world of the 19th century by advocating an approach to therapy

which focuses on the needs of individual patients. He recognized the great
variability among individuals with respect to their physical conditions, their
mental status and their responses to drugs and concluded that focusing solely
on clinical signs and symptoms does not result in the most effective therapy.
The development of this novel patient-centered paradigm made him the father
of personalized medicine; a branch of medicine that is also very popular today
due to a better understanding of the genetic influences on a person’s risk of
acquiring certain diseases.

In the last two decades personalized approaches have also revolutionized the
field of Brain-Computer Interfacing (BCI). A BCI system (see e.g. Wolpaw et al.,
2002; Dornhege et al., 2007; Wolpaw and Wolpaw, 2012) aims to decode the in-
tention of a user from recordings of brain activity and to use this information
for controlling a computer application or a robotic device. Today’s BCIs extract
user-specific features from electroencelographic (EEG) recordings and adapt
to the user’s signal characteristics. This subject-centered or machine learning ap-
proach not only largely reduces the calibration time in comparison to classical
BCI systems based on neurofeedback training (Kamiya et al., 1969) but also
increases classification accuracy. Unfortunately, EEG responses to a stimulus
or a task not only differ from subject to subject but also from trial to trial and
from day to day. This change in the signal properties over time is termed the
intrinsic nonstationarity of EEG (Kaplan et al., 2005) and constitutes a major
challenge for data analysis and classification by violating a basic assumption
of many machine learning methods, namely that data are sampled from a fixed
(but unknown) distribution (Vapnik, 1998; Hastie et al., 2001). The analysis of
EEG is further aggravated by the presence of artifacts in the data, e.g., eye
movements, muscular activity or loose electrodes. The lack of robustness to
unexpected events and the nonstationary nature of EEG are major reasons in
explaining why current BCI technology is seldom used in out-of-lab scenarios
and clinical practice. Since artifacts and nonstationarity can not be fully elimi-
nated, even with the best experimental protocol, robust and invariant feature
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2 introduction

representations are required for optimal signal analysis and high classification
accuracy.

1.1 structure of the thesis

This thesis is divided into three parts. The first part introduces the basic
concepts of motor imagery-based Brain-Computer Interfacing and discusses
the advantages and limitations of several state-of-the-art spatial filtering
algorithms and other related work. The second part proposes two novel
methods for the minimization of nonstationarity in the feature extraction
process. The first method minimizes feature variability within an experimental
session, the second utilizes data from other users to minimize the shift in
feature distribution between sessions. A generic divergence-based framework
for spatial filter computation and a novel robust covariance matrix estimator
are introduced and evaluated in the last part of this thesis. The individual
chapters are summarized as follows.

Chapter 2 introduces basic concepts of motor imagery-based Brain-Computer
Interfacing and the data sets used for evaluation of the proposed methods.

Chapter 3 describes the Common Spatial Patterns algorithm, discusses the
robustness and nonstationarity problem in BCI and reviews several state-of-
the-art spatial filtering methods.

Chapter 4 introduces the idea of regularizing CSP towards stationarity,
proposes a new algorithm, stationary CSP, and evaluates its performance.

Chapter 5 introduces the idea of transferring information about changes in
the data between subjects, proposes a new algorithm, stationary subspace CSP,
and evaluates its performance.

Chapter 6 derives a novel robust estimator for covariance matrices by using
concepts from information geometry.

Chapter 7 proposes a divergence-based framework for spatial filter computa-
tion. This framework unifies many state-of-the-art CSP algorithms and enables
us to develop novel robust and stationary CSP variants in a principled manner.
Several novel CSP variants are presented and evaluated.

Chapter 8 concludes the thesis with a summary and an outlook on future
work.

1.2 own contributions

The following contributions are made to the current state of research.
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Conceptual Contributions

1. The regularization of spatial filter computation towards stationarity [4,
12, 13, 16, 18].

2. The transfer of information about changes between subjects [3, 14, 15].

3. The formulation of spatial filter computation as divergence maximization
problem [1, 6, 7].

Theoretical Contributions

1. A theorem relating the CSP algorithm to symmetric Kullback-Leibler di-
vergence maximization is developed and proved [1, 6, 7].

2. An optimization algorithm for finding a subspace with maximum sum of
Kullback-Leibler and beta divergences is proposed [1, 6, 7].

3. A novel robust estimator for covariance matrices based on beta diver-
gence minimization is derived [5].

Methodological Contributions

1. The stationary CSP algorithm is proposed [4, 12, 13, 16, 18].

2. The stationary subspace CSP algorithm is proposed [3, 14, 15].

3. The divergence-based CSP framework is developed [1, 6].

4. A robust beta divergence CSP method is proposed [7].

Contributions not included in this thesis

1. Max-Min CSP method which applies the max-min theorem to robustly
compute spatial filters [2].

2. MKL + CSP method which applies Multiple Kernel Learning to optimally
incorporate information from additional subjects [8].

3. GroupSSA + CSP method which projects data to a stationary subspace
prior to spatial filter computation [9, 10, 19].

4. Generative model for the Stationary Subspace Analysis (SSA) algorithm
[11].

1.3 list of publications

The following list contains all contributions made by the author to the field of
robust spatial filtering in BCI. As common practice in this scientific field some
of the materials presented in this thesis have been prepublished as Journal
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articles or presented at scientific conferences. The work presented in [1], [3],
[4], [5], [6] and [7] is included in large parts into this thesis.

Journal articles

[1] Samek, W., Kawanabe, M., Müller, K.-R. Divergence-based Framework for Common
Spatial Patterns Algorithms. IEEE Reviews in Biomedical Engineering, 7:50-72, 2014.

[2] Kawanabe, M., Samek, W., Müller, K.-R., Vidaurre, C. Robust Common Spatial
Filters with a Maxmin Approach. Neural Computation, 26(2):1-26, 2014.

[3] Samek, W., Meinecke, F. C., Müller, K.-R. Transferring Subspaces Between Subjects in
Brain-Computer Interfacing. IEEE Transactions on Biomedical Engineering, 60(8):2289–
2298, 2013.

[4] Samek, W., Vidaurre, C., Müller, K.-R., Kawanabe, M. Stationary Common Spatial
Patterns for Brain-Computer Interfacing. Journal of Neural Engineering, 9:026013, 2012.

Peer-reviewed contributions to conferences

[5] Samek, W., Kawanabe, M. Robust Common Spatial Patterns by Minimum Divergence
Covariance Estimator. Proceedings of 39th IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), 2059-2062, 2014.

[6] Samek, W., Müller, K.-R. Information Geometry meets BCI – Spatial Filtering using
Divergences. Proceedings of 2nd IEEE International Winter Workshop on Brain-
Computer Interface, 1-4, 2014.

[7] Samek, W., Blythe, D., Müller, K.-R., Kawanabe, M. Robust Spatial Filtering with
Beta Divergence. Advances of Neural Information Processing 26 (NIPS), 1007–1015,
2013.

[8] Samek, W., Binder, A., Müller, K.-R. Multiple Kernel Learning for Brain-Computer
Interfacing. Proceedings of 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBS), 7048–7051, 2013.
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2
B R A I N - C O M P U T E R I N T E R FA C I N G

O n July 6, 1924, the German neurologist Hans Berger (1873 - 1941) measured
the electrical activity of the human brain for the first time (Berger, 1930). With

his experiments the field of human electroencephalography (EEG) was born (Collura,
1993). Soon EEG became an invaluable tool for both research and clinical diagnosis of
brain diseases. Its advantages are relatively low costs, a high temporal resolution and
portability due to the small size of the recording device. Today’s clinical applications
(see Binnie, 1995) range from coma monitoring (Fischer et al., 1999) to research on
diseases such as schizophrenia (Ford, 1999), dyslexia (Baldeweg et al., 1999), ADHD
(Barry et al., 2003) and dementia (Patterson et al., 1988).

However, the analysis of EEG not only attracted medical doctors but also engineers
and scientists became interested, especially after the processing power of computers
had significantly increased. In 1973 Jacques J. Vidal (Vidal, 1973), a professor at the
University of California, Los Angeles (UCLA), had the visionary idea to use EEG

. . . as [a] carrier of information in man-computer communication or for the
purpose of controlling such external apparatus as prosthetic devices or

spaceships.
(Jacques J. Vidal, 1973)

This idea led to the development of a new research field, Brain-Computer-Interfacing
(BCI). The first BCI systems were based on “neurofeedback” (Kamiya et al., 1969)
and required weeks of training. The difficulty was that the user had to learn how to
control his/her brain activity; the machine did not adapt to the user’s neural signal.
Today 90 years after Berger’s first experiments EEG-based BCI systems have been
successfully used for various applications (see Dunne et al., 2013), e.g., communication
(Farwell and Donchin, 1988; Birbaumer et al., 1999; Nijboer et al., 2008; Treder and
Blankertz, 2010), neurological rehabilitation (Birbaumer and Cohen, 2007; Daly and
Wolpaw, 2008; Kaiser et al., 2011; Ang et al., 2011; Lim et al., 2012; Ang and Guan,
2013; Courtine et al., 2013), wheelchair control (Leeb et al., 2007; Galán et al., 2008;
Rebsamen et al., 2010; del R. Millán et al., 2010; Carlson and del R. Millán, 2013),
prosthesis control (Guger et al., 1999; Müller-Putz et al., 2005; Jackson et al., 2006;
McFarland and Wolpaw, 2008; Hahne et al., 2012), game playing (Lalor et al., 2005;
Nijholt and Tan, 2007; Tangermann et al., 2008; Nijholt et al., 2009; Lotte, 2011; Bonnet
et al., 2013) and many additional non-medical applications (Müller et al., 2008; del
R. Millán et al., 2009; Blankertz et al., 2010b; Haufe et al., 2011; van Erp et al., 2012;
Porbadnigk et al., 2013).

A factor boosting BCI research in the recent decades was the development of novel
machine learning algorithms which extract relevant, user-specific information from the
recorded data. The application of these methods shifted the workload from the user
to the machine. This change in paradigm from “let the user learn” to “let the machine
learn” largely reduced training times and significantly increased the attraction of these
systems (Blankertz et al., 2006a). Although technology has rapidly advanced during
the last decade, e.g., dry electrode EEG recordings (Popescu et al., 2007), zero training
systems (Krauledat et al., 2008; Fazli et al., 2009) and robust machine learning meth-
ods (Lotte and Guan, 2011; Samek et al., 2014), many challenges limiting a large scale
application of BCIs in clinical practice and its usage as assistive technology for dis-
abled people still exists (Dietrich et al., 2010; Krusienski et al., 2011; Lance et al., 2012).
Several pilot studies (Ang et al., 2011; Lim et al., 2012) have demonstrated the utility
of BCI for medical application, but much more research is needed in this direction.

7
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2.1 neurophysiological background

The human brain contains around 86 billion neurons (Herculano-Houzel, 2009). These
highly specialized cells form networks and are responsible for information processing.
A typical neuron consists of the soma, dendrites, an axon and axon terminals. Neurons
are electrically excitable and have a resting potential of approximate -70 mV across the
cell membrane (Blum and Rutkove, 2007). The membrane contains voltage-gated ion
channels that control the exchange of ions with the extracellular milieu. If the mem-
brane potential increases to around -55 mV, the sodium ion channels open and sodium
ions flow into the cell. This process produces a rapid rise and fall in the membrane po-
tential, also known as action potential. The action potential propagates along the axon
and may trigger action potentials in neighboring neurons. The flow of positively or
negatively charged ions into the post- or presynaptic cell results in excitatory or in-
hibitory postsynaptic potentials (EPSP or IPSP) and induces an extracellular current in
the opposing direction (Blum and Rutkove, 2007). This current accumulates temporally
and spatially and is often strong enough to admit measurement on the scalp (Nunez,
2006). The potential differences (caused by the EPSP and IPSP currents) between two
scalp locations constitute a time series which is known as the electroencephalographic
signal or EEG signal. Vertically oriented cortical pyramidal neurons are the principal
contributors to EEG.

The EEG signal often shows a characteristic 1/f or pink noise power spectrum with
multiple peaks in specific frequency ranges. These peaks represent prominent oscil-
latory activity, i.e., synchrony in a large neuronal population. Traditionally, the EEG
power spectrum is divided into multiple frequency bands representing specific EEG
rhythms which are denoted by Greek letters. Although these rhythms have been in the
focus of neuroscience research for many years, their origins and functions are often not
fully understood or are subject to debate (Sterman, 1996; Schürmann and Başar, 2001;
Başar et al., 2001). Table 1 gives a basic overview over the most prominent rhythms,
their location on the scalp and their characteristics; note that the list is not intended to
be exhaustive.

Table 1.: Overview over most prominent EEG rhythms.

Name Band Location Characteristic
� 0.1- 4 frontal or posterior

regions
infants, children, sleep

✓ 4- 8 various locations children, sleep, drowsiness

↵ 8- 13 posterior regions, occipi-
tal and temporal cortex

closed eyes, relaxed men-
tal state

µ 8- 13 sensorimotor cortex attenuated by movement,
motor imagery or tactile
stimulation

� 13- 30 frontal regions, so-
matosensory cortex

active concentration, atten-
uated by motor activity

� > 30 various locations conscious attention, cogni-
tive processes

Brain-Computer Interface (BCI) systems (see e.g. Birbaumer et al., 1999; Kübler et al.,
2001; Wolpaw et al., 2002; Dornhege et al., 2007; del R. Millán et al., 2010; Lemm et al.,
2011) aim to control a computer application such as a visual speller or a neuropros-
thesis by decoding the intention of a subject from his/her recorded brain signals, e.g.,
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by multi-electrode EEG. Communication becomes possible if the system is able to
differentiate between at least two brain states. One popular paradigm for voluntarily
inducing different brain states is motor imagery, i.e., the imagining of the execution of
a movement with a particular limb such as the right or left hand or the feet. For motor
imagery BCIs the µ- and �-rhythms are of outstanding importance. The µ-rhythm is
typically visible over the sensorimotor cortex in absence of motor activity. Although
the µ- and ↵-rhythms occur in the same frequency range, namely 8-13 Hz, they are
thought to have different origins (Van Leeuwen et al., 1978). The key property which
makes the µ-rhythm useful for BCI is its suppression in the sensorimotor cortex con-
tralateral to the limb performing a movement (Jasper and Penfield, 1949; Pfurtscheller
and Aranibar, 1979) or motor imagination (Schnitzler et al., 1997; Pineda, 2005). This
phenomenon is also known as event-related desynchronization (ERD) (Pfurtscheller and
Lopes da Silva, 1999) and can be detected as power attenuation in the mu frequency
band over the cortical locations engaged in imagination, planning and execution of the
movement. According to (Palva and Palva, 2007) EEG rhythms emerge as synchronous
idling of a large population of neurons, thus, ERD may be interpreted as a decrease in
the number of idling neurons caused by the task engagement.

Event-related desynchronization in the contralateral sensorimotor cortex has also
been observed in the beta frequency range during movement execution, planning and
imagination (Pfurtscheller and Neuper, 1997; Pfurtscheller and Lopes da Silva, 1999).
This �-rhythm is referred to as the µ-beta or Rolandic �-rhythm; the µ-rhythm in the
8-13 Hz range is often denoted as µ-alpha or Rolandic ↵-rhythm. These idling oscil-
lations over the sensorimotor cortex are often termed sensorimotor rhythms (SMRs). A
significant increase of oscillations in the beta band can be observed after the end of a
movement and after motor imagery. This event-related synchronization (ERS) is termed
beta rebound (Salmelin and Hari, 1994; Pfurtscheller et al., 1996, 2005) and constitutes
an additional source of information which may be used for classification purposes in
Brain-Computer Interfacing. Neurophysiologically, beta rebound may be interpreted
as active inhibition of motor cortical neurons after movement execution or imagina-
tion (Pfurtscheller and Neuper, 1997). Since synchronization not only manifests itself
as beta rebound but is a more common phenomenon which may occur ipsilaterally
during movement execution or imagination or may surround a focal desynchroniza-
tion (Pfurtscheller and Lopes da Silva, 1999; Suffczynski et al., 1999), one often refers
to the ERD/ERS effect in Brain-Computer Interfacing.

EEG rhythms other than mu and beta have also received significant attention in the
motor imagery BCI literature. For instance, changes in the occipital alpha, a rhythm as-
sociated with visual processing and vigilance, have been identified as source of nonsta-
tionarity that should be actively suppressed in the feature extraction process (Blankertz
et al., 2008a). Furthermore, it has been hypothesized that gamma oscillations directly
affect the sensorimotor rhythm and are responsible for performance variations in BCI
(Grosse-Wentrup et al., 2011); this insight may be potentially used to help BCI-illiterate
subjects to learn how to control a BCI system. Other recent work has studied the im-
pact of the delta and theta rhythms on BCI performance (Vuckovic and Sepulveda,
2008b; Ahn et al., 2013).

The somatotopic organization of the human brain is the main reason which explains
why BCI systems are able to differentiate between different imagined movements. The
organization manifests itself in a point-for-point correspondence between the body
and the somatic sensory and motor cortex. This arrangement leads to specific spatial
activation patterns when performing movements (or motor imagery) with the left and
right hand; in the former case a desynchronization of the SMRs occurs in the right sen-
sorimotor cortex in the latter case the left sensorimotor cortex is affected. In addition
to the split control over the two body halves there is also a more fine-grained topolog-
ical organization within the motor and somatic sensory cortices in each hemisphere.
The left part of Figure 1 depicts this organization. One can see that the “control ar-
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Figure 1.: Left: The somatic sensory and motor cortices show a somatotopic organiza-
tion, i.e., neural assemblies responsible for controlling distinct body parts
are spatially separated in a topology preserving manner. Right: The interna-
tional 10-20 system specifies the electrode locations on the scalp. Electrodes
on the left hemisphere have an odd number, the right hemisphere electrodes
have even numbers; the numbers increase from the center to the outer elec-
trodes. The electrode names represent the underlying cortical regions: F is
frontal, P is parietal, O is occipital, T is temporal, C is central.

eas” of different limbs are spatially separated and have a meaningful topology where
neighboring body parts, e.g., fingers and hand, are close together. On the other hand
there is a relatively large distance between very distinct body parts such as leg, hand
and tongue. This somatotopic organization enables us to build BCI systems which can
discriminate between more than two motor imagery classes, (see e.g. Grosse-Wentrup
and Buss, 2008; Vuckovic and Sepulveda, 2008a; Wang et al., 2012a).

The right part of Figure 1 displays the electrode montage according to the interna-
tional 10-20 system (Klem et al., 1999). This system specifies the electrode locations
on the scalp and assigns standardized names to them. The C3 and C4 electrodes are
approximately located over the right hand and left hand area in the sensorimotor
cortex whereas Cz mostly captures activity related to foot movements. This correspon-
dence between electrodes and motor imagery classes does not always apply because
of individual differences in head size, imperfect montage of the EEG cap and most
importantly the effects of volume conduction blurring the underlying neural activity
(Nunez, 2006). Spatial filtering reduces the effects of volume conduction and helps to
extract the ERD/ERS related activity from the data.

As discussed above, the class-specific spatial signature of the ERD/ERS enables the
BCI system to distinguish between different imagined movements. Figure 2 visualizes
the power spectrum over the C3 and C4 electrodes when left and right hand motor
imagery is performed. The two peaks in the mu and beta bands reflect “idling” oscilla-
tions of the underlying neural populations. These peaks disappear when the neurons
are engaged in a motor imagery task, i.e., when imagining a movement with the con-
tralateral hand. This power decrease or ERD is very strong for this particular subject,
however, on a single-trial basis it may be much weaker and not detectable on individ-
ual channels. A multivariate signal analysis and the application of advanced machine
learning methods enable us to detect these subtle changes from single trials.
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Figure 2.: Left: The imagination of a movement with the right hand results in a desyn-
chronization, i.e., decrease of power in the mu and beta band, in the signal
recorded by the C3 electrode. Right: The imagination of a movement with
the left hand results in a desynchronization in the C4 channel.

2.2 motor imagery bci

Before a BCI system can reliably decode and classify imagined movements it requires
calibration. During this process several parameters are optimized and a classifier is
learned. Despite the increasing popularity of zero-training BCIs (Krauledat et al., 2008;
Fazli et al., 2009; Lotte and Guan, 2010b), subject-calibrated systems are still widely
used as they are often superior in terms of classification performance. Figure 3 sum-
marizes the calibration process of a synchronous, motor imagery BCI as typically used
by the Berlin BCI (BBCI) group. In contrast to asynchronous systems the subject is only
able to communicate his/her intention during a fixed time window (the trial) and has
no control over its start and duration.

Figure 3.: BCI classification pipeline. In the first step various preprocessing algorithms
are applied to the recorded EEG signal. This usually includes spectral filter-
ing, the extraction of the time segment of interest from each trial and artifact
rejection. The dimensionality of the signal is reduced in a second step by
spatial filtering. Finally, log-variance features are computed from the filtered
signal and a classifier is applied to decode the users’ intention.

In the calibration session a cue is presented to the subject asking him/her to per-
form motor imagery tasks, e.g., left hand or right hand movement imagination. This
procedure is repeated several times, e.g., 50 times for each motor imagery class. The
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recorded D-dimensional EEG signal is then cut into i = 1 . . . n epochs, aligned at the
start of each trial. Each epoch X

i

2 RD⇥T contains T sample points and at the end of
the calibration session a set of labeled trials {X

i

, y
i

}n
i=1

is available. Note that the label
y

i

= {-1, +1} indicates the motor imagery class (we assume a binary classification
problem) of ith trial. With this data the training process is initiated.

In the first step of this process a time interval is determined that best captures the
ERD/ERS effect. One may set this interval a priori, e.g., 500 - 2500 ms after the cue
indicating the trial start, or it may be determined adaptively for each subject (Blankertz
et al., 2008b). The next step in the processing pipeline consists of spectral filtering. As
discussed above the SMR modulation is most prominent in the mu and beta frequency
ranges. Various strategies have been proposed to optimally filter the data; among the
many options are filtering in a predefined narrow or broad band, using filter banks
(Ang et al., 2008), applying spatio-temporal approaches (Lemm et al., 2005; Zhang
et al., 2011) and determining a subject-optimized frequency band by cross-validation
(Blankertz et al., 2008b). After this step each epoch i is represented by a matrix X̃

i

2
RD⇥N where N 6 T stands for the number of samples in the interval of interest.

The next step of the BCI training is the computation of spatial filters which (in
the optimal case) reduce the dimensionality of the data without losing relevant infor-
mation. Spatial filtering increases the signal-to-noise ratio and reduces the effects of
volume conduction. One of the most popular algorithms for this task is Common Spatial
Patterns (CSP) (Koles et al., 1990; Ramoser et al., 1998; Blankertz et al., 2008b) as it is
well suited to discriminate between different mental states induced by motor imagery.
A spatial filter w 2 RD computed with CSP maximizes the difference in band power
between two conditions, thus, it aims to enhance the task-related activity generating
the ERD/ERS effect. The CSP spatial filters are computed by solving the generalized
eigenvalue problem

⌃
1

w
j

= �

j

⌃
2

w
j

(1)

with ⌃
1

and ⌃
2

being the D⇥D-dimensional average covariance matrices estimated
for the two motor imagery classes. The d generalized eigenvectors from both ends of
the spectrum (smallest and largest �) are often selected as spatial filters. After applying
these filters W = [w

1

. . .w
d

] 2 RD⇥d to the data and computing the log-variance
features, each trial i is represented by a feature vector

f
i

= log
⇣

diag
h
W>X̃

i

X̃>
i

W
i⌘

(2)

Note that the logarithmic transformation is applied in order to make the features nor-
mally distributed (Blankertz et al., 2008b) and diag[ · ] denotes the operator extracting
the diagonal of a matrix. In the final step of the BCI training a classifier y = h(x) sepa-
rating the two motor imagery classes is computed. We use Linear Discriminant Analysis
(LDA) for this task

h(x) = sign(wx + b) (3)

with w = ⌃-1

f (µ
2

- µ
1

) and b = -

1

2

w>
(µ

1

+ µ
2

)

where µ
1

and µ
2

denote the mean feature vectors of class 1 and 2, respectively, ⌃f
stands for the covariance matrix of the features and sign(x) is a function with +1 for
x > 0 and -1 otherwise.

In the feedback session the same preprocessing steps are applied as for the calibrat-
ing, i.e., for each trial we

(1) extract the time interval of interest

(2) apply the spectral filter
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(3) spatially filter the trial

(4) compute the feature vector

(5) classify the trial

Unlike for the calibration session the result of classification may be given to the
user as feedback, e.g., in the form of a bar moving on the screen. Note that a change
in the feature distribution is often observed between calibration and feedback session
(Shenoy et al., 2006; Arvaneh et al., 2013b). This nonstationarity may be for example
due to the additional visual processing induced by the feedback or it may come from
tiredness if the calibration and feedback session are performed on the same day; but
also knowing the results of the classification may of course change the mental strategy
of the user and consequently affect the feature distribution. Various strategies may
be used in the test session to improve the classification performance of the system,
among the most common are adaptation of the classifier (Li and Guan, 2006; Sugiyama
et al., 2007; Vidaurre et al., 2011a) and retraining of the filters (Tomioka et al., 2006;
Krauledat, 2008; Arvaneh et al., 2013b). Another successful strategy to cope with this
nonstationarity is to robustify the feature extraction process (Samek et al., 2012b, 2013c;
Arvaneh et al., 2013a; Kawanabe et al., 2014).

2.3 data sets used in this thesis

This section gives an overview over the data sets used for experimental evaluation in
this thesis. Note that the preprocessing performed in this thesis slightly differ from
some of our prepublished papers. The reason for the deviation is comparability, i.e.,
by considering the same setting for all experiments presented in this thesis we make
the results comparable.

Vital BCI data set

This data set (Blankertz et al., 2010a) contains EEG recordings from 80 healthy subjects
performing motor imagery tasks with the left and right hand or with the feet. It con-
sists of one calibration and one feedback session, both recorded on the same day. In
the calibration session visual cues (arrows pointing left, right, down) indicated which
motor imagery task should be performed and three runs with 25 trials of each motor
condition were recorded. Then, the best binary combination of motor imagery tasks
were selected and the subjects performed feedback with three runs of 100 trials each
(some users performed only one or two runs). Visual feedback, i.e., a cursor moving
on the screen, was provided to the user while performing motor imagery. Note that
this feedback was lacking in the calibration phase. The signals were recorded from 118

Ag/AgCl electrodes, band-pass filtered between 0.05 and 200 Hz and downsampled
to 100 Hz. All subjects in this study were BCI novices.

The following preprocessing is applied in the experiments performed on this data
set. We manually select 62 electrodes densely covering the motor cortex and filter the
data in the frequency range 8-30 Hz with a 5th order Butterworth filter. Furthermore,
we use a fixed time segment from 750 to 3500 ms after the trial start for feature extrac-
tion. Note that we do not optimize these parameters for individual subject in order to
increase comparability of the results and allow between-subject information transfer.

BCI Competition III data set IVa

This data set (Dornhege et al., 2004) was used in the BCI Competition III (Blankertz
et al., 2006b) and contains EEG signals from five healthy subjects performing right
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hand and foot motor imagery without feedback. Two types of visual cues, a letter
appearing behind a fixation cross and a randomly moving object, shown for 3.5 s were
used to indicate the target class. The presentation of target cues were sandwiched
between periods of random length, 1.75 to 2.25 s, in which the subject could relax. The
EEG signal was recorded from 118 Ag/AgCl electrodes, band-pass filtered between
0.05 and 200 Hz and downsampled to 100 Hz, so that 280 trials are available for each
subject.

We manually select 68 electrodes densely covering the motor cortex and divide the
data into a training and test set based on the type of cue used in the experiments. Note
that this division does not coincide with the one used for the competition, however, it
allows us to study between-paradigm nonstationarity as the cues in the training (letter)
and test (moving object) data differ significantly. In our experiments the subjects A1

and A3 have 210 training trials (3 runs) and 70 test trials (1 run) and the remaining
users have an equal number of 140 trials (2 runs) in each set. We extract a time segment
located from 500 to 2500 ms after the cue instructing the subject to perform motor
imagery and band-pass filtered the signal in the frequency range 8-30 Hz using a 5th
order Butterworth filter.

Inhouse data set

This data set consists of two calibration (i.e. without feedback) recordings from five
healthy participants. The volunteers performed motor imagery of two limbs, specifi-
cally left hand and foot. The cues indicating the stimulus were presented either visu-
ally (with an arrow appearing in the center of the screen) or as an auditory stimulus (a
voice announcing the task to be performed), resulting in two data sets for each user. In
our experiments (see Chapter 5) the training data set consists of the calibration record-
ings with visual stimuli and the test data set contains the recordings with auditory
stimuli. A time segment located from 750 to 3500 ms after the cue instructing the sub-
ject to perform motor imagery is extracted from each trial and the signal is band-pass
filtered in the range 8-30 Hz using a 5th order Butterworth filter. Both the training and
test set contain 132 trials, equally divided between each class. We select 85 electrodes
densely covering the motor cortex for the experiments presented in this thesis.



3
S PAT I A L F I LT E R I N G

E lectroencephalographic signals reflect not only neural voltage fluctuations un-
derneath the recording electrodes but also capture the activity of distant current

sources through volume conduction. Therefore, the signal x(t) 2 RD recorded at the
scalp is usually modeled as a (noisy) linear mixture (Blankertz et al., 2011),

x(t) = As(t) + n(t), (4)

where s(t) 2 RD are neural sources and A 2 RD⇥D is the matrix mapping the ac-
tivity of each source to the electrode space. Note that many blind source separation
algorithms such as ICA (for reasons of mathematical convenience) assume that the
number of brain sources and electrodes coincides. Contributions not captured by A
are modelled as normally distributed noise n(t). The columns of A are often referred
to as spatial patterns of neural activity.

Motor imagery based BCIs aim to focus on the sources of sensorimotor rhythm mod-
ulation, i.e., on the neural populations generating the ERD/ERS effect. An estimate of
these neural sources is obtained by applying spatial filters W = [w

1

. . .w
d

] 2 RD⇥d

to the data

ŝ(t) = W>x(t). (5)

These filters project the EEG signal to a d-dimensional subspace and often assume that
the estimated sources are uncorrelated, i.e., represent distinct neural populations. This
zero correlation assumption can be expressed mathematically by restricting W to be
decomposable into a whitening and an orthogonal projection part.

