
Clustered Federated Learning

Felix Sattler
Fraunhofer HHI
felix.sattler

@hhi.fraunhofer.de

Klaus-Robert Müller
TU Berlin

klaus-robert.mueller

@tu-berlin.de

Wojciech Samek
Fraunhofer HHI
wojciech.samek

@hhi.fraunhofer.de

Abstract
Federated Learning (FL) is currently the most widely adopted framework for
collaborative training of (deep) machine learning models under privacy constraints.
Albeit it’s popularity, it has been observed [11][3] that Federated Learning yields
suboptimal results if the local clients’ data distributions diverge. To address this
issue, we present Clustered Federated Learning (CFL), a novel Federated Multi-
Task Learning (FMTL) framework, which exploits geometric properties of the
FL loss surface, to group the client population into clusters with jointly trainable
data distributions. In contrast to existing FMTL approaches, CFL does not require
any modifications to the FL communication protocol to be made and comes with
mathematical guarantees on the clustering quality even for non-convex objectives.
As clustering is only performed after Federated Learning has converged to a
stationary point, CFL can be viewed as a post-processing method that will always
achieve greater or equal performance than FL by allowing clients to arrive at more
specialized models. We verify our theoretical analysis in experiments with deep
neural networks.

1 Introduction
Federated Learning [8][4][2][1][6] is a distributed training framework, which allows multiple clients
(typically mobile or IoT devices) to jointly train a single deep learning model on their combined data
in a communication-efficient way, without requiring any of the participants to reveal their private
training data to a centralized entity or to each other. In doing so, Federated Learning implicitly makes
the assumption that it is possible for one single model to fit all client’s data generating distributions
ϕi at the same time. Given a model fθ : X → Y parametrized by θ ∈ Θ and a loss function
l : Y × Y → R≥0 we can formally state this assumption as follows:
Assumption 1. ("Conventional Federated Learning"): There exists a parameter configuration
θ∗ ∈ Θ, that (locally) minimizes the risk on all clients’ data generating distributions at the same time

Ri(θ
∗) ≤ Ri(θ) ∀θ ∈ Bε(θ∗), i = 1, ..,m (1)

Hereby Ri(θ) =
∫
l(fθ(x), y)dϕi(x, y) is the risk function associated with distribution ϕi.

It is easy to see that this assumption is not always satisfied. Concretely it is violated if either (a) clients
have disagreeing conditional distributions ϕi(y|x) 6= ϕj(y|x) or (b) the model fθ is not expressive
enough to fit all distributions at the same time. Simple counter examples for both cases are presented
in Figure 1. In the following we will call two clients and their distributions ϕi and ϕj congruent
(with respect to f and l) if they satisfy Assumption 1 and incongruent if they don’t.

The goal in Federated Multi-Task Learning is to provide every client with a model that optimally fits
it’s local data distribution. If the clients’ data distributions are incongruent the ordinary Federated
Learning framework, in which all clients are treated equally and only one single global model is
learned, is not capable of achieving this goal. We suggest to generalize the conventional Federated
Learning Assumption, in order to incorporate FL problems where the clients’ distributions adhere to
a clustering structure:
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Assumption 2. ("Clustered Federated Learning"): There exists a partitioning C = {c1, .., ck},⋃k
i=1 ck = {1, ..,m} of the client population, such that every subset of clients c ∈ C satisfies the

conventional Federated Learning Assumption.

2 Clustered Federated Learning
In this paper, we address the question of how to solve distributed learning problems that satisfy
Assumption 2. This will require us to first identify the correct partitioning C, which at first glance
seems like a daunting task, as under the Federated Learning paradigm the server has no access to the
clients data, their data generating distributions or any meta information thereof. However, as we will
see, there exists an explicit criterion based on which the clustering structure can be inferred.
To see this, let us first look at the following simplified Federated Learning setting with m clients, in
which the data on every client was sampled from one of two data generating distributions ϕ1, ϕ2 such
that w.l.o.g. D1, .., Dk ∼ ϕ1(x, y) and Dk+1, .., Dm ∼ ϕ2(x, y). Every Client is associated with an
empirical risk function ri(θ) =

∑
x∈Di

lθ(f(xi), yi) which approximates the true risk arbitrarily well
if the number of data points on every client is sufficiently large ri(θ) ≈ RI(i)(θ). For demonstration
purposes let us first assume equality. Then the Federated Learning objective becomes

