
SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 1

Robust and Communication-Efficient Federated
Learning from Non-IID Data

Felix Sattler, Simon Wiedemann, Klaus-Robert Müller*, Member, IEEE, and Wojciech Samek*, Member, IEEE

Abstract—Federated Learning allows multiple parties to jointly
train a deep learning model on their combined data, without
any of the participants having to reveal their local data to a
centralized server. This form of privacy-preserving collaborative
learning however comes at the cost of a significant communication
overhead during training. To address this problem, several
compression methods have been proposed in the distributed
training literature that can reduce the amount of required
communication by up to three orders of magnitude. These
existing methods however are only of limited utility in the
Federated Learning setting, as they either only compress the
upstream communication from the clients to the server (leaving
the downstream communication uncompressed) or only perform
well under idealized conditions such as iid distribution of the
client data, which typically can not be found in Federated
Learning. In this work, we propose Sparse Ternary Compression
(STC), a new compression framework that is specifically designed
to meet the requirements of the Federated Learning environment.
STC extends the existing compression technique of top-k gradient
sparsification with a novel mechanism to enable downstream
compression as well as ternarization and optimal Golomb
encoding of the weight updates. Our experiments on four different
learning tasks demonstrate that STC distinctively outperforms
Federated Averaging in common Federated Learning scenarios
where clients either a) hold non-iid data, b) use small batch
sizes during training, or where c) the number of clients is large
and the participation rate in every communication round is low.
We furthermore show that even if the clients hold iid data and
use medium sized batches for training, STC still behaves pareto-
superior to Federated Averaging in the sense that it achieves fixed
target accuracies on our benchmarks within both fewer training
iterations and a smaller communication budget. These results
advocate for a paradigm shift in Federated optimization towards
high-frequency low-bitwidth communication, in particular in
bandwidth-constrained learning environments.

Keywords—Deep learning, distributed learning, Federated
Learning, efficient communication, privacy-preserving machine
learning.

This work was supported by the Fraunhofer Society through the MPI-FhG
collaboration project “Theory & Practice for Reduced Learning Machines”.
This research was also supported by the German Ministry for Education and
Research as Berlin Big Data Center (01IS14013A) and the Berlin Center for
Machine Learning (01IS18037I). Partial funding by DFG is acknowledged
(EXC 2046/1, project-ID: 390685689). This work was also supported by the
Information & Communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government (No. 2017-0-00451).

F. Sattler, S. Wiedemann and W. Samek are with Fraunhofer Heinrich Hertz
Institute, 10587 Berlin, Germany (e-mail: wojciech.samek@hhi.fraunhofer.de).

K.-R. Müller is with the Technische Universität Berlin, 10587 Berlin,
Germany, with the Max Planck Institute for Informatics, 66123 Saarbrücken,
Germany, and also with the Department of Brain and Cognitive Engineering,
Korea University, Seoul 136-713, South Korea (e-mail: klaus-robert.mueller@tu-
berlin.de).

I. INTRODUCTION

Three major developments are currently transforming the
ways how data is created and processed: First of all, with the
advent of the Internet of Things (IoT), the number of intelligent
devices in the world has rapidly grown in the last couple of
years. Many of these devices are equipped with various sensors
and increasingly potent hardware that allow them to collect
and process data at unprecedented scales [1][2][3].

In a concurrent development deep learning has revolutionized
the ways that information can be extracted from data resources
with groundbreaking successes in areas such as computer
vision, natural language processing or voice recognition among
many others [4][5][6][7][8][9]. Deep learning scales well with
growing amounts of data and it’s astounding successes in recent
times can be at least partly attributed to the availability of very
large datasets for training. Therefore there lays huge potential
in harnessing the rich data provided by IoT devices for the
training and improving of deep learning models [10].

At the same time data privacy has become a growing concern
for many users. Multiple cases of data leakage and misuse in
recent times have demonstrated that the centralized processing
of data comes at a high risk for the end users privacy. As IoT
devices usually collect data in private environments, often even
without explicit awareness of the users, these concerns hold
particularly strong. It is therefore generally not an option to
share this data with a centralized entity that could conduct
training of a deep learning model. In other situations local
processing of the data might be desirable for other reasons
such as increased autonomy of the local agent.

This leaves us facing the following dilemma: How are we
going to make use of the rich combined data of millions of
IoT devices for training deep learning models if this data can
not be stored at a centralized location?

Federated Learning resolves this issue as it allows multiple
parties to jointly train a deep learning model on their combined
data, without any of the participants having to reveal their data
to a centralized server [10]. This form of privacy-preserving
collaborative learning is achieved by following a simple
three step protocol illustrated in Fig. 1. In the first step, all
participating clients download the latest master model W
from the server. Next, the clients improve the downloaded
model, based on their local training data using stochastic
gradient descent (SGD). Finally, all participating clients upload
their locally improved models Wi back to the server, where
they are gathered and aggregated to form a new master
model (in practice, weight updates ∆W = Wnew − Wold

can be communicated instead of full models W , which is
equivalent as long as all clients remain synchronized). These

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 2

Data Data Data Data Data Data

(a) (b)
Δ

Δ
Δ

... ...Client 2 Client n Client 2 Client n Client 1 Client 1

Client 2 Client n Client 1

ServerServer

SGDSGDSGD
download

Data Data Data Data Data Data

(a) (b)
Δ

Δ
Δ

... ...

ServerServer

SGDSGDSGD
download

(c)

Δ

Δ

Δ

Server global
averaging

Data Data Data

...

upload
(c)

Δ

Δ

Δ

Server global
averaging

Data Data Data

...

upload

Client 2 Client n Client 2 Client n Client 1 Client 1

Client 2 Client n Client 1

Fig. 1: Federated Learning with a parameter server. Illustrated
is one communication round of distributed SGD: a) Clients
synchronize with the server. b) Clients compute a weight update
independently based on their local data. c) Clients upload their
local weight updates to the server, where they are averaged to
produce the new master model.

steps are repeated until a certain convergence criterion is
satisfied. Observe, that when following this protocol, training
data never leaves the local devices as only model updates
are communicated. Although it has been shown that in
adversarial settings information about the training data can still
be inferred from these updates [11], additional mechanisms
such as homomorphic encryption of the updates [12][13] or
differentially private training [14] can be applied to fully
conceal any information about the local data.

A major issue in Federated Learning is the massive
communication overhead that arises from sending around the
model updates. When naively following the protocol described
above, every participating client has to communicate a full
model update during every training iteration. Every such
update is of the same size as the trained model, which can
be in the range of gigabytes for modern architectures with
millions of parameters [15][16]. Over the course of multiple
hundred thousands of training iterations on big datasets the total
communication for every client can easily grow to more than
a petabyte [17]. Consequently, if communication bandwidth is
limited or communication is costly (naive) Federated Learning
can become unproductive or even completely unfeasible.

The total amount of bits that have to be uploaded and
downloaded by every client during training is given by

bup/down ∈ O(Niter × f︸ ︷︷ ︸
updates

× |W| × (H(∆Wup/down) + η)︸ ︷︷ ︸
update size

) (1)

where Niter is the total number of training iterations
(forward-backward passes) performed by every client, f
is the communication frequency, |W| is the size of the
model, H(∆Wup/down) is the entropy of the weight updates
exchanged during upload and download respectively, and η is
the inefficiency of the encoding, i.e. the difference between

the true update size and the minimal update size (which is
given by the entropy). If we assume the size of the model
and number of training iterations to be fixed (e.g. because we
want to achieve a certain accuracy on a given task), this leaves
us with three options to reduce communication: We can a)
reduce the communication frequency f , b) reduce the entropy
of the weight updates H(∆Wup/down) via lossy compression
schemes and/or c) use more efficient encodings to communicate
the weight updates, thus reducing η.

II. CHALLENGES OF THE FEDERATED LEARNING
ENVIRONMENT

Before we can consider ways to reduce the amount of
communication we first have to take into account the unique
characteristics, which distinguish Federated Learning from other
distributed training settings such as Parallel Training (compare
also with [10]). In Federated Learning the distribution of both
training data and computational resources is a fundamental and
fixed property of the learning environment. This entails the
following challenges:

Unbalanced and non-IID data: As the training data present
on the individual clients is collected by the clients themselves
based on their local environment and usage pattern, both the
size and the distribution of the local datasets will typically vary
heavily between different clients.

Large number of clients: Federated Learning environments
may constitute of multiple millions of participants [18].
Furthermore, as the quality of the collaboratively learned model
is determined by the combined available data of all clients,
collaborative learning environments will have a natural tendency
to grow.

Parameter server: Once the number of clients grows
beyond a certain threshold, direct communication of weight
updates becomes unfeasible, because the workload for both
communication and aggregation of updates grows linearly with
the number of clients. In Federated Learning it is therefore
unavoidable to communicate via an intermediate parameter
server. This reduces the amount of communication per client
and communication rounds to one single upload of a local
weight update to and one download of the aggregated update
from the server and moves the workload of aggregation away
from the clients. Communicating via a parameter server however
introduces an additional challenge to communication-efficient
distributed training, as now both the upload to the server and
the download from the server need to be compressed in order
to reduce communication time and energy consumption.