Note that there is an important difference in the information content of spatial filters
and the corresponding spatial patterns (Blankertz et al., 2011; Biessmann et al., 2012;
Haufe et al., 2014). A filter is computed by optimizing an objective, e.g., maximizing
the variance ratio between classes on the recorded data (not in the source space). Thus,
the noise signal n(t) is considered in the optimization process. For this reason high
filter values must not be interpreted as indicator for relevant scalp locations, on the
contrary, high values may be solely due to cancelling of noise correlations. A spatial
pattern on the other hand allows for a physiologically meaningful interpretation as
its coefficients directly reflect the correlation between the channel and the source. In
other words when displayed in a scalp plot a spatial pattern enables us to infer the
2D locations of active neural sources. Figure 4 visualizes the difference between filters
and patterns; in contrast to the filter which mainly attenuates the noise in the data, a
pattern depicts the location of the underlying neuronal activity. Note that spatial pat-
terns can be computed from the filters under the assumption of uncorrelated sources
(Biessmann et al., 2012) using the following formula

A = XX>W, (6)

where X = [x(1) x(2) . . .] represents the data matrix.

3.1 common spatial patterns algorithm

Common Spatial Patterns (CSP) have been widely used in BCI systems (Koles et al.,
1990; Ramoser et al., 1998; Blankertz et al., 2008b) as they are well suited to discrim-

15



16 spatial filtering

PatternFilter

Figure 4.: Visualization of a spatial filter and the corresponding spatial pattern. Only
the spatial pattern enables us to infer the 2D locations of active neural
sources.

inate between two motor imagery classes. A CSP spatial filter w 2 RD maximizes
the variance of band-pass filtered EEG signals in one condition while minimizing this
quantity in the other condition (or equivalently minimizing the common variance). By
definition the variance of a band-pass filtered signal is equal to band power, thus CSP
enhances the differences in band power between two conditions (preferably in the fre-
quency band in which ERD/ERS occurs). The CSP spatial filters can be computed by
maximizing the Rayleigh quotient

R(w) =

w>⌃
1

w
w>⌃

2

w
, (7)

where ⌃
1

and ⌃
2

are the average covariance matrices from class 1 and 2, respectively.
The maximization of this quotient can be formulated as a constrained optimization
problem

max
w

w>⌃
1

w (8)

subject to w>⌃
2

w - C = 0

where C is an arbitrary constant; the constant is arbitrary because the norm of w is not
fixed. When solving this problem using Lagrange multipliers we arrive at the solution
w⇤

1

satisfying

⌃
1

w⇤
1

= �⌃
2

w⇤
1

(9)

This equation has the form of a generalized eigenvalue problem where the generalized
eigenvector with largest eigenvalue � corresponds to the spatial filter w⇤

1

maximizing
the Rayleigh quotient. One can show that the CSP filter w⇤

2

minimizing Eq. (7) is
simply the generalized eigenvector with smallest eigenvalue (Ramoser et al., 1998).
The discriminative information is best preserved when selecting d spatial filters from
both ends of the spectrum, i.e., w with largest and smallest eigenvalues � in Eq. (9).
Note that various selection schemes are used in practice:

(1) Selecting the same number of filters from both ends of the spectrum.

(2) Sorting the filters according to their discriminativity value ↵
i

= max
⌦
�

i

, 1

�

i

↵

and selecting the top d filters.

(3) Selecting the spatial filters adaptively (d not fixed) by applying a heuristic, e.g.,
median variance criterion (Blankertz et al., 2008b).

Note that we use the second selection scheme (↵-sorting) with d = 6 throughout this
thesis.
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3.2 why is csp not robust ?

The CSP method computes spatial filters in a naive data-driven manner. This makes
the algorithm vulnerable whenever artifacts are present in the data and may produce
suboptimal results due to overfitting.

One major source of error results from the difficulty in proper estimating the class
covariance matrices. Since poorly estimated covariance matrices do not well represent
the underlying neural processes this directly affects the spatial filter computation. The
increasing number of electrodes used in BCI experiments further aggravates the esti-
mation problem. Thus, if data is scarce it becomes very challenging to reliably estimate
the high-dimensional covariance matrices without prior information or regularization.
Furthermore, the covariance matrix estimation may be negatively affected by EEG ar-
tifacts such as eye blinks or loose electrodes. These artifacts often have substantially
more signal power than the BCI related activity, thus, if not properly removed they
may dominate the covariance matrix estimation and lead to overfitted CSP solutions.
It is well know that the standard covariance estimator (mean of signal is zero)

C =

1

N- 1

NX

t=1

x(t)x(t)

> (10)

is not robust (Huber, 1981) in the sense that artifacts with extreme values of x(t) dom-
inate the averaging. If the artifacts are not similarly distributed between both motor
imagery classes they will largely influence the CSP solution. Problems may also oc-
cur in small sample settings where the largest eigenvalues of the covariance matrix
are overestimated whereas the smallest ones are underestimated (Bartz et al., 2013);
this has a direct influence on the variance ratio estimation and therefore may nega-
tively affect CSP. Various techniques, e.g., normalization, shrinkage, robust estimators
or incorporating data from additional subjects, have been developed to improve the
estimation of covariance matrices in BCI.

Another source of problems is the nonstationarity of the EEG (Kaplan et al., 2005).
A time series {X

t

} is called strictly stationary (Priestley, 1981) if for all (t
1

, . . . , t
n

) 2 Zn,
the joint distributions of

X

t

1

, . . . ,X
t

n

and those of X
t

1

+h

, . . . ,X
t

n

+h

coincide for all time shifts h. Intuitively, stationarity means that the data of two differ-
ent epochs comes from the same distribution. Note that this property hardly holds for
brain signals such as EEG because different processes are active in the brain at different
times and the sensory input also changes constantly. However, one may assume that
the underlying neural process responsible for movement imagination produces station-
ary activity or at least is less nonstationary than remaining processes, e.g., responsible
for visual information processing. The nonstationary nature of EEG affects all stages
of the BCI processing pipeline and leads to changing feature distributions which may
negatively affect performance as standard machine learning methods such as Linear
Discriminant Analysis assume that data are sampled from a fix (but unknown) dis-
tribution (Hastie et al., 2001). Two strategies exist to cope with this problem, namely
adaptation to the changes and the usage of robust representations that are invariant
to the changes. Note that we use the term nonstationarity in a very general sense to in-
dicate all types of changes in feature distribution, i.e., we do not restrict the definition
to a time series measured in a particular experimental session from a single subject.
We also use the term in the context of data recorded in different sessions or subjects.
For instance, we say that there exist a nonstationarity (although the term heterogeneity
would fit better) between subjects if their data distributions do not match.
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Changes may be measured on various time scales and between different data
sources, e.g., epochs, sessions or subjects. They may be class-specific or class-
independent. They may occur frequently or very seldom. Finally, they may adversely
affect classification performance, do not have an effect or be discriminative (class-
related nonstationarity). In the following we discuss three types of nonstationarity
which is often present in BCI data.

Within-session changes in the signal distribution are very common and occur on
different time scales (Reuderink, 2011; Samek et al., 2012b; Arvaneh et al., 2013a). For
instance, artifacts such as loose electrodes, muscle movements, blinking, swallowing,
jaw clenching or sudden shifts of attention are often present in EEG recordings and typ-
ically affect the signal of one or few trials. Tiredness, changes in electrode impedance
or learning effects (Vidaurre et al., 2011c) are on the other hand only visible on larger
time scales. Both types of changes may not only corrupt the covariance matrix esti-
mation but also lead to overfitted CSP solutions and increase the variability of the
extracted features. Therefore, the application of robust algorithm is crucial for success-
ful BCI operation under nonstationarity.

Between-session nonstationarity are often observed in BCI experiments (Shenoy
et al., 2006; Samek et al., 2013c). There are several reasons why data recorded in one
session1 are substantially different from data recorded in other sessions (which may
be on a different day), e.g., the calibration of the system may be different, the subjects’
state of mind may differ and the position of the electrodes may not match exactly. A
particular type of between-session nonstationarity are changes related to the transi-
tion from calibration to application phase of a BCI experiment. These changes may be
due to addition processing induced by the visual or auditory feedback which is often
lacking when calibrating the system. Users may also change the strategy to control
the BCI when knowing the result of the classification. Another scenario where CSP
may produce results that do not generalize well is that in which the method focuses
on discriminative but not motor imagery related activity. For instance assume we use
a visual cue (arrow pointing to the left or right) in the training phase to indicate the
motor imagery class. A subject may involuntarily perform tiny eye movements when
observing the cue, i.e., move the eyes to the direction of the arrow. These ocular move-
ments may induce task-related EEG activity which will be captured by the CSP spatial
filters. However, this activity is not related to motor imagery, thus, it becomes meaning-
less and may deteriorate classification performance if the cue is lacking in subsequent
sessions.

Finally, nonstationarity may also be defined in terms of differences between subjects.
This type of nonstationarity is not relevant when training a single-subject BCI system,
but certainly becomes important when aiming for user-independent BCIs or shorter
calibration times (Krauledat et al., 2008; Fazli et al., 2009). A typical scenario where
this nonstationarity matters is when utilizing data from additional subjects in order to
improve spatial filter computation (Kang et al., 2009; Lotte and Guan, 2010b; Samek
et al., 2014). Differences in the signal distribution of different subjects may have many
reasons. They may be due to differences in the electrode positions or the user’s state-
of-mind, but also anatomical differences, e.g., size of the head, may play a significant
role. It is advisable to weight the contributions from other subjects according to their
relevances (Samek et al., 2013a).

3.3 regularization framework

Regularization is a popular strategy to robustify machine learning algorithms. The
Common Spatial Patterns method can be regularized by adding a penalty term P(w)

1 Note that we use the term sessions for recordings conducted on different days or experiments
performed on the same day with a difference in paradigm, cue or feedback.
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to the denominator of the Rayleigh quotient (Blankertz et al., 2008a; Lotte and Guan,
2011). This leads to an objective function which maximizes the variance ratio between
classes and at the same time aims to minimize the penalty term. It was shown (Mika
et al., 2000) that this form of regularization can be used to compute invariant features
because spatial filters w with large P(w) values will be effectively discarded. One
can enforce various types of invariances on the features by designing specific penalty
terms. The regularized CSP method maximizes the following objectives
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= arg max
w
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w
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)w + �P(w)

, (11)
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2

)w + �P(w)
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where � > 0 is a parameter trading-off the maximization of the CSP variance ratio
and the minimization of the penalty term. If � = 0, then the regularized CSP method
coincides with standard CSP.

Note three differences between this algorithm and the CSP objective in Eq. (7). First,
the spatial filters computed by the regularized CSP method minimize the overall vari-
ance (i.e. sum of class covariance matrices) whereas the original CSP formulation only
considers the variance of the other class in the denominator of the Rayleigh quotient.
This is not a real difference as it can be shown (Ramoser et al., 1998) that both formu-
lations are equivalent in the sense that the same spatial filters are computed (at least
for � = 0); the only difference is the scaling, in the former case the objective value is
restricted to lie between 0 and 1 whereas it is not upper bounded in the latter formu-
lation. Another seeming discrepancy is that the regularized CSP method maximizes
two objectives, one for each class, whereas CSP computes spatial filters by solving only
one generalized eigenvalue problem and selecting the eigenvectors from both ends of
the eigenvalue spectrum. Optimizing two objectives is necessary (for � > 0) because
the regularized CSP filter w⇤

2

(same holds for w⇤
1

) maximizing the variance ratio for
the second class does not coincide with the filter which minimizes the quotient in
Eq. (11), i.e., the filter which minimizes the variance ratio for the first class. The equiv-
alence between eigenvectors minimizing and maximizing the Rayleigh quotients for
the two classes only holds for CSP. The third difference between both methods con-
cerns the zero correlation assumption. In the case of CSP the spatial filters w
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i

(t)ŝ
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The penalty term in the regularized CSP framework disrupts the orthogonality, con-
sequently, the correlation of the extracted sources may increase or decrease slightly
and is not zero anymore. By using the divergence-based framework introduced in
Chapter 7 we can regularize the spatial filters without sacrificing the orthogonality
property.

In order to compute the regularized CSP filters by solving a generalized eigenvalue
problem the penalty term is required to be a quadratic form P(w) = w>Kw. Only for
such penalty terms are we able to write the objective functions in Eq. (11) and Eq. (12)
as a Rayleigh quotient w>Aw

w>Bw which is maximized by solving a generalized eigenvalue
problem. Alternative penalty terms using, e.g., Kullback-Leibler divergences or Eu-
clidean distances, do not allow us to represent the objective in this form. Mathemat-
ically, the penalty term translates into an additional quadratic constraint in the La-
grange formulation of the objective (see Eq. (8)). A geometrical interpretation of the
optimization is given in Figure 5. For a constant C

1

we can formulate CSP as maxi-
mization of w>⌃

1

w subjected to w>
(⌃

1

+⌃
2

)w = C

1

. The spatial filter maximizing
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Figure 5.: The maximization of the Rayleigh quotient in Eq. (7) can be interpreted as
finding the largest cyan ellipse while satisfying the constraints represented
by the brown ellipse. By adding a regularization term K to the CSP de-
nominator (purple curve) we change the solution from w

CSP

to w
regCSP

.
The dashed curve represents the CSP denominator and contains the point
w

regCSP

. One clearly sees that this point does not maximize the Rayleigh
quotient. In other words the introduction of a penalty term decreases the
CSP objective function but potentially regularizes the optimization to a “bet-
ter” (e.g. more stable, sparse, stationary) solution.

this optimization problem can be interpreted as point of intersection w
CSP

between
the brown ellipse representing the constraint and one of the cyan ellipses representing
the objective value (outer ellipses stand for high objective values). The inclusion of
the penalty matrix K in the denominator of the Rayleigh quotient can be interpreted
as rotation of the brown ellipse towards the purple ellipse. This rotation changes the
solution, i.e., we arrive at a new point of intersection w

regCSP

. Note that the (average)
discriminativity decreases by adding the constraint in the sense that

w>
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w
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From a geometrical perspective, the spatial filter w
regCSP

lies on the dashed constraint
ellipse (which has a different constant C

2

), but the point w
regCSP

does not maximize
the objective value w>⌃

1

w as intersections with “higher” cyan curves exist. However,
by sacrificing a little (average) discriminativity regularization aims to find filters which
are in some other sense “better” (e.g. more stable, sparse, stationary) than the solution
with maximum variance ratio.

3.4 state-of-the-art csp variants

In this section we review some of the recently proposed algorithms for spatial fil-
ter computation. Note that we focus on CSP-like methods and do not discuss spatio-
spectral algorithms such as (Lemm et al., 2005; Zhang et al., 2011) or adaptation strate-
gies such as (Shenoy et al., 2006; Vidaurre et al., 2011b). Furthermore, we do not review
the work on artifact identification and removal such as (Jung et al., 2000; Winkler et al.,
2011). Figure 6 gives an overview over the presented CSP variants.
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Robust Estimation

Several strategies have been proposed to improve the estimation of the covariance
matrices used in CSP. For instance, the authors of (Yong et al., 2008; Kawanabe and
Vidaurre, 2009) robustly estimate the covariance matrices by using M-estimators. A
novel robust estimator for covariance matrices is presented in this thesis and has been
prepublished in (Samek and Kawanabe, 2014). Regularization of the covariance ma-
trix (Lu et al., 2009; Kang et al., 2009; Lu et al., 2010; Lotte and Guan, 2011) is also a
common approach to increase robustness, especially in small-sample settings. Other
authors (Lal et al., 2004; Arvaneh et al., 2011; Goksu et al., 2011) propose to improve
the CSP solution by performing channel selection or enforcing sparsity on the spatial
filters. The idea of computing CSP in a region of interest was used in (Grosse-Wentrup
et al., 2007, 2009; Sannelli et al., 2011). The authors of (Kawanabe et al., 2009, 2014)
propose a maxmin approach to robustify the CSP algorithm. A generative CSP model
using the robust Student-t distribution was proposed in (Wu et al., 2009). Other meth-
ods robustify the variance estimation in CSP by applying L

p

-norms (Wang et al., 2012b;
Park and Chung, 2013). The authors of (Sannelli et al., 2009) apply trial pruning in or-
der to separate signal from noise and (Parra et al., 2005) discuss several methods for
minimum noise estimation. A beta divergence method for robust spatial filtering is
proposed in this thesis and has been prepublished in (Samek et al., 2013b).

Another popular way for robustifying the spatial filter computation is the regu-
larization of the CSP algorithm. Many CSP variants use regularization in order to
incorporate a priori information (Lotte and Guan, 2010a), avoid overfitting (Lotte and
Guan, 2011) or reduce ocular artifacts (Blankertz et al., 2008a). In this thesis we propose
a generic divergence-based framework for spatial filter regularization; the framework
has been prepublished in (Samek et al., 2014; Samek and Müller, 2014).

Stationary Features

Recently, the development of methods compensating for nonstationarities (Quionero-
Candela et al., 2009; Sugiyama and Kawanabe, 2011) has gained increased attention
in many application fields of machine learning including Brain-Computer Interfacing.
The stationary CSP approach presented in this thesis (Samek et al., 2012b) regular-
izes the CSP solution towards stationarity in a data-driven manner. The authors of
(Arvaneh et al., 2013a) use the same ansatz but apply Kullback-Leibler divergence to
measure the changes in the data. Two-step approaches (von Bünau et al., 2010; Samek
et al., 2011, 2012a) have also been suggested for computing stationary features. They
first estimate and remove the nonstationary contributions and apply CSP to the remain-
ing part of the data in a second step. Furthermore, a second-order baseline was used
(Reuderink, 2011) to robustify the algorithm against time and subject related variations.
Robust feature extraction methods have also been proposed for reducing between-
session nonstationarities (Bamdadian et al., 2012; Arvaneh et al., 2013b). The method
presented in this thesis has been prepublished in (Samek et al., 2013c). Some alterna-
tive approaches for tackling the between-session nonstationarity problem (Krauledat
et al., 2008; Krauledat, 2008; Fazli et al., 2009) utilize data collected in previous ses-
sions, others (Sugiyama et al., 2007; Vidaurre et al., 2011a) update the trained model
using adaptation.

Multi-Subject Methods

Many recent algorithms improve the CSP solution by incorporating data from ad-
ditional subjects. Such approaches are especially important when the objective is to
train a subject-independent BCI system or reduce calibration time. The authors of (De-
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vlaminck et al., 2011) jointly train the spatial filters of several subjects by applying a
multi-task learning algorithm. A Bayesian method for subject-to-subject information
transfer has been proposed in (Kang and Choi, 2011). Data from other users have also
been used as regularization target by (Kang et al., 2009; Lotte and Guan, 2010b). A
recently proposed method (Samek et al., 2013a) incorporates information from addi-
tional subjects by applying Multiple Kernel Learning. An unsupervised BCI based on
inter-subject information has been proposed in (Lu et al., 2008).

Other approaches

Some CSP variants improve the quality of the solution by explicitly considering the
temporally local structure of observed samples (Wang and Zheng, 2008; Wang and
Xu, 2012; Wang, 2013). Other algorithms were specifically designed for multi-class
problems and optimize the solution by using information theory (Grosse-Wentrup
and Buss, 2008), joint approximate diagonalization (Gouy-Pailler et al., 2010; Nguyen
et al., 2012) or Kullback-Leibler Divergence (Wang, 2012). Recently, a spatial filtering
method directly linking to Bayes classification error was proposed in (Zhang et al.,
2013). Wavelet CSP methods have been considered in (Mousavi et al., 2011; Robinson
et al., 2013) whereas the authors of (Falzon et al., 2012) improve the discriminative
capability of CSP by taking into account both the amplitude and phase components
of the EEG signal. A CSP variant directly optimizing the discriminativity of the fea-
tures was proposed in (Thomas et al., 2009; Fattahi et al., 2013). A recently published
approach (Li et al., 2013) learns spatial filters by considering signal propagation and
volume conduction effects. Note that many existing methods try to improve the clas-
sification step rather than the CSP computation. For instance, the method presented
in (Alamgir et al., 2010) incorporates information from additional subjects by apply-
ing multi-task learning whereas the authors of (Sugiyama et al., 2007; Vidaurre et al.,
2011a) propose alternative adaptation strategies to cope with nonstationarity. Some
authors omit the CSP computation step and suggest to jointly perform feature ex-
traction and classification (e.g. Li and Guan, 2006; Tomioka and Müller, 2010). Other
approaches (Barachant et al., 2010, 2012) omit spatial filtering and directly perform
classification on the manifold of covariance matrices. Ensemble classification methods
have also been used for nonstationary EEG processing (Liyanage et al., 2013).

3.5 baseline methods used in this thesis

In the following we introduce several state-of-the-art spatial filtering methods which
are used as baseline in this thesis. These methods tackle different problems which we
abbreviate as: robustness to artifacts (A), within- and between-session stationarity (WS
and BS) and integration of multi-subject data (MS). Table 2 summarizes the baseline
approaches and describes the main property of each method. Note that the methods
proposed in this thesis as well as the baseline methods (except shrinkCSP) have one
or more free parameters. We determine these parameters (if not stated otherwise) by
applying five-fold cross-validation to the training data with minimum error rate as
selection criterion.

Tikhonov Regularized CSP (TRCSP): This method (Lotte and Guan, 2011) belongs
to the class of regularized CSP approaches introduced in Section 3.3 and uses a
regularization function P(w) = w>Kw = ||w||2 which penalizes the norm of spatial
filters, i.e., K is the identity matrix. This penalty term mitigates the influence of
artifacts and reduces the tendency to overfitting. As all regularized CSP algorithms
TRCSP has a regularization parameter � trading-off the maximization of the CSP
objective and the minimization of the penalty term. We select the regularization
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Figure 6.: Overview over several state-of-the-art CSP variants.

parameter from {0, 2-10, . . . , 2-1, 20}.

Stationary Subspace Analysis CSP (SSA+CSP): This two-step method projects the
data to a stationary subspace prior to CSP computation. The underlying assumption
is that the observed signal x(t) is a linear superposition of stationary ss(t) and nonsta-
tionary sn(t) sources

x(t) = A s(t) =

h
As An

i "ss(t)

sn(t)

#

, (14)

and that the BCI-related information is contained in the stationary subspace. The
Stationary Subspace Analysis (SSA) (von Bünau et al., 2009; Samek et al., 2011) method
is applied to separate the s-sources from the n-sources and the data is projected to
the stationary subspace before applying CSP. The free parameter is the number of
directions removed and is selected from {0, 1,. . . , 22}.

Covariance-based CSP (covCSP): This method (Lotte and Guan, 2010b) regularizes the
estimated covariance matrix towards the average covariance matrix of the remaining
subjects. The CSP filters are computed using these regularized covariance matrices.
The covariance matrix of subject i⇤ is estimated as

⌃̃
i

⇤,c = (1- �)⌃
i

⇤,c + �

X

i 6=i

⇤
!

i,c⌃i,c, (15)
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Table 2.: State-of-the-art methods used as baseline in this thesis. We apply these meth-
ods to several scenarios abbreviated as A = artifacts, WS = within-session
stationarity, BS = between-session stationarity, MS = multi-subject.

Name Scenario Description

TRCSP
(Lotte and Guan, 2011) WS

Adds identity matrix to denominator of Rayleigh
quotient in order to penalize spatial filter norm.

covCSP
(Lotte and Guan, 2010b) BS, MS

Regularizes the class covariance matrices towards
the covariance matrices of other subjects.

klcovCSP
(Kang et al., 2009) BS, MS

As covCSP but weights the contributions of other
subjects by inverse KL divergence.

SSA+CSP
(Samek et al., 2011) WS

Projects the data to a stationary subspace prior to
CSP computation.

KLCSP
(Arvaneh et al., 2013a) WS

Adds KL divergence regularization term to CSP
in order to extract stationary features.

shrinkCSP
(Lotte and Guan, 2011) A, WS

Improves estimation of covariance matrix by regu-
larization towards identity and applies CSP.

MCDE+CSP
(Yong et al., 2008) A

Robustly estimates covariance matrix in the pres-
ence of outliers and applies CSP.

where ⌃
i

⇤,c is the sample covariance matrix of class c for the subject of interest, ⌃
i,c

are the covariance matrices of the other i = 1 . . . K, i 6= i

⇤ subjects and � 2 [0 1] is a
regularization parameter controlling the amount of information incorporated from
additional users. The contributions of additional subjects are weighted equally with
!

i,c =

1

K-1

. Note that in this thesis we use all other available subjects, i.e., we do
not apply the subject selection proposed in (Lotte and Guan, 2010b). We use the
regularization parameters {0, 10-5, . . . , 10-1, 0.2, . . . , 0.9, 1}.

Kullback-Leibler divergence covariance-based CSP (klcovCSP): This method (Kang
et al., 2009) applies the same ansatz as covCSP but weights the contributions of ad-
ditional subjects by the inverse Kullback-Leibler (KL) divergence2 between the data
distribution of subject i and i

⇤. The weights are computed as
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where D

kl

(⌃
i,c ||⌃

i

⇤,c) denotes the KL divergence between zero-mean Gaussian dis-
tributions with covariances ⌃

i,c and ⌃
i

⇤,c. We use the same regularization parameters
as for covCSP.

Kullback-Leibler CSP (KLCSP): This method (Arvaneh et al., 2013a) optimizes the
CSP objective and simultaneously minimizes within-class variability of the extracted
features. Variability is measured as average Kullback-Leibler divergence between the
data distribution of a trial and the average distribution of the corresponding class. The
following objective function is optimized

min
w
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subject to w>
(⌃

1

+ ⌃
2

)w = 1

2 See definition in Eq. (32) in Chapter 6.
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where ⌃i

c

is the covariance matrix estimated from ith trial of class c and ⌃
c

is the
average class covariance matrix. The parameter � trades-off discriminativity and
stationarity. When extracting multiple spatial filters we need to include orthogonality
constraints. This method is a special case of the divergence-based algorithm proposed
in this thesis, namely deflation divCSP-WS (see Chapter 7). We will extensively evalu-
ate the divergence methods in Chapter 7. We select � from the set {0, 0.1, 0.2, . . . , 1}.

Shrinkage covariance CSP (shrinkCSP): This method computes spatial filters by ap-
plying CSP with regularized covariance matrices (cf. shrinkage LDA (Blankertz et al.,
2011)). More precisely, shrinkCSP (Lotte and Guan, 2011) regularizes the estimated
covariance matrix towards the identity matrix before computing the spatial filters, i.e.,

⌃̃
c

= ⌃
c

+ �I. (18)

The parameter � is determined analytically by minimizing the bias-variance trade-off
(Ledoit and Wolf, 2004), thus, this method has no free parameters.

Minimum Covariance Determinant Estimator CSP (MCDE+CSP): This method
(Yong et al., 2008) uses robustly estimated covariance matrices and CSP for spatial filter
computation. The minimum covariance determinant estimator (MCDE) (Rousseeuw
and Driessen, 1999) finds h 6 N samples which have a covariance matrix with the
lowest possible determinant, i.e.,
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where �(i) is the ith element of the permutation on the samples, thus MCDE resists
(N- h) outliers. Based on this estimate, the algorithm assigns weights to the observa-
tions such that outliers get zero weight (see Rousseeuw and Driessen, 1999). The final
covariance matrix is then estimated from samples with non-zero weight. The param-
eter h trades-off accuracy of estimation and robustness. We select the free parameter
� =

h

N

from {1, 0.95, 0.9, . . . , 0.5}.
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S TAT I O N A RY C O M M O N S PAT I A L PAT T E R N S

C lassification under nonstationarity has recently gained increased attention in
the field of machine learning (Quionero-Candela et al., 2009; Sugiyama and

Kawanabe, 2011). It is a challenging task because classifiers learned at time t may
not perform well at time t + �t due to changes in the feature distribution. Figure 7

visualizes the problem; each circle and cross represents a feature vector and the color
encodes class membership. The three plots depict feature distributions at different
times. One can see clearly that there is a change in distribution across time which neg-
atively affects classifiability, i.e., the hyperplane (black line) separating the classes at
the beginning gives poor results at later times.

There are (at least) two ways to tackle this nonstationarity problem, namely adapta-
tion of the classifier and extraction of features which are stationary. In this chapter we
introduce a novel CSP variant termed stationary Common Spatial Patterns (sCSP) which
regularizes the CSP solution towards stationary subspaces, i.e., extracts features which
are (more) invariant to variations of the signal properties.

Figure 7.: The feature distributions estimated at different times vary significantly. This
nonstationarity negatively affects classifiability of the data. Two ways to
tackle this problem are adaptation of the classifier and extraction of invariant
features.

4.1 measuring nonstationarity

The sCSP algorithm proposed in this chapter belongs to the class of regularized CSP
methods presented in Section 3.3. This novel CSP variant includes a term P(w) in the
denominator of the Rayleigh quotient that assigns large penalties to filters w which
lead to a nonstationary feature distribution. Thus, it regularizes the feature extraction
step towards stationarity. From a conceptual point of view sCSP applies a similar
idea as Linear Discriminant Analysis (LDA) (Hastie et al., 2001), namely it trades-off
between-class distance (discriminativity) and within-class variance (nonstationarity).
However, in contrast to LDA it does not maximize the difference in class means and
minimize the variance of the extracted features, but it rather maximizes the difference
in class variances and minimizes the variance of variances. In the following we discuss
how to define the penalty term P(w).

27
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One measure commonly used for capturing the variability of features is the average
squared difference between the projected average variance and the projected variance
of ith trial

P(w) =

1

2n

2X

c=1

nX

i=1

⇣
w>⌃i

c

w - w>⌃
c

w
⌘
2

, (20)

where ⌃i

c

is the covariance matrix of ith trial of class c, ⌃
c

is the average covariance
matrix of class c and n is the number of trials per class (we assume that it is the
same for both classes). Ideally, we would like to maximize the average band power
ratio between classes (as done by CSP) and simultaneously minimize P(w) to keep the
variance estimation along the projected direction as stable as possible across trials (i.e.
minimize the variance of variances). However, as discussed in Section 3.3 this penalty
term can not be used in a regularized CSP framework which computes spatial filters by
solving a generalized eigenvalue problem because it is not a quadratic form. The same
is true for other nonlinear measures of variation, e.g., Kullback-Leibler divergence
(Samek et al., 2011; Arvaneh et al., 2013a; Samek et al., 2014).