F (θ) :=

m∑
i=1

|Di|/|D|ri(θ) = a1R1(θ) + a2R2(θ) (2)

with a1 =
∑k
i=1 |Di|/|D| > 0 and a2 =

∑m
i=k+1 |Di|/|D| > 0. Under standard assumptions it has

been shown [7] that the Federated Learning optimization protocol converges to a stationary point θ∗
of the Federated Learning objective. In this point it holds that∇F (θ∗) = 0 from which it follows that

∇R1(θ∗) = −a2
a1
∇R2(θ∗) (3)

Now we are in one of two situations. Either it holds that ∇R1(θ∗) = ∇R2(θ∗) = 0, in which case
we have simultaneously minimized the risk of all clients. This means ϕ1 and ϕ2 are congruent and
we have solved the distributed learning problem. Otherwise ϕ1 and ϕ2 are incongruent and the cosine
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Figure 1: Two toy cases in which the Federated
Learning Assumption is violated. Blue points
belong to clients from the first cluster while
orange points belong to clients from the second
cluster. Left: Federated XOR-problem. An
insufficiently complex model is not capable of
fitting all clients’ data distributions at the same
time. Right: If different clients’ conditional
distributions diverge, no model can fit all
distributions at the same time. In both cases the
data on clients belonging to the same cluster can
be easily separated.
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Figure 2: Displayed are the optimization paths
of Federated Learning with two clients, applied
to two different toy problems with incongruent
(left) and congruent (right) risk functions. In the
incongruent case Federated Learning converges
to a stationary point of the FL objective where
the gradients of the two clients are of positive
norm and point into opposite directions. In
the congruent case there exists an area (marked
grey in the plot) where both risk functions are
minimized. If Federated Learning converges to
this area the norm of both client’s gradient updates
goes to zero. By inspecting the gradient norms
the two cases can be distinguished.
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similarity between the gradient updates of any two clients is given by

α(∇ri(θ∗),∇rj(θ∗)) :=
〈∇ri(θ∗),∇rj(θ∗)〉
‖∇ri(θ∗)‖‖∇rj(θ∗)‖

=
〈∇RI(i)(θ∗),∇RI(j)(θ∗)〉
‖∇RI(i)(θ∗)‖‖∇RI(j)(θ∗)‖

=

{
1, I(i) = I(j)

−1, I(i) 6= I(j).

(4)

For a visual illustration of the result we refer to Figure 2. This insightful consideration tells us that,
after Federated Learning has converged to a stationary solution, we can distinguish clients based
on their hidden data generating distribution by only inspecting the cosine similarity between their
gradient updates. The result can be readily generalized to more than two data generating distributions
and empirical risk functions which deviate from the true risk, an extended manuscript is currently in
preparation. Now we are in the position to improve Federated Learning for all clients by grouping
the client population into clusters corresponding to their data generating distribution and training a
separate model for each cluster.
Algorithm: Clustered Federated Learning recursively bi-partitions the client population in a top-
down way: Starting from an initial set of clients c = {1, ..,m} and a parameter initialization θ0, CFL
performs Federated Learning according to Algorithm 1, in order to obtain a stationary solution θ∗ of
the FL objective. After Federated Learning has converged, the stopping criterion

0 ≤ max
i∈c
‖∇θri(θ∗)‖ < ε2 (5)

is evaluated. If criterion (5) is satisfied, we know that all clients are sufficiently close to a stationary
solution of their local risk and consequently CFL terminates, returning the FL solution θ∗. If on
the other hand, criterion (5) is violated, this means that the clients are incongruent and the server
computes the pairwise cosine similarities α between the clients’ latest transmitted updates according
to equation (4). Next, the server separates the clients into two clusters in such a way that the maximum
similarity between clients from different clusters is minimized

c1, c2 ← arg min
c1∪c2=c

( max
i∈c1,j∈c2

αi,j). (6)

CFL is then recursively re-applied to each of the two separate groups starting from the stationary
solution θ∗. Splitting recursively continues on until none of the sub-clusters violate the stopping
criterion anymore, at which point all groups of mutually congruent clients have been identified. The
entire recursive procedure is presented in Algorithm 2.