Partial participation: In the general Federated Learning for
IoT setting it can generally not be guaranteed that all clients
participate in every communication round. Devices might loose
their connection, run out of battery or seize to contribute to
the collaborative training for other reasons.

Limited battery and memory: Mobile and embedded
devices often are not connected to a power grid. Instead
their capacity to run computations is limited by a finite
battery. Performing iterations of stochastic gradient descent is
notoriously expensive for deep neural networks. It is therefore
necessary to keep the number of gradient evaluations per

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 3

TABLE I: Different methods for communication-efficient
distributed deep learning proposed in the literature. None of
the existing methods satisfies all requirements (R1) - (R3) of
the Federated Learning environment. We call a method "robust
to non-iid data" if the federated training converges independent
of the local distribution of client data. We call compression
rates greater than ×32 "strong" and those smaller or equal to
×32 "weak".

Method Downstream
Compression

Compression
Rate

Robust to
NON-IID Data

TernGrad [19], QSGD [20],
ATOMO [21] NO WEAK NO

signSGD [22] YES WEAK NO

Gradient Dropping [23], DGC [24],
Variance based [25], Strom [26] NO STRONG YES

Federated Averaging [10] YES STRONG NO

Sparse Ternary
Compression (ours) YES STRONG YES

client as small as possible. Mobile and embedded devices
also typically have only very limited memory. As the memory
footprint of SGD grows linearly with the batch size, this might
force the devices to train on very small batch sizes.

Based on the above characterization of the Federated Learning
environment we conclude that a communication-efficient
distributed training algorithm for Federated Learning needs
to fulfill the following requirements:

(R1) It should compress both upstream and downstream
communication.

(R2) It should be robust to non-iid, small batch sizes and
unbalanced data.

(R3) It should be robust to large numbers of clients and partial
client participation.

In this work we will demonstrate that none of the existing
methods proposed for communication-efficient Federated
Learning satisfies all of these requirements (cf. Table I). More
concretely we will show, that the methods which are able to
compress both upstream and downstream communication are
very sensitive to non-iid data distributions, while the methods
which are more robust to this type of data do not compress the
downstream (Section IV). We will then proceed to construct
a new communication protocol that resolves these issues and
meets all requirements (R1) - (R3). We will provide extensive
empirical results on four different neural network architectures
and datasets that will demonstrate that our protocol is superior
to existing compression schemes in that it requires both fewer
gradient evaluations and communicated bits to converge to a
given target accuracy (Section VIII). These results also extend
to the iid regime.

III. RELATED WORK

In the broader realm of communication-efficient distributed
deep learning, a wide variety of methods has been proposed

to reduce the amount of communication during the training
process. Using equation (1) as a reference, we can organize the
substantial existing research body on communication-efficient
distributed deep learning into three different groups:

Communication delay methods reduce the communication
frequency f . McMahan et al. [10] propose Federated Averaging
where instead of communicating after every iteration, every
client performs multiple iterations of SGD to compute a weight
update. The authors observe that on different convolutional and
recurrent neural network architectures communication can be
delayed for up to 100 iterations without significantly affecting
the convergence speed as long as the data is distributed among
the clients in an iid manner. The amount of communication can
be reduced even further with longer delay periods, however
this comes at the cost of an increased number of gradient
evaluations. In a follow-up work Konecny et al. [27] combine
this communication delay with random sparsification and
probabilistic quantization. They restrict the clients to learn
random sparse weight updates or force random sparsity on them
afterwards ("structured" vs "sketched" updates) and combine
this sparsification with probabilistic quantization. Their method
however significantly slows down convergence speed in terms
of SGD iterations. Communication delay methods automatically
reduce both upstream and downstream communication and are
proven to work with large numbers of clients and partial client
participation.

Sparsification methods reduce the entropy H(∆W) of the
updates by restricting changes to only a small subset of the
parameters. Strom [25] presents an approach (later modified by
[26]) in which only gradients with a magnitude greater than
a certain predefined threshold are sent to the server. All other
gradients are accumulated in a residual. This method is shown
to achieve upstream compression rates of up to 3 orders of
magnitude on an acoustic modeling task. In practice however,
it is hard to choose appropriate values for the threshold, as it
may vary a lot for different architectures and even different
layers. To overcome this issue Aji et al. [23] instead fix the
sparsity rate and only communicate the fraction p entries with
the biggest magnitude of each gradient, while also collecting
all other gradients in a residual. At a sparsity rate of p = 0.001
their method only slightly degrades the convergence speed and
final accuracy of the trained model. Lin et al. [24] present
minor modifications to the work of Aji et al. which even close
this small performance gap. Sparsification methods have been
proposed primarily with the intention to speed up parallel
training in the data center. Their convergence properties in
the much more challenging Federated Learning environments
have not yet been investigated. Sparsification methods (in their
existing form) primarily compress the upstream communication,
as the sparsity patterns on the updates from different clients
will generally differ. If the number of participating clients is
greater than the inverse sparsity rate, which can easily be the
case in Federated Learning, the downstream update will not
even be compressed at all.

Dense quantization methods reduce the entropy of the
weight updates by restricting all updates to a reduced set of
values. Bernstein et al. propose signSGD [22], a compression
method with theoretical convergence guarantees on iid data

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 4

0 20000 40000
Iterations

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
IID Data

FedAvg
n=100
no comp.
signSGD
sparse top-k
p=0.01

0 20000 40000
Iterations

0.2

0.4

0.6

0.8

VGG11* @ CIFAR
NON-IID Data (2)

0 20000 40000
Iterations

0.2

0.4

0.6

0.8

VGG11* @ CIFAR
NON-IID Data (1)

0 5000 10000
Iterations

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Logistic @ MNIST
IID Data

0 5000 10000
Iterations

0.6

0.7

0.8

0.9

Logistic @ MNIST
NON-IID Data (2)

0 5000 10000
Iterations

0.6

0.7

0.8

0.9

Logistic @ MNIST
NON-IID Data (1)

Fig. 2: Convergence speed when using different compression
methods during the training of VGG11*1on CIFAR-10 and
Logistic Regression on MNIST and Fashion-MNIST in a
distributed setting with 10 clients for iid and non-iid data.
In the non-iid cases, every client only holds examples from
exactly two respectively one of the 10 classes in the dataset.
All compression methods suffer from degraded convergence
speed in the non-iid situation, but sparse top-k is affected by
far the least.

that quantizes every gradient update to it’s binary sign, thus
reducing the bit size per update by a factor of ×32. signSGD
also incorporates download compression by aggregating the
binary updates from all clients by means of a majority vote.
Other authors propose to stochastically quantize the gradients
during upload in an unbiased way (TernGrad [19], QSGD
[20], ATOMO [21]). These methods are theoretically appealing,
as they inherit the convergence properties of regular SGD
under relatively mild assumptions. However their empirical
performance and compression rates do not match those of
sparsification methods.

Out of all the above listed methods, only Federated Averaging
and signSGD compress both the upstream and downstream
communication. All other methods are of limited utility in the
Federated Learning setting defined in Section II as they leave
the communication from the server to the clients uncompressed.

Notation: In the following calligraphic W will refer to the
entirety of parameters of a neural network, while regular
uppercase W refers to one specific tensor of parameters within
W and lowercase w refers to one single scalar parameter of
the network. Arithmetic operations between neural network
parameters are to be understood element-wise.

IV. LIMITATIONS OF EXISTING COMPRESSION METHODS

The related work on efficient distributed deep learning almost
exclusively considers iid data distributions among the clients,
i.e. they assume unbiasedness of the local gradients with respect
to the full-batch gradient according to

Ex∼pi [∇W l(x,W)] = ∇WR(W) ∀i = 1, .., n (2)

where pi is the distribution of data on the i-th client and R(W)
is the empirical risk function over the combined training data.

While this assumption is reasonable for parallel training
where the distribution of data among the clients is chosen by the
practitioner, it is typically not valid in the Federated Learning
setting where we can generally only hope for unbiasedness in
the mean

1

n

n∑
i=1

Exi∼pi [∇W l(x
i,W)] = ∇WR(W) (3)

while the individual client’s gradients will be biased towards
the local dataset according to

Ex∼pi [∇W l(x,W)] = ∇WRi(W) 6= ∇WR(W) ∀i = 1, .., n.
(4)

As it violates assumption (2), a non-iid distribution of
the local data renders existing convergence guarantees as
formulated in [19][20][29][21] inapplicable and has dramatic
effects on the practical performance of communication-efficient
distributed training algorithms as we will demonstrate in the
following experiments.