Another simple measure of nonstationarity is the average absolute difference

P(w) =

1
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c

w
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This measure is also not a quadratic form, thus, we can not use it if we want to keep
the Rayleigh quotient formulation of the algorithm. Note that the main advantages of
formulating the algorithm as generalized eigenvalue problem are the very fast compu-
tation and the uniqueness of the solution (global optimum). Thus, in order to keep the
Rayleigh quotient formulation we propose to use a related quantity as penalty term.
By taking the vector w out of the absolute value function and ensuring that the differ-
ence matrix is positive definite we approximate each term in the absolute difference
penalty as
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w
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w, (22)

where F is an operator to make symmetric matrices be positive definite. If a sym-
metric matrix M has eigendecomposition M = V D V>, the operator returns F(M) =

V |D|V>, i.e., the signs of all the negative eigenvalues are flipped. The intuition behind
this operation is to ensure that the penalty term is always positive, even in the case
that the variance in the ith trial is smaller than the global average. Thus, one may think
of this operator as an absolute value operator for matrices. The penalty term used in
the sCSP method is

P(w) = w>
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| {z }
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w. (23)

Since K is a positive definite matrix, our stationary CSP algorithm can be computed
within the regularized CSP framework. Although the quantities in Eq. (21) and Eq. (23)
are not equivalent, they both measure absolute deviations, in the latter case before and
in Eq. (21) after projecting the data. In fact, it can be shown that our new measure is
an upper bound for the quantity in Eq. (21).
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The following theorems assume that the trial covariance matrices ⌃i

c

are jointly diag-
onalizable. Mathematically, this means that the eigendecomposition of ⌃i

c

is

⌃i

c

= VDi

c

V>, (24)

with Di

c

being a diagonal matrix and V being eigenvectors which are same for all ⌃i

c

.
This assumption holds if the signal in different trials is generated by the same mixture
model with uncorrelated sources.

Theorem 1. The average absolute difference penalty defined in Eq. (21) is upper bounded by
the sCSP penalty defined in Eq. (23), i.e., the following inequality holds
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Proof. We show that the inequality holds for each single term
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Let VDV> be the eigendecomposition of the difference matrix ⌃i
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let u = V>w. We rewrite the inequality as
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being the
jth element of vector u and d

j

being the jth diagonal element of matrix D. This is a
Jensen’s inequality because the absolute value function is convex. Since this inequality
holds for each single term, it also holds when summing over the trials and classes.

The following theorem shows that the spatial filter w maximizing Eq. (23) also max-
imizes Eq. (21). This relation ensures that sCSP assigns high penalties to directions
with large absolute differences, thus, it allows sCSP to effectively regularize the solu-
tion towards stationarity.

Theorem 2. The sCSP penalty in Eq. (23) and the average absolute difference penalty in
Eq. (21) are maximized by the same spatial filter w⇤, i.e.,
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let u = V>w. From Theorem 1 we know that

2X

c=1

nX

i=1

���u>Di

c

u
��� 6 u>

 
2X

c=1

nX

i=1

���Di

c

���

!

| {z }
K

u.

Both terms are equal iff u has exactly one non-zero entry u

j

in the jth row, i.e.,
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where d

i

c,j is the jth diagonal element of Di

c

. The vector u has exactly one non-zero
entry iff w is orthogonal to all columns of V except to one, i.e., w is itself an eigen-
vector of VKV>. The eigenvector w⇤ of VKV> with largest eigenvalue maximizes the
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quadratic norm w>VKV>w, i.e., the right side of the inequality. The corresponding
u⇤

= Vw⇤ has exactly one non-zero entry (i.e., the inequality becomes an equality),
thus, w⇤ also maximizes the left side of the inequality.

Since the assumption that all trial covariance matrices are jointly diagonalizable is
often not fulfilled in practice, the sCSP penalty will not give the same solutions as
the average absolute deviation measure. One can even construct examples (see Section
4.3) in which the sCSP penalty fails to capture the true nonstationarity. When applying
sCSP to real data, however, it gives reasonable performance improvements (see Section
4.4). This indicates that Theorem 2 also holds when the covariance matrices are approx-
imately jointly diagonalizable. Note also that in contrast to, e.g., the divergence-based
nonstationarity measure which is presented later in this thesis, the sCSP penalty allows
one to compute the spatial filters very efficiently by solving a generalized eigenvalue
problem.

4.2 stationary csp algorithm

The stationary CSP (sCSP) method is summarized in Algorithm 1. Its input param-
eters are a set of covariance matrices estimated from the trials {⌃i

c

}, the number of
spatial filters to return d, a regularization parameter � > 0 trading-off stationarity and
discriminativity and a parameter ⌫ controlling the time scale of the nonstationarities
captured by the penalty matrix. Note that when � = 0, then sCSP reduces to CSP.

In the first step of the algorithm average covariance matrices ⌃
c

are computed for
each class. Then, the signal properties of chunks of data are captured by estimating
covariance matrices ⌃̃

i

c

in epochs of size ⌫. An epoch of size ⌫ is a set of ⌫ consecutive
trials from the same class. For simplicity we assume that ⌫ is a divisor of the number
of trials of each class n; if this is not the case, then the residual trials are assigned to
the last epoch. The computation of epochs with different ⌫ parameters allows one to
capture nonstationarities on various time scales (Wojcikiewicz et al., 2011; Samek et al.,
2012b). Note that we use the same method as presented in last section to compute the
penalty matrix, however, ⌃̃i

c

does no longer denote the covariance matrix in ith trial,
but the covariance matrix estimated from ith epoch. By taking into account nonstation-
arities on various time scales we are able to cope with different types of changes, e.g.,
estimating the covariance matrix from individual trials allows one to capture changes
such as muscular artifacts which occur on a trial-by-trial basis whereas if the chunk
size increases the focus shifts towards slower changes such as variations of task in-
volvement or electrode impedance. We evaluate the influence of the time scale on the
penalty matrix later in this chapter.

After computing the penalty terms for both classes we normalize the average covari-
ance matrices ⌃

c

and the penalty matrices �
c

. Note that we compute the sCSP penalty
matrix �

c

for each class separately, i.e.,
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The normalization step is optional but setting the regularization parameter � is easier
if all matrices have approximately the same scale. One possible normalization strat-
egy is to divide the matrices by their traces. If the regularization parameter � is not
specified, then it can be determined by cross-validation. In this thesis we determine
the � parameter from {0, 2-10, . . . , 20] and the chunk size parameter ⌫ from {1, 5, 10}
by applying five-fold cross-validation with minimum error as selection criterion.

In the next step of the algorithm the two Rayleigh quotients in Eq. (11) and Eq. (12)
are maximized by solving two generalized eigenvalue problems. Finally, we select d
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eigenvectors from both eigendecompositions by using one of the selection schemes
described in Section 3.1. In this thesis we use scheme (2) for all experiments, e.g., we
pool the solutions of the two generalized eigenvalue problems, sort the eigenvectors
by decreasing eigenvalue and select the top d eigenvectors as spatial filters. Note that
we do not combine sCSP with additional regularization targets, e.g., with Tikhonov
Regularization as done in (Samek et al., 2012b), because we aim to separately study
the effects of regularization towards stationarity.

Algorithm 1 Stationary Common Spatial Patterns

1 function sCSP({⌃i

c

}, d, �, ⌫)
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7 Select d columns W 2 RD⇥d from V
1

and V
2

.
8 return W
9 end function

4.3 failure of approximation

The following example1 demonstrates that the heuristic (F operator) used by sCSP to
construct the penalty matrix may fail, i.e., sCSP does not penalize the true nonstation-
arities in the data. Assume we have the following matrices
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#
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#

where ⌃
c

denotes the average covariance matrix of class c and ⌃1

1

and ⌃2

1

stand for
the covariance matrices estimated from trial 1 and 2 of class 1, respectively. Note that
we only assume class 1 to be nonstationary, i.e., the trial covariance matrices of class
2 coincide with ⌃

2

. If we aim to maximize the ratio between the variance of class 1

and 2 and simultaneously want to minimize nonstationarity, then the optimal spatial
filter is w>

= [1 0]

>. Considering the class differences in the off-diagonal elements of
⌃
1

and ⌃
2

leads to a higher Rayleigh quotient (therefore it is preferred by CSP), but
introduces variability to the extracted features. The penalty term of sCSP is computed
as
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where F is the operator that flips the negative eigenvalues of a matrix. Since adding
this matrix to the denominator of the Rayleigh quotient will not penalize the off-
diagonal elements, sCSP will not extract the filter w>

= [1 0]

>. In other words the

1 We thank the authors of (Arvaneh et al., 2013a) for mentioning the deficits of sSCP to us.



32 stationary common spatial patterns

flipping sign heuristic fails in this example because the assumption which says that
the covariance matrices are jointly diagonalizable is violated. Stationary CSP variants
based on Kullback-Leibler divergence (Samek et al., 2011; Arvaneh et al., 2013a; Samek
et al., 2014) will penalize the off-diagonal terms because they do not rely on heuristics
but rather evaluate nonstationarity in a principled manner (see Section 7.5.2).

4.4 experimental evaluation

This section empirically investigates the effects of regularizing the CSP solution to-
wards stationarity. We apply sCSP to two data sets and compare the results with sev-
eral state-of-the-art methods. We demonstrate that our novel regularization strategy is
in many situations superior to standard techniques and interpret the reasons for the
improvement in classification accuracy from a neurophysiological perspective. Before
we present results on real data, we investigate the impact of different parameters on
the penalty matrix computation in a simulation study; in particular we analyse the
influence of chunk size.

4.4.1 Simulations

When introducing the sCSP regularization term (see Eq. (23)) we mentioned that sCSP
only approximately minimizes the quantity we would like to minimize, namely the
variance of the variances (see Eq. (20)). In the following controlled simulation experi-
ment we investigate the quality of this approximation.

Consider the observed signal x(t) 2 RD generated as noisy mixture of D sources
s(t) = [s

1

(t) . . . s

D

(t)]

> with a random orthogonal mixing matrix A 2 RD⇥D

x(t) = As(t) + ⇠(t).

We generate n trials with N samples per trial and each source signal s
2

(t) . . . s

D

(t)

is sampled from a zero mean normal distribution with standard deviation 1 and the
noise ⇠(t) is sample from an isotropic Gaussian with standard deviation 2. The first
source s

1

(t) is nonstationary, i.e., for each trial i it is sampled from a Gaussian with a
different variance parameter �2

i

= 1+ ✏ and ✏ ⇠ N
�
0,!2

�
. Note that we ensure that

�

2

i

> 0. In summary, we generate noisy data with one nonstationary source.
The sCSP regularization term P(w) aims to penalize a projection w to the nonsta-

tionary source s

1

, i.e., the sCSP penalty matrix � should be such that P(w) = w>�w
is much larger for w being the projection to s

1

than for w being the projection to the
other sources. Figure 8 depicts the median (100 repetitions) ratio of the penalty value
when projecting to source s

1

and the maximum penalty value when projecting to the
other sources for different n,D,N and !. More precisely, if B = A-1 and b
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is the ith
row of B, we plot the variance ratio
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The black dashed line represents value 1, i.e., the case when the penalty of the pro-
jection to source 1 equals the penalty of the projection to another source. The sCSP
penalty matrix should assign higher penalty values to the projection to source 1 be-
cause this source is nonstationary, thus, values above the dashed line represent well
estimated penalty matrices. One clearly sees that the quality of the sCSP penalty ma-
trix varies largely with the number of trials n, the number of samples per trial N, the
dimensionality of the data D and the strength of the nonstationarity !. This is not
very surprising because the estimation of the covariance matrices used for the penalty
matrix computation also largely depends on these parameters. On the other hand even
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when the sCSP regularization term does not assign the largest penalty value to the true
nonstationary projection, sCSP may still perform well as long as P(w) assigns a large
enough penalty to this projection direction and does not penalize the BCI-relevant di-
rections in the data. In summary, this example illustrates that sCSP does what it is
supposed to do as long as the covariance matrices are reliably estimated.

2 5 10 15 20 50 100 200 500 1000

Figure 8.: Ratio of the penalty value when projecting to the true nonstationary source
and the maximum penalty value when projection to another source for dif-
ferent parameters such as number of trials n, number of samples per trial
N, dimensionality of the data D and strength of the nonstationarity !. The
dashed line represents the equality of both penalty terms (ratio of 1); if the
ratio is smaller than 1, then sCSP finds a projection direction which is sup-
posed to be more nonstationary than the projection to the true nonstationary
source.

An important parameter of the sCSP algorithm is the chunk size. We mentioned be-
fore that only a small chunk size can capture single-trial nonstationarities such as elec-
trode artifacts whereas larger chunk sizes focus on larger time scales and may oversee
single-trial events. We want to investigate this difference from a theoretical perspective
here. Assume that all trial covariance matrices ⌃i share the same eigenspace, i.e., are
jointly diagonalizable. Then, for chunk size 1 the contribution of the first k trials to the
sCSP penalty matrix (assume number of trials n > k) is
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where ⌃ is the average covariance matrix, V are the common eigenvectors and Di and
D are diagonal matrices containing the eigenvalues of ⌃i and ⌃, respectively. When
using chunk size k we obtain
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According to Jensen’s inequality the following relation holds �
⌫=k

6 �
⌫=1

. In order
to demonstrate the difference between small and large chunk sizes we construct an
example where w>�

⌫=1

w is large but w>�
⌫=k

w is small, i.e., sCSP with chunk size
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1 penalizes a spatial filter that is not penalized by sCSP with chunk size k. Assume we
have covariance matrices of four consecutive trials
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0.9 0

0 1

#
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#
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#
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#

The average covariance matrix is then
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#

and the penalty matrix for chunk size 1 can be computed as

�
⌫=1

=

1

4

4X

i=1

F(⌃i

- ⌃) =

"
0.1 0

0 0

#

Thus, the projection w>
= [1 0] that leads to nonstationary features has a non-zero

penalty. In other words the trial-wise variations are penalized by sCSP with chunk size
1. On the other hand when computing the penalty matrix for chunk size 2 we obtain
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The projection w>
= [1 0] is not penalized when applying sCSP with chunk size

2. In this sense there is a qualitative difference between both penalty matrices, small
chunk sizes capture trial-wise variations which may be overlooked when using larger
chunk sizes. Note that in some situations it may be advantageous to ignore single-trial
variations and focus on slower changes; in other data sets the opposite may be true. In
our experiments we select the optimal chunk size from {1, 5, 10} by cross-validation in
order to adapt to the nonstationarities present in the data of each subject.

4.4.2 Performance Results

In the following we evaluate the sCSP method on two data sets described in Section 2.3,
namely the Vital BCI data set and the BCI Competition III data set IVa. We compare the
performance results2 to CSP and four baseline methods which also use regularization
in the spatial filter computation process. Figure 9 displays the results for the first data
set. The error rate of sCSP is shown on the y-axis whereas the error rates of the baseline
methods are depicted on the x-axes. Each subject is represented by a circle and when
the circle is below the solid line our method outperforms the baseline approach for this
particular subject. We display the p-values of the one-sided Wilcoxon sign rank test in
the bottom right corner. Note that the null hypothesis of the test is that the median of
the error rate differences (our method - baseline method) is greater or equal to zero.
For p < 0.05 we reject this null hypothesis, thus, we say that our method significantly
outperforms the baseline. The free parameters of all methods are selected by five-fold
cross-validation on the training data.

2 These results differ from the results in (Samek et al., 2012b) because we use a different spatial
filter selection scheme and different preprocessing here in order to be consistent with the results
in later chapters.
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Figure 9.: Scatter plots showing error rates of sCSP and five baseline methods. Each
circle represents one subject and if the circle is below the solid line, then
our method outperforms the baseline for this subject. The p-value of the
Wilcoxon signed rank test is displayed in the right bottom corner.

One clearly sees that the regularization performed by sCSP significantly improves
the classification accuracy for all baselines. This means that the sCSP regularization
(for this data set) is more efficient than the Tikhonov regularization (TRCSP) presented
in (Lotte and Guan, 2011), the two-step method (SSA+CSP) introduced in (Samek et al.,
2011) and CSP with improved estimates of the class covariance matrix (shrinkCSP
(Lotte and Guan, 2011) and MCDE+CSP (Yong et al., 2008)). Thus, it seems that non-
stationarity is a major problem in this data set. We conjecture that one reason may be
that all subjects in the Vital BCI data set are BCI novices, thus they probably have not
developed a stable strategy for performing motor imagery yet. Note that every base-
line method has its own area of application. For instance, TRCSP penalizes the norm of
the spatial filters, i.e., avoids overfitting, the shrinkage estimator provides optimal (in
terms of bias-variance trade-off) covariance matrix estimates when data is scarce and
MCDE+CSP is designed to perform well when the signal is affected by artifacts. The
sCSP algorithm3 is the first CSP variant to regularize the solution towards stationarity;
SSA+CSP is a two step method and has its own deficits (discussed in Section 7.5.1).
For the Vital BCI data nonstationarity is a large problem, therefore sCSP performs very
well. For other data sets different challenges such as lack of data or large artifacts may
be more relevant and the other approaches may outperform sCSP. In practice it may
be advantageous to combine several regularization strategies (c.f. Samek et al., 2012b).

Figure 10 visualizes the sCSP parameters selected by cross-validation on the Vital
BCI data set. It is interesting to note that chunk size 1 is preferred over chunk size
5 and 10. Thus, it seems that changes are mostly present on a trial-by-trial basis in
the data. This preference also occurs when selecting the parameters a posteriori, i.e.,
by minimizing test error. The regularization parameter � = 2

-3 is the most popular
choice. When applying sCSP with the most popular parameters � = 2

-3 and ⌫ = 1

to all subjects we obtain a performance increase over CSP which is significant with

3 Another CSP variant which regularizes the solution towards stationarity, KLCSP (Arvaneh et al.,
2013a), was proposed after sCSP and will be discussed in the context of our divergence CSP
framework in Chapter 7



36 stationary common spatial patterns

0 1 1 5 102
-10

2
-9

2
-8

2
-7

2
-6

2
-5

2
-4

2
-3

2
-2

2
-1

Regularization parameter λ Chunk size ν

N
u

m
b

e
r 

o
f 
su

b
je

ct
s

N
u

m
b

e
r 

o
f 
su

b
je

ct
s

Regularization Parameter Chunk Size Parameter

0

2

4

6

8

10

12

14

16

18

0

5

10

15

20

25

30

35

40

Figure 10.: Left: Selected regularization parameter. Right: Selected chunk size.

Table 3.: Comparison of classification accuracies for sCSP and different baselines on
the BCI Competition III data set IVa.

BCI Competition III Overall

Subject A1 A2 A3 A4 A5 Mean Median Std

CSP 66.1 94.6 58.2 87.9 90.5 79.5 87.9 16.3

TRCSP 66.1 94.6 61.7 87.5 91.3 80.2 87.5 15.2

SSA+CSP 66.1 94.6 58.7 85.3 83.3 77.6 83.3 14.8

shrinkCSP 74.1 94.6 62.8 82.6 90.5 80.9 82.6 12.8

MCDE+CSP 68.8 94.6 59.2 89.7 88.5 80.2 88.5 15.3

sCSP 66.1 96.4 65.8 89.7 90.9 81.8 89.7 14.7

p = 0.0482. For the other popular values of �, namely 2

-6, 2-5 and 2

-4, the p-values
are also highly significant (p = 0.0027, p = 0.0473 and p = 0.0070). This result suggests
that sCSP can be applied with fixed parameters in practice.

Finally, we compare the six spatial filter computation methods on the second data
set. Table 3 displays the results. Also here sCSP outperforms the baselines; it gives best
performance (bold font indicates highest classification accuracy) for three out of five
subjects. We do not provide p-values because they can not be reliably estimated for
this limited number of subjects.

4.4.3 Further Analysis

In the following we analyse and interpret the sCSP results in more detail. First we
demonstrate that sCSP reduces the nonstationarity of the extracted features, i.e., the
flipping sign heuristic works in practice. Note that the original goal of sCSP was to
reduce the variance of the features, however, we could not directly use this penalty in
the Rayleigh quotient formulation of the algorithm. Therefore we minimize a different
quantity which was shown to be related (see Theorem 2) to average absolute deviation.
Figure 11 visualizes how well the original objective, i.e., the minimization of the feature
variance, is achieved on the Vital BCI data set. The figure displays the relative change
in the variance when applying sCSP with various regularization parameters (we fix
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the chunk size to 1). The left boxplot depicts the changes in mean variance (over all six
spatial filters), i.e.,
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denotes the jth spatial filter computed by sCSP with parameter � and ⌃i
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and ⌃
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stand for the trial and average covariance matrices of class c, respectively. The
right boxplot displays the changes in maximum variance
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In both cases one sees a steady decrease of these quantities, i.e., the variance of the
extracted features is reduced in comparison to the CSP solution (� = 0). In this sense
sCSP does exactly what it is supposed to do, namely reducing the nonstationarity of
the features. For some subjects, especially in the left panel, the sCSP heuristic fails i.e.,
the variance of the features increases. One potential explanation for this is that the
trial covariance matrices are not jointly diagonalizable, thus, the sCSP approximation
is suboptimal (Theorem 2 does not hold); another reason may be that this effect is due
to averaging over all spatial filters, i.e., the decrease in variance for the first spatial
filters goes along with a larger increase for the other filters. This may be the case as
the variance increase is less present in the right boxplot which displays the change
for one spatial filter. The outlier points marked by the circles represent subjects who
have a large increase in variance of the features. These subjects not only shows a
significant increase in nonstationarity but also a performance gain, namely in the one
case from almost chance level to error rates of 33% and 22% and in the the other case
from an error rates of 21% to error rates of 13% and 16%. As suggested these subjects
show a reduction in variance for some of its spatial filters and an increase for others.
Note also that the initial nonstationarity level (for � = 0) is very low for the filters
of one of the subjects, thus, the sCSP penalty raises the variance to “normal level”.
Therefore, for these two subjects an average increase in nonstationarity goes along
with an performance increase; for most other users the opposite is true.

In the next analysis we investigate the impact of chunk size on performance. For
that we compare the results of sCSP when selecting the chunk size by cross-validation
to the results of sCSP when using a fixed chunk size of 1, 5 and 10. Table 4 gives
an overview over the average classification accuracies and provides p-values of the
one-sided Wilcoxon signrank test. A p-value smaller than 0.05 means that sCSP with
chunk size selection (sCSP with CV) significantly outperforms sCSP with fixed chunk
size parameter. From the results we see that selecting a subject-specific chunk size, i.e.,
measuring nonstationarities on a subject-optimized time scale, is very important as all
p-values are below the significance level of 0.05.

As discussed earlier selecting an appropriate chunk size allows us to focus on the
type of changes present in the data, e.g., trial-wise nonstationarities or changes on a
larger time scale. Figure 12 displays the differences of the sCSP penalty matrices when
computed with chunk size 1 and 5. Here we visualize the top 10 eigenvectors of sub-
ject’s 21 penalty matrix. Note that the top eigenvectors of the penalty matrix are the
directions which are mostly penalized. One clearly sees that very similar directions are
penalized when using chunk size 1 and chunk size 5. Despite this general similarity
there are differences in the ordering of the eigenvectors (i.e. strength of penalty) as
well as differences in the eigenvectors themselves. It is hard to say why sCSP with
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Figure 11.: Left: Change in mean variance of the extracted features over all six spatial
filters. Right: Change in maximum variance of the extracted features.

Table 4.: Comparison of classification accuracies of sCSP with different chunk sizes.
The last column displays the p-values of the one-sided Wilcoxon sign-rank
test when comparing sCSP with CV to the other methods.

Method Mean Median p-value

CSP 68.7 66.5 0.0001

sCSP with ⌫ = 1 70.7 71.2 0.0270

sCSP with ⌫ = 5 70.1 70.4 0.0098

sCSP with ⌫ = 10 70.4 70.3 0.0331

sCSP with CV 71.2 71.5 -

chunk size 5 gives better results than sCSP with chunk size 1 for this subject. We con-
jecture that sCSP with chunk size 5 penalizes activity patterns which are very similar
to the artifactual CSP activity patterns displayed in Figure 13, especially the third and
seventh eigenvector of the penalty matrix are similar to CSP patterns 1 and 6 in Fig-
ure 13. There is also a similarity for the chunk size 1 case (3th and 9th eigenvector),
however, the similarity is lower than when using a larger chunk size. It seems that the
chunk size 1 penalty matrix is simply more noisy (single-trial effects) for this particular
subject.

Subject 21 performs left hand vs. right hand motor imagery and has the follow-
ing error rates: 40% (CSP), 36.7% (TRCSP), 18% (SSA+CSP), 43% (shrinkCSP), 21%
(MCDE+CSP), 17.7% (sCSP). It is interesting to mention that neither TRCSP nor
shrinkCSP significantly improves classification performance for this subject, even
when selecting the regularization parameter a posteriori by minimizing test error. On
the other hand SSA+CSP, a method that does not perform very well on average be-
cause it is a two-step method (see discussion in Section 7.5.1), improves classification
accuracy. Thus, it seems that this subject has a large nonstationarity problem that can
neither be tackled by penalizing the norm of the spatial filters nor by using improved
covariance matrix estimation; only regularization towards stationarity helps for this
subject. Figure 13 visualizes the activation patterns of CSP and sCSP. We display the
area under the ROC curve (AUC) measure (Bradley, 1997) below each spatial pattern;
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Figure 12.: Top row: Top eigenvectors of the penalty matrix for chunk size 1. Bottom row:
Top eigenvectors of the penalty matrix for chunk size 5.

higher values represent better performance. The AUC measure better summarizes the
quality of the spatial filter than error rate because it is robust to bias shifts. Note that
both CSP and sCSP compute a neurophysiologically meaningful spatial pattern for the
right hand motor imagery class (second pattern of CSP, first pattern of sCSP). These
patterns also have relatively large AUC values, i.e., are discriminative. However, for
the left hand condition the CSP algorithm fails to compute meaningful patterns, i.e.,
no pattern captures activity over the right sensorimotor cortex. The fourth sCSP pat-
tern captures this activity and has a high AUC value of 0.8. Therefore sCSP provides
much better performance results than CSP; it captures activity related to both motor
imagery classes. Figure 14 visualizes (parts of) the filtered EEG signal in channel FFC6.
The artifacts in this electrode are the reason which explains why CSP fails to capture
activity related to left hand motor imagery. In other words the main difference between
the CSP and sCSP patterns in Figure 13 is that CSP contains an artifact pattern (6th
pattern) instead of capturing neurophysiologically meaningful activity (4th pattern of
sCSP). The sCSP method is able to penalize spatial filters which focus on the artifactual
activity. Since the left hand motor imagery related activity is substantially more sta-
tionary than the signal at electrode FFC6, it is preferred by sCSP. Note that sCSP was
able to penalize the artifactual activity in an unsupervised (data-driven) manner by
minimizing nonstationarity. It is interesting to note that electrodes with high channel-
wise variance (right panel in Figure 14) are preferably penalized by sCSP (see Figure
12).

0.6 AUC 0.8 AUC 0.5 AUC 0.5 AUC 0.6 AUC 0.6 AUC

0.7 AUC 0.6 AUC 0.7 AUC 0.8 AUC 0.6 AUC 0.5 AUC

C
SP

sC
SP

Figure 13.: Top row: Activation patterns of CSP. Bottom row: Activation patterns of sCSP.
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Figure 14.: Left: Signal at electrode FFC6 containing artifacts. Right: Scalp maps visual-
izing channel-wise variance for both motor imagery classes.
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Lessons learned in this chapter

• Stationarity is an effective regularization target with intrigu-
ing properties.

• sCSP outperforms all baseline methods in terms of error rate
and is superior to CSP even when using fixed parameters.

• Simultaneous optimization of two objectives is superior to the
application of two-step approaches such as SSA+CSP.

• Selecting an appropriate chunk size, i.e., capturing nonstation-
arities on the right time scale, is important.

• The approximation applied by sCSP, namely flipping the sign
of negative eigenvalues, works well in practice.
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Future work

• Combination of sCSP with other regularization targets and
robust estimators; stationarity on multiple time scales.

• Criterion for parameter selection; Bayesian approach.

• Evaluation of different measures of nonstationarity.

• Theoretical analysis of penalty matrix properties for approxi-
mately joint diagonalizable covariance matrices.

• Analysis of neural sources responsible for nonstationarity.



5
T R A N S F E R R I N G I N F O R M AT I O N B E T W E E N
S U B J E C T S

Incorporating data from additional subjects (or sessions) into the training process al-
lows one to reduce calibration times and to construct subject-independent BCI sys-
tems (Krauledat, 2008; Fazli et al., 2009, 2011). Recently, several methods have been
proposed to transfer information between users, e.g., by regularization of covariance
matrices (Kang et al., 2009; Lotte and Guan, 2010b) or by constructing a common fea-
ture space (Devlaminck et al., 2011). The recordings acquired from additional sessions
or subjects are helpful for improving the estimation of relevant parameters (especially
if training data is scarce) and serve as source of prior information, e.g., for guiding the
CSP algorithm towards regions of interest. However, large variations between subjects
may prevent the BCI system from learning a common representation or classification
model. Regions of interest may vary substantially from subject to subject and relying
on information acquired from a user with very different signal characteristics may
cause a deterioration in performance. Therefore many transfer learning approaches
(Kang et al., 2009; Devlaminck et al., 2011; Samek et al., 2013a) weight the contribution
of each additional subject or perform subject selection.

In this chapter we propose an alternative approach, namely rather than transferring
information relating to regions of interest we transfer information relating to promi-
nent nonstationarities in the data. We develop a method, stationary subspace Common
Spatial Patterns (ssCSP), which does not regularize the CSP solution towards a region
of interest but rather regularizes the spatial filters away from sources responsible for
the changes in the signal. Conceptually, this novel approach is similar to sCSP, but the
penalty matrix is estimated from recordings of additional subjects and has low rank.

5.1 what information can be transferred ?

Data from subjects performing the same experiment prove very helpful in estimating
important parameters of the BCI pipeline. For instance, additional recordings may help
in computing the spectral filter, may improve the estimation of the high-dimensional
covariance matrices and help in extracting superior spatial filters or they may robustify
the classifier training by providing additional examples of a particular motor imagery
class. Incorporating brain recordings from additional subjects is only reasonable if
these recordings have similar properties, abstractly speaking are sampled from the
same distribution as the data at hand. Note that this assumption is very restrictive
and will hardly be satisfied in practice. Besides differences in the electrode positions
or head geometries, there often exist discrepancy in the users’ mental states, attention
levels or strategies to perform the motor imagery tasks. Several authors (Kang et al.,
2009; Lotte and Guan, 2010b; Devlaminck et al., 2011; Samek et al., 2013a) recognized
the subject heterogeneity problem and proposed to weight the contributions of indi-
vidual subjects or to only include data from users that are “similar enough” to the
subject of interest.

