
ON THE BYZANTINE ROBUSTNESS OF CLUSTERED FEDERATED LEARNING

Felix Sattler1, Klaus-Robert Müller2,3,4, Thomas Wiegand1, Wojciech Samek1

1 Fraunhofer Heinrich Hertz Institute, Berlin, Germany
2 TU Berlin, Berlin, Germany, 3 Max Planck Institute for Informatics, Saarbrücken, Germany

4 Korea University, Seoul, South Korea

ABSTRACT

Federated Learning (FL) is currently the most widely adopted
framework for collaborative training of (deep) machine learn-
ing models under privacy constraints. Albeit it’s popularity,
it has been observed that Federated Learning yields subopti-
mal results if the local clients’ data distributions diverge. The
recently proposed Clustered Federated Learning Framework
addresses this issue, by separating the client population into
different groups based on the pairwise cosine similarities be-
tween their parameter updates. In this work we investigate
the application of CFL to byzantine settings, where a subset
of clients behaves unpredictably or tries to disturb the joint
training effort in an directed or undirected way. We perform
experiments with deep neural networks on common Feder-
ated Learning datasets which demonstrate that CFL (without
modifications) is able to reliably detect byzantine clients and
remove them from training.

Index Terms— robust learning, distributed learning, Fed-
erated Learning, multi-task learning, clustering

1. INTRODUCTION

Federated Learning is a distributed training framework, which
allows multiple clients (typically mobile or IoT devices) to
jointly train a single deep learning model on their combined
data in a communication-efficient way, without requiring any
of the participants to reveal their private training data to a
centralized entity or to each other [1][2][3][4][5]. Federated
Learning relies on the assumption that one single model fθ :
X → Y is able to fit all client’s data generating distributions
ϕi at the same time. This assumption can be formally stated
as follows:

Assumption 1. ("Federated Learning"): There exists a pa-
rameter configuration θ∗ ∈ Θ, that (locally) minimizes the
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risk on all clients’ data generating distributions at the same
time

Ri(θ
∗) ≤ Ri(θ) ∀θ ∈ Bε(θ∗), i = 1, ..,m (1)

Hereby Ri(θ) =
∫
l(fθ(x), y)dϕi(x, y) is the risk func-

tion associated with distribution ϕi and l is a suitable loss
function.

It is easy to see that this assumption is not always satisfied.
Concretely it is violated if either (a) clients have disagreeing
conditional distributions ϕi(y|x) 6= ϕj(y|x) or (b) the model
fθ is not expressive enough to fit all distributions at the same
time. Simple counter examples for both cases are presented
in Figure 3 in the Appendix. In the following we will call two
clients and their distributions ϕi and ϕj congruent (with re-
spect to f and l) if they satisfy Assumption 1 and incongruent
if they don’t.

The recently proposed Clustered Federated Learning
Framework (CFL) [6] generalizes the Federated Learning As-
sumption 1 and is able to solve Federated Learning problems
where the clients hold data from incongruent distributions
which adhere to a clustering structure:

Assumption 2. ("Clustered Federated Learning"): There
exists a partitioning C = {c1, .., ck},

⋃k
i=1 ck = {1, ..,m} of

the client population, such that every subset of clients c ∈ C
satisfies the conventional Federated Learning Assumption.

Clustered Federated Learning (Fig. 1) exploits geomet-
ric properties of the FL loss surface, to identify the clustering
structure C. In contrast to existing Federated Multi-Task Learn-
ing approaches, CFL does not require any modifications to
the FL communication protocol to be made, is applicable to
general non-convex objectives (in particular deep neural net-
works) and comes with strong mathematical guarantees on
the clustering quality. We will quickly recap the theoretical
foundations of CFL in Section 2.

The Byzantine Setting: In has been shown that regular Fed-
erated Learning fails to converge in the presence of faulty and
malicious clients [9][10]. One single bad client can compro-
mise the performance of the entire jointly trained model, and
negate the training efforts of all other clients. To mitigate this
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Fig. 1: Clustered Federated Learning (center) is an extension to the conventional Federated Learning framework (left), which
increases robustness and flexibility by automatically separating clients into clusters of jointly trainable data distribution. In this
work we investigate the application of CFL to the byzantine setting (right), which can be viewed as a special case of the clustered
setting, where only the largest cluster is considered benign and all other clusters are considered adversarial.

problem, different robust federated learning strategies have
been proposed in the literature. However, these existing strate-
gies require modifications to the Federated communication
protocol to be made and are often computationally expensive.