A. Preliminary Experiments

We run preliminary experiments with a simplified version of
the well-studied 11-layer VGG11 network [28], which we train
on the CIFAR-10 [30] dataset in a Federated Learning setup
using 10 clients. For the iid setting we split the training data
randomly into equally sized shards and assign one shard to
every one of the clients. For the "non-iid (m)" setting we assign
every client samples from exactly m classes of the dataset. The
data splits are non-overlapping and balanced such that every
client ends up with the same number of data points. The detailed
procedure that generates the split of data is described in Section
B of the appendix. We also perform experiments with a simple
logistic regression classifier, which we train on the MNIST
dataset [31] under the same setup of the Federated Learning
environment. Both models are trained using momentum SGD.
To make the results comparable, all compression methods use
the same learning rate and batch size.

1We denote by VGG11* a simplified version of the original VGG11
architecture described in [28], where all dropout and batch normalization
layers are removed and the number of convolutional filters and size of all
fully-connected layers is reduced by a factor of 2.

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 5

B. Results
Figure 2 shows the convergence speed in terms of gradient

evaluations for the two models when trained using different
methods for communication-efficient Federated Learning. We
observe that while all compression methods achieve comparably
fast convergence in terms of gradient evaluations on iid data,
closely matching the uncompressed baseline (black line), they
suffer considerably in the non-iid training settings. As this
trend can be observed also for the logistic regression model we
can conclude that the underlying phenomenon is not unique to
deep neural networks and also carries over to convex objectives.
We will now analyze these results in detail for the different
compression methods.

Federated Averaging: Most noticeably, Federated
Averaging [10] (orange line in Fig. 2), although specifically
proposed for the Federated Learning setting, suffers
considerably from non-iid data. This observation is consistent
with Zhao et al. [32] who demonstrated that model accuracy
can drop by up to 55% in non-iid learning environments as
compared to iid ones. They attribute the loss in accuracy
to the increased weight divergence between the clients and
propose to side-step the problem by assigning a shared public
iid dataset to all clients. While this approach can indeed create
more accurate models it also has multiple shortcomings, the
most crucial one being that we generally can not assume the
availability of such a public dataset. If a public dataset were
to exist one could use it to pre-train a model at the server,
which is not consistent with the assumptions typically made
in Federated Learning. Furthermore, if all clients share (part
of) the same public dataset, overfitting to this shared data can
become a serious issue. This effect will be particularly severe
in highly distributed settings where the number of data points
on every client is small. Lastly, even when sharing a relatively
large dataset between the clients, the original accuracy achieved
in the iid situation can not be fully restored. For these reasons,
we believe that the data sharing strategy proposed by [32]
is an insufficient workaround to the fundamental problem of
Federated Averaging having convergence issues on non-iid
data.

SignSGD: The quantization method signSGD [29] (green
line in Fig. 2) suffers from even worse stability issues in
the non-iid learning environment. The method completely
fails to converge on the CIFAR benchmark and even for the
convex logistic regression objective the training plateaus at a
substantially degraded accuracy.

To understand the reasons for these convergence issues we
have to investigate how likely it is for a single batch-gradient
to have the "correct" sign. Let

gkw =
1

k

k∑
i=1

∇wl(xi,W) (5)

be the batch-gradient over a specific mini-batch of data Dk =
{x1, .., xk} ⊂ D of size k at parameter w. Let further gw be
the gradient over the entire training data D. Then we can define
this probability by

αw(k) = P[sign(gkw) = sign(gw)]. (6)

0.25 0.50 0.75
alpha_w(1)

0

200

400

600

#

101 103

batch-size k

0.6

0.8

al
ph

a(
k)

iid
non-iid

Fig. 3: Left: Distribution of values for αw(1) for the weight
layer of a logistic regression over the MNIST dataset. Right:
Development of α(k) for increasing batch sizes. In the iid case
the batches are sampled randomly from the training data, while
in the non-iid case every batch contains samples from only
exactly one class. For iid batches the gradient sign becomes
increasingly accurate with growing batch sizes. For non-iid
batches of data this is not the case. The gradient signs remain
highly incongruent with the full-batch gradient, no matter how
large the size of the batch.

We can also compute the mean statistic

α(k) =
1

|W|
∑
w∈W

αw(k) (7)

to estimate the average congruence over all parameters of the
network.

Figure 3 (left) exemplary shows the distribution of values for
αw(1) within the weights of a logistic regression on MNIST at
the beginning of training. As we can see, at a batch size of 1,
g1
w is a very bad predictor of the true gradient sign with a very

high variance and an average congruence of α(1) = 0.51 just
slightly higher than random. The sensitivity of signSGD to non-
iid data becomes apparent once we inspect the development of
the gradient sign congruence for increasing batch sizes. Figure
3 (right) shows this development for batches of increasing size
sampled from an iid and non-iid distribution. For the latter one
every sampled batch only contains data from exactly one class.
As we can see, for iid data α quickly grows with increasing
batch size, resulting in increasingly accurate updates. For non-
iid data however the congruence stays low, independent of the
size of the batch. This means that if clients hold highly non-iid
subsets of data, signSGD updates will only weakly correlate
with the direction of steepest descent, no matter how large of
a batch size is chosen for training.

Top-k Sparsification: Out of all existing compression
methods, top-k sparsification (blue line in Fig. 2) suffers least
from non-iid data. For VGG11 on CIFAR the training still
converges reliably, even if every client only holds data from
exactly one class and for the logistic regression classifier trained
on MNIST the convergence does not slow down at all. We
hypothesize that this robustness to non-iid data is due to mainly
two reasons: First of all, the frequent communication of weight
updates between the clients prevents them from diverging too
far from one another and hence top-k sparsification does not
suffer from weight divergence [32] as it is the case for Federated
Averaging. Second, sparsification does not destabilize the

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 6

training nearly as much as signSGD does since the noise in the
stochastic gradients is not amplified by quantization. Although
top-k sparsification shows promising performance on non-iid
data, it’s utility is limited in the Federated Learning setting as
it only directly compresses the upstream communication.

Table I summarizes our findings: None of the existing
compression methods supports both download compression
and properly works with non-iid data.

V. SPARSE TERNARY COMPRESSION

Top-k sparsification shows the most promising performance
in distributed learning environments with non-iid client data.
We will use this observation as a starting point to construct
an efficient communication protocol for Federated Learning.
To arrive at this protocol we have to solve two open problems,
which prevent the direct application of top-k sparsification to
Federated Learning:
• We will incorporate downstream compression into the

method to allow for efficient communication from server
to clients.

• We will implement a caching mechanism to keep the
clients synchronized in case of partial client participation.

Finally, we will also further increase the efficiency of our
method by employing quantization and optimal lossless coding
of the weight updates.

A. Extending to Downstream Compression

Let topp% : Rn → Rn,∆W 7→ ∆̃W be the compression
operator that maps a (flattened) weight update ∆W to a
sparsified weight update ∆̃W by setting all but the fraction
p% elements with the highest magnitude to zero. For local
weight updates ∆W(t)

i the update rule for top-k sparsified
communication as proposed in [24] and [23] can then be written
as

∆W(t+1) =
1

n

n∑
i=1

topp%(∆W(t+1)
i +A

(t)
i)︸ ︷︷ ︸

˜∆Wi
(t+1)

, (8)

A
(t+1)
i = A

(t)
i + ∆W(t+1)

i − ˜∆Wi
(t+1)

, (9)

starting with an empty residual A(0)
i = 0 ∈ Rn on all clients.

While the updates
˜

∆W(t+1)
i that are sent from clients to server

are always sparse, the number of non-zero elements in the
update ∆W(t+1) that is sent downstream grows linearly with
the amount of participating clients in the worst case. If the
participation rate exceeds the inverse sparsity 1/p, the update
∆W(t+1) essentially becomes dense.

To resolve this issue, we propose to apply the same
compression mechanism at the server side to compress the
downstream communication. This modifies the update-rule to

˜∆W(t+1) = topp%(
1

n

n∑
i=1

topp%(∆W(t+1)
i +A

(t)
i)︸ ︷︷ ︸

˜∆Wi
(t+1)

+A(t)) (10)

with a client-side and a server-side residual update

A
(t+1)
i = A

(t)
i + ∆W(t+1)

i − ˜∆Wi
(t+1)

(11)

A(t+1) = A(t) + ∆W(t+1) − ∆̃W(t+1)
. (12)

We can express this new update rule for both upload and
download compression (10) as a special case of pure upload
compression (8) with generalized filter masks: Let Mi, i =
1, .., n be the sparsifying filter masks used by the respective
clients during the upload and M be the one used during the
download by the server. Then we could arrive at the same sparse
update ∆̃W(t+1)

if all clients use filter masks M̃i = Mi �M ,
where � is the Hadamard product. We can thus predict that
training models using this new update rule should behave
similar to regular top-k sparsification with an increased sparsity
rate. We can easily verify this prediction:

Figure 4 shows the accuracies achieved by VGG11 on
CIFAR10, when trained in a Federated Learning environment
with 5 clients for 10000 iterations at different rates of upload
and download compression. As we can see, for as long as
download and upload sparsity are of the same order, sparsifying
the download is not very harmful to the convergence and
decreases the accuracy by at most two percent in both the iid
and the non-iid case.