An alternative approach to reduce the risk of training the model on data which
do not fit the subject of interest is to transfer information about what sources not
to include instead of what regions to rely on. The underlying idea is that although
users may have very different motor imagery patterns, some of their non-task related
activity may still be similar and may be used for regularizing the CSP solution. In

41
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the case of ssCSP we propose to regularize the spatial filters away from a common
nonstationary subspace rather than regularizing them towards a region of interest. Of
course regularization towards and away from a subspace are two sides of the same coin
because when regularizing away from a subspace we by definition regularize towards
its orthogonal complement. However, when regularizing towards a small subspace,
e.g., in the case of CSP we are typically interested in 6 out of say 60 dimensions, we
discard a large amount (> 90%) of information. Thus, if the regularization target is
not the right one, we very likely lose relevant information. On the other hand when
regularizing away from a small subspace we keep most of the information in the
data and remove only a small fraction. Thus, if the regularization target is suboptimal
(e.g. because subjects are very different) we lose little discriminative information on
average.

There are several types of nonstationary information which may be transferred be-
tween subjects. For instance, a change in the experimental paradigm between sessions
may be induced by additional feedback, differences in the cue indicating the stimulus
(visual vs. auditory) or by changes in the task (movement execution vs. movement
imagination vs. robot assisted movement). This between-session nonstationarity often
leads to a shift in the feature distribution and may negatively affect classification accu-
racy (Shenoy et al., 2006; Krauledat, 2008; Samek et al., 2013c; Arvaneh et al., 2013b).
This type of experimentally induced nonstationarity (if similar among subjects) may be
transferred between users and may act as regularization target in the ssCSP algorithm.
Potentially transferable is also the activity responsible for the day-to-day variability of
EEG recordings. Patterns associated with most of this variability may be identified on
data from additional subjects and the corresponding spatial filters may be penalized
when performing experiments with the subject of interest. If the patterns are simi-
lar among subjects, then this step will increase the stationarity of the signal. Finally,
one may also transfer information about common artifacts between users. Approaches
which extract the most prominent artifact patterns in a data-driven manner on record-
ings of additional subjects and incorporate these pieces of information into ssCSP,
may potentially regularize the spatial filter computation towards robust solutions and
improve classification performance. In this thesis we only consider experimentally in-
duced between-session changes as this type of nonstationarity is most stable between
subjects (see Samek et al., 2013c).

5.2 common nonstationary subspace

The ssCSP algorithm uses the regularized CSP framework for spatial filter computa-
tion. The penalty term of the proposed method is a quadratic form P(w) = w>Kw
with a low rank matrix K specifying the nonstationary subspace. The low-rank as-
sumption ensures that we only remove a small part of the information, optimally the
most prominent common changes, from the data. In the following we describe how to
compute the common nonstationary subspace from recordings of additional subjects.

In the first step we extract the dominant directions of change from every additional
subject k = 1 . . . K by computing the eigendecomposition of the difference of the train-
ing and test covariance matrix ⌃k

tr

- ⌃k

te

. Note that the ` eigenvectors vk

1

, vk

2

. . .vk

`

with largest absolute eigenvalues |dk

1

|, |dk

2

| . . . |dk

`

| capture most of the changes occur-
ring between training and test phase. In other words a spatial filter w that is orthogonal
to the subspace spanned by these eigenvectors will extract features with a relatively
small between-session shift. Parameter ` may be a fixed value or may be individually
determined for each subject, e.g., by setting a threshold on the eigenvalue spectrum.

In a second step we aggregate the eigenvectors into a matrix V =

h
v1

1

. . .vK

`

i
; the

columns of this matrix span the subspace of common nonstationarities SV = span(V).
The dimensionality of the subspace SV can be reduced by applying Principal Component



5.3 stationary subspace csp algorithm 43

Analysis (PCA) to matrix V. This step is important as the dimensionality of SV grows
linearly (with factor `) with the number of additional subjects. By applying PCA we
extract a subspace of dimensionality � 6 dim(SV) that contains common nonstationary
directions. We denote the basis of this low-dimensional subspace as V

�

. The penalty
term of ssCSP is then

P(w) = w>V
�

V>
�

w. (26)

Spatial filters w that are orthogonal to the subspace SV
�

are not penalized by the ssCSP
algorithm. Note that PCA must be applied without mean subtraction as the column
vectors of V are directional vectors without a common zero point. Figure 15 visualizes
the problem of mean subtraction.

The goal of the PCA step is to approximate the information contained in V by a
lower rank matrix V

�

. Each column vector of V is represented by a dark point in Figure
15. The dimensionality of the space is equal to the dimensionality of the data. Note
that in this example the common direction of change (in signal space) is the direction
represented by the center of the point cloud (brown cross). If we apply standard PCA
to V, we first center the data, i.e., shift the point cloud to the origin (light points), and
then determine the direction of largest variance (left panel). Note that the direction of
largest variance does not coincide with the direction of the common nonstationarity
in signal space, thus, PCA with mean subtraction does not give the desired solution.
The right panel in Figure 15 visualizes the application of PCA to the data and its
mirrored copy Ṽ = [V -V], i.e., we mirror the dark point cloud and apply PCA to the
pooled data. Note that the pooled data have mean zero, i.e., no centering is required.
It is easy to show that the vector maximizing the variance of the pooled data, i.e.,
the eigenvector with largest eigenvalue of [V -V][V -V]

>, coincides with the PCA
solution when no mean is subtracted, i.e., the eigenvector with largest eigenvalue of
VV>. This eigenvector gives us the direction of common nonstationarity.

In order to find the subspace of common nonstationarity we select the top � eigen-
vectors of VV>. The matrix containing these vectors as columns is denoted as V

�

and
approximates V in the sense that

w>V
�

V>
�

w is large , w>VV>w is large

5.3 stationary subspace csp algorithm

The goal of the stationary subspace CSP method is to remove the subspace that con-
tains the principal nonstationary directions common to most subjects prior to CSP
computation. The method is summarized in Algorithm 2.

The input parameters of the algorithm are the class covariance matrices (only train-
ing data) of the subject of interest {⌃

c

}, training and test covariance matrices {⌃k

tr

}

and {⌃k

te

} of the additional subjects k = 1 . . . K, parameter d determining the number
of spatial filters to return, parameters ` and � specifying the common nonstationary
subspace and the regularization parameter �. In the first step of the algorithm all co-
variance matrices are normalized to have approximately the same scale; a commonly
used approach is to divide the matrices by their traces. We select the parameters ` and
� from {0, 1, . . . , 10}. The first parameter controls the number of nonstationary direc-
tions extracted per subject. This parameter may have the same value for all subjects or
be subject-specific, e.g., by defining a threshold on the amount of changes one wants
to capture. The second parameter determines the rank of the ssCSP penalty matrix,
i.e., the dimensionality of the nonstationary subspace SV

�

. Note that the parameters
can not be determined by cross-validation on the subject of interest as the goal of
our method is to reduce the shift between training and test data and this does not
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Figure 15.: Left: The application of PCA to the dark points provides the direction of
largest variance within the point cloud (horizontal direction). This PCA
direction does not coincide with the common nonstationary direction (dark
cross). Right: When applying PCA to the data and its mirrored copy, then
the direction of largest variance (PCA vector) captures the common change.
Note that rather than using the mirrored copy we may also apply PCA to
the original data without subtracting the mean.

necessarily correlate with a performance increase on the training data. Therefore, we
determine the parameters by minimizing test error of the additional subjects.

In line 5 of Algorithm 2 we extract the ` eigenvectors with largest absolute eigenval-
ues of the difference matrix ⌃k

tr

- ⌃k

te

for each additional subject k. In the subsequent
steps the dimensionality of the common nonstationary subspace SV = span(V) is
reduced to � by applying PCA without mean subtraction, i.e., via SVD-based rank
reduction of V. This step ensures that the spatial filters w which lead to a large shift
between training and test features are penalized. Note that we measure the shift in an
unsupervised manner, i.e., we assume that it is not class-specific. One can apply the
same algorithm to compute class-specific nonstationary subspaces. In the final steps
we add the penalty matrix � = V

�

V>
�

to the Rayleigh quotient. Note that � has a
rank � << D, i.e., spatial filters which are orthogonal to the common nonstationary
subspace SV

�

are not penalized. In contrast to sCSP we completely remove the non-
stationary directions from the data by setting � = 10

5. We use the same spatial filter
selection scheme as for sCSP.

5.4 experimental evaluation

In this section we evaluate the ssCSP method using simulations and real EEG record-
ings. We compare the performance to covCSP and klcovCSP, two methods which uti-
lize information from additional subjects by regularization of the subject-specific co-
variance matrices. The experimental evaluation is performed on the three data sets
described in Section 2.3.

5.4.1 Simulations

A common assumption of multi-subject methods used in BCI is that the EEG record-
ings of different users have the same underlying data generating process. For instance,
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Algorithm 2 Stationary Subspace Common Spatial Patterns

1 function ssCSP({⌃
c

}, {⌃k

tr

}, {⌃k

te

}, d, `, �, �)
2 Normalize all covariance matrices.
3 for all subjects k = 1 . . . K do
4 Compute ` top eigenvectors vk

1

. . .vk

`

of ⌃k

tr

- ⌃k

te

.
5 end for
6 Aggregate nonstationary directions of all subjects V = [v1

1

. . .vK

`

].
7 Compute a matrix V

�

consisting of � top eigenvectors of VV>.
8 Compute penalty term � = V

�

V>
�

.
9 Compute eigenvectors V

c

= eig(⌃
c

, ⌃
1

+ ⌃
2

+ ��).
10 Select d columns W 2 RD⇥d from V

1

and V
2

.
11 return W
12 end function

regularization of covariance matrices as done by covCSP and klcovCSP is only rea-
sonable if there is a structural similarity between the covariance matrices of different
users. This assumption is very restrictive and only holds approximately in practice.
The simulation study described in this section analyses the stability of ssCSP under
increasing dissimilarity between subjects and compares it to the stability of covCSP. In
other words we evaluate the impact on classification performance when moving from
transferring relevant information (subjects are similar) to transferring meaningless in-
formation (subjects are not similar).

The data set used for the evaluation consists of artificially generated training and
test recordings of five subjects. We use a mixture model with (non)discriminative and
(non)stationary sources. In order to separately study the effect of dissimilarity of the
discriminative subspace and the nonstationary subspace, we generate the data as sum
of two independent mixtures. More precisely, data x(t) is generated as a sum of a
stationary noise-signal term and a nonstationary noise term

x(t) = A

"
sdis(t)

sndis

(t)

#

| {z }
noise-signal term

+ B

"
sstat(t)

snstat

(t)

#

| {z }
noise term

. (27)

Note that we call the first mixture the “noise-signal term” as it contains contribu-
tions from sources which contain information about the simulated BCI task (signal) as
well as contributions from nonrelevant sources (noise). The second mixture is termed
“noise term” as its sources are not important for classification. Note that this model
can also be written as mixture model in Eq. (4) with nonstationary noise. The matri-
ces A and B are random rotation matrices projecting the source activity to channel
space and the sources generate i.i.d. normally distributed (with zero mean) samples.
In order to approximate the properties of real data we restrict the discriminative and
nonstationary subspaces to be low-dimensional.

The following parameters are used for the experiments. The 6 discriminative sources
sdis are sampled from a zero mean Gaussian with standard deviation 0.8 in one con-
dition and 0.1 in the other condition, whereas the 74 nondiscriminative sources sndis

have standard deviation 0.1 irrespectively of class label. The 75 stationary sources sstat

have standard deviation 1 in both the training and test data set; the standard devia-
tion of the 5 nonstationary sources snstat is 1 in the training data set and 3 in the
test data set. For each artificial subject we generate 100 trials per condition, each con-
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sisting of 100 data points, for both the training and the test set. We extract three CSP
filters per class, use log-variance features and a LDA classifier. The parameters of the
multi-subject methods are determined by cross-validating classification performance
in a leave-one-subject-out manner on the other users. The following experiments were
performed on this toy data set using 50 repetitions.

In the first experiment we fix matrix B for all subjects, but increase the distance
between the mixing matrix A = e

M of subject 1 and the mixing matrices of the other
subjects by adding an increasing amount of randomness1. By adding a random ma-
trix ⌅ to M we obtain M

2

= M + ⌘⌅. The new rotation matrix A
2

is computed as
A

2

= e

1

2

(M
2

- M 0
2

). The weight ⌘ controls the distance between A and A
2

. In other
words we simulate the case of increasing dissimilarity between discriminative sub-
spaces of subject 1 and the other artificial users. The results of the two multi-subject
methods are summarized in the first column of Figure 16. Each boxplot visualizes the
distribution of classification error rates of subject 1 for increasing dissimilarity values
⌘. Furthermore, the median CSP error rate is plotted as brown curve. We see from
the figure that the application of covCSP significantly decreases error rates when the
dissimilarity between the mixing matrices A of subject 1 and the others is low; this
performance gain is due to the transfer of discriminative information between sub-
jects. However, if the information that is transferred becomes more and more random,
then the performance deteriorates dramatically. The stationary subspace CSP method
is not affected by increased dissimilarity of the mixing matrices A as it does not trans-
fer discriminative information. It is able to improve classification performance as the
nonstationary subspace remains the same for all subjects (i.e. matrix B is constant).

In the second experiment we simulate the opposite scenario, namely we fix A and
increase the dissimilarity of B between subject 1 and subjects 2-5. The second column
of Figure 16 depicts the results for this case. We observe a stable improvement of
covCSP because the discriminative subspaces are the same for all subjects irrespec-
tively of B. The figure shows an improved performance (decrease in error rates) for
the ssCSP method when the dissimilarity between the nonstationary subspaces is low
and a performance drop when the dissimilarity is high. However, the important point
here is that in contrast to the transfer of discriminative information in the last exper-
iment the performance loss is minimal, actually the performance goes back to CSP
level. This increased robustness can be explained with a lower risk of losing important
information when regularizing the solution away from a small subspace. Although
the transferred nonstationary information becomes more and more meaningless when
distance between the mixing matrices B increases, classification accuracy does not
decrease on average since only few directions are removed from data. The different
behaviour of covCSP and ssCSP highly depends on the size of the discriminative and
nonstationary subspaces, the selection of regularization parameters and of course if
subject (pre)selection is used or not. Thus, on some data sets and in some settings, e.g.,
if training data is scarce, covCSP may perform very well whereas in other settings, e.g.,
in the presence of large nonstationarity between sessions, ssCSP may be the method
of choice.

In the final experiment we generate both matrices A and B such that they are ei-
ther different or the same for subject 1 and the other users (third column of Figure
16). In the first case multi-subject methods have no advantage over CSP as there is no
meaningful information to be transferred. On the contrary, the method transferring
discriminative information may even lose performance as the solution is regularized
towards a noninformative subspace. In the other case when both subspaces stay con-
stant over subjects we observe a significant performance gain of all multi-subject meth-

1 Matrix A is constructed as a matrix exponent of a random antisymmetric matrix M, i.e., A = e

M.
This ensures that A is a rotation matrix, i.e., AA>

= I as A>
= (e

M
)

>
= e

-M
= A-1.
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ods. Since the nonstationarity problem is more severe than the estimation problem (in
small sample settings this may be vice versa), we obtain best results for ssCSP.
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Figure 16.: First column: Results when discriminative subspaces become more and
more dissimilar but the nonstationarities stay the same for all subjects. One
can see that covCSP improves classification performance when subjects are
similar, but when the difference between them becomes larger, then the
information transferred becomes more and more meaningless and error
rates increase almost to chance level. The ssCSP method improves clas-
sification accuracy as it penalizes nonstationary directions in the spatial
filter computation and is not affected by differences in the discriminative
subspaces. Second column: Results for the opposite case, namely constant
discriminative subspaces but different nonstationary directions. The ssCSP
method improves classification accuracy when the transferred information
are meaningful, but does not lead to a significant increase in error rates
when this is not the case. Third column: Performance of all methods for the
case when both subspaces are either different or same for all subjects.

5.4.2 Subspace Similarity

In an initial analysis we study the similarity between signals recorded in different ex-
perimental runs and with different users. We quantify the similarity between two sets
of recordings (indexed with i and j) by using symmetric Kullback-Leibler (KL) diver-
gence. More precisely, we model the signals as zero-mean D-dimensional Gaussian
distributions N(0,⌃

i

) and N(0,⌃
j

) and compute

D̃
kl

�
N(0,⌃

i

) || N(0,⌃
j

)

�
=

1

2

⇣
tr
⇣
⌃-1

i

⌃
j

⌘
+ tr

⇣
⌃-1

j

⌃
i

⌘⌘
+ D. (28)

The symmetric Kullback-Leibler divergence is a popular measure of discrepancy be-
tween probability distributions, the divergence is always positive (or zero) and low
values indicate high similarity between the distributions.
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Table 5.: This table displays the average symmetric Kullback-Leibler divergence be-
tween the recordings of different subjects (first and second row) and between
the training and test data of the same subject.

Inhouse data set BCI Comp. data set Vital data set

Divergence A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 Median

Subject-Subject (train) 490 799 650 853 657 205 344 373 254 498 1072.5

Subject-Subject (test) 995 1803 1799 1947 1377 286 483 468 291 600 925.5

Train-Test 62 27 57 110 15 6 7 7 6 14 11

Table 5 displays the similarity values for the three data sets used for experimental
evaluation in this chapter. The first row displays the average symmetric KL diver-
gence between the distributions estimated on training data of different subjects. For
instance, the value in the first column is the average divergence between the training
data distribution of subject A1 and the training data distributions of subjects A2-A5.
The second row contains the same quantities for the test data sets whereas the last row
displays the discrepancy between the training and test recordings of the same user.
Note that the values can not be directly compared across the data sets because the
dimensionality of the signal varies from data set to data set. However, a tendency can
be observed in all three data sets, namely that the variations between subjects are up
to two orders larger than the differences between training and test sessions. Although
this large discrepancy demonstrates that transferring information between subjects is
a very challenging task, one should keep in mind that the similarity values in Table 5

are computed in the full signal space, thus may in large part reflect differences in the
subject-specific noise (task-unrelated activity) and be affected by the high dimension-
ality of the signal. In the “signal space”, i.e., when only considering subsignals which
are relevant for the BCI task, the between-subject dissimilarity may be much lower.
In other words discrepancies in the full data space may not correlate with differences
in the feature distribution after spatial filtering. It is interesting to note that the users
with largest train-test discrepancy, subject A4 in the Inhouse data set and subject B5 in
the BCI Competition data set, are users for which ssCSP provides a higher classifica-
tion accuracy than the baseline methods (see Table 6). Furthermore, ssCSP reduces the
train-test shift in the feature distributions by 8% for A4 and by 12% for B5. Unfortu-
nately, we could not find a correlation between the reduction of train-test divergence
and performance gain in the Vital BCI data set. In the following we move from an anal-
ysis in the full signal space to an analysis where we quantify the similarity between
relevant subspaces of different subjects.

Figure 17 depicts the average similarity values between different subspaces for the
Inhouse (left panel), BCI Competition (middle panel) and Vital BCI (right panel) data
set. We measure similarity as the mean of squared cosines of the principal angles
✓

k

between the subspaces2. This quantity corresponds to the amount of energy pre-
served when projecting data from one subspace to the other, thus, higher values in-
dicate closer subspaces. Considering all principal angles gives a clearer picture of the
relation between two subspaces than when restricting the analysis to the largest prin-
cipal angle as the latter one tends to become 90

� very fast. In Figure 17 four curves
are depicted in each panel. The cyan curve with lowest color intensity represents the

2 Principal angles are defined recursively as cos(✓
k

) = maxu2F maxv2G uTv = uT

k

v
k

subject to
||u|| = ||v|| = 1, uTu

i

= 0, vTv
i

= 0, i = 1, . . . ,k - 1. Note that there exist an equality
between the canonical correlation and the cosine of principal angles.
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similarity between subspaces spanned by CSP filters, the curve with medium color in-
tensity stands for similarity values between the corresponding CSP patterns, the curve
with highest color intensity depicts the similarity between subspaces constructed from
the prominent nonstationary directions between training and test data and the black
dashed line represents similarity between random subspaces. Note that higher values
indicate closer subspaces. From the plot we see that the subspaces spanned by the CSP
filters of different users have an average similarity value which is close to the similar-
ity between random subspaces. We conjecture that the reason for this low similarity
is that CSP filters capture subject-specific noise (see discussion in Section 3.1). The
similarity is much higher for the CSP patterns as they represent the underlying neural
activity and are less affected by the noise. Interestingly, the nonstationary subspaces
show the highest similarity values for all three data sets, i.e., the directions of largest
change between training and test data are very similar between different subjects. This
important result is the main motivation of our ssCSP method.
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Figure 17.: Similarity between subspaces measured as mean of squared cosines of the
principal angles. For all three data sets the similarity between the nonsta-
tionary subspaces is significantly higher than the similarity between sub-
spaces spanned by CSP filters or CSP patterns.

5.4.3 Performance Results

Although we have demonstrated that common nonstationary directions are present in
the data sets, we have not yet shown that removing these directions improves classi-
fication accuracy. In fact, the impact of nonstationarity on classification performance
is not straight forward and largely depends on whether nonstationary directions are
discriminative or do not contain class-related information, whether they are parallel or
orthogonal to the separating hyperplane and whether they are considered by CSP or
do not affect the feature distribution. In last chapter we have seen that regularizing CSP
towards (within-session) stationarity significantly improves classification accuracy. In
the following we evaluate the ssCSP method which regularizes CSP towards station-
ary subspaces estimated on additional users. Note that the results presented in this
chapter differ from the results in (Samek et al., 2013c) because we use a different spa-
tial filter and parameter selection scheme in order to make all results presented in this
thesis comparable to each other.

Table 6 summarizes the performance results for the Inhouse and the BCI Compe-
tition data set. We see that almost all subjects benefit from incorporating data of
additional users. Our novel ssCSP algorithm significantly improves classification ac-
curacy over CSP according to the Wilcoxon signed-rank test, however, it is not able to
outperform covCSP and klcovCSP. As mentioned before ssCSP has a different focus
than covCSP and klcovCSP, namely it tackles the nonstationarity problem and not the
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Table 6.: Comparison of classification accuracies for different multi-subject CSP vari-
ants. The last column displays the p-values of the one-sided Wilcoxon signed-
rank test when comparing ssCSP with the method in the row.

Audio-Visual Data Set BCI Competition III Overall

Methods A1 A2 A3 A4 A5 B1 B2 B3 B4 B5 Mean Median p-value

CSP 79.5 80.0 69.2 79.2 94.2 66.1 94.6 58.2 87.9 90.5 79.9 79.8 0.0234

covCSP 89.4 84.2 69.2 81.7 94.2 66.1 94.6 73.0 87.1 92.1 83.1 85.6 0.7109

klcovCSP 88.6 72.5 68.3 79.2 94.2 66.1 94.6 68.9 90.2 89.7 81.2 83.9 0.4727

ssCSP 78.8 81.7 69.2 82.5 94.2 69.6 94.6 58.7 88.8 92.9 81.1 82.1 -

estimation problem. Note that we have included covCSP and klcovCSP as baseline
methods in order to see which problem is more relevant in practice; our primarily
goal is not to outperform these approaches with ssCSP. Thus, it is not surprising that
the classification accuracy of some users such as A1, A2 and B3 significantly improves
when covCSP is applied whereas other subjects such as A4, B1 and B5 benefit from the
application of ssCSP. From Table 6 one also sees that in contrast to klcovCSP (subject
A2) there is no significant decrease in performance when applying the ssCSP method.
This observation is in line with the results from the toy experiment, however, this
property of course largely depends on the size of the common nonstationary subspace
penalized by ssCSP.

Figure 18 depicts the results when applying the three multi-subject methods to the
Vital BCI data set. Each circle represents the error rate of a subject and if the circle is
below the solid line then our method outperforms the baseline for this subject. The
p-value of the Wilcoxon signed rank test is displayed in the right bottom corner. On
this data set our ssCSP algorithm improves the classification accuracy for few subjects,
but the improvement is not significant over all 80 users. Thus, although the nonstation-
ary subspaces are similar between users (see Figure 17) we can not obtain a significant
performance increase over the CSP baseline. However, when restricting the analysis to
subjects who have an error rate of 30% or larger, then our method significantly outper-
forms CSP with p = 0.0232. There are several potential explanations for the relatively
small performance improvement of ssCSP. First, the nonstationarities present in the
Vital BCI data differ from the train-test changes in the other two data sets. In the case
of Vital BCI there is additional feedback present in the test session but the cue present-
ing the stimulus does not change between the sessions. For the other two data sets a
different cue is used in training and test phase but no feedback is provided to the user.
Potentially, the latter type of nonstationarity may be better transferable between users
or may have more impact on performance. Second, the Vital BCI data have a higher
between-subject variability (see Table 5) and are potentially more noisy as all users are
BCI novices. Finally, the number of additional subjects used for the computation of
the common nonstationary subspace is significantly higher in the Vital BCI data set.
Since we do not differentiate between real nonstationarity and artifact-related changes,
a larger number of users with lots of artifacts may largely affect the computation of the
common nonstationary subspace. We believe that advanced clustering methods may
perform better than our PCA without mean subtraction algorithm in such a scenario.
On the other hand the covCSP and klcovCSP methods may benefit from incorporating
data from many additional user because this averages out individual differences. We
investigate this point in the subsequent subsection. In fact, we see that covCSP and
klcovCSP largely improve classification accuracy, klcovCSP is even significantly better
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than ssCSP according to the one-sided Wilcoxon signed-rank test. However, note that
covCSP and klcovCSP not only solve a different problem and include different data
than ssCSP but the parameters are also selected differently. In the case of covCSP and
klcovCSP we select the parameters by minimizing the cross-validation error on the
subject of interest whereas in the case of ssCSP we select the parameters by minimiz-
ing average test error of the additional subjects (as we assume that test data of the
subject of interest is not available). We believe that more advanced parameter selec-
tion schemes (e.g., based on the eigenvalue spectrum), subject selection and a more
elaborate approach to the computation of the common nonstationary subspace (e.g.,
clustering method) may improve the performance of ssCSP on the Vital BCI data set.
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Figure 18.: Scatter plots showing error rates of ssCSP and three baseline methods. Each
circle represents one subject and if the circle is below the solid line then
our method outperforms the baseline for this subject. The p-value of the
Wilcoxon signed rank test is displayed in the right bottom corner.

5.4.4 Further Analysis

In the following we analyse and interpret the ssCSP results in more detail. First, we
evaluate the ability of ssCSP to reduce the shift in feature distribution by transferring
information from additional users. Figure 19 displays the relative change in nonsta-
tionarity for all five users of the Inhouse data set and all regularization parameters of
ssCSP. More precisely, we compute the symmetric KL divergence D̃ between the train-
ing and test feature distribution for CSP and for ssCSP with parameters ' = {`, �}
and plot the following relative change for all subjects and parameters

 =

D̃

'

sscsp

- D̃

csp

D̃

csp

In Figure 19 we see that the relative change in nonstationarity is negative for all sub-
jects except A3, i.e., the feature distribution becomes more stationary when applying
ssCSP. Since the algorithm penalizes nonstationary directions without actually “see-
ing” the test data of the subject of interest, we may conclude information about non-
stationarity is really transferred between subjects. Figure 19 also shows that a reduc-
tion of nonstationarity does not necessarily correlate with an increase in classification
accuracy. For instance, the reduction of nonstationarity is largest for subject A1, how-
ever, this user does not improve classification accuracy in Table 6. The CSP error rate
of this subject is 20.5%. When applying ssCSP and using the parameters selected by
minimizing test error of other users (result in Table 6) we obtain an error rate of 21.2%
and  = -46%. When using the parameters which minimize nonstationarity in Figure
19 we obtain an error rate of 24.2% and  = -88%. The minimal ssCSP test error for
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this subjects is 8.3% and  = -68%. Thus, reduction of the between-session shift does
not necessarily correspond to a classification improvement.
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Figure 19.: Relative change in the train-test nonstationarity for subjects A1-A5 and all
ssCSP parameters. A negative value corresponds to a relative decrease in
nonstationarity compared to CSP.

Figure 20 visualizes the change between the training and test features of subject A1

for CSP and ssCSP (with parameters minimizing the shift). We plot the two feature
dimensions that best visualize the shift between training (cyan circles) and test (brown
crosses) data. In the case of CSP the feature distribution obtained from training data
contains several outliers and consequently largely differs from the distribution esti-
mated on test data. On the other hand when applying ssCSP there is only little dif-
ference between both distributions. Note that this increase in stationarity is obtained
by regularizing the spatial filter computation away from the common nonstationary
subspace, i.e., without using test data of the subject of interest.

In Figure 21 we visualize the five most nonstationary directions of subjects A1-A5.
One can see that the nonstationarity patterns of different users are highly similar. This
similarity is also reflected in the results in Figure 17. The nonstationarity patterns
show mainly activity in the occipital and temporal regions. We believe that the activity
in the occipital region reflects the change in the visual processing between training
and test session, i.e. the transition from a visual mode of stimulus presentation to an
auditory one. Since the visual cortex is highly involved in visual processing we expect
to see changes related to visual processing in the occipital region. The activity in the
temporal regions may be related to auditory processing or be due to muscle activity.

In the following we analyse the results of the Vital BCI data set in more detail.
Figure 22 depicts the relative changes in nonstationarity ( values) for all subjects
and ssCSP parameters. Note that we plot the same quantity as in Figure 19 but as
histogram instead of plotting it for each subject separately. Although the histogram
covers more area on the negative side, i.e., most  values are negative, it is much more
balanced than the results for the Inhouse data set. The fact that regularization towards
the common nonstationary subspace often increases the shift between training and test
session rather than reducing it is certainly one explanation for the limited performance
improvement of ssCSP.