In this paper we will explore the application of CFL to
these byzantine settings, where a subset of the client population
behaves in an explicitly harmful manner. It is easy to see,
that these settings can be subsumed under Assumption 2 by
declaring one particular cluster of clients cbenign ∈ C as the
"benign" clients and all other clients, which are incongruent to
this cluster as "adversarial": C = {cbenign} ∪ Cadv .

2. CLUSTERED FEDERATED LEARNING

For general Federated Learning problems which follow As-
sumption 2 it has been shown in [6] that Clustered Federated
Learning is able to infer the clustering structure C under rela-
tively mild conditions on the clients and their data by solely
inspecting the cosine similarity

αi,j :=
〈∆θi,∆θj〉
‖∆θi‖‖∆θj‖

(2)

between the different clients’ gradient updates. The result can
be summarized in the following theorem:

Theorem 1 (Separation Theorem + Corollary [6]). Let
D1, .., Dm be the local training data of m different clients,
each dataset sampled from one of k different data generating
distributions ϕ1, .., ϕk, such that Di ∼ ϕI(i)(x, y). Let the
empirical risk ri(θ) on every client approximate the true
risk RI(i)(θ) at every stationary solution of the Federated
Learning objective θ∗ s.t.

γi :=
‖∇RI(i)(θ∗)−∇ri(θ∗)‖

‖∇RI(i)(θ∗)‖
∈ [0, 1) (3)

Then, at every stationary solution θ∗ of the Federated Learning

objective, the bi-partitioning

c1, c2 ← arg min
c1∪c2=c

( max
i∈c1,j∈c2

αi,j). (4)

will always be correct if it holds that

max
i∈c1,j∈c2

[cos(
π

k − 1
)Hi,j + sin(

π

k − 1
)
√

1−H2
i,j ]

< min
i 6=j

I(i)=I(j)

Hi,j
(5)

with

Hi,j = −γiγj +
√

1− γ2
i

√
1− γ2

j . (6)

In this paper we obtain a slightly weaker, yet significantly
simpler statement based on the maximum approximation error
γmax by simplifying condition (5):

Corollary 1. As long as it holds that

γmax := max
i=1,..,m

γi < sin(
π

4(k − 1)
) (7)

the clustering mechanism in equation (4) will always produce
a correct clustering.

The proof of Corollary 1 is presented in the appendix.

Remark 1. The fulfillment of inequality (7) is sufficient, but
not necessary for obtaining a correct clustering. In practice, a
correct clustering can be achieved with probability ≈ 1 for a
much larger range of values of γmax and k as detailed in [6].

Algorithm: The Clustered Federated Learning Algorithm sep-
arates the client population in a top-down way: Starting from
an initial set of clients c = {1, ..,m} and a parameter initial-
ization θ0, the clients compute weight-updates ∆θi using n
iterations of stochastic gradient descent. Like in conventional



Algorithm 1: Clustered Federated Learning (for Byzan-
tine Robustness)
1 input: initial parameters θ0, dissimilarity threshold

αmaxcross ∈ [−1, 1), number of local iterations/ epochs n
2 outout: benign clients cbenign, benign model θcbenign

3 init: set initial clusters C = {{1, ..,m}}, set initial
models θi ← θ0 ∀i = 1, ..,m, set initial update
∆θc ← 0 ∀c ∈ C

4 while not converged do
5 for i = 1, ..,m in parallel do
6 Client i does:
7 • θi ← θi + ∆θc(i)
8 • ∆θi ← SGDn(θi, Di)− θi
9 end

10 Server does:
11 for c ∈ C do
12 • αi,j ← 〈∆θi,∆θj〉

‖∆θi‖‖∆θj‖ ∀i, j ∈ c
13 • c1, c2 ← arg minc1∪c2=c(maxi∈c1,j∈c2 αi,j)
14 • αcross ← maxi∈c1,j∈c2 αi,j
15 if αcross < αmaxcross then
16 regular CFL:
17 • C ← C \ c ∪ c1 ∪ c2
18 byzantine robust CFL:
19 • C ← {arg maxc∈{c1,c2} |c|}