B. Weight Update Caching for Partial Client Participation
This far we have only been looking at scenarios in which all

of the clients participate throughout the entire training process.
However, as elaborated in Section II, in Federated Learning
typically only a fraction of the entire client population will
participate in any particular communication round. As clients
do not download the full model W(t), but only compressed
model updates ∆W̃(t), this introduces new challenges when it
comes to keeping all clients synchronized.

To solve the synchronization problem and reduce the
workload for the clients we propose to use a caching mechanism
on the server. Assume the last τ communication rounds have
produced the updates {∆̃W(t)|t = T −1, .., T −τ}. The server
can cache all partial sums of these updates up until a certain
point {P (s) =

∑s
t=1 ∆̃W(T−t)|s = 1, .., τ} together with the

global model W(T) = W(T−τ−1) +
∑τ
t=1 ∆̃W(T−t)

. Every
client that wants to participate in the next communication
round then has to first synchronize itself with the server by
either downloading P (s) or W(T), depending on how many
previous communication rounds it has skipped. For general
sparse updates the bound on the entropy

H(P (τ)) ≤ τH(P (1)) = τH(∆̃W(T−1)
) (13)

can be attained. This means that the size of the download will
grow linearly with the amount of rounds a client has skipped
training. The average number of skipped rounds is equal to the
inverse participation fraction 1/η. This is usually tolerable as
the down-link typically is cheaper and has far higher bandwidth
than the up-link as already noted in [10] and [19]. Essentially
all compression methods, that communicate only parameter

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 7

1.0 0.0
4

0.0
1

0.0
05

0.0
02

0.0
01

Sparsity Down

1.0

0.04

0.01

0.005

0.002

0.001

Sp
ar

sit
y

Up

85.4 83.7 83.8 83.7 83.4 83.6

84.6 82.6 81.6 81.0 81.5 81.6

84.2 83.9 82.0 82.5 81.4 80.3

84.3 84.3 83.5 82.9 81.5 81.8

84.5 84.3 84.7 83.6 82.7 81.9

84.1 83.6 84.0 84.3 82.9 83.3

IID Data

1.0 0.0
4

0.0
1

0.0
05

0.0
02

0.0
01

Sparsity Down

1.0

0.04

0.01

0.005

0.002

0.001

Sp
ar

sit
y

Up

85.3 84.0 83.8 83.3 83.8 83.5

84.8 83.5 81.1 80.3 79.4 80.1

84.1 84.0 81.8 81.1 77.8 77.1

82.8 83.2 82.8 81.7 79.7 76.9

79.4 79.4 79.1 78.6 77.6 76.9

73.2 73.7 73.8 72.9 72.5 70.5

Non-IID Data (2)

Fig. 4: Accuracy achieved by VGG11* when trained on CIFAR
in a distributed setting with 5 clients for 16000 iterations at
different levels of upload and download sparsity. Sparsifying
the updates for downstream communication reduces the final
accuracy by at most 3% when compared to using only upload
sparsity.

updates instead of full models suffer from this same problem.
This is also the case for signSGD, although here the size of
the downstream update only grows logarithmically with the
delay period according to

H(P
(τ)
signSGD) ≤ log2(2τ + 1). (14)

Partial client participation also has effects on the convergence
speed of Federated training, both with delayed and sparsified
updates. We will investigate these effects in detail in Section
VI-C.

C. Eliminating Redundancy
In the two previous Sections V-A and V-B we have

established that sparsified communication can be seamlessly
integrated into Federated Learning. We will now look at ways
to further improve the efficiency of our method, by eliminating
the remaining sources of redundancy in the communication.

Combining Sparsity with Binarization: Regular top-k
sparsification as proposed in [23] and [24] communicates the
fraction of largest elements at full precision, while all other
elements are not communicated at all. In our previous work
(Sattler et al. [17]) we already demonstrated that this imbalance
in update precision is wasteful and that higher compression
gains can be achieved when sparsification is combined with
quantization of the non-zero elements.

We adopt the method described in [17] and quantize the
remaining top-k elements of the sparsified updates to the
mean population magnitude, leaving us with a ternary tensor
containing values {−µ, 0, µ}. The quantization method is
formalized in Algorithm 1.

This ternarization step reduces the entropy of the update
from

Hsparse = −p log2(p)− (1− p) log2(p) + 32p (15)

to

HSTC = −p log2(p)− (1− p) log2(p) + p (16)

1.0 0.0
4

0.0
1

0.0
05

0.0
02

0.0
01

Sparsity Down

1.0

0.04

0.01

0.005

0.002

0.001

Sp
ar

sit
y

Up

0.10 0.17 0.16 0.26 -0.10 0.06

0.51 0.29 0.40 0.20 2.07 2.33

-0.28-0.18 0.42 1.15 0.67 1.04

-0.07 1.08 0.18 0.21 0.00 0.61

0.39 3.03 0.94 -0.18-0.71-0.39

-0.11 3.38 0.41 0.35 -0.69 0.57

IID Data

1.0 0.0
4

0.0
1

0.0
05

0.0
02

0.0
01

Sparsity Down

1.0

0.04

0.01

0.005

0.002

0.001

Sp
ar

sit
y

Up

0.23 0.06 0.77 -0.27 0.47 -0.07

-0.24 0.28 1.58 0.77 -0.10 2.20

0.52 0.32 -0.20 0.18 -0.15 0.20

-0.12 1.07 -0.04-0.31 0.72 -1.21

0.4334.430.38 -1.13-0.48 0.04

-0.0260.651.74 0.80 0.50 0.22

Non-IID Data (2)

Fig. 5: The effects of binarization at different levels of upload-
and download sparsity. Displayed is the difference in final
accuracy in % between a model trained with sparse updates
and a model trained with sparse binarized updates. Positive
numbers indicate better performance of the model trained with
pure sparsity. VGG11 trained on CIFAR10 for 16000 iterations
with 5 clients holding iid and non-iid data.

when compared to regular sparsification. At a sparsity rate of
p = 0.01, the additional compression achieved by ternarization
is Hsparse/HSTC = 4.414. In order to achieve the same
compression gains by pure sparsification one would have to
increase the sparsity rate by approximately the same factor.
Figure 5 shows the final accuracy of the VGG11* model when
trained at different sparsity levels with and without ternarization.
As we can see, additional ternarization does only have a very
minor effect on the convergence speed and sometimes does
even increase the final accuracy of the trained model. It seems
evident that a combination of sparsity and quantization makes
more efficient use of the communication budged than pure
sparsification. We therefore make use of ternarization in the
weight update compression of both the clients and the server.

Algorithm 1: Sparse Ternary Compression (STC)
1 input: flattened tensor T ∈ Rn, sparsity p
2 output: sparse ternary tensor T ∗ ∈ {−µ, 0, µ}n
3 • k ← max(np, 1)
4 • v ← topk(|T |)
5 • mask← (|T | ≥ v) ∈ {0, 1}n
6 • Tmasked ← mask� T
7 • µ← 1

k

∑n
i=1 |Tmaskedi |

8 return T ∗ ← µ× sign(Tmasked)

Lossless Encoding: To communicate a set of sparse ternary
tensors produced by the above described compression scheme,
we only need to transfer the positions of the non-zero elements
in the flattened tensors, along with one bit per non-zero update
to indicate the mean sign µ or −µ. Instead of communicating
the absolute positions of the non-zero elements it is favorable to
communicate the distances between them. Assuming a random
sparsity pattern we know that for big values of |W | and k =
p|W |, the distances are approximately geometrically distributed

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 8

with success probability equal to the sparsity rate p. Therefore,
we can optimally encode the distances using the Golomb code
[33]. Golomb encoding reduces the average number of position
bits to

b̄pos = b∗ +
1

1− (1− p)2b∗ , (17)

with b∗ = 1+blog2(log(φ−1)
log(1−p))c and φ =

√
5+1
2 being the golden

ratio. For a sparsity rate of e.g. p = 0.01, we get b̄pos = 8.38,
which translates to ×1.9 compression, compared to a naive
distance encoding with 16 fixed bits. Both the encoding and the
decoding scheme can be found in Section A of the appendix
(Algorithms 3 and 4). The updates are encoded both before
upload and before download.

The complete compression framework that features upstream
and downstream compression via sparsification, ternarization
and optimal encoding of the updates is described in Algorithm
2.

VI. EXPERIMENTS

We evaluate our proposed communication protocol on four
different learning tasks and compare it’s performance to
Federated Averaging and signSGD in a wide a variety of
different Federated Learning environments.