In the last part of this section we analyse the results of subject 13 from the Vital BCI
data set. This subject has the second largest improvement in classification accuracy
over CSP in Figure 18. We do not consider the subject with the largest improvement



5.4 experimental evaluation 53

Dimension 1

D
im

en
si

on
 2

CSP

4 6 8 10

6.5

7

7.5

8

8.5

Training data
Test data

Dimension 1
D

im
en

si
on

 2

ssCSP

4 6 8 10

6.5

7

7.5

8

8.5

Training data
Test data

Figure 20.: Left: Visualization of the two most discriminative dimensions for subject
A1. A significant change in the feature distribution between training (cyan
circles) and test (brown crosses) can be observed for CSP. Right: When ap-
plying ssCSP the change in feature distribution becomes almost negligible.

(user 21) as we have already performed an analysis for this subject in last chapter. The
error rates of subject 13 are 50% when applying CSP and 35% for the ssCSP method.
Figure 23 visualizes the activation patterns of CSP and ssCSP with the corresponding
area under the ROC curve (AUC) value. The third pattern is the most interesting one
as the AUC value is larger for ssCSP than for CSP. Qualitatively, there is no large
difference between the ssCSP solution and the pattern computed by CSP except that
the ssCSP pattern has less activation in the frontal and occipital region than the CSP
pattern. Thus, the features computed by CSP contain more occipital activity than the
ssCSP features. Since occipital activity is often related to visual processing and the
occipital alpha rhythm, these features are more nonstationary.

In Figure 24 we plot the feature values corresponding to the third patterns, i.e., we
visualize the third dimension of the feature vectors after applying CSP and ssCSP,
respectively. The cyan dots represent training trials whereas the brown dots stand for
test trails. In order to increase the comparability of the results we normalize the feature
distribution such that the training points have mean zero and variance one. From the
figure one sees that the CSP features exhibit a significant shift between training and test
stage, i.e., the distribution of the cyan and brown points changes drastically. Since the
CSP filter captures activity from the occipital region, the additional visual processing
that is induced by the feedback provided in the test session is directly affecting the
feature distribution. On the other hand when applying ssCSP we obtain a substantially
more stationary feature distribution with no significant changes between training and
test session. Thus, a small difference in the patterns in Figure 23, i.e., less weight on
occipital and frontal area, largely influences the stationarity of the feature.

Finally, we come back to the issue raised in the previous subsection, namely that
covCSP largely benefits from the incorporation of data of a large number of additional
subjects. The left panel in Figure 25 compares the classification performance of covCSP
for subject 37 when utilizing data from one additional subject (thin curves) and incor-
porating data from all 29 additional subjects performing the same motor imagery task
(cyan curve). Note that the thick brown line is the median of the thin curves. One can
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Figure 21.: Visualization of five most nonstationary directions for each subject.

see from the figure that using the average of all the 29 covariance matrices from the
additional subjects as regularization target in covCSP is better than when using the
data of each individual subject separately (cyan line below thin lines). The right panel
of Figure 25 displays the error rates when incorporating data from k = 1 . . . 29 addi-
tional subjects. Note that we depict the median error rate over 100 randomly selected
subsets of k subjects. Also here we see a clear tendency towards large regularization
parameters and a large number of subjects. Thus, covCSP benefits from using many
additional subjects. We could not find a similar averaging effect for the ssCSP method.
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Figure 22.: Histogram of relative changes in nonstationarity over all subjects and ssCSP
parameters for the Vital BCI data set.

0.5 AUC 0.7 AUC 0.6 AUC 0.5 AUC 0.6 AUC 0.7 AUC

0.5 AUC 0.7 AUC 0.7 AUC 0.5 AUC 0.6 AUC 0.7 AUC

C
SP

ss
C

SP

Figure 23.: Top row: Activation patterns computed by CSP. Bottom row: Activation pat-
terns computed by ssCSP.
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CSP. Right: Normalized feature values for ssCSP.
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Lessons learned in this chapter

• Transferring subspaces between subjects is challenging but
may improve performance and reduce nonstationarity.

• Complex relationship between stationarity and performance.

• ssCSP is robust because removing a small random subspace
from data does not significantly increase error rate.

• Performance of covCSP scales with the number of additional
users; the estimation of the nonstationary subspace does not
necessarily improve when using many subjects.

• Nonstationary directions are neurophysiologically inter-
pretable.
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Future Work

• Investigation of other similarity measures between nonsta-
tionary subspaces; statistical test for presence or absence of
common nonstationarities.

• Parameter selection scheme that does not require labeled data
and is not based on the performance of the other users.

• Clustering algorithm for computation of common nonstation-
ary subspace from subject-specific nonstationary subspaces.

• Evaluation of soft regularization strategies for ssCSP; compar-
ison to complete removal of nonstationary subspace.

• Normalization and coregistration of data sets.
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R O B U S T C O VA R I A N C E M AT R I X
E S T I M AT I O N

In the final part of this thesis we use methods and concepts from the field of information
geometry (Amari and Nagaoka, 2000) for robustifying the feature extraction process in
BCI. These methods tackle the nonstationarity and robustness problem in a principled
manner and are grounded in a solid mathematical framework. This chapter introduces
a novel robust covariance matrix estimator which is particularly tailored to BCI applica-
tion because it downweights the influence of artifactual trials in the estimation process.
Note that in contrast to classical robust covariance estimators we propose to measure
“outlierness” on the time scale of trials, not with respect to individual samples. This is
a very natural time scale for robustification in BCI, e.g., when whole trials are affected
by an artifact. After introducing the tools needed to derive the estimator we show how
to use it in order to compute robust CSP filters. Finally, we evaluate its performance
using simulations and real EEG recordings.

6.1 a brief intro into information geometry

Information geometry (Amari and Nagaoka, 2000; Amari, 2010) is a branch of mathe-
matics which studies questions of probability theory by means of differential geometry.
It represents probability distributions as points on a manifold M and uses divergence
functions to quantify the discrepancy between them. A divergence function induces a
geometry on the manifold and has specific properties; we will utilize the properties of
a particular divergence for robust spatial filter computation. A very simple example
of M is the manifold of the one-dimensional Gaussian distribution with mean µ and
variance �2. This particular class of probability distributions forms a two-dimensional
manifold with coordinates µ and �. In other words any Gaussian distribution can be
represented by a point z = (µ,�) on this manifold. A function D(z

1

|| z
2

) between two
points z

1

and z
2

on the manifold is termed divergence function (Amari and Cichocki,
2010; Cichocki and Amari, 2010) when

(1) D(z
1

|| z
2

) > 0 for all z
1

, z
2

.

(2) D(z
1

|| z
2

) = 0 if and only if z
1

= z
2

.

(3) For infinitesimally small differences between z and w = z+dz the Taylor expan-
sion D(z || w) = z>G(z)z is a positive definite quadratic form with

g

ij

(z) =

@

2

@z

i

@z

j

D(z || w)|w=z

being the i, jth element of G(z).

Note that in general a divergence is neither symmetric, i.e., D(z
1

|| z
2

) 6= D(z
2

|| z
1

),
nor does it satisfy the triangular inequality, i.e., D(z

1

|| z
2

) 66 D(z
1

|| z
3

) +D(z
3

|| z
2

).
Depending on the divergence function a specific Riemannian metric g

ij

(z) is induced
on the manifold M.

An important quantity in differential geometry is the geodesic. A geodesic is a curve
connecting two points on the manifold by preserving the tangent vector along the
curve. Thus, a geodesic can be regarded as a generalization of the notion of a straight
line. In order to define a geodesic we need to connect nearby tangent spaces by affine
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connections. The author of (Eguchi, 1983) proposed (dually coupled1) affine connections
which are computed from the divergence function

�

ijk

(z) = -

@

3

@z

i

@z

j

@w

k

D(z || w)|w=z (29)

�

⇤
ijk

(z) = -

@

3

@w

i

@w

j

@z

k

D(z || w)|w=z (30)

If both connectors vanish, i.e., �
ijk

= �

⇤
ijk

= 0, then the induced manifold is termed
dually flat. The class of Bregman divergences (Bregman, 1967; Murata et al., 2004) induces
dually flat manifolds. A Bregman divergence between probability distributions p(x)

and q(x) is defined as

D

'

(p || q) =

Z
('(p) - '(q) - (p - q)'

0
(q))dx, (31)

with ' being a strictly convex differentiable function and ' 0 being its derivative. Note
that we abuse the notation at this point as we abbreviate p(x) by p and ignore that the
input parameter x may be multidimensional. Bregman divergences have several useful
properties, e.g., they satisfy the generalized Pythagorean theorem and projection theo-
rem (see Amari, 2010). The Kullback-Leibler divergence or KL divergence is an example
of a Bregman divergence

D

kl

(p || q) =

Z
p log

p

q

dx, (32)

with '(x) = x log(x). This divergence is used in many applications, has an information
theoretic interpretation (MacKay, 2002) and is related to maximum likelihood estima-
tion in statistics (see next section). Another popular divergence is the beta divergence
proposed in (Basu et al., 1998; Eguchi and Kano, 2001). The beta divergence between
distributions p(x) and q(x) is defined (for � > 0) as

D

�

(p || q) =

1

�

Z
(p

�

- q

�

)pdx -

1

�+ 1

Z
(p

�+1

- q

�+1

)dx. (33)

The next theorem shows that beta divergences belong to the class of Bregman diver-
gences.

Theorem 3. The beta divergence defined in Eq. (33) is a Bregman divergence with

'

�

(x) =

1

�(�+ 1)

x

�+1

-

1

�

x +

1

�+ 1

.

1 Duality is a concept from information geometry that goes beyond the scope of this thesis. For
more information we refer to (Amari and Nagaoka, 2000).
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Proof. This theorem is a well-known result. We provide the following proof for it.

D
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(p || q) =

Z
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(p) - '
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(q) - (p - q)'
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(q))dx
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=
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=
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dx

=

1

�
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(p

�

- q

�

)pdx -

1

�+ 1

Z
(p

�+1

- q

�+1

)dx = D

�

(p || q)

The following theorem shows that beta divergence and Kullback-Leibler divergence
coincide as � approaches zero.

Theorem 4. The beta divergence defined in Eq. (33) converges to the Kullback-Leibler diver-
gence defined in Eq. (32) when � �! 0, i.e.,

lim
�!0

D

�

(p || q) = D

kl

(p || q)

Proof. This theorem is a well-known result. We provide the following proof for it.

lim
�!0

D

�

(p || q) = lim
�!0

R �
(�+ 1)(p

�

- q

�

)p - �(p

�+1

- q

�+1

)

�
dx

�(�+ 1)

⇤
= lim

�!0

"R �
((p

�

- q

�

)p + (�+ 1)(p

� log(p) - q

� log(q))p
�
dx

2�+ 1

-

R �
(p

�+1

- q

�+1

) + �(p

�+1 log(p) - q

�+1 log(q))
�
dx

2�+ 1

#

=

Z
(p log(p) - p log(q) + q - p)dx = D

kl

(p || q)

Note that the equality (⇤) holds due to the l’Hôpital’s rule and
R
(q - p)dx = 0 because

p(x) and q(x) are probability distributions which sum to 1.

From this perspective beta divergence can be regarded as a generalization of the
KL divergence. It has a robustness property which will be utilized by the covariance
estimator proposed in this chapter and by the novel divergence-based CSP framework
introduced in the next chapter. In previous work beta divergence has been used for
robustifying algorithms such as Independent Component Analysis (ICA) (Mihoko and
Eguchi, 2002) and Non-negative Matrix Factorization (NMF) (Févotte and Idier, 2011).
Another well known special case of beta divergence emerges for � = 1; for this � value
beta divergence coincides with the Euclidean divergence which is defined as

D

euc

(p || q) =

1

2

Z
(p - q)

2

dx. (34)
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The following theorem shows the relation.

Theorem 5. The beta divergence defined in Eq. (33) converges to the Euclidean divergence
defined in Eq. (34) for � = 1, i.e.,

D

�=1

(p || q) = D

euc

(p || q) .

Proof. This theorem is a well-known result. We provide the following proof for it.

D

�=1

(p || q) =

Z
(p - q)pdx -

1

2

Z
(p

2

- q

2

)dx

=

1

2

Z
(p

2

- 2pq+ q

2

)dx

=

1

2

Z
(p - q)

2

dx = D

euc

(p || q)

Note that D
euc

induces an Euclidean space, i.e., g
ij

= �

ij

where �
ij

is the Kronecker
delta. Thus, this divergence is symmetric. We will use symmetric variants of Kullback-
Leiber divergence and beta divergence extensively in the next chapter. A common way
to symmetrize a divergence is to use

D̃ (p || q) = D (p || q) + D (q || p) . (35)

In the following we denote symmetric divergences by using the tilde symbol. Note that
besides Bregman divergences there are other classes of divergences (e.g. f-divergences,
↵-divergences) which induce a specific geometrical structure, but since we do not use
them in this work we skip the discussion here (see Cichocki and Amari, 2010).

6.2  -likelihood principle

Reliable computation of covariance matrices is of crucial importance in BCI. The prob-
lem can be formulated as estimation of a parameter ⌃ of a statistical model, e.g., zero-
mean Gaussian distributions p(x; ⌃), given observations D = {x

i

: i = 1 . . . n}. A stan-
dard procedure to estimate this parameter is to maximize the log-likelihood function
L(⌃ | D) of the parameter given observations

L(⌃ | D) = log

 
nY

i=1

p(x
i

; ⌃)

!

=

nX

i=1

`(x
i

; ⌃). (36)

Note that for the zero-mean Gaussian case the log-likelihood function is

`(x; ⌃) = -

1

2

(x>⌃-1x) -

1

2

D log(2⇡) -

1

2

log(|⌃|), (37)

where D is the dimensionality of the data. It can be shown (Bishop, 2006) that the
maximum likelihood estimate of a covariance matrix under the Gaussian model is

⌃̂ = argmax
⌃

L(⌃ | D) =

1

n

nX

i=1

x
i

x>
i

. (38)

In practice the maximum likelihood (ML) estimator may provide suboptimal solutions
because it is not robust (Huber, 1981) in the sense that single outlier observations
x
i

may dominate the estimation. The left panel in Figure 26 illustrates a situation
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in which a single outlier sample significantly alters the estimate of the covariance
matrix. Assume there is an outlier sample x

i

so that x>
i

⌃-1x
i

is very large for the
true parameter ⌃. Then, the likelihood term of x

i

is much smaller than the other
likelihood terms, i.e., `(x

i

; ⌃) <<

P
n

j=1;j6=i

`(x
j

; ⌃). Let ⌃̂ be another parameter
with

P
n

j=1;j6=i

`(x
j

; ⌃̂) <

P
n

j=1;j6=i

`(x
j

; ⌃) and `(x
i

; ⌃̂) ⇡ 0. Then, the maximum
likelihood estimator will prefer parameter ⌃̂ over ⌃ because

nX

j=1,j6=i

`(x
j

; ⌃) + `(x
i

; ⌃) <<

nX

j=1,j6=i

`(x
j

; ⌃̂) + `(x
i

; ⌃̂) (39)

Thus, rather than learning a parameter that fits most of the data points the maxi-
mum likelihood estimator will provide an estimate which minimizes x>

i

⌃-1x
i

. In
other words the maximum likelihood estimator will focus primarily on the outlier
sample. One can see in the right panel of Figure 26 that the function

f

ML

(x
i

) =

`(x
i

; ⌃)P
n

j=1;j6=i

`(x
j

; ⌃)
(40)

grows with ||x
i

||, i.e., the influence of the outlier sample is not bounded.
The authors of (Basu et al., 1998; Eguchi and Kano, 2001) introduced the concept of

 -likelihood to perform robust estimation. The  -likelihood function is defined as

L
 

(⌃ | D) =

1

n

nX

i=1

 (`(x
i

; ⌃)) - b

 

(⌃), (41)

with b

 

(⌃) =

Z
 

⇤
(`(x; ⌃))dx and  

⇤
(z) =

Zz

0

exp(s)
@

@s

 (s)ds.

Intuitively the method provides robust estimates as it limits the influence of each
observation by applying the function  to the likelihood values `(x

i

; ⌃). Note that
b

 

(⌃) denotes the normalization constant. If  (z) = z is the identity function then the
maximum  -likelihood estimator reduces to the ML estimator. When applying the  
function defined in Eq. (44) to the above example, then the influence of the outlier x

i

is limited, i.e., the function f

 

(x
i

) is bounded by a constant C

f

 

(x
i

) =

 (`(x
i

; ⌃))P
n

j=1;j6=i

 (`(x
j

; ⌃))
< C (42)

The authors of (Eguchi and Kano, 2001) proved the equality between  -likelihood
maximization and  -divergence minimization. The  -divergence between distributions
p(x) and q(x) is defined as

D

 

(p || q) =

Z
p (log(p))dx -

Z
 

⇤
(log(p))dx (43)

-

Z
p (log(q))dx +

Z
 

⇤
(log(q))dx

The following theorem relates the minimization of the  -divergence between the
empirical distribution p(x) estimated from the data at hand and a model distribution
q(x) with parameter ⌃ to the maximization of the  -likelihood.

Theorem 6. The maximization of the  -likelihood is equivalent to the minimization of  -
divergence between the empirical and the model distribution

argmax
⌃

L
 

(⌃ | D) = argmin
⌃

D

 

(p,q(·,⌃))
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en
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outlier sample

true covariance

estimated covariance

Figure 26.: Left: A single outlier sample may change the estimated covariance matrix
drastically when relying on the maximum likelihood estimator. Right: The
influence function of the maximum likelihood estimator is unbounded, i.e.,
a single term `(x

i

; ⌃) may dominate the sum in Eq. (36). In the case of
maximum  -likelihood the impact of a single term  (`(x

i

; ⌃)) is bounded,
hence it provides robust estimates in the presence of outliers.

Proof. A similar proof can be found in (Eguchi and Kano, 2001). Note that the first two
terms of Eq. (43) are constant in q, therefore the right side reduces to

argmin
⌃

✓
-

Z
p (log(q))dx +

Z
 

⇤
(log(q))dx

◆
= argmax

⌃

(E

p

[ (`(x;⌃))] - b

 

(⌃))

This is the  -likelihood function when the empirical expectation is taken over the data
set. Thus, the maximization of L

 

is equivalent to  -divergence minimization. Note
that for  (x) = x the  -divergence reduces to Kullback-Leibler divergence. Thus, the
standard likelihood maximization reduces to KL divergence minimization which is a
well-known result (Bishop, 2006).

In this thesis we use a special choice of  , namely

 

�

(z) =

exp(�z) - 1

�

, (44)

with a parameter �. It can be shown easily that for this choice of  the  -divergence
reduces to �-divergence as defined in Eq. (33).

Theorem 7. For  =  

�

the  -divergence defined in Eq. (43) reduces to beta divergence
defined in Eq. (33).

Proof. This theorem is a well-known result. We provide the following proof for it.
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Thus, minimization of �-divergence provides robust parameter estimates due to the
limited influence of outlier samples.

6.3 minimum beta divergence estimator

The authors of (Eguchi and Kano, 2001) showed that by using an iteratively reweighted
algorithm the  -divergence can be minimized, i.e., the  -likelihood can be maximized.
The estimate of the ⌃ parameter in the (k+ 1)th step is given by the following equation

1

n

nX

i=1

 (`(x
i

; ⌃(k)
))S(x

i

; ⌃) = E[ (`(x; ⌃))S(x; ⌃)], (45)

where  (x) =

@

@x (x) and S(x; ⌃) =

@

@⌃ `(x; ⌃). Note that E[ · ] denotes the expecta-
tion over the whole input space. For the Gaussian distribution and for  as defined in
Eq. (44), i.e., the beta divergence case, one can compute the covariance matrix parame-
ter ⌃ by using the following iteration

Theorem 8. Under the zero-mean Gaussian model the parameter ⌃ can be computed iteratively
(see Eguchi and Kano, 2001) as
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. (46)

Note that ⌃(k) denotes the estimate of the parameter in kth step and
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)) = e

- 1

2

�x>
i

(⌃(k))-1x
i (47)

is a factor downweighting the influence of outlier samples x
i

.

Proof. See appendix A.1

From the formula we can see that if the sample x
i

is an outlier, i.e., it is very un-
likely that it has been generated by a Gaussian with parameter ⌃(k), then its influence
on the update of the parameter is very small due to vanishing  

�

(`(x
i

; ⌃(k)
)). Since

 

�

(`(x
i

; ⌃(k)
)) is a monotonically decreasing function (for � > 0), it limits the influ-

ence of extreme outliers (see Figure 26). Note that for � = 0 this estimator reduces to
the standard maximum likelihood estimator ⌃̂ =

1

n

P
n

i=1

x
i

x>
i

, i.e., all samples have
uniform weight and f

 

reduces to a line i.e., is unbounded (see Figure 26).
Since BCI data do not consist of a time series of consecutive samples but have trial

structure, the weights should not be applied to individual samples but rather to groups
of samples (or trials). Robustness with respect to trials is more natural as whole trials
are usually affected by artifacts, e.g., if the subject fails to properly imagine a move-
ment then the whole trial is affected. In this work we propose a novel estimator that
does not downweight individual EEG samples but rather reduces the influence of
whole outlier trials. We use the  -likelihood framework for robustly estimating the
covariance matrix, however, in contrast to the example discussed in (Eguchi and Kano,
2001) we do not use the Gaussian distribution model but propose to minimize the beta
divergence between the empirical distribution of scatter matrices and a model Wishart
distribution with parameter ⌃. A Wishart distribution q is defined as

q(S;⌃,⌫) =
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, (48)
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where S =

P
N

t=1

x
t

x>
t

is the scatter matrix and �
D

is the multivariate gamma function
defined as
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with � [t] =
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e
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dy. (50)

From the estimated trial covariance matrices
�
⌃
i

2 RD⇥D

: i = 1 . . . n

 
we compute

the scatter matrices S
i

and treat them as samples of an unknown Wishart distribution
with parameters ⌃ and ⌫. Note that ⌃ denotes the true covariance matrix which we
want to estimate and ⌫ (under the assumptions that the samples are i.i.d.) equals
the number of samples within a trial N (which is fixed). The maximum likelihood
estimator for the Wishart distribution is

⌃̂ =

1

⌫n

nX

i=1

S
i

, (51)

or equivalently it is the average covariance matrix. We robustly estimate a covariance
matrix ⌃̂ from the scatter matrices S

i

of trials i = 1 . . . n by minimizing beta divergence
using the following iterative algorithm.

Theorem 9. Under the Wishart model the parameter ⌃ can be computed iteratively as
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Proof. See appendix A.2

Note that for � = 0 this estimator gives the maximum likelihood solution in Eq. (51).
The robustly estimated covariance matrices are used for spatial filter computation with
CSP (see Algorithm 3). We denote the algorithm as beta divergence Wishart CSP (�-
WishartCSP) method. When using the covariance estimator with a Gaussian model,
we term the algorithm as beta divergence Gaussian CSP (�-GaussCSP). The input pa-
rameters of the �-WishartCSP algorithm are a set of trial covariance matrices {⌃i

c

}, the
number of spatial filters to return d, the robustness parameter � and a parameter ⌫
capturing the uncertainty in the estimation of the trial covariance matrices. Note that
⌫ equals the number of samples in a trial (under i.i.d. assumption), thus is fixed. Af-
ter estimating the class covariance matrices (see Theorem 9) with our novel estimator,
we use CSP to compute the spatial filters. Of course other CSP variants such as sCSP
may also be used with the robustly estimated covariance matrix in order to combine
regularization with robust estimation. Furthermore, note that we may change the time
scale of robustness very easily by adapting ⌫ and using different scatter matrices as
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samples. For instance, instead of computing robust estimates on the trial-by-trial basis
we could apply the same algorithm to scatter matrices computed on larger time scales,
e.g., multiple trials, thus obtain robust estimates on a larger group of samples. Note
that the �-GaussCSP algorithm has the same structure as Algorithm 3, but applies
Theorem 8 for estimation of the class covariance matrices.

Algorithm 3 Beta Divergence Wishart Common Spatial Patterns

1 function �-WishartCSP({⌃i

c

}, d, �,⌫)
2 Compute a set of scatter matrices {Si

c} from {⌃i

c

}.

3 Compute average class covariance matrices ⌃
(1)
c

.
4 for k = 1 . . . k

max

do
5 Compute new estimate ⌃

(k+1)
c

by using Theorem 9.
6 end for
7 Normalize class covariance matrices.
8 Compute eigenvectors V = eig(⌃

1

, ⌃
1

+ ⌃
2

)

9 Select d columns W 2 RD⇥d from V.
10 return W
11 end function

6.4 experimental evaluation

In this section we evaluate the performance of the proposed �-WishartCSP algorithm
and investigate its advantages and limitations using simulations and real EEG record-
ings from the Vital BCI and BCI Competition data set. We use CSP, shrinkCSP and
MCDE+CSP as baselines and also compare the results to �-GaussCSP. Note that al-
though we use �-GaussCSP as baseline, the method is novel in the sense that (to the
best of our knowledge) it has not been used for spatial filter computation before. Since
beta divergence estimators (with a Gaussian or Wishart model) have principled advan-
tages and disadvantages over estimators such as the minimum covariance determinant
estimator (MCDE) used by MCDE+CSP, we will not limit our analysis to �-WishartCSP
but also investigate the properties of �-GaussCSP.

6.4.1 Simulations

Before we evaluate the covariance matrix estimators on real EEG recordings, we investi-
gate their advantages and limitations using simulations. For this purpose we generate
data x(t) using the following mixture model

x(t) = A

"
sdis(t)

sndis

(t)

#

+ ⇠ (52)

where A 2 R10⇥10 is a random orthogonal mixing matrix, sdis is a discriminative
source sampled from a zero mean Gaussian with variance 1.8 in one condition and 0.2
in the other condition, sndis are 9 sources with variance 1 in both conditions and ⇠
is a noise variable sampled from an isotropic Gaussian with standard deviation 2. In
order to investigate the influence of artifacts we add, with varying probability, outlier
trials to the data. Note that the whole trial is either affected by artifacts or not; we do
not make this decision on sample level. We investigate the following two scenarios:
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(1) Large variance artifacts: We contaminate the data with artifactual trials which are
generated by the model in Eq. (52) but with the noise ⇠ not being isotropic
(i.e. some directions have large variance). Furthermore, the distribution of the
noise changes from trial to trial. More precisely, the noise ⇠ is sampled from
a Gaussian with a diagonal covariance matrix. The diagonal elements of this
matrix are resampled in every trial; with probability 1-p the standard deviation
of a dimension is 2 and with probability p it is 10. Thus, the probability that a
trial is not affected by the large variance artifacts is (1- p)

10.

(2) Small variance artifacts: We contaminate the data with artifactual trials which
consist of Gaussian noise with standard deviation 0.1, i.e., they are not generated
by the model in Eq. (52). Note that artifactual trials do not contain task-related
information and have small variance. With probability 1- p a trial is sampled
from the model in Eq. (52) and with probability p it is an artifactual trial.

For each of the two scenarios we generate 100 trials per condition, each trial contains
200 ten-dimensional samples, and repeat the experiment 100 times. Since the goal is to
find a spatial filter that recovers the discriminative source sdis, we quantify the quality
of the solution by using the angle to the true projection. A small angle represents
a good solution. Note that in the first scenario we aim to simulate artifacts which
are due to loose electrodes (large changes in individual channels), whereas in the
second scenario the outlier trials lack task-related information, i.e., we aim to simulate
situations in which the subject fails to perform a given task (no class information in
signal).

Figure 27 displays the median (over 100 repetitions) angles between the true pro-
jection and the filter computed by CSP (purple line), MCDE+CSP (green line), �-
GaussCSP (brown line) and �-WishartCSP (cyan line). The values on the x-axis rep-
resent the probability of artifact p. Note that we did not include shrinkCSP as this
method is not designed to be robust against artifacts but rather to perform well in
small-sample settings. Since the number of trials and the dimensionality of the signal
are not the critical parameters in our simulation study, shrinkCSP has a very similar
angle error curve as CSP. Note that the free parameters of MCDE+CSP, �-GaussCSP
and �-WishartCSP are chosen a posteriori, i.e., we compare the methods using the best
parameters in order to reveal the full potential of each method.

The left panel of Figure 27 displays the results of the first simulation study (scenario
1). One can see that the performance of CSP quickly degrades as the probability of ar-
tifact increases. Since the artifactual trials dominate the estimated covariance matrices
(because they have much larger variance), CSP focuses on the between-class differ-
ences of these artifactual events rather than extracting the true discriminative activity
(which has much smaller variance). The MCDE+CSP method on the other hand is
very robust until the point when the probability of artifact exceeds 7.5%. Note that
the probability that a trial is not affected by an artifact is (1- p)

10, thus for p = 7.5%
this is approximately 46%. In other words 54% of the trials (on average) contain at
least in one dimension an artifact. The MCDE implementation2 used in this thesis
assumes that the proportion of outliers in the data is less than 50%. Therefore, it is
not very surprising that the MCDE+CSP performance decreases when the proportion
of outliers exceeds this 50% limit. We did not investigate whether it is possible and
mathematically reasonable to relax this assumption. The estimators based on beta di-
vergence minimization perform much better in this simulation study. Note that these
estimators do not have such a 50% outlier limit, but (theoretically) always extract the
correct parameter, even when the outlier ratio is very high, as long as the initialization
is “close enough” to the true parameter and there is enough support for this param-
eter in the data. In our opinion the local optimally property of the beta divergence
estimators (Mollah et al., 2010) is a clear advantage over the heuristic used by MCDE

2 http://users.jyu.fi/~samiayr/DM/demot/LIBRA/mcdcov.m

http://users.jyu.fi/~samiayr/DM/demot/LIBRA/mcdcov.m
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as it (1) does not enforce a strict limit on the proportion of outliers in the data and (2)
is more flexible and adaptive, e.g., we may run the algorithm with various initializa-
tions and chose the solution with desired properties. In this thesis we always initialize
�-GaussCSP and �-WishartCSP with the average covariance matrices, do not consider
multiple initializations and set k

max

to 50. Although the average covariance matrices
are not very informative when the probability of artifact exceeds 0.05 (see CSP perfor-
mance), the �-GaussCSP and �-WishartCSP perform very well in our simulation study.
This indicates that initialization is not critical for the performance of these methods.