3 Related Work
Federated Learning [8][4] is currently the dominant framework for distributed training of machine
learning models under communication- and privacy constraints. Federated Learning assumes the
clients to be congruent, i.e. that one central model can fit all client’s distributions at the same time.
Different authors have investigated the convergence properties of Federated Learning in congruent iid
and non-iid scenarios: [10],[9] and [12] perform an empirical investigation, [7] prove convergence
guarantees. Conventional Federated Learning [8][4] has been extensively investigated in congruent

Algorithm 1: FederatedLearning
(FL)

1 Input: initial parameters θ, set of
clients c

2 repeat
3 for i ∈ c in parallel do
4 • θi ← θ
5 • ∆θi ← SGDn(θi, Di)−θi
6 end
7 • θ ← θ +

∑
i∈c
|Di|
|Dc|∆θi

8 until ‖
∑
i∈c
|Di|
|Dc|∆θi‖ < ε1

9 return θ

Algorithm 2: ClusteredFederatedLearning (CFL)
1 Input: initial parameters θ, set of clients c
2 • θ∗ ← FederatedLearning(θ, c)

3 • αi,j ← 〈∇ri(θ∗),∇rj(θ∗)〉
‖∇ri(θ∗)‖‖∇rj(θ∗)‖ , i, j ∈ c

4 if maxi∈c ‖∇ri(θ∗)‖ ≥ ε2 then
5 • c1, c2 ← arg minc1∪c2=c(maxi∈c1,j∈c2 αi,j)
6 • θ∗i , i ∈ c1 ←

ClusteredFederatedLearning(θ∗, c1)
7 • θ∗i , i ∈ c2 ←

ClusteredFederatedLearning(θ∗, c2)
8 else
9 • θ∗i ← θ∗, i ∈ c

10 end
11 return θ∗i , i ∈ c
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Figure 3: Clustered Federated Learning applied to the "permuted labels problem" on CIFAR with 20
clients and 4 different permutations. Left: Accuracy of the trained model(s) on their corresponding
test sets. In communication rounds 50, 100 and 150 the client population is separated, by using
the cosine similarity criterion (6), which leads to an immediate improvement in accuracy. Right:
Pairwise cosine similarity between the weight-updates of different clients. If clients have the same
data generating distribution their similarities are marked blue in the plot, otherwise orange. For all
clients that have already been correctly clustered the pairwise cosine similarities are displayed in
grey.

non-iid scenarios [9][12], but is unable to deal with the challenges of incongruent data distributions as
argued in section 1. Existing Federated Multi-Task Learning approaches [11][3] allow clients to adapt
their local models, but are only applicable to convex objective functions, incapable of distinguishing
congruent from incongruent settings, and limited in their ability to scale to massive client populations.
In contrast, CFL can be applied to arbitrary Federated Learning problems, incurs no computational
overhead for the clients (and negligible overhead for the server) and is not restricted to a certain class
of objective functions.

4 Experiments
The Cifar-10 dataset [5] contains 50000 32×32×3 training images in 10 categories. We split the
training data randomly and evenly among 20 clients, which we group into 4 different clusters. All
clients belonging to the same cluster apply the same random permutation Pc(i) to their labels such
that their modified training and test data is given by

D̂i = {(x, Pc(i)(y))|(x, y) ∈ Di}, ˆDtest
i = {(x, Pc(i)(y))|(x, y) ∈ Dtest}. (7)

The clients then jointly train a 5-layer convolutional neural network on the modified data using
CFL with 3 epochs of local training at a batch-size of 100. Figure 3 (left) shows the joint training
progression: In the first 50 communication rounds, all clients train one single model together,
following the conventional Federated Learning protocol. After these initial 50 rounds, training
has converged to a stationary point of the Federated Learning objective and client test accuracies
stagnate at around 20%. Conventional Federated Learning would be finalized at this point. At the
same time, we observe (Figure 3, right) that a distinct gap in the pairwise cosine-similarities of
the different clients has developed ( 1 , red arrow), indicating an underlying clustering structure.
In communication round 50 the client population is split up for the first time, which leads to an
immediate 25% increase in validation accuracy for all clients belonging to the "purple" cluster which
was separated out 2 . Splitting is repeated in communication rounds 100 and 150 until all clusters
have been separated and the pairwise cosine similarity between clients from the same cluster has
dropped to close to zero ( 3 , grey dots), which indicates that clustering is finalized. At this point the
accuracy of all clients has more than doubled the one achieved by the Federated Learning solution
and is now at close to 60% 4 .

5 Conclusion
In this paper we presented Clustered Federated Learning, a Federated Multi-Task Learning approach
that can improve any existing Federated Learning Framework by providing the participating clients
with more specialized models. CFL comes with mathematical guarantees on the clustering quality,
doesn’t require any modifications to the FL communication protocol to be made and is able to
distinguish situations in which a single model can be learned from the clients’ data from those in
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which this is not possible and only separates clients in the latter situation. Our experiments on (non-
convex) deep neural networks show that CFL can achieve drastic improvements over the Federated
Learning baseline in situations where the clients’ data exhibits a clustering structure.
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