Models and Datasets: To cover a broad spectrum of learning
problems we evaluate on differently sized convolutional and
recurrent neural networks for the relevant Federated Learning
tasks of image classification and speech recognition:

VGG11* on CIFAR: We train a modified version of the
popular 11-layer VGG11 network [28] on the CIFAR [30]
dataset. We simplify the VGG11 architecture by reducing the
number of convolutional filters to [32, 64, 128, 128, 128, 128,
128, 128] in the respective convolutional layers and reducing
the size of the hidden fully-connected layers to 128. We also
remove all dropout layers and batch-normalization layers as
regularization is no longer required. Batch-normalization has
been observed to perform very poorly with both small batch
sizes and non-iid data [34] and we don’t want this effect
to obscure the investigated behavior. The resulting VGG11*
network still achieves 85.46% accuracy on the validation set
after 20000 iterations of training with a constant learning rate
of 0.16 and contains 865482 parameters.

CNN on KWS: We train the four-layer convolutional neural
network from [27] on the speech commands dataset [35]. The
speech commands dataset consists of 51,088 different speech
samples of specific keywords. There are 30 different keywords
in total and every speech sample is of 1 second duration. Like
[32] we restrict us to the subset of 10 most common keywords.
For every speech command we extract the mel spectrogram
from the short time fourier transform, which results in a 32x32
feature map. The CNN architecture achieves 89.12% accuracy
after 10000 training iterations and has 876938 parameters in
total.

LSTM on Fashion-MNIST: We also train a LSTM network
with 2 hidden layers of size 128 on the Fashion-MNIST dataset
[36]. The Fashion-MNIST dataset contains 60000 train and

Algorithm 2: Efficient Federated Learning with
Parameter Server via Sparse Ternary Compression

1 input: initial parameters W
2 output: improved parameters W
3 init: all clients Ci, i = 1, .., [Number of Clients] are

initialized with the same parameters Wi ←W . Every
Client holds a different dataset Di, with
|{y : (x, y) ∈ Di}| = [Classes per Client] of size
|Di| = ϕi| ∪j Dj |. The residuals are initialized to zero
∆W,Ri,R ← 0.

4 for t = 1, .., T do
5 for i ∈ It ⊆ {1, .., [Number of Clients]} in parallel

do
6 Client Ci does:
7 • msg← downloadS→Ci(msg)
8 • ∆W ← decode(msg)

9 • Wi ←Wi + ∆W
10 • ∆Wi ← Ri + SGD(Wi, Di, b)−Wi

11 • ˜∆Wi ← STCpup(∆Wi)

12 • Ri ← ∆Wi − ˜∆Wi

13 • msgi ← encode(˜∆Wi)
14 • uploadCi→S(msgi)
15 end
16 Server S does:
17 • gatherCi→S(˜∆Wi), i ∈ It

18 • ∆W ← R+ 1
|It|

∑
i∈It

˜∆Wi

19 • ∆̃W ← STCpdown
(∆W)

20 • R ← ∆W − ∆̃W
21 • W ←W + ∆̃W

22 • msg← encode(∆̃W)
23 • broadcastS→Ci

(msg), i = 1, ..,M
24 end
25 return W

10000 validation greyscale images of 10 different fashion items.
Every 28x28 image is treated as a sequence of 28 features
of dimensionality 28 and fed as such in the the many-to-one
LSTM network. After 20000 training iterations with a learning
rate of 0.04 the LSTM model achieves 90.21% accuracy on
the validation set. The model contains 216330 parameters.

Logistic Regression on MNIST: Finally we also train a simple
logistic regression classifier on the MNIST [31] dataset. The
MNIST dataset contains 60000 training and 10000 test greyscale
images of handwritten digits of size 28x28. The trained logistic
regression classifier achieves 92.31% accuracy on the test set
and contains 7850 parameters.

The different learning tasks are summarized in Table II. In
the following we will primarily discuss the results for VGG11*
trained on CIFAR, however the described phenomena carry
over to all other benchmarks and the supporting experimental
results can be found in the appendix.

Compression Methods: We compare our proposed Sparse

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 9

TABLE II: Models and hyperparameters. The learning rate is
kept constant throughout training.

Task VGG11* @
CIFAR-10

CNN @
KWS

LSTM@
Fashion-MNIST

Logistic Reg.
@ MNIST

Iterations 20000 10000 20000 5000
Learning Rate 0.016 0.1 0.1 0.04

Momentum 0.9 0.0 0.9 0.0
Base Accuracy 85.46% 91.23% 90.21% 92.31%

Parameters 865482 876938 216330 7850

TABLE III: The base configuration of the Federated Learning
environment in our experiments.

Parameter Number of
Clients

Participation
per Round

Classes
per Client

Batch-
Size Balancedness

Value N = 100 η = 0.1 c = 10 b = 20 γ = 1.0

Ternary Compression method (STC) at a sparsity rate of p =
1/400 with Federated Averaging at an "equivalent" delay period
of n = 400 iterations and signSGD with a coordinate-wise
step-size of δ = 0.0002. At a sparsity rate of p = 1/400
STC compresses updates both during upload and download
by roughly a factor of ×1050. A delay period of n = 400
iterations for Federated Averaging results in a slightly smaller
compression rate of ×400. Further analysis on the effects of
the sparsity rate p and delay period n on the convergence speed
of STC and Federated Averaging can be found in Section C
of the appendix. During our experiments, we keep all training
related hyperparameters constant for the different compression
methods. To be able to compare the different methods in a
fair way, all methods are given the same budged of training
iterations in the following experiments (one communication
round of Federated Averaging uses up n iterations, where n is
the number of local iterations).

Learning Environment: The Federated Learning
environment described in Algorithm 2 can be fully
characterized by five parameters: For the base configuration
we set the number of clients to 100, the participation ratio to
10% and the local batch size to 20 and assign every client an
equally sized subset of the training data containing samples
from 10 different classes. In the following experiments, if
not explicitly signified otherwise, all hyperparameters will
default to this base configuration summarized in Table III. We
will use the short notations "Clients: ηN /N" and "Classes:
c" to refer to a setup of the Federated Learning environment
in which a random subset of ηN out of a total of N clients
participates in every communication round and every client is
holding data from exactly c different classes.

A. Momentum in Federated Optimization
We start out by investigating the effects of momentum

optimization on the convergence behavior of the different
compression methods. Figures 6, 7, 8 and 9 show the final
accuracy achieved by Federated Averaging (n = 400), STC
(p = 1/400) and signSGD after 20000 training iterations in
a variety of different Federated Learning environments. In all
figures dashed lines refer to experiments where a momentum

1 2 3 5 10
Classes per Client

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
Clients : 10/10

1 2 3 5 10
Classes per Client

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
Clients : 10/100

STC
FedAvg
signSGD
STC + m.
FedAvg + m.
signSGD + m.

Fig. 6: Robustness of different compression methods to the
non-iid-ness of client data on four different benchmarks.
VGG11* trained on CIFAR. STC distinctively outperforms
Federated Averaging on non-iid data. The learning environment
is configured as described in Table III. Dashed lines signify
that a momentum of m = 0.9 was used.

of m = 0.9 was used during training, while solid lines signify
that classical SGD was used. As we can see, momentum
has significant influence on the convergence behavior of the
different methods. While signSGD always performs distinctively
better if momentum is turned on during the optimization,
the picture is less clear for STC and Federated Averaging.
We can make out three different parameters of the learning
environment that determine whether momentum is beneficial
or harmful to the performance of STC. If the participation rate
is high and the batch size used during training is sufficiently
large (Fig. 7 left), momentum improves the performance of
STC. Conversely, momentum will deteriorate the training
performance in situations where training is carried out on small
batches and with low client participation. The latter effect is
increasingly strong if clients hold non-iid subsets of data (Fig.
6 right). These results are not surprising, as the issues with stale
momentum described in [24] are enhanced in these situations.
Similar relationships can be observed for Federated Averaging
where again the size (Fig. 7) and the heterogeneity (Fig. 6)
of the local mini-batches determines whether momentum will
have a positive effect on the training performance or not.

When we compare Federated Averaging, signSGD and STC
in the following, we will ignore whichever version of these
methods (momentum "on" or "off") performs worse.

B. Non-iid-ness of the Data

Our preliminary experiments in Section IV have already
demonstrated that the convergence behavior of both Federated
Averaging and signSGD is very sensitive to the degree of iid-
ness of the local client data, whereas sparse communication
seems to be more robust. We will now investigate this behavior
in some more detail. Figure 6 shows the maximum achieved
generalization accuracy after a fixed number of iterations for
VGG11* trained on CIFAR at different levels of non-iid-ness.
Additional results on all other benchmarks can be found in

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 10

1 2 5 20 100
Batch-Size

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR,
Clients: 10/10, Classes : 2

1 2 5 20 100
Batch-Size

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR,
Clients: 10/10, Classes : 10

STC
FedAvg
signSGD
STC + m.
FedAvg + m.
signSGD + m.