The angle error curve of �-WishartCSP has an interesting shape, namely it is below
the curves of all other methods until p = 0.2 (i.e., �-WishartCSP outperforms the
baselines until this point) and then it quickly grows until it reaches CSP level. In the
following we explain this behaviour. Note that at p = 0.2 the probability that a trial
is not affected by artifacts is (1- p)

10 ⇡ 10%, thus on average 10 trials are artifact-
free in our simulation study. We conjecture that these trials are “close enough” to the
average covariance matrix which is used for initialization and therefore our estimator
has enough support to converge from the initialized point to a good estimate of the
true covariance matrix. Our estimator does not converge to the 90% outlier covariance
matrices because (1) they are “too far away” to be generated by the model using the
average covariance matrix (initialization matrix), thus are downweighted, and (2) they
are too different to be generated by one model. However, if we set p > 0.2 then the
support of the “good trials” vanishes and the estimate converges to an artifact solution.
At the p = 0.2 point the support changes from being large enough to being too small.
Note that the position of this turning point largely depends on the dimensionality of
the signal, the number of trials and other parameters of the data generation process.

In the case of �-GaussCSP the transition from small to large error is much smoother
than for �-WishartCSP because the estimation is based on more data (sample level
vs. trial level). Thus, even if the probability that a trial is not affected by artifacts is
lower than 10%, there is still enough support (number of “good samples”) to compute
a relatively good estimate of the true covariance matrix. Note also that the artifactual
trials contain samples (extreme outliers) which largely dominate the covariance matrix
estimation as well as samples which could have been generated by the true model.
The extreme outlier samples will mostly be downweighted by �-GaussCSP because
the probability density function of a Gaussian decreases towards the tails, thus the
samples coming from the artifact-free trials will gain more influence in comparison
to the standard covariance estimator. Therefore, �-GaussCSP performs better than all
other approaches for p > 0.2. Note that the �-GaussCSP estimator works on the level
of samples, thus it will never downweight all samples coming from artifactual trials
but rather only downweight the outlier samples. Furthermore, it may remove (outlier)
samples from trials not affected by an artifact (see discussion below and Figure 28). In
contrast, �-WishartCSP works on trial level, thus it (at least for p < 0.2) downweights
all samples of an artifact trial and does not downweight any sample of an artifact-
free trial. We believe that this property of �-WishartCSP is the explanation for its
superiority over �-GaussCSP in the range p = 0.1- 0.2. In other words it is better to
downweight the outlier trials and not to downweight the artifact-free trials than to
downweight parts of both. We are convinced that the trial-level robustness concept
introduced in this thesis is a very natural approach for robust parameter estimation
when the data has trial structure and may be applied to many real world data sets.

The right panel of Figure 27 depicts the results of the second simulation study (sce-
nario 2). One can see that all methods except MCDE+CSP perform very well until the
point where p exceeds 90%. The good performance can be explained by the fact that
due to the low variance of the artifactual trials these trials have very limited influence
on the estimation of the average class covariance matrices, thus CSP does not extract
between-class differences between these artifactual trial but rather the true discrimina-
tive activity (which has higher variance). Our beta divergence estimators downweight
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the artifactual trials because they are far away from the initialized model. The angle er-
ror of MCDE+CSP increases if more than 60% of trials are artifacts. The explanation for
this strange behaviour of MCDE+CSP is as follows. Since the covariance estimator used
in MCDE+CSP prefers covariance matrix estimates with small determinants, it prefers
the artifactual trials as they have small variance. Thus, when the proportion of arti-
facts exceeds 60%, then MCDE+CSP computes spatial filters by using class covariance
matrices which are less discriminative than the matrices estimated by the standard
covariance estimator. Therefore, the angle error of MCDE+CSP increases. Note that
we have selected the best MCDE+CSP parameters a posteriori; for other MCDE+CSP
parameters the performance degrades much earlier. Thus, the heuristic used by the
minimum covariance determinant estimator fails completely in this simulation study
as it prefers the noninformative artifact trials over the artifact-free trials. Since our beta
divergence-based estimators do not rely on such a heuristic and are initialized with
the average covariance matrices, they perform well in this example.
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Figure 27.: Left: Large variance artifacts are added to a trial and dimension with vary-
ing probability. Our �-WishartCSP method clearly outperforms the base-
lines if p < 0.2. Right: Small variance trials are added to the data. The
MCDE+CSP algorithm has a relatively large angle error as it prefers these
small variance trials due to its minimum determinant heuristic.

In the following we show an example where the application of the �-WishartCSP
estimator is much more reasonable than the application of �-GaussCSP. The first row
Figure 28 displays a signal which consists of four trials. The signal within a trial rep-
resents a response to a stimulus. This response is lacking in Trial 3, thus this trial can
be seen as an outlier in this example. The second row depicts the weights assigned to
the samples of the signal when using the �-GaussCSP algorithm. One can see that the
weights assigned to the samples representing the response to the stimulus are much
lower than the weights assigned to other samples, i.e., the response to the stimulus is
downweighted by the �-GaussCSP estimator. Note that the algorithm does not down-
weight Trial 3 because it robustifies the estimation on the sample-level and the samples
of Trial 3 are not very different from most of the samples in the other trials, therefore
they are not treated as outliers. When applying �-WishartCSP to the signal we obtain
much more reasonable weights (last row). One can see that Trials 1, 2 and 4 have more
or less the same weight whereas the weight assigned to Trial 3 is significantly lower.
Thus only our algorithm considers the trial structure and “realizes” that Trial 3 is dif-
ferent from the other trials. The MCDE+CSP method (third row) also does not treat
Trial 3 as outlier because it robustifies the parameter estimate on sample-level. Only a
robust estimation on trial-level provides the desired solution in this example.

6.4.2 Performance Results

Before we compare the performance of �-WishartCSP to the baseline methods on real
EEG data, we would like to comment on the ⌫ parameter of �-WishartCSP. This pa-
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Figure 28.: First row: Signal divided into four trials. Trial 3 is an outlier trial because it
does not contain the response. Second row: Weights of the �-GaussCSP esti-
mator are small for the responses and not for the samples in Trial 3 because
robustness is measured on sample-level. Third row: Weights of MCDE+CSP
are small for the responses and not for the samples in Trial 3 because robust-
ness is measured on sample-level. Fourth row: The �-WishartCSP estimator
measures robustness on trial-level and assigns a small weight to Trial 3.

rameter of the Wishart distribution captures the uncertainty in estimating the scatter
matrices (see Section 6.3), thus should be set to the number of samples within a trial.
Note that this rule only holds if the samples within the trial are i.i.d. Since EEG sam-
ples are strongly correlated, ⌫ must be set to a much smaller value. Optimally, the
parameter should be set to the effective sample size (Thiébaux and Zwiers, 1984). In
our experiments we do not determine the effective sample size by using advanced
methods from statistics but we set ⌫ by hand to be a fraction of the number of sam-
ples in a trial. We believe that using more advanced and subject-specific techniques
to determine the ⌫ parameter could further improve the performance results. In the
following �-WishartCSP denotes the method where ⌫ is set to the number of samples
in a trial and �⌫-WishartCSP represents our algorithm with the reduced ⌫. We select
the � parameter for �-WishartCSP and �⌫-WishartCSP from {0, 2-20, . . . , 0} whereas
in the case of �-GaussCSP we use a smaller range of parameters (as smaller values
have less influence), namely {0, 2-10, . . . , 0}.

Figure 29 compares our novel beta divergence estimators to the baselines on the Vital
BCI data set. Each circle represents the error rate of one subject. The three panels in
the first row display the results for �-GaussCSP, the second row depict the results of �-
WishartCSP and the last row compares the baselines to �⌫-WishartCSP. The two panels
in the last column compare �-GaussCSP to �-WishartCSP and to �⌫-WishartCSP. The
overall best performance is obtained for �⌫-WishartCSP, i.e., our novel estimator with
the reduced ⌫ parameter. This algorithm provides significantly lower error rates than
CSP; the p-value of the one-sided Wilcoxon sign rank test is 0.0045. The performance
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advantage over MCDE+CSP is almost significant with a p-value of 0.0632. This result
is promising as the minimum determinant covariance estimator is a state-of-the-art
robust estimator that is very popular in the signal processing community (see e.g. Yong
et al., 2008). Our estimator clearly outperforms �-GaussCSP for few subjects, but the
overall difference in performance is not significant. This indicates that the advantage of
robustifying the estimation on the trial-level rather than on the sample-level is limited
in practice. Our estimator does not significantly outperform shrinkCSP, however, to
be fair one should note that shrinkCSP solves a different problem than �-WishartCSP,
namely the estimation problem in small-sample/high dimensionality settings. Thus,
the relative advantage/disadvantage of �-WishartCSP over shrinkCSP is strongly data
set dependent. Potentially, one can combine the advantages of analytic shrinkage with
the robustness property of our estimator in order to obtain superior results, but we
have not tried to do it in this thesis.
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Figure 29.: Scatter plots showing error rates of �-GaussCSP, �-WishartCSP and �⌫-
WishartCSP and the baseline methods. Each circle represents one subject
and if the circle is below the solid line then our method outperforms the
baseline for this subject. The p-value of the Wilcoxon signed rank test is
displayed in the right bottom corner.

The performance results on the second data set are displayed in Table 7. Although
this data set is less contaminated with artifacts than the Vital BCI data set, the applica-
tion of our �⌫-WishartCSP method leads to the highest average classification accuracy.
Especially, for subjects A2 and A3 this method significantly outperforms the baseline
approaches. Subject A1 on the other hand seems to only benefit from shrinkage, i.e.,
no robust estimator improves the classification accuracy over 70% for this subject.

6.4.3 Further Analysis

In the following we analyse the results of our novel estimators in more detail. The
left panel of Figure 30 displays the median error rate of �⌫-WishartCSP over all 80
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Table 7.: Comparison of classification accuracies for �-GaussCSP, �-WishartCSP, �⌫-
WishartCSP and different baselines.

BCI Competition III Overall

Methods A1 A2 A3 A4 A5 Mean Median Std

CSP 66.1 94.6 58.2 87.9 90.5 79.5 87.9 16.3

shrinkCSP 74.1 94.6 62.8 82.6 90.5 80.9 82.6 12.8

MCDE+CSP 68.8 94.6 59.2 89.7 88.5 80.2 88.5 15.3

�-GaussCSP 66.1 96.4 62.8 89.3 88.9 80.7 88.9 15.2

�-WishartCSP 66.1 96.4 58.2 87.5 90.5 79.7 87.5 16.6

�⌫-WishartCSP 66.1 98.2 66.3 87.5 90.5 81.7 87.5 14.7

subjects of the Vital BCI data set for different � parameters. Note that we visualize the
error rates for a smaller and finer range of parameter than used in the experiments
as the effects of � can be best seen in this range. One can see that the error rate
decreases for small � values and it is significantly larger than the error rate of the initial
baseline when using � > 0.0039. This U-shape curve demonstrates that the non-robust
estimator (small beta) does not perform well, but also that excessively large values
of � may negatively affect performance. The optimal parameter lies between these
two extremes. Since the signals of different subjects are usually affected by various
amounts of artifacts, the beta value should be optimizes for each subject individually.
Note that the experimental results presented in last section may be improved by using
a finely tuned range of � parameters (e.g. as in Figure 30).
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Figure 30.: Left: Median error rate of �⌫-WishartCSP over all 80 subjects of the Vital
BCI data set for various � parameters. The error rate curve has an U-shape.
Right: Correlations between trial weights of �⌫-WishartCSP and the base-
lines �-GaussCSP and MCDE+CSP.

In the following we investigate the correlation between the weights computed by
�⌫-WishartCSP and �-GaussCSP and MCDE+CSP. The right panel of Figure 30 dis-
plays the distribution of the average (over both classes) correlations between the trial
weights. We average the sample weights of �-GaussCSP and MCDE+CSP in order to
obtain trial-level weights. The overall correlation over the 80 Vital BCI subjects is quite
high for both estimators. This indicates that both estimators find the same outliers as
our �⌫-WishartCSP estimator. The weights of �-GaussCSP are significantly more cor-
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related to �⌫-WishartCSP as both estimators are based on the same concept. The fact
that for some subjects the correlations are relatively low, indicates that there exists prin-
cipled differences between the estimators. As discussed earlier the estimators robustify
the solution on different scales (sample vs. trial). Interestingly, for one subject the cor-
relation between MCDE+CSP and �-WishartCSP is negative with a value of -0.1129.
We think that this result is due to random fluctuations (correlations below 0.3 or above
-0.3 are usually not seen as being significant) because there is no reason to believe that
MCDE+CSP and �⌫-WishartCSP downweight trials in an opposing manner.

Figure 31 displays the weights computed by �⌫-WishartCSP and �-GaussCSP for
subject 21. The CSP error rate of this subject is 40% whereas the two algorithms provide
error rates of 17% and 18.3%, respectively. Note that we display the average sample
weights of a trial in the case of �-GaussCSP. One clearly sees that the weights of most
of the trials lie in the same range whereas the weights of the outlier trials are almost
one order of magnitude smaller. This indicates that some trials are outliers that are
downweighted in the estimation process. Although the �-GaussCSP (left panel) and
�⌫-WishartCSP (right panel) weights do not coincide they have the same tendency in
the sense that they downweight the same trials. The bottom panel of Figure 31 dis-
plays the signal at electrode FFC5 of the trial with smallest weight in �⌫-WishartCSP
(brown circle). The �-GaussCSP method also assigns a very low weight to this trial.
This trial contains large artifactual amplitude activity at the beginning. This activity
has an amplitude that is almost one order larger than the amplitude of the artifact-free
signal, thus this trial is an outlier trial and would have a large impact on the estimated
class covariance matrix if it was not downweighted by our method.
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Figure 31.: Top row: Trial weights for subject 21 computed by the �-GaussCSP (left) and
�⌫-WishartCSP method (right). Bottom row: The signal at electrode FFC5 of
the trial with smallest weight (brown circle).

Finally, we would like to visualize the effects of robust estimation in terms of acti-
vation patterns. Figure 32 displays the patterns of subject 22. This subject has an CSP
error rate of 43.3% and an error rate of 20.3% when applying our �⌫-WishartCSP algo-
rithm. We visualize the results for a parameter with an error rate of 15%. One clearly
sees that the fifth and sixth patterns of �⌫-WishartCSP (lower row) represent motor
imagery related activity, thus they have a very high AUC value. In the case of CSP
(top row) all patterns are affected by artifacts and do not capture the true BCI activity.
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This is the reason for the high CSP error rate and the relatively good performance of
�⌫-WishartCSP.
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Figure 32.: Top row: Activation patterns of CSP. Bottom row: Activation patterns of �⌫-
WishartCSP.
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Lessons learned in this chapter

• Trial-level robustification is more effective than robust estima-
tion on sample-level if whole trials are affected by artifacts.

• Estimators maximizing  -likelihood neither rely on heuristics
nor assume a maximum fraction of outliers in the data.

• The ⌫ parameter of the �-WishartCSP method must be set to
the effective dimensionality when data is correlated.

• Few artifactual trials suffice to significantly affect results.

• Initialization of �-WishartCSP is not a critical factor; using the
sample covariance matrix works well in practice.
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Future Work

• Application to other data sets, e.g., response to a stimulus.

• Computation of effective dimensionality.

• Criterion for parameter selection; Bayesian framework.

• Application to exploratory analysis, e.g., detection of “outlier
subjects”.
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D I V E R G E N C E - B A S E D C S P F R A M E W O R K

Many machine learning algorithms can be cast into the framework of information
geometry and formulated as divergence optimization problems. Prominent examples
are algorithms such as Independent Component Analysis (Hyvärinen, 1999a), Non-
negative Matrix Factorization (NMF) (Févotte and Idier, 2011) and Stationary Subspace
Analysis (Kawanabe et al., 2011). Once an algorithm has been formulated in terms of
a particular divergence, a whole class of novel algorithms can be obtained by using
the “divergence trick”1, i.e. by keeping the mathematical formulation of the problem
but using other divergences with different properties. A divergence formulation has
the advantage that it embeds the algorithm in a profoundly understood mathematical
framework and provides an information geometric interpretation for it. This chapter
introduces a divergence formulation of Common Spatial Patterns and proposes several
novel CSP variants by utilizing the robustness property of beta divergence and by
adding a divergence-based regularization term to the objective function. In contrast
to the approaches presented in earlier chapters this divergence-based penalty term
captures nonstationarity in a principled manner.

7.1 csp as divergence maximization problem

As mentioned earlier in this thesis (and also shown in (Lemm et al., 2011)) the CSP
projection matrix W = R̃P can be decomposed into a whitening P and an orthogonal
projection part R̃. The whitening transformation ensures that the extracted sources
are uncorrelated (this maximizes the informativity of the features) whereas the or-
thogonal projection optimizes the CSP criterion. In this section we propose a novel
divergence-based Common Spatial Patterns (divCSP) method which computes spatial fil-
ters by optimizing a divergence criterion. The following theorem relates CSP to diver-
gence maximization.

Theorem 10. Let W 2 RD⇥d be the top d (sorted by ↵
i

, see Section 3.1) spatial filters
computed by CSP and let V>

= R̃P 2 Rd⇥D be a matrix that can be decomposed into a
whitening projection P 2 RD⇥D with (P(⌃

1

+ ⌃
2

)P>
= I) and an orthogonal projection

R̃ = I
d

R 2 Rd⇥D with I
d

2 Rd⇥D being the identity matrix truncated to the first d rows
and R>R = I 2 RD⇥D. Then

span(W) = span(V⇤
) (53)

with V⇤
= argmax

V
D̃

kl

⇣
N(0, V>⌃

1

V) || N(0, V>⌃
2

V)

⌘
. (54)

Proof. See appendix B.3

This theorem states that the CSP filters W project the data to a subspace with max-
imum discrepancy, measured by symmetric Kullback-Leibler divergence, between the
d-dimensional Gaussian distributions N

�
0, W>⌃

1

W
�

and N
�
0, W>⌃

2

W
�
. Thus, in-

stead of computing spatial filters with CSP we obtain an equivalent solution when
maximizing Eq. (54). Note that there exists a technical difference between this diver-
gence maximization problem and the divergence minimization described previously.
In the last chapter we have minimized the divergence between a fixed distribution,

1 Note the analogy to the kernel trick for Support Vector Machines (Müller et al., 2001)
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namely the empirical distribution, and a model distribution. In other words we opti-
mize the divergence with respect to only one argument. In the case of divergence-based
CSP we aim to find the spatial filters projecting the data to a discriminative subspace,
i.e., we optimize over both divergence arguments as both arguments are dependent on
the projection. In the following we present two approaches for finding the projections
which maximize the divergence between class distributions. Note that our optimiza-
tion algorithm is based on the Lie algebra (Plumbley, 2005) optimization techniques
used by the Stationary Subspace Analysis (SSA) method (von Bünau et al., 2009; Király
et al., 2012; von Bünau, 2012).

7.2 optimization algorithms

We present two algorithms maximizing the divCSP objective function. All divCSP
variants proposed in this chapter use these two algorithms. Note that since the op-
timization is based on gradient descent, thus gives only local optima, we may need
to restart the algorithms multiple times or initialize them with parameters which are
close to the global solution. Our goal is to maximize the divergence term in Eq. (54),
i.e., to find a subspace that maximizes the symmetric Kullback-Leibler divergence be-
tween two Gaussian distributions. Note that in subsequent sections we will optimize
more generic objective functions consisting of sums of (beta or KL) divergences; these
objective functions can also be maximized by the following algorithms.

Subspace Method
Let us first describe the subspace approach (see Algorithm 4). This method aims to
extract the whole subspace in one run, i.e., to directly optimize for the projection ma-
trix V. Its input parameters are the average class covariance matrices {⌃

c

} and the
dimensionality of the subspace d, i.e., the number of spatial filters to return. The first
step of the method consists of the computation of a whitening matrix P 2 RD⇥D

which projects the data onto the unit sphere, i.e., P(⌃
1

+ ⌃
2

)P>
= I. This whitening

transformation is applied to the class covariance matrices ⌃
1

and ⌃
2

followed by a
(random) rotation with R

0

2 RD⇥D. Note that the rotation matrix satisfies R>
0

R
0

= I
where I is the identity matrix. The optimization process then consists of finding a ro-
tation matrix R 2 RD⇥D which maximizes the symmetric KL divergence in the first d
sources. The following theorem derives the objective function and the gradient when
using Kullback-Leibler divergence.

Theorem 11. The objective function in Eq. (54) can be represented in explicit form as

L
kl

(R) = D̃

kl

⇣
I
d

R⌃̃
1

R>I>
d

|| I
d

R⌃̃
2

R>I>
d

⌘
(55)

=

1

2

tr
⇣
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d
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d

)

-1

(I
d

R⌃̃
2
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d

) + (I
d

R⌃̃
2

R>I>
d

)

-1

(I
d

R⌃̃
1

R>I>
d

)

⌘
- d,

with gradient

rRL
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(R) = I>
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⇣
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d
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(⌃̄
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-1I
d

⌃̃
1

(56)

+ (⌃̄
1

)

-1I
d

⌃̃
1

- (⌃̄
2

)

-1⌃̄
1

(⌃̄
2

)

-1I
d

⌃̃
2

⌘
R

Proof. See appendix B.1

Note that ⌃̃
1

and ⌃̃
2

denote the whitened covariance matrices, ⌃̄
1

and ⌃̄
2

are the
projected covariance matrices and I

d

2 Rd⇥D is the identity matrix truncated to the
first d rows. Although R is a D⇥D rotation matrix, we only evaluate the first d rows,
i.e., we only evaluate the divergence in the d-dimensional subspace.
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The goal of the optimization algorithm is to maximize L
kl

(R) under the orthogonal-
ity constraint RR>

= I. This can be achieved by using Lie Group Methods (Plumbley,
2005). The optimization is performed by gradient descent on the manifold of orthog-
onal matrices. More precisely, we start with an orthogonal matrix R

0

and find an
orthogonal update U in the kth step such that R

k+1

= UR
k

. This ensures that we stay
on the manifold of orthogonal matrices at each step. Note that the update matrix may
be written as a matrix exponential of a skew-symmetric matrix M = -M>. We find a
search direction H = -H> in the set of skew symmetric matrices by computing the
gradient of the loss function w.r.t. M at M = 0 and determine the optimal step size
t along this gradient by line search (see von Bünau, 2012). Finally, we represent the
update matrix as U = e

tH. In other words we search over the Lie group SO(n) of or-
thogonal matrices by computing the gradient in the corresponding Lie algebra so(n).
The gradient in so(n) can be calculated as (see Plumbley, 2005)

rL = (rR L)R>
- R (rR L)>.

The objective function in Eq. (55) is invariant to rotations within the d-dimensional
subspace, i.e., for |G| 6= 0 the following equality holds

D̃

kl

⇣
V>⌃

1

V || V>⌃
2

V
⌘

= D̃

kl

⇣
G>V>⌃

1

VG || G>V>⌃
2

VG
⌘

. (57)

Therefore, we rotate the projection matrix V in the last step of the algorithm, so that
it maximally separate the classes along the projection directions (as is the case with
CSP). The spatial filters can be rearranged so that they capture the class differences
with decreasing strength (↵

i

sorting).

Algorithm 4 Subspace divCSP

1 function sub-divCSP({⌃
c

},d)
2 Compute the whitening matrix P = (⌃

1

+ ⌃
2

)

- 1

2

3 Initialize R
0

with a (random) rotation matrix
4 Whiten and rotate ⌃

c

= (R
0

P)⌃
c

(R
0

P)> with c 2 {1, 2}
5 repeat
6 Compute the gradient matrix and determine the optimal step size
7 Update the rotation matrix R

k+1

= UR
k

8 Apply the rotation to the data ⌃
c

= U⌃
c

U>

9 until convergence
10 Let V>

= I
d

R
k+1

P
11 Compute the eigenvectors G 2 Rd⇥d of V>⌃

1

V
12 Let V⇤

= VG and rearrange the filters if necessary (↵
i

sorting)
13 return V⇤

14 end function

Deflation Method
The deflation algorithm does not extract the whole subspace at once, but performs the
optimization in a sequential manner (see also deflation FastICA (Hyvärinen, 1999b)).
More precisely, we reduce the dimensionality of the data space by one in each step.
This provides a sorting of the spatial filters which is analogous to CSP, i.e., the first so-
lution is the most discriminative filter and so on. The steps of the method are described
in Algorithm 5. In the first steps of the algorithm we apply the whitening transforma-
tion P to the class covariance matrices and initialize a matrix B that represents the
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basis of the subspace in which the spatial filters are computed. Then we repeat the
following procedure d times. We calculate the spatial filter by applying the subspace
divCSP algorithm described in Algorithm 4 with parameter d = 1. Note that we skip
the whitening step as it has already been performed. After obtaining the spatial filter
v we compute its corresponding orthogonal complement V? and project the class co-
variance matrices to this subspace. This step ensures that the spatial filters computed
in subsequent steps will be orthogonal to the current ones. Since the ith spatial filter
v has been computed in the subspace with basis B its representation in the original
coordinate system is v

i

= Bv. In the last step of the loop we update the basis matrix B.
The final solution consists of the spatial filters v

i

with i = 1 . . . d and is already sorted
by the ability to capture the class differences (↵

i

sorting, , see Section 3.3).
The deflation algorithm optimizes the following objective function in ith step

D̃

kl

⇣
v>
i

⌃̃
1

v
i

|| v>
i

⌃̃
2

v
i

⌘
=

v>
i

⌃̃
1

v
i

v>
i

⌃̃
2

v
i

+

v>
i

⌃̃
2

v
i

v>
i

⌃̃
1

v
i

(58)

s.t. v>
i

v
j

= 0 8j 2 1 . . . i- 1, (59)

where as before we denote the whitened matrices with a tilde. Note that this objective

function can be written as f(z) = z +

1

z

with z =

v>
i

⌃̃
1

v
i

v>
i

⌃̃
2

v
i

and one can easily prove
that this function is maximized at the border. Thus, it is maximized either for the
largest z or for the smallest one (largest 1

z

). This solution corresponds to the ith CSP
spatial filter (sorted by ↵

i

). Thus, both methods, subspace and deflation, provide the
same spatial filters, namely the CSP ones, when optimizing the objective function in
Eq. (55). For the extensions of divCSP (described in next sections) the solutions of the
subspace and deflation method will not coincide. We will discuss the differences of
both optimization schemes in the experimental section using simulations.

Algorithm 5 Deflation divCSP

1 function def-divCSP({⌃
c

},d)
2 Compute the whitening matrix P = (⌃

1

+ ⌃
2

)

- 1

2

3 Apply the whitening transformation ⌃̃
c

= P⌃
c

P> with c 2 {1, 2}
4 Initialize basis B = I 2 RD⇥D

5 for i = 1. . . d do
6 Compute v 2 R(D-i+1)⇥1 by sub-divCSP(⌃̃

1

, ⌃̃
2

, 1) (no whitening)
7 Compute V? 2 R(D-i+1)⇥(D-i) the orthogonal complement of v
8 Project ⌃̃

1

and ⌃̃
2

to (D- i)-dimensional subspace by V?

9 Backproject spatial filter v to original space by v
i

= Bv 2 RD⇥1

10 Update basis B = BV? 2 RD⇥(D-i)

11 end for
12 Let V⇤

= P[v
1

. . .v
d

]

13 return V⇤

14 end function

7.3 robustness through beta divergence

In this section we introduce a divCSP method based on symmetric beta divergence
which downweights the influence of outlier trials. Thus, our idea is to keep the math-
ematical formulation of the CSP problem (see Eq. (54)) but use beta divergence as it
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is known to be robust to outliers. However, the direct application of beta divergence
to the divCSP objective function has no robustness effect because the average class
covariance matrices may be affected by trial artifacts (if not estimated with the method
presented in last chapter). The downweighting of beta divergence does not have any
effect when applied to only one divergence term.

In order to deal with artifacts on a trial-by-trial basis we need to reformulate the
above objective function. Instead of maximizing the divergence between the average
class distributions we propose to optimize the sum of trial-wise divergences

L
sumkl

(V) =

nX

i=1

D̃

kl

⇣
V>⌃i

1

V || V>⌃i

2

V
⌘

, (60)

where ⌃i

1

and ⌃i

2

denote the covariance matrices estimated from the ith trial of class
1 and class 2, respectively, and n is the number of trials per class (which is assumed
to be the same for both classes). Note that the reformulated problem is not equivalent
to CSP; in Eq. (54) averaging is performed w.r.t. the covariance matrices (divergence is
computed on average covariance matrices), whereas in Eq. (60) averaging is performed
w.r.t. the divergences. We denote the former approach by kl-divCSP and the latter one
by sumkl-divCSP. The following theorem relates both approaches in the asymptotic
case.

Theorem 12. Suppose that the number of discriminative sources is one; then let c be such
that D/N ! c as D,N ! 1 (D dimensions, N data points per trial). Then, if there exists
�(c) with n/D ! �(c) for n ! 1 (n the number of trials) then the empirical maximizer of
L
sumkl

(v) (and of course also of L
kl

(v)) converges almost surely to the true solution.

Sketched proof. Since there is only one discriminative direction we may perform anal-
ysis in a basis whereby the covariances of both classes have the form diag(a, 1, . . . , 1)
and diag(b, 1, . . . , 1). If we show in this basis that consistency holds then it is a simple
matter to prove consistency in the original basis. We want to show that as the num-
ber of trials n increases the filter provided by sumkl-divCSP converges to the true
solution. If the support of the density of the eigenvalues includes a region around 0,
then there is no hope of showing that the matrix inversion is stable. However, it has
been shown in the random matrix theory literature (Baik and Silverstein, 2006) that
if D and N tend to 1 in a ratio c =

D

N

then all of the eigenvalues apart from the
largest lie between (1-

p
c)

2 and (1+

p
c)

2 whereas the largest sample eigenvalue (↵
denotes the true non-unit eigenvalue) converges almost surely to ↵+ c

↵

↵-1

provided
↵ > 1+

p
c, independently of the distribution of the data; a similar result applies if

one true eigenvalue is smaller than the rest. This implies that for sufficient discrim-
inability in the true distribution and sufficiently many data points per trial, each filter
maximizing each term in the sum has non-zero dot-product with the true maximizing
filter. But since the trials are independent, this implies that in the limit of n trials the
maximizing filter corresponds to the true filter.

Theorem 2 states that both divergence-based CSP variants, kl-divCSP and sumkl-
divCSP, almost surely converge to the same (true) solution in the asymptotic case.
Note that both of the above approaches, kl-divCSP and sumkl-divCSP, are not robust
w.r.t. artifacts as they both perform simple (non-robust) averaging of the covariance
matrices and of the divergence terms, respectively. In the following we show that by
using symmetric beta divergence we robustify the averaging of the divergence terms
in sumkl-divCSP in the same manner as done in last chapter (i.e. beta divergence
will downweight the influence of outlier divergence terms). This downweighting has
the effect that our beta divergence CSP (�-divCSP) algorithm will not try to extract
features that have a high average discriminativity, but features that are discriminative
across trials (stable solution). We propose to use symmetric beta divergence for the
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objective function in Eq. (60). The relations between CSP, kl-divCSP, sumkl-divCSP
and �-divCSP are depicted in Figure 33.