20

(10)
21 end
22 end
23 for c ∈ C do
24 • ∆θc ← 1

|c|
∑
i∈c ∆θi

25 end
26 end
27 return θc, ∀c ∈ C

Federated Learning, these weight-updates are then communi-
cated to a centralized server where they are aggregated into
a global model update. In CFL however, prior to model ag-
gregation the server computes the matrix of pairwise cosine-
similarities α and, based on this, the cluster candidates

c1, c2 ← arg min
c1∪c2=c

( max
i∈c1,j∈c2

αi,j). (8)

If the similarity between the two clusters

αcross ← max
i∈c1,j∈c2

αi,j (9)

is is below a certain threshold αthreshcross , then the main cluster
is bi-partitioned into the two cluster candidates. Model aggre-
gation is then performed separately for every cluster of clients.
In the subsequent communication rounds all existing clusters
can potentially be split up further using the same mechanism.
The entire procedure is presented in Algorithm 1.

The Byzantine Setting: In principle, the above described Al-
gorithm for CFL does not need to be modified for the byzantine

setting. However, as we assume in the byzantine setting that
the majority of clients belongs to one single benign cluster and
all other clients are considered adversarial, we can of course
save computation effort by excluding all clients from training,
which do not belong to the largest cluster, via (10).

3. RELATED WORK

Conventional Federated Learning [1][2] has been extensively
investigated in congruent non-iid scenarios [7][8], but is unable
to deal with the challenges of incongruent data distributions
in general and adversarial clients in particular as argued in
section 1. Adversarial Federated Learning settings can be
roughly organized into two groups: In byzantine settings it is
assumed that a subset of the client population behaves in an
arbitrary (random) manner. This setting has been extensively
studied and a variety of robust aggregation rules have been
proposed which rely on gradient similarity [9][10], geomet-
ric median aggregation [11], redundant communication [12]
or adaptive model quality estimation [13]. While some of
these proposed methods offer convergence guarantees in the
byzantine setting, they are also expensive in terms of computa-
tion or communication and often require modifications to the
Federated communication protocol. A more difficult problem
setting is the one of Federated Learning poisoning. In this
setting, (possibly multiple) clients try to introduce a hidden
back-door functionality into the jointly trained model [14][15]
[16][17]. As the adversaries in this setting are allowed to adapt
their attacks based on the model updates they receive from
the server, they are much harder to detect and to this day no
efficient defense strategies have been proposed.

4. EXPERIMENTS

We adopt the experimental setup from [13] to investigate the
robustness of Clustered Federated Learning against byzantine
and adversarial clients. We perform experiments on the well-
known MNIST, Fashion-MNIST and CIFAR-10 data sets on
which we train convolutional deep neural networks using SGD
with a batch-size of 100. A detailed specification of data sets
and models can be found in the Appendix. Like [13] we con-
sider two different Federated Learning settings, one with 10
and one with 100 participating clients among which we split
the training data randomly and evenly. In each experiment we
declare 30% of the client population to be faulty/ malicious.
We consider three different scenarios: 1.) In the Byzantine
scenario, the malicious clients draw their weight-updates ∆θ
from a centered Gaussian distribution with isotropic covari-
ance matrix and standard deviation 1 (instead of computing
them using stochastic gradient descent). This scenario sim-
ulates either an undirected attack against the collaborative
training procedure. 2.) In the Label-Flip scenario, all the
labels of the training data for the malicious clients are set to
zero. This scenario simulates a directed attack, with the goal



Table 1: Accuracy achieved by conventional Federated Learn-
ing and CFL in the four investigated scenarios.

Byzantine Noisy Label-Flip Clean

MNIST FL 9.8% 96.9% 91.3% 97.5
CFL (ours) 93.19% 97.4% 97.4% 97.4%

Fashion-
MNIST

FL 9.6% 77.12% 60.6% 79.9
CFL (ours) 78.0% 79.7% 79.7% 80.2

CIFAR FL 0.1 70.4% 40.1 76.0
CFL (ours) / 74.6% 74.7% 75.3%

to disproportionally bias the jointly trained model towards one
specific class. 3.) In the Noisy scenario, the faulty clients
train on data x̂ = U(−10, 10) that is made of uniform noise.
This scenario simulates unstructured noisy distortions of the
training data. 4.) In the Clean scenario, no adversaries are
present. A good robust training algorithm should not harm the
convergence in this scenario.