Fig. 7: Maximum accuracy achieved by the different
compression methods when training VGG11* on CIFAR for
20000 iterations at varying batch sizes in a Federated Learning
environment with 10 clients and full participation. In the left
plot every client hold data from exactly two different classes,
while in the right plot every client holds an iid subset of data.

Figure 13 in the appendix. Both at full (left plot) and partial
(right plot) client participation, STC outperforms Federated
Averaging across all levels of iid-ness. The most distinct
difference can be observed in the non-iid regime, where the
individual clients hold less than 5 different classes. Here STC
(without momentum) outperforms both Federated Averaging
and signSGD by a wide margin. In the extreme case where
every client only holds data from exactly one class STC still
achieves 79.5% and 53.2% accuracy at full and partial client
participation respectively, while both Federated Averaging and
signSGD fail to converge at all.

C. Robustness to other Parameters of the Learning Environment

We will now proceed to investigate the effects of other
parameters of the learning environment on the convergence
behavior of the different compression methods. Figures 7, 8, 9
show the maximum achieved accuracy after training VGG11*
on CIFAR for 20000 iterations in different Federated Learning
environments. Additional results on the three other benchmarks
can be found in Section D in the appendix.

We observe that STC (without momentum) consistently
dominates Federated Averaging on all benchmarks and learning
environments.

Local Batch Size: The memory capacity of mobile and IoT
devices is typically very limited. As the memory footprint of
SGD is proportional to the batch size used during training,
clients might be restricted to train on small mini-batches only.
Figure 7 shows the influence of the local batch size on the
performance of different communication-efficient Federated
Learning techniques exemplary for VGG11* trained on CIFAR.
First of all, we notice that using momentum significantly
slows down the convergence speed of both STC and Federated
Averaging at batch sizes smaller than 20 independent of the
distribution of data among the clients. As we can see, even
if the training data is distributed among the clients in an iid

5/5 5/1
0

5/2
0

5/5
0

5/1
00

5/2
00

5/4
00

Clients

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
Classes : 2, Batch-Size: 40

5/5 5/1
0

5/2
0

5/5
0

5/1
00

5/2
00

5/4
00

Clients

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
Classes : 10, Batch-Size: 40

STC
FedAvg
signSGD
STC + m.
FedAvg + m.
signSGD + m.

Fig. 8: Validation accuracy achieved by VGG11* on CIFAR
after 20000 iterations of communication-efficient federated
training with different compression methods. The relative client
participation fraction is varied between 100% (5/5) and 5%
(5/100). In the left plot every client hold data from exactly two
different classes, while in the right plot every client holds an
iid subset of data.

manner (Fig. 7 right) and all clients participate in every training
iteration, Federated Averaging suffers considerably from small
batch sizes. STC on the other hand demonstrates to be far more
robust to this type of constraint. At an extreme batch size of 1
the model trained with STC still achieves an accuracy of 63.8%
while the Federated Averaging model only reaches 39.2% after
20000 training iterations.

Client Participation Fraction: Figure 8 shows the
convergence speed of VGG11* trained on CIFAR10 in a
Federated Learning environment with different degrees of client
participation. To isolate the effects of reduced participation,
we keep the absolute number of participating clients and the
local batch sizes at constant values of 5 and 40 respectively
throughout all experiments and vary only the total number
of clients (and thus the relative participation η). As we can
see, reducing the participation rate has negative effects on
both Federated Averaging and STC. The causes for these
negative effects however are different: In Federated Averaging
the participation rate is proportional to the effective amount
of data that the training is conducted on in any individual
communication round. If a non-representative subset of clients
is selected to participate in a particular communication round
of Federated Averaging, this can steer the optimization process
away from the minimum and might even cause catastrophic
forgetting [37] of previously learned concepts. On the other
hand, partial participation reduces the convergence speed of
STC by causing the clients residuals to go out sync and
increasing the gradient staleness [24]. The more rounds a client
has to wait before it is selected to participate during training
again, the more outdated it’s accumulated gradients become.
We can observe this behavior for STC most strongly in the
non-iid situation (Fig. 8 left), where the accuracy steadily
decreases with the participation rate. However even in the
extreme case where only 5 out of 400 clients participate in

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 11

0.900 0.925 0.950 0.975 1.000
Unbalancedness

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
Classes : 10, Clients: 5/200

STC
FedAvg
signSGD
STC + m.
FedAvg + m.
signSGD + m.

Fig. 9: Validation accuracy achieved by VGG11* on CIFAR
after 20000 iterations of communication-efficient federated
training with different compression methods. The training data
is split among the client at different degrees of unbalancedness
with γ varying between 0.9 and 1.0.

every round of training STC still achieves a higher accuracy
than Federated Averaging and signSGD. If the clients hold
iid data (Fig. 8 right), STC suffers much less from a reduced
participation rate than Federated Averaging. If only 5 out of 400
clients participate in every round, STC (without momentum)
still manages to achieve an accuracy of 68.2% while Federated
Averaging stagnates at 42.3% accuracy. signSGD is affected
the least by reduced participation which is unsurprising as
only the absolute number of participating clients would have a
direct influence on it’s performance. Similar behavior can be
observed on all other benchmarks, the results can be found in
Figure 14 in the appendix. It is noteworthy that in Federated
Learning it is usually possible for the server to exercise some
control over the rate of client participation. For instance, it is
typically possible to increase the participation ratio at the cost
of a longer waiting time for all clients to finish.

Unbalancedness Up until now, all experiments were
performed with a balanced split of data in which every client
was assigned the same amount of data points. In practice
however, the datasets on different clients will typically vary
heavily in size. To simulate different degrees of unbalancedness
we split the data among the clients in a way such that the i-th
out of n clients is assigned a fraction

ϕi(α, γ) =
α

n
+ (1− α)

γi∑n
j=1 γ

j
(18)

of the total data. The parameter α controls the minimum amount
of data on every client, while the parameter γ controls the
concentration of data. We fix α = 0.1 and vary γ between
0.9 and 1.0 in our experiments. To amplify the effects of
unbalanced client data, we also set the client participation to
a low value of only 5 out of 200 clients. Figure 9 shows
the final accuracy achieved after 20000 iterations for different
values of γ. Interestingly, the unbalancedness of the data does
not seem to have a significant effect on the performance of
either of the compression methods. Even if the data is highly
concentrated on a few clients (as is the case for γ = 0.9) all

103 104 105

Iterations

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

VGG11* @ CIFAR

102 103 104 105

Bits Upload

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

VGG11* @ CIFAR

102 103 104

Iterations

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CNN @ KWS

100 101 102 103 104

Bits Upload

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CNN @ KWS

102 103 104

Iterations

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LSTM @ F-MNIST

FedAvg
n= 25
FedAvg
n=100
FedAvg
n=400
STC
p=1/100

STC
p=1/25
STC
p=1/400
no comp.

signSGD

100 101 102 103

Bits Upload

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LSTM @ F-MNIST

Fig. 10: Convergence speed of Federated Learning with
compressed communication in terms of training iterations (left)
and uploaded bits (right) on three different benchmarks (top
to bottom) in an iid Federated Learning environment with 100
clients and 10% participation fraction. For better readability the
validation error curves are average-smoothed with a step-size
of 5. On all benchmarks STC requires the least amount of bits
to converge to the target accuracy.

methods converge reliably and for Federated Averaging the
accuracy even slightly goes down with increased balancedness.
Apparently the rare participation of large clients can balance
out several communication rounds with much smaller clients.
These results also carry over to all other benchmarks (cf. Figure
16 in the appendix).

D. Communication-Efficiency
Finally, we compare the different compression methods

with respect to the number of iterations and communicated
bits they require to achieve a certain target accuracy on a
Federated Learning task. As we saw in the previous Section,
both Federated Averaging and signSGD perform considerably

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 12

TABLE IV: Bits required for upload and/ download to achieve
a certain target accuracy on different learning tasks in an iid
learning environment. A value of "n.a." in the table signifies
that the method has not achieved the target accuracy within
the iteration budget. The learning environment is configured as
described in Table III.