The objective function of our �-divCSP approach can be written explicitly and both
algorithms, subspace and deflation method, can be used for maximizing it.

Theorem 13. The objective function of �-divCSP can be represented in explicit form as
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Proof. See appendix B.2

In the following we show that the robustness property of �-divCSP can be directly
understood from inspection of its objective function. Assume ⌃̄

i

1

and ⌃̄
i

2

are full rank
d⇥ d covariance matrices. We investigate the behaviour of the objective functions of
�-divCSP and sumkl-divCSP when ⌃̄

i

1

is constant and ⌃̄
i

2

(i.e. one of its eigenvalues)
becomes very large, e.g., because the trial is affected by artifacts. It is not hard to see
that for � > 0 the objective function L

�

does not go to infinity but is constant as ⌃̄
i

2

becomes arbitrarily large. The first term of the objective function |⌃̄
i

1

|-
�

2 is constant
with respect to changes of ⌃̄i

2

and all the other terms go to zero as ⌃̄
i

2

increases. Thus,
the influence function of the �-divCSP estimator is bounded w.r.t. changes in ⌃̄

i

2

(the
same argument holds for changes of ⌃̄i

1

). Note that this robustness property increases
with � and vanishes when applying Kullback-Leibler divergences defined in Eq. (55)
as the trace term tr

⇣
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⌘
is not bounded when ⌃̄

i

2

becomes arbitrarily large,
thus this artifactual term will dominate the solution.
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Figure 33.: The relations between CSP, kl-divCSP, sumkl-divCSP and �-divCSP.
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7.4 unified view on regularization

We have proven that CSP can be formulated in a divergence maximization framework
and have derived a robust version of the algorithm based on beta divergence. However,
maximizing the band power ratios may not be the only objective for feature extraction.
For instance, imposing stationarity on the extracted features is also of high interest
in Brain-Computer Interfacing (see e.g. sCSP and ssCSP algorithms presented in this
thesis). A natural way of regularizing the extracted spatial filters towards stationarity
is to combine the objective function of divCSP with a divergence term which accounts
for the stationarity of the features. In this section we present four such regularization
terms which tackle various nonstationarity problems. Since the optimization process
is not affected by changing the way how stationarity is measured (as long as it is a
divergence), our framework integrates several stationary CSP variants in a principled
manner, moreover, it allows one to utilize information from additional subjects.
The objective function of the proposed regularized divCSP method can be written as

L(V) = (1- �)D̃

kl

⇣
V>⌃

1

V || V>⌃
2

V
⌘

| {z }
CSP Term

- ��|{z}
Regularization Term

(63)

where � is the regularization term that can be arbitrarily defined, depending on the
type of invariance we want to achieve, and � is a regularization parameter trading-off
the influence of the CSP objective function and the regularization term. Note that
the objective functions of all algorithms presented in this section can be written as
weighted sum of divergences and the goal is to find a projection to a d-dimensional
subspace which maximizes this sum (by using Algorithm 4 or 5). In the following we
discuss four different regularization terms.

Within-Session Stationarity (divCSP-WS): In order to reduce the influence of artifacts
or shifts that are present in the training session we divide the data into a set of smaller
epochs. The epochs consist of concatenated recordings of one or several subsequent
trials of the same class. The nonstationarity of the extracted features is measured as
average divergence between the data distribution of the epochs and the whole data
distribution for each class separately (analogous to sCSP). More precisely, we compute

� =

1

2n

2X

c=1

nX

i=1

DKL

⇣
V>⌃i

c

V || V>⌃
c

V
⌘

, (64)

where n denotes the number of trials and ⌃i

c

stands for the estimated covariance
matrix of class c and epoch i. Note that we use the Kullback-Leibler divergence (and
not its symmetric version) for capturing the changes; the reasons for that will be
explained in the Section 7.5.5. Subtracting the regularization term � from the divCSP
objective function (as in Eq. (63)) reduces the within-class variability of the extracted
training features.

Between-Session Stationarity (divCSP-BS): The purpose of the following regulariza-
tion term is to reduce the shift between the data distribution in calibration and test
phase. Since we may assume that test data is not available at the time of computing the
spatial filters we utilize information from additional subjects to estimate these changes.
Note that this approach implicitly assumes that the between-session nonstationarities
are similar among different users, e.g., because they are induced by a change in ex-
perimental paradigm (e.g., no feedback vs. visual feedback), thus this regularization
term is based on the idea of transferring nonstationary information between subjects
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introduced in this thesis. For our experiments we consider the following regularization
term

� =

1

2K

2X

c=1

KX

k=1

D̃KL

⇣
V>

n

⌃k

tr,cV || V>⌃k

te,cV
⌘

, (65)

where K stands for the number of additional subjects and ⌃k

tr,c and ⌃k

te,c denotes
subject’s k class covariance matrix estimated on training and test data, respectively.
Note that in contrast to ssCSP this regularization term measures the shift for each
class separately.

Across-Subject Stationarity (divCSP-AS): If the goal is to reduce differences between
subjects, e.g., because one assumes that the underlying processes governing motor
imagery are very similar between users, then one may use the class-unrelated changes
between the average data of the subject of interest ` and the data of additional subjects
k as regularization term

� =

1

K

KX

k=1

D̃KL

⇣
V>⌃`

tr

V || V>⌃k

tr

V
⌘

. (66)

Multi-Subject (divCSP-MS): Rather than combining the discriminativity term with a
regularization term which captures nonstationarity, we may also combine it with the
divCSP objective functions of other subjects. This allows us to extract a more subject-
independent feature space. In this case we need to invert the sign of � as we aim to
maximize this regularization term

� = -

1

K

KX

k=1

D̃KL

⇣
V>⌃k

1

V || V>⌃k

2

V
⌘

. (67)

Many other forms of regularization, e.g., considering multiple classes or containing
priori information, can be easily integrated into our framework. Note that �-divCSP
can also be formulated in this framework with a regularization target

� = -

nX

i=1

D̃

kl

⇣
V>⌃i

1

V || V>⌃i

2

V
⌘

(68)

and regularization parameter � = 1.
The presented regularized divCSP algorithms can be computed by using KL diver-

gence or beta divergence. As mentioned before the effect of using beta divergence is
that it robustly averages the terms in Eq. (63) as it implicitly downweights the influ-
ence of outlier terms. This allows us to control (by changing the � parameter) the type
of nonstationarity we want to become invariant to, for instance, using beta divergence
with small � in divCSP-WS penalizes single extreme events with large deviation from
the average activity (as they are not downweighted thus will dominate �), e.g., elec-
trode artifacts, whereas larger � parameters penalize more stable variations that occur
throughout the experiment. We will discuss this property of beta divergence in the sim-
ulation section in more detail. Note that also the multi-subject algorithm divCSP-MS
may profit from using beta divergence because integrating data from several subjects
usually requires subject selection as different users may have very different signal
properties due to differences in head size, electrode montage, state of mind etc. With
increasing � parameter we implicitly perform this type of subject selection as the influ-
ence of “outlier subjects” with very different signal characteristics will be reduced. On
the other hand in some applications we may be interested in the similarity between
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subjects and may want to identify these “outlier subjects”. Using our framework with
a small � parameter enhances the differences between the activity of multiple subjects,
thus can be very helpful for exploratory analysis. This property makes beta divergence
a very valuable tool for our divergence-based CSP framework.

7.5 simulation studies

This section evaluates the divergence-based framework in several simulation studies.
The understanding of the advantages and limitations of the proposed divCSP algo-
rithms helps to select the best method (or the optimal set of parameters) in practice.

7.5.1 One Step vs. Two Step Methods

Two-step methods such as SSA+CSP remove information from the data prior to CSP
computation. However, if relevant information is removed in the first step these meth-
ods are bound to fail (Tomioka and Müller, 2010). The following example shows a sit-
uation in which the recently proposed two step method, SSA+CSP (von Bünau et al.,
2010; Samek et al., 2011), fails to extract the true spatial filters.

Consider the observed signal x(t) 2 R10 generated as mixture of 10 sources s(t) =
[s

1

(t) . . . s

10

(t)]

> with a random orthogonal mixing matrix A 2 R10⇥10

x(t) = As(t).

Assume sources s

1

and s

2

are nonstationary. The signal of the first source is sampled
from N

�
0,�2

1

�
for class 1 and N

�
0,�2

2

�
for class 2, whereas the signal of source s

2

is
sampled from N

�
0,�2

3

�
irrespectively of class. All the other sources generate normally

distributed data with zero mean and unit variance. Now let �2
1

= 1.2+ ✏
1

, �2
2

= 0.8+
✏

1

and �2
3

= 1+ ✏

2

with ✏
1

⇠ N
⇣
0, 1

2

2

⌘
and ✏

2

⇠ N
⇣
0, 1

3

2

⌘
be the variance parameters

which are resampled for each trial. In summary, we have constructed a data set with
one discriminative and nonstationary source and nine nondiscriminative sources from
which one source is also nonstationary. We sample 100 trials per condition, each trial
contains 200 ten-dimensional samples, and repeat the experiment 100 times. The goal
is to find a spatial filter that recovers the discriminative source s

1

.
Figure 34 depicts the angle between the spatial filter computed by divCSP-WS (one-

step method) or SSA+CSP (two-step method) and the true projection to the discrimina-
tive source s

1

. One clearly sees that the two-step method removes the discriminative
information in the first step, i.e., the median angle is over 50

� when projecting out
one or more dimensions. In other words the two-step method projects out (parts of)
the activity generated by source s

1

simply because this activity is nonstationary. Thus,
SSA+CSP relies on the assumption that the discriminative sources are stationary. If
this assumption does not hold this method may fail. On the other hand when apply-
ing divCSP-WS we control the strength of regularization. That means we can trade-off
stationarity and discriminativity; in real applications some amount of variation will
always be present even when projecting to the sources that represent motor imagery
related activity. Consequently the simultaneous optimization of stationarity and dis-
criminativity is not only more natural but also allows one to fine tune the amount of
stationarity and discriminativity in the features.
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Figure 34.: Left: Angle between the true projection and the projection computed by
divCSP-WS for various regularization parameters. Right: Same quantity for
the case of SSA+CSP.

7.5.2 Joint Diagonalizability

In Section 4.3 we have shown that sCSP may fail to extract the spatial filter w =

[w

1

w

2

]

>
= [1 0]

> which maximizes the variance ratio between classes while mini-
mizing the nonstationarity of the features. Using the same example
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we demonstrate that our divergence-based approach (as well as SSA+CSP and KLCSP)
penalizes the off-diagonal terms because it does not rely (in contrast to sCSP) on the
assumption that the covariance matrices are jointly diagonalizable but rather evaluate
nonstationarity in a principled manner using KL divergence. The divCSP-WS method
uses the following regularization term �
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This divCSP-WS penalty term is zero if and only if w
1

w

2

= 0, i.e., when disregarding
the off-diagonal terms. Thus, divCSP-WS finds the optimal trade-off between station-
arity and discriminativity.

7.5.3 Deflation vs. Subspace Algorithm

In the following let us apply the multi-subject algorithm divCSP-MS to data of five
simulated subjects. As before we use a mixture model with random orthogonal mixing
matrix A to generate the data xj(t) of each subject j

xj
c

(t) ⇠ N
⇣
0, A>⌃j

c

A
⌘

.

Let ⌃j

c

=

"
�j
c

0

0 �j

c

#

2 R12⇥12 denote the source covariance matrix of class c and

subject j with �j
c

2 R2⇥2 being the covariance matrix of discriminative sources com-
mon to all subjects and �j

c

2 R10⇥10 the corresponding subject specific matrix. Let
the first two sources of all subjects be discriminative but have different correlations.
In other words we simulate the case where the projections which reconstruct the two
(independent) discriminative sources of subject i will reconstruct a linear mixture of
the discriminative sources of subject j. Thus, the discriminative sources of subject i

and j lie in the same subspace but have different correlations. This may happen when
e.g. the mixing matrix of subject i is a rotated version of the mixing matrix of subject
j, e.g., because of tiny differences in electrode position or head size. For simplicity let
us assume the mixing matrix is fixed for all subjects, but the correlations between the
sources differ. The goal of a multi-subject algorithm is to extract discriminative activity
common to all subjects, i.e., to extract the first two sources.

Let the first two sources of subject 1 be generated by a zero mean Gaussian with
variance 1.5 and 0.5 for condition one and variance 0.5 and 1.5 for condition two,

i.e., �1
1

=

"
1.5 0

0 0.5

#

and �1
2

=

"
0.5 0

0 1.5

#

. The covariance matrices �j
c

for the other

subjects have same structure as for subject one, but are rotated by a (random) rotation
matrix with angle ↵ 2 [-90

�
90

�
]. The first row of Figure 35 visualizes a possible data

distribution of the first two sources for three subjects.
Note that the first two sources are discriminative for all subjects, thus, they should

be recovered by multi-subject CSP algorithms. However, when applying divCSP-MS
in deflation mode the (single) filter which separates class one and two for subject 1

may not separate the classes for the other subjects as their source activity is rotated
(see first row of Figure 35). Only when extracting the whole subspace, i.e., sources one
and two, the algorithm “realizes” that these subspaces are equivalently discriminative
for all subjects. Thus, only a subspace method helps for these kind of data integration
problems. Note that the constructed example is equivalent to the well-known XOR
problem in feature selection literature (Guyon and Elisseeff, 2003).

Now let us assume that every subject has two other discriminative sources with
variance 1.6 / 0.4 and 0.4 / 1.6 in condition one and two, respectively. However, these
sources are at random positions in �j, i.e., they are not necessarily at the same position
for all subjects. All other sources in �j are nondiscriminative, i.e., are sampled from
a Gaussian with variance 1 irrespectively of condition. The second row of Figure 35

illustrates a case where the sources are discriminative for subject 1, but the subspace
is not discriminative for the other subjects.

The plot at the bottom of Figure 35 displays the results of applying divCSP-MS (100

repetitions) in deflation (brown line) and in subspace (cyan line) mode to the data of
subject 1. With increasing regularization parameter the algorithms utilize information
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from the four additional subjects. The plot depicts the median of the largest principal
angles between the true filters capturing the activity of the first two sources and the
filters computed by divCSP-MS. One clearly sees that for small regularization param-
eters � (i.e. when only using data from subject 1) both methods do not reconstruct
the activity of the common subspace (first row). This is because the subject specific
activity (second row) is simply more discriminative, the subject specific sources have a
variance ratio of 1.6 / 0.4 compared to 1.5 / 0.5. However, with increasing regulariza-
tion, i.e., when taking into account other subjects’ data the subspace method “realizes”
that there is a subspace which is discriminative for all users, thus, this subspace is
preferred and the angle error decreases to 0

�. On the other hand the deflation method
does not reconstruct the common subspace because it is not able to utilize the XOR-like
structure.
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Figure 35.: First row: Example of a distribution which is discriminative for all three sub-
jects when considering the whole subspace, but is not discriminative when
considering individual directions. Second row: Example of a distribution
which is only discriminative for the first subject. Third row: Angle between
the projection to the common discriminative subspace and the projections
computed by the subspace and deflation divCSP-MS algorithm.

7.5.4 Effects of Beta Divergence

In the following we investigate the influence of the � parameter on the type of sta-
tionarity enforced by divCSP-WS. Let us consider the two types of changes displayed
in Figure 36, namely gradual changes and abrupt changes. The first row of Figure
36 visualizes the data distributions of five epochs that change gradually. We denote
the covariance matrix of the ith epoch as ⌃i

1

. The second row of Figure 36 displays
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four relatively stable (stationary) distributions and one extreme change. We denote
the covariance matrix of the ith epoch as ⌃i

2

. We measure both types of variations
as average divergence between the data distribution in the first epoch (reference) and
the four subsequent distributions. The bottom row of Figure 36 plots the ratio of the
divergence terms computed on the examples in the second row and the first row for
various � parameters, i.e.,

r =

P
5

i=2

D̃
�

⇣
⌃i

2

|| ⌃1

2

⌘

P
5

i=2

D̃
�

⇣
⌃i

1

|| ⌃1

1

⌘

Note that we change the scale of the x-axis at zero (the reason for this sudden drop)
as setting � to lower values than -0.0115 results in numerical problems (see derivation
of beta divergence in appendix B.2). Note that if the ratio of the divergences is above
1 then the abrupt change is regarded as more nonstationary than the gradual change
by the algorithm; the opposite holds if the value is below 1. Thus, by using beta diver-
gence we have an additional degree of freedom, namely we can shift the focus from
gradual changes which are relatively stable over the data set to strong abrupt events
such as electrode artifacts. Thus, we can easily match the types of nonstationarities
which are present in the data and compute invariant features. This flexibility can also
be utilized for exploratory analysis, i.e., identification of gradual changes.

In the next experiment we investigate the impact of strong artifactual trials on CSP
and demonstrate the robustness property of �-divCSP. For that we generate data x(t)
using the following mixture model

x(t) = A

"
sdis(t)

sndis

(t)

#

+ ⇠ (69)

where A 2 R10⇥10 is a random orthogonal mixing matrix, sdis is a discriminative
source sampled from a zero mean Gaussian with variance 1.8 in one condition and
0.2 in the other condition, sndis are 9 sources with variance 1 in both conditions and
⇠ is a noise variable with standard deviation 2. We generate 100 trials per condition,
each consisting of 200 data points. Furthermore, we randomly add artifacts with stan-
dard deviation 10 independently to each data dimension (i.e. virtual electrode) and
trial with varying probability and evaluate the angle between the true filter extract-
ing the source activity of sdis and the spatial filter computed by CSP and �-divCSP.
The median angles computed from 100 repetitions of the simulation experiment are
visualized in Figure 37. One clearly sees that the angle error between the spatial filter
extracted by CSP and the true filter increases with higher artifact probability (brown
line). Furthermore, one can see from the figure that using very small � values does not
attenuate the artifact problem, but it rather increases the error by adding up trial-wise
divergences without downweighting outliers. However, as the � value increases the ar-
tifactual trials are downweighted and a robust average is computed over the trial-wise
divergence terms. This increased robustness significantly reduces the angle error.

7.5.5 KL Divergence vs. Symmetric KL Divergence

In the following we want to touch upon the difference between the symmetric KL
divergence and the KL divergence. The KL divergence between two zero-mean Gaus-
sians with covariances A and B can be written in explicit form as

Dkl (A || B) = log
���A-1B

��� + tr
⇣

B-1A
⌘

, (70)
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Figure 36.: First row: Example of distributions which change gradually. Second row: Ex-
ample of four relatively stable distributions and one distribution which is
very different from the rest. Third row: Ratio of the divergence terms com-
puted from the distributions in the second and first row. Each term is the av-
erage symmetric KL divergence between the distribution in the first epoch
and the distributions in the other epochs. Thus, if the curve is above 1 (=
10

0) then abrupt changes are preferred, i.e., the divergence term computed
from the distributions in the second row is higher than the one computed
from distributions in the first row, whereas if it is below 1 we give higher
regularization to the gradual change. Thus, by changing the beta parameter
we can shift the focus from abrupt changes to gradual changes.

whereas its symmetric counterpart is

D̃kl (A || B) = tr
⇣

A-1B
⌘

+ tr
⇣

B-1A
⌘

. (71)

From linear algebra (Bhatia, 1997) the following relation is known

log |A| = tr(log(A)). (72)

Using this relation we can rewrite the KL divergence objective function as

Dkl (A || B) = tr
⇣

log
⇣

A-1B
⌘⌘

+ tr
⇣

B-1A
⌘

(73)

Thus, the difference between both divergences is the log operator inside the first trace
term. This log operation downweights the influence of the tr

�
log
�
A-1B

��
term com-

pared to tr
�
A-1B

�
when the eigenvalues of A-1B are very large. The question is when

does such an operation make sense ?



90 divergence-based csp framework

An
gl

e 
er

ro
r [

°]

Prob. of outlier 0

0

20

40

60

80

An
gl

e 
er

ro
r [

°]

Prob. of outlier 0.001

0

20

40

60

80

An
gl

e 
er

ro
r [

°]

Prob. of outlier 0.005

0

20

40

60

80

An
gl

e 
er

ro
r [

°]

Prob. of outlier 0.01

0

20

40

60

80

An
gl

e 
er

ro
r [

°] 

Prob. of outlier 0.02

0

20

40

60

80

An
gl

e 
er

ro
r [

°]

Prob. of outlier 0.05

Beta value

0.001
0.01
0.1
0.25
0.5
0.75
1 1.5
20

20

40

60

80

Beta value

0.001
0.01
0.1
0.25
0.5
0.75
1 1.5
2

Beta value

0.001
0.01
0.1
0.25
0.5
0.75
1 1.5
2

Beta value

0.001
0.01
0.1
0.25
0.5
0.75
1 1.5
2

Beta value

0.001
0.01
0.1
0.25
0.5
0.75
1 1.5
2

Beta value

0.001
0.01
0.1
0.25
0.5
0.75
1 1.5
2

CSP
β-divCSP

Figure 37.: Angle between the true spatial filter and the filter computed by CSP and
�-divCSP for different probabilities of artifacts. The robustness of our ap-
proach increases with the � value and significantly outperforms the CSP
solution.

When A is ill-conditioned it may have eigenvalues close to zero. In this case the
term tr

�
A-1B

�
becomes very large, consequently it will dominate the solution. Us-

ing the (non-symmetric) KL divergence significantly reduces the influence of the ill-
conditioned matrix A. Thus, using the log operator makes perfectly sense in the
divCSP-WS algorithm as it operates on trial-wise covariance matrices that may be
poorly estimated. In this case the KL divergence should be preferred. On the other
hand when using average matrices as in divCSP-BS, divCSP-AS or divCSP-MS there is
no reason to downweight one term of the divergence, thus the symmetric divergence
should be applied.

7.5.6 Matrix Regularization vs. Divergence Regularization

The covCSP algorithm (see Section 3.5) applies regularization to the covariance matri-
ces prior to CSP computation. For the single filter case one can represent the covCSP
objective as

D̃

kl
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⇣
(1- �)⌃`

1

+ �⌃̃
1

⌘
v || v>
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2

⌘
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(74)
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K

P
K

k=1

⌃k

c

being the average covariance matrix computed on other sub-
jects’ data. In the case of divCSP-AS regularization is applied to the divergences (i.e.
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after the nonlinear divergence function has been applied). For the single filter case the
divCSP-AS method maximizes the following term
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We compare the behaviour of both objective functions in a simulation experiment
for v 2 [-1 1]⇥ [-1 1] and various � parameters. Let ` = 1,K = 2 and
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One can see in Figure 38 that both objective functions are not the same. Note that
the objective value increases with the intensity of the blue color. The covCSP method
prefers (i.e. assigns larger values to) the spatial filter v>

= [1 0] for small � parameters
but if the regularization of the covariance matrices ⌃1

1

and ⌃1

2

increases (large �) the
preference switches to v>

= [0 1] because the second source of subject 2 is more
discriminative than the first source (ratio 1.5/0.5 compared to 1.3/0.7). The divCSP-AS
regularization on the other hand aims to find discriminative sources which are similar
between both subjects, thus it always prefers the filter v>

= [1 0] that extracts source
1 which is discriminative and common to both users. Depending on the particular
application scenario, i.e., whether we want to find the most discriminative source or a
source that is discriminative and common among subjects, the covCSP regularization
or the divCSP-AS regularization scheme may be the method of choice.
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S

Figure 38.: Top row: Values of covCSP objective function in Eq. (74) for v 2 [-1 1]⇥
[-1 1] and various � parameters. The objective value increases with the
intensity of the blue color. Bottom row: An analogous plot for the divCSP
objective function in Eq. (75) and various � parameters.

7.6 experimental evaluation

This section evaluates the divergence-based CSP approaches introduced in this chapter
and compares them to several state-of-the-art baselines. Due to the large number of
experiments we restrict the evaluation to the Vital BCI data set.
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7.6.1 Robustness to Artifacts

We compare the �-divCSP method with three baseline approaches, namely CSP,
shrinkCSP and MCDE+CSP. The parameter � is selected from the set of 15 candi-
dates {0, 0.0001, 0.001, 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2, 5} by 5-fold
cross-validation on the calibration data using minimal training error rate as selection
criterion. For faster convergence we use the rotation part of the CSP solution as initial
rotation matrix. The results are displayed in Figure 39. Each circle represents the error
rate of a subject. One can see that the �-divCSP method outperforms the baselines as
most circles are below the solid line. Furthermore, the performance increases are sig-
nificant according to the one-sided Wilcoxon sign rank test as the p-values are smaller
than 0.05.
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Figure 39.: Comparison of �-divCSP to three baselines. Each circle represents the error
rate of one subject. Our method outperforms the baselines for circles that
are below the solid line. The p-values of the one-sided Wilcoxon sign rank
test are displayed in the lower right corner.

We made an interesting observation when analysing the subject with largest
improvement over the CSP baseline; the error rates were 48.6% (CSP), 48.6%
(MCDE+CSP) and 11.0% (�-divCSP). Over all ranges of MCDE+CSP parameters this
subject has an error rate higher than 48% i.e. MCDE+CSP was not able to prop-
erly estimate the covariance matrices. This example demonstrates that �-divCSP and
MCDE+CSP are not equivalent. Enforcing robustness on the CSP algorithm may in
some cases be better than enforcing robustness when estimating the covariance matri-
ces.

In the following we study the robustness property of the �-divCSP method on sub-
ject 74, the user with the largest improvement. The left panel of Figure 40 displays the
activity pattern associated with the first CSP filter w

1

of subject 74. One clearly sees
that the pattern does not encode neurophysiologically relevant activity, but focuses on
a single electrode, namely FFC6. When analysing the (filtered) EEG signal of this elec-
trode one can identify a strong artifact in one of the trials. Since neither the empirical
covariance estimator nor the CSP algorithm is robust to this type of outliers, the arti-
fact dominates the solution. However, the resulting pattern is meaningless as it does
not represent motor imaginary related activity. The right panel of Figure 40 displays
the relative importance of the divergence term of the artifactual trial i⇤ with respect to
the average divergence terms of the other trials i = 1 . . . n, i 6= i

⇤. This ratio is

r =
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⇣
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One can see that the divergence term computed from the artifactual trial is over
1800 times larger than the average of the other trials. This ratio decreases rapidly for
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larger � values, i.e., the influence of the artifact decreases. This increased robustness
is the reason for the superior performance of �-divCSP.
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Figure 40.: Left: The CSP pattern of subject 74 does not reflect neurophysiological ac-
tivity but it represents the artifact in electrode FFC6. Right: The relative
importance of the artifactual trial decreases with the � parameters. The rel-
ative importance is measured as ratio between the divergence term of the
artifactual trial and the average divergence terms of the other trials.

7.6.2 Reducing Within-Session Nonstationarity

In the next experiment we aim to increase the stationarity of the training features
by applying divCSP-WS. In order to capture different types of variations, both sin-
gle extreme events and common slow changes, we test our algorithm with various
beta parameters. We use � = 0, 0.5, 1 and the minimal possible negative value from
-0.0005,-0.0010,-0.0015, . . .. We select the best of these four � values for each subject
by applying cross validation. Figure 41 displays the error rates of all subjects for the
subspace and deflation divCSP-WS method and compares them to CSP (first column),
SSA+CSP (second column) and KLCSP (third column). Note that we did not reimple-
ment the original KLCSP algorithm, but use the deflation divCSP-WS algorithm with
� = 0 as both algorithms optimize the same objective. Each circle in the scatter plot
represents the error rate of one subject and the number in the lower right corner de-
notes the p-value when applying the one-sided Wilcoxon sign-rank test. The error rate
of our approach is represented on the y-axis, i.e., if the circle is below the solid line
then our method outperforms the baseline for this subject. The null hypothesis of the
Wilcoxon test states that the median of the error rate differences (our method (y-axis)
- baseline method (x-axis)) is greater than or equal to zero. For p < 0.05 we reject this
null hypothesis, thus we say that our method significantly outperforms the baseline.

One can see from the plot that the deflation divCSP-WS outperforms the sub-
space method. It significantly decreases classification error rates in comparison to CSP
(p = 0.0481); the subspace approach does not show any improvement. The subspace
method performs poorly as it considers changes in correlations between different spa-
tial filters. These correlations are ignored in the feature extraction and classification
process, thus should not be considered when computing the spatial filters. One can
also see from the results that the simultaneous optimization of two objectives, discrim-
inativity and stationarity in this case, is superior to the sequential optimization as done
by the two-step SSA+CSP approach. The improvement of the deflation divCSP-WS al-
gorithm over SSA+CSP is very close to being significant (p = 0.0526). The observation
that one step methods outperform two-step approach is in line with the simulations
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performed in the last section. The fact that two-step methods may remove information
in the first step which is important for the second step is a significant disadvantage of
these approaches. We will comment on this in the next paragraph. The scatter plots
in the last column demonstrate the advantage of using the beta divergence version
of our algorithms. The results show that the Kullback-Leibler divergence algorithm
(as in (Arvaneh et al., 2013a)) performs worse than our deflation divCSP-WS method
and the difference between both algorithms is close to being significant (p = 0.0750).
The improvement is due to the additional flexibility of beta divergence; it may cap-
ture a whole range of different nonstationarities. On the other hand one can see that
KLCSP significantly outperforms the subspace divCSP-WS method (p = 0.9814). Thus,
the additional flexibility of using different beta values does not compensate for the
disadvantage of considering nonstationarities in correlation.
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Figure 41.: Scatter plots showing error rates of subspace and deflation divCSP-WS and
three baseline methods. Each circle represents one subject and if the circle
is below the solid line then our method outperforms the baseline for this
subject. The p-value of the Wilcoxon signed rank test is displayed in the
right bottom corner.