In each scenario, we perform Clustered Federated Learning
according to Algorithm 1 over the entire client population and
set the threshold for the necessary cosine dissimilarity between
different clusters to αthreshcross = 0.02.

Our goal is to investigate whether CFL as defined in Al-
gorithm 1 is able to detect the faulty and malicious clients in
the above scenarios and remove them from the main cluster.
Figure 2 shows the development of αcross over the first 200
communication rounds for 70 benign and 30 malicious clients
on our three data sets and three different scenarios. Every time
the value of αcross falls below αthreshcross = 0.02 the clients are
separated into two different groups according to equation (4).
These events are marked in the plot as follows: Whenever ad-
versarial clients are separated from the main cluster of benign
clients this is marked green in the plot and the number of ad-
versarial clients that were separated in this particular round is
plotted. Whenever benign clients are removed from the main
cluster this is marked red in the the plot.

As we can see, on all data sets and different adversarial
scenarios it takes less than 40 communication rounds for all
malicious clients to be removed from training. In the noisy
and label-flip scenario the adversarial clients all share the
same data generating distribution which causes them to be
separated out all at once by CFL. In the byzantine scenario
where the adversarial clients communicate random normal
updates every adversary forms it’s own cluster and hence it
takes several clustering rounds to filter out all adversaries. In
the clean scenario the cross-cluster similarity αcross never falls
below the threshold and hence the client population is never
separated. Clustered Federated Learning hence does not harm
the convergence in the clean scenarion.

In every performed experiment all of the malicious clients
are separated out first and fully. The final accuracy achieved by
FL and CFL after 200 rounds of communication is shown in
Table 1. As we can see CFL always achieves higher accuracy
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Fig. 2: Development of the cluster candidate dissimilarity
αcross over the first 200 communication rounds of Clustered
Federated Learning. Whenever the value of αcross dips below
αcrossmax = 0.02 the main cluster is separated into two according
to equation 4. A correct clustering is displayed in greed and
incorrect clustering is displayed in red. If the clustering is
correct the number of correctly separated clients is shown in
the plot. On all three data sets and adversarial scenarios all 30
adversaries are separated out within at most 34 communication
rounds.

than regular FL, with the accuracy difference being the largest
in the byzantine and label-flip scenarios.

5. CONCLUSION

Clustered Federated Learning is a recently proposed extension
to the regular Federated Learning framework, which increases
robustness and flexibility by automatically separating clients
into clusters of jointly trainable data distribution. In this work,
we investigated the application of CFL to byzantine scenarios
which can be viewed as a special case of divergent client data
distribution where one particular distribution is declared to be
the benign distribution and all other distributions are consid-
ered adversarial. In experiments on three different data sets
and with three different types of adversarial scenarios we find
that CFL (without any modifications) is capable of filtering
out adversarial clients within relatively few communication
rounds. This demonstrates that CFL can offer significant ad-
vantages over regular Federated Learning even in situations
where clients do not form an obvious clustering structure.
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7. SUPPLEMENT

7.1. Proof of Corollary 1

Proof. By Theorem 1 we know that equation (4) will always
produce a correct clustering if

0 < αminintra − αmaxcross (11)

By monotonicity of Hi,j we have

Hi,j = −γiγj +
√

1− γ2
i

√
1− γ2

j (12)

≥ 1− 2γ2
max (13)

Therefore

αminintra = min
i 6=j

I(i)=I(j)

Hi,j ≥ 1− 2γ2
max (14)

and

αmaxcross = max
i∈c1,j∈c2

[cos(
π

k − 1
)Hi,j + sin(

π

k − 1
)
√

1−H2
i,j ]

(15)

≤ cos(
π

k − 1
)(1− 2γ2

max) + sin(
π

k − 1
)
√

1− (1− 2γ2
max)2

(16)