VGG11*@CIFAR
Acc. = 0.84

CNN@KWS
Acc. = 0.9

LSTM@F-MNIST
Acc. = 0.89

Baseline 36696 MB /
36696 MB

5191 MB /
5191 MB

2422 MB /
2422 MB

signSGD 1579.5 MB /
6937.6 MB

925.17 MB /
4063.6 MB

123.31 MB /
541.6 MB

FedAvg n = 25
3572.7 MB /
3572.7 MB

301.67 MB /
301.67 MB

174.79 MB /
174.79 MB

FedAvg n = 100
1606.3 MB /
1606.3 MB

617.3 MB /
617.3 MB

83.94 MB /
83.94 MB

FedAvg n = 400 n.a. 350.78 MB /
350.78 MB

86.53 MB /
86.53 MB

STC p = 1/25
118.43 MB /
1184.3 MB

43.57 MB /
435.7 MB

8.84 MB /
88.4 MB

STC p = 1/100
202.2 MB /
2022 MB

31.0 MB /
310 MB

12.1 MB /
121 MB

STC p = 1/400
183.9 MB /
1839 MB

14.8 MB /
148 MB

7.9 MB /
79 MB

worse if clients hold non-iid data or use small batch sizes. To
still have a meaningful comparison we therefore choose to
evaluate this time on an iid environment where every client
holds 10 different classes and uses a moderate batch size of
20 during training. This setup favors Federated Averaging and
signSGD to the maximum degree possible! All other parameters
of the learning environment are set to the base configuration
given in Table III. We train until the target accuracy is achieved
or a maximum amount of iterations is exceeded and measure
the amount of communicated bits both for upload and download.
Figure 10 shows the results for VGG11* trained on CIFAR,
CNN trained on KWS and the LSTM model trained on Fashion-
MNIST. We can see that even if all clients hold iid data STC
still manages to achieve the desired target accuracy within
a smallest communication budget out of all methods. STC
also converges faster in terms of training iterations than the
versions of Federated Averaging with comparable compression
rate. Unsurprisingly we see that both for Federated Averaging
and STC we face a trade-of between the number of training
iterations ("computation") and the number of communicated bits
("communication"). On all investigated benchmarks however
STC is pareto-superior to Federated Averaging in the sense
for any fixed iteration complexity it achieves a lower (upload)
communication complexity.

Table IV shows the amount of upstream- and downstream-
communication required to achieve the target accuracy for the
different methods in megabytes. On the CIFAR learning task
STC at a sparsity rate of p = 0.0025 only communicates 183.9
MB worth of data, which is a reduction in communication by
a factor of ×199.5 as compared to the baseline with requires
36696 MB and Federated Averaging (n = 100) which still
requires 1606 MB. Federated Averaging with a delay period
of 1000 steps does not achieve the target accuracy within the
given iteration budget.

Classes : 1
Clients: 10/10
 Batch-Size: 20

Classes: 10
Clients: 10/10

Batch Size : 1

Classes: 10
Clients : 5/400
 Batch-Size: 40

0.00

0.25

0.50

0.75

Ac
cu

ra
cy

VGG11* @ CIFAR, 20000 Iterations

FedAvg
STC

 Up Down
Classes: 10, Clients: 10/100

 Batch-Size: 20

0

500

1000

1500

Co
m

m
un

ica
tio

n
[M

B]

1 2 3 4

Target Acc.: 0.84

Fig. 11: Left: Accuracy achieved by VGG11* on CIFAR
after 20000 iterations of Federated Training with Federated
Averaging and Sparse Ternary Compression for three different
configurations of the learning environment. Right: Upstream and
downstream communication necessary to achieve a validation
accuracy of 84% with Federated Averaging and STC on the
CIFAR benchmark under iid data and a moderate batch-size.

VII. LESSONS LEARNED

We will now summarize the findings of this paper and
give general suggestions on how to approach communication-
constrained Federated Learning problems (cf. our summarizing
Figure 11):

1 If clients hold non-iid data, sparse communication
protocols such as STC distinctively outperform
Federated Averaging across all Federated Learning
environments (cf. Fig. 6, Fig. 7 left and Fig. 8 left).

2 The same holds true if clients are forced to train on
small mini-batches (e.g. because the hardware is memory
constrained). In these situations STC outperforms
Federated Averaging even if the client’s data is iid (cf.
Fig. 7 right).

3 STC should also be preferred over Federated Averaging
if the client participation rate is expected to be low as
it converges more stable and quickly in both the iid and
non-iid regime (cf. Fig. 8 right).

4 STC is generally most advantageous in situations where
the communication is bandwidth-constrained or costly
(metered network, limited battery), as it does achieve
a certain target accuracy within the minimum amount
of communicated bits even on iid data (cf. Fig. 10, Tab.
IV).

5 Federated Averaging in return should be used if the
communication is latency-constrained or if the client
participation is expected to be very low (and 1 - 3 do
not hold).

6 Momentum optimization should be avoided in Federated
Learning whenever either a) clients are training with
small batch sizes or b) the client data is non-iid and the
participation-rate is low (cf. Fig. 6, 7, 8).

VIII. CONCLUSION

Federated Learning for mobile and IoT applications is a
challenging task, as generally little to no control can be exerted
over the properties of the learning environment.

In this work we demonstrated, that the convergence behavior
of current methods for communication-efficient Federated

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 13

Learning is very sensitive to these properties. On a variety of
different datasets and model architectures we observe that the
convergence speed of Federated Averaging drastically decreases
in learning environments where the clients either hold non-iid
subsets of data, are forced to train on small mini-batches or
where only a small fraction of clients participates in every
communication round. To address these issues we propose
STC, a communication protocol which compresses both the
upstream and downstream communication via sparsification,
ternarization, error accumulation and optimal Golomb encoding.
Our experiments show that STC is far more robust to the
above mentioned peculiarities of the learning environment
than Federated Averaging. Moreover, STC converges faster
than Federated Averaging both with respect to the amount of
training iterations and the amount of communicated bits, even
if the clients hold iid data and use moderate batch sizes during
training.

Our approach can be understood as an alternative paradigm
for communication-efficient federated optimization which relies
on high-frequent low-volume instead of low-frequent high-
volume communication. As such it is particularly well suited
for Federated Learning environments which are characterized
by low latency and low bandwidth channels between clients
and server.

REFERENCES

[1] R. Taylor, D. Baron, and D. Schmidt, “The world in 2025-predictions
for the next ten years,” in 10th International Microsystems, Packaging,
Assembly and Circuits Technology Conference (IMPACT), 2015, pp.
192–195.

[2] S. Wiedemann, K.-R. Müller, and W. Samek, “Compact and
computationally efficient representation of deep neural networks,” arXiv
preprint arXiv:1805.10692, 2018.

[3] S. Wiedemann, A. Marban, K.-R. Müller, and W. Samek, “Entropy-
constrained training of deep neural networks,” arXiv preprint
arXiv:1812.07520, 2018.

[4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[5] A. Karpathy and L. Fei-Fei, “Deep visual-semantic alignments for
generating image descriptions,” in IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2015, pp. 3128–3137.

[6] S. Bosse, D. Maniry, K.-R. Müller, T. Wiegand, and W. Samek, “Deep
neural networks for no-reference and full-reference image quality
assessment,” IEEE Transactions on Image Processing, vol. 27, no. 1,
pp. 206–219, 2018.

[7] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-
Fei, “Large-scale video classification with convolutional neural networks,”
in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014, pp. 1725–1732.

[8] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” in Advances in Neural Information Processing
Systems, 2014, pp. 3104–3112.

[9] W. Samek, T. Wiegand, and K.-R. Müller, “Explainable artificial
intelligence: Understanding, visualizing and interpreting deep learning
models,” ITU Journal: ICT Discoveries - Special Issue 1 - The Impact
of Artificial Intelligence (AI) on Communication Networks and Services,
vol. 1, no. 1, pp. 39–48, 2018.

[10] H. B. McMahan, E. Moore, D. Ramage, S. Hampson et al.,
“Communication-efficient learning of deep networks from decentralized
data,” arXiv preprint arXiv:1602.05629, 2016.

[11] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov, “How to
backdoor federated learning,” arXiv preprint arXiv:1807.00459, 2018.

[12] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy-preserving machine learning,” in 2017 ACM SIGSAC
Conference on Computer and Communications Security, 2017, pp. 1175–
1191.

[13] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G. Patrini, G. Smith,
and B. Thorne, “Private federated learning on vertically partitioned data
via entity resolution and additively homomorphic encryption,” arXiv
preprint arXiv:1711.10677, 2017.

[14] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in 2016 ACM
SIGSAC Conference on Computer and Communications Security, 2016,
pp. 308–318.

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[16] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely
connected convolutional networks,” in IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), vol. 1, no. 2, 2017, p. 3.

[17] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Sparse
binary compression: Towards distributed deep learning with minimal
communication,” arXiv preprint arXiv:1805.08768, 2018.

[18] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan
et al., “Towards federated learning at scale: System design,” arXiv
preprint arXiv:1902.01046, 2019.

[19] W. Wen, C. Xu, F. Yan, C. Wu, Y. Wang, Y. Chen, and H. Li, “Terngrad:
Ternary gradients to reduce communication in distributed deep learning,”
arXiv preprint arXiv:1705.07878, 2017.

[20] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
in Advances in Neural Information Processing Systems, 2017, pp. 1707–
1718.

[21] H. Wang, S. Sievert, Z. Charles, D. Papailiopoulos, and S. Wright,
“Atomo: Communication-efficient learning via atomic sparsification,”
arXiv preprint arXiv:1806.04090, 2018.

[22] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signsgd: compressed optimisation for non-convex problems,” arXiv
preprint arXiv:1802.04434, 2018.