Above we discussed an example where two-step methods provide suboptimal
performance. Figure 42 depicts the boxplot of the difference in error rate between
SSA+CSP (Samek et al., 2011) and CSP. One can see from the figure that the classifica-
tion performance of SSA+CSP drops with increasing number of removed dimensions.
This means that the directions removed in the first step of SSA+CSP contain increasing
amount of discriminative information (which is required for the second step). The two
scalp plots visualize the activity patterns corresponding to the removed directions for
two subjects. One clearly sees that the upper scalp plot shows activity over the left
motor and temporal cortex. Since such activity contains motor imagery related infor-
mation (right hand class) it is not advisable to remove it. Since SSA only evaluates the
amount of nonstationarity and does not take into account the information content it
removes this activity, thus the corresponding subject shows a significant increase in
error rate, namely from 9.3 % to 18.3 %. The lower scalp plot corresponds to a subject
which improves classification accuracy (from 40 % to 18 %) by applying SSA prepro-
cessing. One can see that some temporal activity is removed from this subjects data.
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Since this information is not motor imagery related it may be safely removed. This
example demonstrates that two-step methods may fail in practice. Although the au-
thors of (Samek et al., 2012a) propose to trade-off nonstationarity and discriminativity
when using SSA, we emphasize the limits of applying two step approaches for feature
extraction in BCI.
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Figure 42.: Change in error rate when removing 0 . . . 22 dimensions from the data by
applying SSA. One can see that the error rates significantly increase as
more dimensions are removed. The two scalp plots visualize the activity
patterns corresponding to the removed direction. One clearly sees that for
the subject with increasing error rate the (upper) scalp plot shows activity
related to motor imagery. Since this information should not be removed,
SSA+CSP increases the error rate for this subject.

The effects of various beta parameters are studied in Figure 43. The upper panel
displays a subject’s EEG signal with a strong artifact in electrode FFC6. The three
scalp plots at the bottom panel visualize the activity patterns of the first spatial filter
extracted by divCSP-WS with � = 0.5 and various beta values. One clearly sees that
for � = 0 (left scalp plot) there is no regularization towards stationarity, therefore,
the pattern focuses on the activity in FFC6 (due to the strong artifact) and does not
represent motor imagery related information. Thus, the area under the ROC curve
(AUC) value is low (0.55). If using a beta value of 1 (right scalp plot) there is an
improvement, i.e., a right hand motor imagery pattern emerges, however, the focus
on the electrode FFC6 is still present. This is because larger � values downweight the
influence of the artifactual trial in the penalty term �, thus the regularization does not
penalize strong extreme events such as the artifact in FFC6. The situation changes if
� < 0 as then we enhance the extreme values in the penalty term � computation, i.e.,
the artifact dominates the penalty term thus is substantially more strongly penalized
in the optimization process. The effect of this penalty is that a true motor imagery
related pattern emerges and the focus on electrode FFC6 vanishes. The AUC value
of this pattern also largely increases to 0.87. We have demonstrated a similar effect
in the toy simulations in last section. This additional degree of freedom renders our
method(s) much more flexible than, e.g., KLCSP or ssCSP.
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β = 0 β < 0 β > 0

0.55 AUC 0.87 AUC 0.76 AUC

artifact

Figure 43.: Top row: Example of an artifact in the signal of the FFC6 electrode. Bottom
row: Activity patterns computed by divCSP-WS with � = 0.5. One can see
that the regularization (minimizing the effect of FFC6 on the solution) only
works properly if � < 0 as this enhances the artifactual activity and thus
increases its relative penalty.

7.6.3 Reducing Between-Session Shifts

In this subsection we describe several between-session information transfer experi-
ments using divCSP-BS. As before we apply the subspace and deflation algorithm and
use the beta values 0, 0.5 and 1. We compare the results to CSP, to the ssCSP method
and to divCSP-BS with � = 0. Note that we only integrate information from additional
subjects with the same motor imagery classes and select the regularization parameters
by minimizing test error on the other subjects’ data. The results in the first row of Fig-
ure 44 show a performance improvement of the deflation divCSP-BS method over CSP.
Although there is a trend the difference is not statistically significant (p = 0.0938). This
confirms the observation that information about shifts between sessions can be trans-
ferred across subjects. In contrast to the within-session nonstationarities presented in
the last subsection we are not so much interested in single extreme nonstationarities
between training and test sessions, but rather in changes which are stable over subjects.
By using � > 0 we penalize these (common) changes between calibration and feedback.
However, it seems that using different beta parameters does not have a large impact
on the results (see last column). The second column of Figure 44 compares divCSP-BS
to ssCSP. Although we compute the shift between calibration and feedback session
for each class separately, our method does not outperform ssCSP which does not use
class labels (p = 0.5377). This suggests that the nonstationarities between calibration
and feedback session are not class-dependent.

The upper plot in Figure 45 displays the median (over subjects) KL divergence dif-
ferences between CSP (no regularization) and deflation divCSP-BS with increasing reg-
ularization. The divergence is computed between the calibration and feedback feature
distribution when applying the filters computed by divCSP-BS with increasing �. One
can see from the plot that incorporating information from other users about the shift
between calibration and feedback constantly reduces this shift on the subject of inter-
est. This confirms our observation that nonstationarities are similar between different
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Figure 44.: Scatter plots showing error rates of deflation and subspace divCSP-BS and
three baseline methods. Each circle represents one subject and if the circle
is below the solid line then our method outperforms the baseline for this
subject. The p-value of the Wilcoxon signed rank test is displayed in the
right bottom corner.

subjects. The lower panel of the figure visualizes the effect of applying divCSP-BS. It
depicts the feature distribution of the ’left hand class’ train data (cyan circles) and the
corresponding test data (brown crosses) of subject 13. The six dimensional feature dis-
tribution is projected to two dimensions by using the largest PCA component and the
normal vector to the classification hyperplane. One can see that when applying CSP
there is a large shift in the distribution between training and test. If on the other hand
incorporating information from additional subjects one obtains a stationary distribu-
tion with no significant shift between training and test.

7.6.4 Stationarity Across Subjects

This subsection discusses the results of divCSP-AS; as before we use the beta values
0, 0.5 and 1. Figure 46 displays the results of both the subspace and deflation algorithm
and compares them to CSP, covCSP and klcovCSP. One can see (first column) that
divCSP-AS significantly outperforms CSP (p < 10

-4), i.e., regularizing the feature
distribution towards the feature distribution of the other subjects seems to have a
strong effect on the quality of the spatial filters. This regularization effect is stronger
than when regularizing the covariance matrices towards other subjects as done by
covCSP (p = 0.0626) and klcovCSP (p = 0.1120).

Figure 47 evaluates the improvement of subject 74, the user with largest decrease in
error rate. The lower boxplot visualizes the distribution of the KL divergence between
subject 74 and the other subjects when applying the first spatial filter computed by
divCSP-AS with increasing regularization parameters. One can see that there is a large
gap when moving from � = 0.2 to � = 0.3, i.e., the feature distribution of subject 74

becomes similar to the distribution of other subjects. Above the boxplot we visualize
the activation patterns of the first spatial filter computed with divCSP-AS. One clearly
sees the electrode artifact in FFC6 (see also Figure 43). Since this activity is not present
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Figure 45.: Top row: Median KL divergence difference between deflation divCSP-BS
with increasing regularization and CSP. The divergence is computed be-
tween the calibration and feedback feature distribution. One can see that
the divergence decreases with increasing regularization. Bottom row: The
’left hand’ feature distribution of training data (cyan circles) and test data
(brown circles) when applying CSP and divCSP-BS. The features are pro-
jected to the largest PCA component and the normal vector to the classifi-
cation hyperplane. One clearly sees that the divCSP-BS solution provides
substantially more stationary feature distributions than CSP.

in the other subjects data it is penalized when applying divCSP-AS. For regularization
parameters larger than � = 0.3 it completely vanishes. In other words regularizing the
feature distribution towards other subjects helps in removing this type of anomalies.
Note also that for � > 0.5 the activity patterns show strong activation in motor imagery
related areas. This activation is captured by divCSP-AS as it is present in all subjects
(having the same classes as subject 74).

7.6.5 Subject-Independent Spatial Filters

In the last subsection we perform regularization towards other subjects, here we aim
to use other subjects’ data to extract a subject independent feature space. Therefore,
we apply divCSP-MS, covCSP and klcovCSP with � = 1. In other words we estimate
the spatial filters by using other subjects’ data only. Note that we still use the calibra-
tion data to train the LDA classifier, only the spatial filters are ”subject independent”.
As before we apply our algorithm with the three beta parameters 0, 0.5 and 1. Fig-
ure 48 compares the error rates of the subspace and deflation divCSP-MS algorithm
with three baselines. One clearly sees that both the subspace and deflation divCSP-MS
provide better feature spaces than covCSP and klcovCSP. The improvement is statis-
tically significant for the subspace algorithm with p = 0.0004 when comparing its
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Figure 46.: Scatter plots showing error rates of deflation and subspace divCSP-AS and
three baseline methods. Each circle represents one subject and if the circle
is below the solid line then our method outperforms the baseline for this
subject. The p-value of the Wilcoxon signed rank test is displayed in the
right bottom corner.

performance to covCSP and p = 0.0147 when comparing to klcovCSP. The subspace
method performs significantly better than covCSP (p = 0.0193), the improvement over
klcovCSP is not significant (p = 0.2105). This means that integrating information from
additional subjects by combining divergence terms which measure motor imagery
related activity is superior to combining the covariance matrices, i.e., fusing all infor-
mation. As observed in the simulations the subspace method is (slightly) better than
the deflation approach. The subspace method is not affected by changes in correla-
tion, thus it identifies the common subspace even when differences in correlation of
the sources exist between subjects. We also see (third column) that using beta diver-
gence significantly improves the algorithm, the p-value for the subspace approach is
0.0101, for the deflation method it is smaller than 10

-4. It seems that beta values larger
than zero have a positive effect on performance as they downweight the influence of
individual subjects and help to extract common motor imagery related activity.

A direct comparison of the subspace and deflation method for the three beta values
is shown in the upper panel of Figure 49. For the case of � = 0 one can see a clear
advantage of the subspace method (p = 0.0001). As demonstrated in the simulations
(see Figure 35) the deflation approach may prefer single-subject solutions as it does
not capture common activity if the correlations of the sources vary between subjects.
However, the relative gain of these single-subject solutions decreases with increasing
beta value (because of downweighting effect), therefore the subspace and deflation
algorithms perform similarly for � = 1. The lower panel of Figure 49 compares the
subject independent feature spaces computed by divCSP-MS (after selecting � by cross-
validation) to the CSP solution when computed on increasing number of trials. For that
we randomly select n = 2 . . . 75 trials per class from the calibration data and compute
CSP on this smaller data set. Afterwards we train the LDA classifier on the whole
calibration data and apply it to the feedback data. We repeat this 50 times. In the
left boxplot one can see clearly that the subject-independent spatial filters computed
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Figure 47.: Effects of applying divCSP-AS. The boxplot visualizes the similarity, mea-
sured as symmetric KL divergence, of the feature distribution of subject
74 and the other subjects when projecting the data to the first spatial filter
computed with divCSP-AS. The activity patterns show that the influence
of the artifact in electrode FFC6 decreases with increasing regularization.

with the subspace method (brown line) perform as well as the filters computed by
CSP, even when using all 75 trials for the covariance estimation. The deflation divCSP-
MS method shows a similar performance, although it has much higher variance and its
25% quantile is significantly lower than in the case of the subspace approach. Thus, for
subject-independent spatial filters we strongly recommend using the subspace method
and the beta divergence algorithm.
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Figure 48.: Scatter plots showing error rates of deflation and subspace divCSP-MS and
three baseline methods (for � = 1). Each circle represents one subject and if
the circle is below the solid line then our method outperforms the baseline
for this subject. The p-value of the Wilcoxon signed rank test is displayed
in the right bottom corner.
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Figure 49.: Top row: Error rates of the deflation divCSP-MS (x-axis) and the subspace
divCSP-MS (y-axis) for three beta values and � = 1. For the case of � = 0

one sees that most of the circles representing the error rate of a particular
subject are below the solid line, i.e., the subspace method perform better
for these subjects. The relative advantage of the subspace method decreases
constantly with increasing beta value. Bottom row: Distribution of error rate
differences for both the subspace and deflation divCSP-MS approach with
� = 1 and CSP computed with various numbers of trials. Both divCSP-MS
methods provide significantly better results than CSP when trained on less
than 15 trials per class. Although divCSP-MS computes spatial filters by
using other subjects’ data only, its performance is on par with CSP which
uses all 75 trials for covariance matrix estimation.
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Lessons learned in this chapter

• Significant differences in performance between subspace and
deflation algorithm.

• Only the subspace algorithm solves XOR-like problems.

• Across-subject regularization scheme provides excellent re-
sults and is superior to regularization of covariance matrices.

• Simultaneous optimization of two objectives more effective
than two-step optimization.

• Beta divergence allows us to set the focus on particular types
of nonstationarities.

• Beta divergence allows us to robustly incorporate data from
other users by implicitly downweighting outlier subjects.

• Beta divergence robustifies the sumkl-divCSP method by
downweighting outlier divergence terms.

• Divergences capture nonstationarity in a principled manner;
no assumption of joint diagonalizability required.

• Flexibility of divergence-based framework allows us to tackle
different robustness and nonstationarity problems in BCI.
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Future Work

• Investigation of other divergences and regularization targets.

• Application of divergence-based classification algorithm; one
framework for feature extraction and classification.

• Criterion for parameter selection; range of parameters.

• Theoretical analysis of relation between kl-divCSP and sumkl-
divCSP.

• Theoretical analysis of robustness of �-divCSP; comparison
to robust parameter estimation.

• Information geometric analysis and interpretation of the opti-
mization; analysis of the geometry induced beta divergence.
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S U M M A RY A N D O U T L O O K

We conclude this thesis with a brief summary of the presented algorithms and an
outlook on future work. We also provide hints for the application of our methods in
practice and comment on how to avoid common pitfalls.

8.1 what method to use in practice ?

In this thesis we have proposed two novel spatial filter computation algorithms, sCSP
and ssCSP, which extract stationary features by minimizing within-session changes
and utilizing data from additional subjects in order to reduce between-session non-
stationarity, respectively. Both algorithms compute spatial filters by solving a general-
ized eigenvalue problem, thus, are computationally efficient and neither require mul-
tiple initializations nor converge to a local optimum. If computation time is critical to
an experiment, then methods such as sCSP or ssCSP should be preferred over algo-
rithms which rely on gradient descent optimization or other nonlinear optimization
techniques. In terms of efficiency sCSP has clear advantages over ssCSP as it solves a
simpler problem. More precisely, sCSP estimates and reduces nonstationarity on the
available training data whereas ssCSP is a transfer learning algorithm which aims
to minimize between-session nonstationarity without “seeing” the required data. We
think that ssCSP would benefit when signals of different users were normalized and
coregistrated. Our experiments showed that sCSP can be widely applied in practice
and positively affects performance in various settings. The assumption made by sCSP
about the joint diagonalizability of the covariance matrices is not critical in practical
application. A pitfall of the method, however, is the selection of the regularization pa-
rameter; normalization of the penalty matrix and the class covariance matrices helps
to determine a meaningful parameter range.

The two other main contributions of this thesis are the derivation of a novel beta
divergence-based covariance matrix estimator which is particularly tailored towards
trial-structured data and the development of a divergence-based spatial filtering frame-
work which allows one to compute robust and stationary features in a principled man-
ner. The key advantage of the divergence-based CSP framework is its flexibility. The
framework integrates many state-of-the-art spatial filter computation methods by in-
corporating data from additional users, robustifying the solution against artifacts or
enforcing additional properties on the spatial filters by regularization. Furthermore,
the framework provides an additional degree of freedom by utilizing the downweight-
ing property of beta divergence. We discuss and extensively evaluate several variants
of the divCSP algorithm in Chapter 7. The main disadvantages of the divergence-based
methods are the demanding optimization and the presence of local optima in the ob-
jective function. Note that these disadvantages are not specific to our methods but are
integral parts of nonconvex optimization problems. Therefore, we either have to rely
on approximations as in the case of sCSP or accept the higher computational costs.

The robust covariance matrix estimator is the method of choice when outliers are
present in the data. If data is scarce and of high dimension, then we recommend that
the spatial filter computation algorithm applies the shrinkage estimator presented in
Section 3.5. The beta divergence estimator based on the Wishart model should be
the method of choice for robust parameter estimation in BCI because data have trial
structure and usually whole trials can be regarded as outliers, e.g., when the subject
fails to perform a given task. A pitfall in the implementation of �-WishartCSP is the
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Table 8.: Main properties of methods presented in this thesis.

Method Property

sCSP Fast, approximates desired penalty function, reduces within-session non-
stationarity, applicable to multiple time scales.

ssCSP Fast, reduces between-session nonstationarity, requires additional data sets,
assumes existence of common nonstationarities.

�-WishartCSP Relatively fast, improves estimation in presence of outliers, solution de-
pends on initialization, requires estimation of effective sample size.

�-divCSP Slow, robust to artifacts, solution depends on initialization, robustifies an
approximation of the CSP objective.

divCSP Slow, flexible, principled measure of nonstationarity, solution depends on
initialization, allows one to focus on specific types of nonstationarity, incor-
porates data from additional users, two optimization algorithms.

computation of the ratio of the two � -functions because each term may be very large
and cause numerical problems. One avoids this numerical instability by an iterative
computation of the ratios or by the application of a data type which is designed for
handling very large numbers. A summary of the major properties of the proposed
algorithms is displayed in Table 8.

In the following we comment on what spatial filter computation algorithm should
be applied in practice. Unfortunately, we can not give a definitive answer to this ques-
tion because there is no best algorithm for spatial filter computation; the performance
of a method will always depend on the data. We have proposed several algorithms for
tackling various challenges, e.g., robustness to artifacts or invariance to different types
of nonstationarity, which occur in real-world BCI applications, thus, we have signif-
icantly enlarged the arsenal of methods which may be used in practice. Our spatial
filtering framework developed in last chapter integrates these specific CSP methods
and allows us to easily implement novel variants of the algorithm.

A question we can answer is “What method did perform best on the Vital BCI data
set and on the BCI Competition data set ?”. According to the average performance
measure the four best methods for the Vital BCI data set are sCSP, klcovCSP, divCSP-
AS and �⌫-WishartCSP and for the BCI Competition data set covCSP, klcovCSP, sCSP
and �⌫-WishartCSP. Note that we did not compute the results of divCSP-AS for the
latter data set. Thus, among the top approaches two methods incorporate data from
additional subjects and two methods only use the training recordings of the subject
of interest. This suggests that stationarity and robustness are of critical importance to
reliable computation of spatial filters. From the above discussion our main practical
recommendations can be summarized as

(1) Estimating nonstationary subspaces on other subjects’ data is only advisable if
these changes are very strong and stable, e.g., induced by a common effect.

(2) If data is contaminated by artifacts, then we recommend the application of a
robust covariance matrix estimator or �-divCSP.

(3) The within-session nonstationarity should be minimized.

(4) If data from additional users is available, then we recommend that across-subject
regularization or covariance matrix regularization is applied.

(5) Adaptation of the classifier or the spatial filters may provide further advantages.
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8.2 future work

The selection of free parameters such as � or � is usually performed by applying cross-
validation. No mathematical criteria exist to derive the optimal parameters from data.
Furthermore, the range of possible parameters is often arbitrary and not optimized for
the given task. Parameter selection may also become a bottleneck in terms of computa-
tional efficiency if multiple parameters need to be determined, e.g., when combining
multiple regularization strategies. Future work should provide tools and standard pro-
cedures to improve and simplify the selection of regularization parameters in practice.
These parameter selection procedures may rely on heuristic criteria or be part of a
Bayesian approach. We are convinced that by applying advanced parameter selection
schemes and determining appropriate ranges of parameters, we may further improve
the classification accuracy of most of the spatial filter computation methods presented
in this thesis.

Several important topics not covered by this dissertation should be investigated in
future research. This includes the optimization of spatio-temporal approaches with
respect to stationarity or robustness, the integration of the robust feature extraction
and robust classification steps into one common (divergence-based) framework and
the theoretical analysis of the relation between robust spatial filtering and adaptation.
A profound information geometric understanding of the properties of the spatial filter
computation problem and a detailed analysis of the induced geometry are also interest-
ing future topics because they allow one to utilize the properties of other divergences
and construct CSP-like algorithms with specific properties. Extending the divergence-
based CSP framework beyond Gaussian distributions, i.e., to other distribution classes
(e.g. heavy-tailed distribution), will enable us to directly optimize for independence
or stationarity of the extracted sources. Note that by using Student’s t-distribution we
may automatically robustify the divCSP algorithm against artifacts (in a similar man-
ner as (Wu et al., 2009)). Furthermore, we would like to use our information geometric
framework for classification purposes directly on the manifold of covariance matrices
as done in (Barachant et al., 2012), in the context of kernel machines (Montavon et al.,
2013) and apply our methods to multimodal data (Bießmann et al., 2011).

Spatial filter computation is not only relevant for motor imagery BCI, but also in
other fields of neuroscience and beyond. For instance, myoelectric control (Hahne et al.,
2012) is a promising field of application for the methods developed in this thesis.
Since the EMG signal is also affected by artifacts and nonstationarity we conjecture
that improvements can be achieved on these data sets. Another possible application of
our methods beyond BCI is in the analysis of epilepsy data. Spatial filtering methods
may be used to identify the origin of a seizure event and the techniques developed in
this thesis may guide the spatial filter computation process towards desired solutions.
Using beta divergence is especially useful for this task as this divergence allows one
to shift the focus from gradual to abrupt changes. Finally, our methods are applicable
to problems beyond neuroscience, e.g., to face recognition (Li and Savvides, 2007).
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D E R I VAT I O N O F C O VA R I A N C E E S T I M AT O R

In the first part of the appendix we derive the iterative reweighting algorithm pre-
sented in Chapter 6 for the Gaussian and Wishart model. In order to obtain the esti-
mate of the ⌃ parameter in the (k+ 1)th step we need to solve the following equation
iteratively (see (Eguchi and Kano, 2001))
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If we put these definitions into the Eq. (76) we obtain
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After multiplication of both sides with
p
2⌃ from the left and from the right we obtain
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Note that if splitting the integral on the right hand side into two integrals then the
first one gives the second moment of the multivariate Gaussian distribution and the
second one is the zeroth moment times ⌃. Thus we obtain

1

n

nX

i=1

 

�

(`(x
i

; ⌃))
⇣

x
i

x>
i

- ⌃
⌘

=

↵

�

(�+ 1)

D

2

+1

|⌃|-
�

2

(⌃̃ - ⌃)

This is

1

n

nX

i=1

↵

�|⌃|-
�

2

e

- 1

2

�x>
i

(⌃)-1x
i

⇣
x
i

x>
i

- ⌃
⌘

=

-↵

�

�

(�+ 1)

D

2

+1

|⌃|-
�

2 ⌃

This is

1

n

nX

i=1

e

- 1

2

�x>
i

(⌃)-1x
i⌃ -

�

(�+ 1)

D

2

+1

⌃ =

1

n

nX

i=1

e

- 1

2

�x>
i

(⌃)-1x
ix

i

x
i

With this we obtain the iterative formula

⌃(k+1)
=

1

n

P
n

i=1

e

- 1

2

�x>
i

(⌃(k))-1x
ix

i

x>
i

1

n

P
n

i=1

e

- 1

2

�x>
i

(⌃(k))-1x
i

- �/(�+ 1)

D

2

+1

. (77)

a.2 robust estimator with wishart model

Suppose that we have a set of scatter matrices {S
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and X
i

2 RD⇥N consists of the original D-dimensional observations of size ⌫ in the ith
trial. If the samples are i.i.d. with Gaussian distribution N (0,⌃), the scatter matrices
are subject to Wishart distribution W(⌃,⌫). More generally, the density function of
Wishart distribution is
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We remark that the mean of Wishart random variable is ⌫⌃. The average covariance
⌃ can be determined by minimizing Eq. (76) iteratively or equivalently by minimizing
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the beta divergence between the empirical distribution of the observed scatter matrices
and a model Wishart distribution. The following terms can be expressed explicitly
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Note that if splitting the integral on the right hand side into two integrals then the
first one gives the first moment of the Wishart distribution and the second one is the
zeroth moment times ⌫⌃. Thus, we obtain
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Note that
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This is the same formula as in Theorem (9) in Section 6.3.
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D I V E R G E N C E F R A M E W O R K F O R C S P

This part of the appendix shows the derivation of the objective function and the gradi-
ent for the proposed divergence-based CSP framework introduced in Chapter 7. Note
that all divCSP algorithms aim to find a projection that maximizes a sum of diver-
gences between zero-mean Gaussian distributions. The first section shows the deriva-
tion when using Kullback-Leibler divergence, the second one when applying beta
divergence. In the last section we give a full proof of Theorem 10 relating divergence
maximization and Common Spatial Patterns. In the following we denote the projected
covariance matrix with a bar symbol ⌃̄ = (I

d

RP)⌃(P>R>I>
d

) and the whitened covari-
ance matrix with a tilde symbol ⌃̃ = P⌃P>.

b.1 derivation using kl divergence

In Eq. (55) we have shown that the objective function and the gradient can be repre-
sented explicitly when using Kullback-Leibler divergence. From information theory
(MacKay, 2002) it is well known that the KL divergence between two zero mean Gaus-
sians g
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Note that the log terms cancel out when using the symmetric divergence, however, an
additional trace term (with swapped ⌃̄

i

and ⌃̄
j

) appears. The gradient of the diver-
gence with respect to R can be computed separately for every term in the sum.
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Thus the derivative of the trace term is
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Table 9 gives an overview over the gradients and objective functions of all divCSP
variants proposed in this thesis.
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b.2 derivation using beta divergence

In Eq. (61) we have shown that the objective function and the gradient can be repre-
sented explicitly when using beta divergence. Beta divergence between two zero-mean
Gaussians g
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Note that also here step ⇤ assumes that �(⌃̄
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-1 is symmetric positive
definite. This assumption is always true for � > 0, however, it is violated for
� < c with c being some negative constant. Therefore we apply very small nega-
tive � values for divCSP-WS, more precisely we select the smallest possible � from
-0.0005,-0.0010,-0.0015, . . .

When using the symmetric beta divergence some terms cancel out and a simplified
explicit representation can be derived. As before we separately compute the gradient
of each term of the beta divergence objective function.
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Table 10 gives an overview over the gradients and objective function of all divCSP
variants proposed in this thesis. The definition of the variables is same as before.
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Table 10.: Objective and gradients for the divCSP methods using beta divergence.
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b.3 proof of main theorem

In this section we show the proof of Theorem 10 relating divergence maximization and
Common Spatial Patterns. Note that (Wang, 2012) has provided a proof for the special
case of one spatial filter.

Let R̃ 2 Rd⇥D denote the orthogonal projection onto a subspace of dimension d and
let ⌃̃

1

and ⌃̃
2

represent the whitened covariance matrices with ⌃̃
1

+ ⌃̃
2

= I. Without
loss of generality1 we assume that R̃⌃̃

1

R̃>
= �

1

and R̃⌃̃
2

R̃>
= I - �

1

with �
1

are
diagonal matrices.
The KL divergence divCSP algorithm (� = 0) optimizes the following objective func-
tion L

kl

(R̃) (ignoring constant terms)
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where ⌫
i

is the ith diagonal element of �
1

.

Let us decompose R̃ =

2

4 U

V

3

5 into two matrices U 2 Rk⇥D and V 2 Rd-k⇥D as

follows

U =

�
r
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Thus we can rewrite the objective function L
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(R̃) as
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We prove that the top d CSP filters W, i.e. the top d eigenvectors v
i

(i = 1 . . . d) of ⌃̃
1

sorted by ↵
i

= max{µ
i

, 1- µ

i

} where µ

i

denotes the ith eigenvalue of ⌃̃
1

, maximize
L
kl

(R̃). Let us divide W into Ũ and Ṽ as done above.

Case 1: Assume R̃ maximizes L
kl

(R̃) and it consists of eigenvectors v
i

of ⌃̃
1

, but there
exist v

j

2 R̃ with j > d (i.e. it is not among the top (according to the above sorting)
d eigenvectors). Thus v

j

62 W and there exist w
l

2 W (which is among the top d

eigenvectors) with w
l

62 R̃.
Without loss of generality assume v

j

2 U. In the following we prove
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,

1 Because the basis in the projected subspace is arbitrary, i.e. the Kullback-Leibler divergence is
invariant to right multiplication of any non-singular matrix G 2 Rd⇥d with L

kl

(V) = L
kl

(VG).
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where ⌫
l

and ⌫
j

denote the diagonal element when applying w
l

and v
j

, respectively.
Note that the function f(⌫) =

1-⌫
⌫

+

⌫

1-⌫ is maximized at the borders (one can show
this by taking the derivative).
Assume w

l

2 Ũ. Then ⌫

l

< ⌫

j

< 0.5 because w
l

is selected before v
j

(remember
v
j

62 W) according to above sorting. Thus f(⌫

j

) < f(⌫

l

) as f(⌫) is maximized for the
smallest argument ⌫ (if ⌫ < 0.5).
Assume w

l

2 Ṽ. Then 1- ⌫
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< ⌫

j

< 0.5 because w
l

is selected before v
j

according to
above sorting. Thus f(⌫
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) < f(1- ⌫
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) = f(⌫

l

).
Let us define B as R̃, but with w

l

instead of v
j

. Thus L
kl

(R̃) < L
kl

(B). This is a
contradiction to the assumption that R̃ is the optimal solution.

Case 2: Assume R̃ maximizes L
kl

(R̃) and there exist (at least one) r
j

2 R̃ with r
j

is
not an eigenvector of ⌃̃

1

. Without loss of generality assume r
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2 U. Let us define a

new solution B =
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5 as follows:
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with smallest eigenvalues.
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Since 9i where this relation is strictly positive (because we assumed r
j

2 U), we obtain
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(U) < L
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Let us denote the diagonal elements (eigenvalues) of V⌃̃
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i

and u

i

, namely ⌫
i

6 u

i
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the same (irrespectively of permutation). Together with the fact that f(⌫) =

1-⌫
⌫

+

⌫

1-⌫ is maximized at the borders (i.e. for largest ⌫ in this case) this implies

1- ⌫

i

⌫

i

+

⌫

i

1- ⌫

i

6 1- u

i

u

i

+

u

i

1- u

i

,

Thus L
kl

(V) 6 L
kl

(Ṽ) and consequently

L
kl

(R̃) = L
kl

(Ũ) + L
kl

(Ṽ) < L
kl

(Ũ) + L
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(Ṽ) = L
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(B̃).

This contradicts the assumption that R̃ maximizes L
kl

(R̃).
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