After abbreviating

c := cos(
π

k − 1
), s := sin(

π

k − 1
) (17)

we therefore know that equation (4) will produce a correct
clustering if

1− 2γ2
max − c(1− 2γ2

max)− s
√

1− (1− 2γ2
max)2 > 0

(18)

which is equivalent to

2sγmax
√

1− γ2
max < (1− c)(1− 2γ2

max) (19)

As both sides of the equation are greater than zero this is
equivalent to

4s2γ2
max(1− γ2

max) < (1− c)2(1− 2γ2
max)2 (20)

After substituting x := γ2
max and re-arranging terms we get

0 < (1− c)2(1− 4x+ 4x2)− 4s2x+ 4s2x2 (21)

= x2(4(1− c)2 + 4s2) + x(−4(1− c)2 − 4s2) + (1− c)2

(22)

= x2(4(1− 2c+ c2 + s2))− x(4(1− 2c+ c2 + s2))
(23)

+ (1− c2) (24)

By the trigonometric equality it holds that s2 + c2 = 1 and the
term can be further simplified to

0 < 8(1− c)x2 − 8(1− c)x+ (1− c)2 (25)

which is equivalent to

0 < x2 − x+
1− c

8
(26)

The latter inequality is satisfied if and only if

x ≷
1

2
±

√
1 + c

8
(27)

which can be further simplified using the trigonometric equal-
ity

1 + cos(z) = 2 cos2(
z

2
) (28)

and we get

x ≷
1

2
±

√
cos2( π

2(k−1) )

4
(29)

This is equivalent to

x ≷
1± cos( π

2(k−1) )

2
(30)

and hence

γmax ≷

√
1± cos( π

2(k−1) )

2
(31)

Since we required

γmax < sin(
π

4(k − 1)
) ≤

√
1

2
(32)

only the solution

γmax <

√
1− cos( π

2(k−1) )

2
(33)

is valid. Using the trigonometric equality

1− cos(z) = 2 sin2(
z

2
) (34)

we finally end up with

γmax < sin(
π

4(k − 1)
). (35)



Table 2: Accuracy achieved by conventional Federated Learn-
ing and CFL on the three benchmarks.

Byzantine Noisy Label-Flip None

MNIST FL 9.8% 98.1% 81.6% 98.6
CFL (ours) 95.5 98.4% 98.6% 98.5

Fashion-
MNIST

FL 9.6% 83.0% 68.4% 85.1
CFL (ours) 86.1% 85.4% 84.9 85.1

CIFAR FL / 73.7% / 77.65
CFL (ours) / 74.3% / 76.0%

7.2. Experiments

Datasets and Models:
The MNIST dataset contains 60000 28×28 grey-scale

training images and 10000 test images of handwritten dig-
its in 10 categories. We train a four-layer convolutional neural
net with relu activations. The architecture is as follows:

conv [1,32,5,5] -> ReLU -> maxpool [2,2]
-> conv [32,32,5,5] -> ReLU -> maxpool [2,2]
-> fc [800,256] -> ReLU -> fc [256,10]

The model is trained using conventional SGD with a learning-
rate of 0.01 and no momentum.

The Fashion-MNIST dataset contains 60000 grey-scale
training images and 10000 test images of fashion items in 10
categories. We train the same four-layer convolutional neural
net with relu activations as for MNIST.

The CIFAR-10 data set contains 50000 rgb training images
and 10000 test images of natural and human made objects in
10 categories. We train a simplified version of the popular
VGG network, with 8 convolutional layers followed by 3 fully
connected layers and relu activations. The architecture is as
follows (with every convolutional and fully connected layer
followed by a ReLU activation):

conv [3,32,3,3] -> maxpool [2,2]
-> conv [32,64,3,3] -> maxpool [2,2]
-> conv [64,128,3,3] -> conv [128,128,3,3]
-> maxpool [2,2] -> conv [128,128,3,3]
-> conv [128,128,3,3] -> maxpool [2,2]
-> conv [128,128,3,3] -> conv [128,128,3,3]
-> maxpool [2,2] -> fc [128,128]
-> fc [128,128] -> fc [128, 10]

The model is trained using momentum SGD with a learning-
rate of 0.01 and a momentum coefficient of 0.9.

7.3. Additional Results
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distributions at the same time. Right: If different clients’ con-
ditional distributions diverge, no model can fit all distributions
at the same time. In both cases the data on clients belonging
to the same cluster can be easily separated.
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