[23] A. F. Aji and K. Heafield, “Sparse communication for distributed gradient
descent,” arXiv preprint arXiv:1704.05021, 2017.

[24] Y. Lin, S. Han, H. Mao, Y. Wang, and W. J. Dally, “Deep gradient
compression: Reducing the communication bandwidth for distributed
training,” arXiv preprint arXiv:1712.01887, 2017.

[25] N. Strom, “Scalable distributed dnn training using commodity gpu cloud
computing,” in 16th Annual Conference of the International Speech
Communication Association, 2015.

[26] Y. Tsuzuku, H. Imachi, and T. Akiba, “Variance-based gradient
compression for efficient distributed deep learning,” arXiv preprint
arXiv:1802.06058, 2018.

[27] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[28] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[29] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar, “signsgd
with majority vote is communication efficient and fault tolerant,” 2018.

[30] A. Krizhevsky, V. Nair, and G. Hinton, “The cifar-10 dataset,” online:
http://www. cs. toronto. edu/kriz/cifar. html, 2014.

[31] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.
com/exdb/mnist/, 1998.

[32] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra, “Federated
learning with non-iid data,” arXiv preprint arXiv:1806.00582, 2018.

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 14

[33] S. Golomb, “Run-length encodings (corresp.),” IEEE Transactions on
Information Theory, vol. 12, no. 3, pp. 399–401, 1966.

[34] S. Ioffe, “Batch renormalization: Towards reducing minibatch
dependence in batch-normalized models,” in Advances in Neural
Information Processing Systems, 2017, pp. 1945–1953.

[35] P. Warden, “Speech commands: A dataset for limited-vocabulary speech
recognition,” arXiv preprint arXiv:1804.03209, 2018.

[36] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[37] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and Y. Bengio, “An
empirical investigation of catastrophic forgetting in gradient-based neural
networks,” arXiv preprint arXiv:1312.6211, 2013.

APPENDIX A
ENCODING AND DECODING

To communicate the sparse ternary weight updates from
clients to server and back from server to client we only need
to transmit the positions of the non-zero elements in every
tensor, along with exactly one bit to signify the sign (µ or −µ).
As the distances between the non-zero elements of the weight
updates ˜∆W are approximately geometrically distributed for
large layer sizes, we can efficiently encode them in an optimal
way using the Golomb encoding [33]. The encoding scheme is
given in Algorithm 3, while the decoding scheme is given in
Algorithm 4.

Algorithm 3: Golomb Position Encoding
1 input: sparse tensor ∆W ∗, sparsity p
2 output: binary message msg
3 • I ← ∆W ∗[:]6=0

4 • b∗ ← 1 + blog2(log(φ−1)
log(1−p))c

5 for i = 1, .., |I| do
6 • d← Ii − Ii−1

7 • q ← (d− 1) div 2b
∗

8 • r ← (d− 1) mod 2b
∗

9 • msg.add(1, .., 1︸ ︷︷ ︸
q times

, 0, binaryb∗(r))

10 end
11 return msg

APPENDIX B
DATA SPLITTING

We use the procedure described in Algorithm 5 to distribute
the training data among the clients. In the resulting split every
client holds a fixed proportion of the entire training data with
|Di| = ϕi|D| and |{y : (x, y) ∈ Di}| = [Classes per Client]
∀i = 1, .., [Number of Clients].

APPENDIX C
COMBINING SPARSITY AND DELAY

Figure 12 compares accuracies achieved by Federated
Averaging and STC at different rates of communication delay
and sparsity respectively after 10000 iterations for VGG*

Algorithm 4: Golomb Position Decoding
1 input: binary message msg, bitsize b∗, mean value µ
2 output: sparse tensor ∆W ∗

3 init: ∆W ∗ ← 0 ∈ Rn
4 • i← 0; q ← 0; j ← 0
5 while i < size(msg) do
6 if msg[i] = 0 then
7 • j ←

j+q2b
∗
+intb∗(msg[i+ 1], ..,msg[i+ b∗])+1

8 • ∆W ∗j ← µ
9 • q ← 0; i← i+ b∗ + 1

10 else
11 • q ← q + 1; i← i+ 1
12 end
13 end
14 return ∆W ∗

Algorithm 5: Data Spliting Strategy
1 input: Data D = {(xi, yi), i = 1, .., N}, Number of

Clients m, Volume Distribution over Clients
ϕ = {ϕ1, .., ϕm}, [Classes per Client], [Number of
different Classes]

2 output: Split S = {D1, .., Dm}
3 init:
4 • Di ← {}, i = 1, ..,m
5 • Sort for classes: Aj ← {(xi, yi) ∈ D|yi = j},

j = 1, .., [Number of different Classes]
6 for i = 1, ..,m do
7 • [Budget]← ϕiN
8 • [Budget per

Class]← [Budget]/[Classes per Client]
9 • k ← rand({1, .., [Number of different Classes]})

10 while [Budget] > 0 do
11 • t← min{[Budget], [Budget per Class], |Ak|}
12 • [Budget]← [Budget]− t
13 • B ← randomSubset(t, Ak)
14 • Di ← Di ∪B
15 • Ak ← Ak\B
16 • k ←

(k + 1) mod [Number of different Classes]
17 end
18 end

trained on CIFAR. In the iid setting (left), sparsity and delay
have a similar effect on the convergence speed. In the non-iid
setting STC at any fixed sparsity rate always achieves higher
accuracies than Federated Averaging at a comparable rate of
communication delay. As already noted by [17] a combination
of both techniques is possible and might be beneficial in
situations where the communication is latency constraint.

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 15

1.0 0.02 0.01 0.005 0.002 0.001
Sparsity (Up+Down)

1

25

100

200

500

1000

Co
m

m
un

ica
tio

n
De

la
y

0.84 0.81 0.81 0.80 0.82 0.83

0.84 0.83 0.83 0.80 0.77 0.73

0.84 0.80 0.77 0.73 0.63 0.59

0.83 0.76 0.72 0.67 0.57 0.44

0.83 0.70 0.65 0.53 0.40 0.34

0.82 0.65 0.56 0.45 0.29 0.27

Sparsity vs Delay IID

1.0 0.02 0.01 0.005 0.002 0.001
Sparsity (Up+Down)

1

25

100

200

500

1000

0.85 0.82 0.81 0.81 0.77 0.68

0.66 0.69 0.65 0.60 0.42 0.26

0.45 0.56 0.47 0.46 0.20 0.18

0.39 0.42 0.39 0.30 0.17 0.14

0.37 0.35 0.23 0.17 0.15 0.13

0.35 0.18 0.14 0.11 0.12 0.10

Sparsity vs Delay NON-IID

Fig. 12: Accuracy achieved after 10000 iterations for VGG11*
trained on CIFAR with STC and Federated Averaging and
combinations thereof at different rates of communication delay
and sparsity in an iid (left) and non-iid (right) Federated
Learning environment with 5 clients and full participation.

APPENDIX D
RESULTS: LEARNING ENVIRONMENTS

Figures 13, 14, 15 and 16 show the final accuracy achieved
by different compressed communication methods after a fixed
number of training iterations on four different benchmarks (top
to bottom) and different variations of the learning environment.
We can see that the curves on the other benchmarks follow the
same trends as the ones for the CIFAR benchmark.

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 16

1 2 3 5 10
Classes per Client

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
Clients : 10/10, Batch-Size: 20

1 2 3 5 10
Classes per Client

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
Clients : 10/100, Batch-Size: 20

1 2 3 5 10
Classes per Client

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CNN @ KWS
Clients : 10/10, Batch-Size: 20

1 2 3 5 10
Classes per Client

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

CNN @ KWS
Clients : 10/100, Batch-Size: 20

1 2 3 5 10
Classes per Client

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

LSTM @ F-MNIST
Clients : 10/10, Batch-Size: 20

1 2 3 5 10
Classes per Client

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

LSTM @ F-MNIST
Clients : 10/100, Batch-Size: 20

1 2 3 5 10
Classes per Client

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Logistic @ MNIST
Clients : 10/10, Batch-Size: 20

1 2 3 5 10
Classes per Client

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Logistic @ MNIST
Clients : 10/100, Batch-Size: 20

STC
FedAvg
signSGD
STC + m.
FedAvg + m.
signSGD + m.

Fig. 13: Final accuracy achieved after training for a fixed
number of iterations on four different learning tasks (top to
bottom) and two different setups of the learning environment
(left, right). Displayed is the relation between the final accuracy
and the number of different classes in the clients datasets for
different compression methods.

5/5 5/1
0

5/2
0

5/5
0

5/1
00

5/2
00

5/4
00

Clients

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
Classes : 2, Batch-Size: 20

5/5 5/1
0

5/2
0

5/5
0

5/1
00

5/2
00

5/4
00

Clients

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
Classes : 10, Batch-Size: 20

5/5 5/1
0

5/2
0

5/5
0
5/1

00
5/2

00
5/4

00

Clients

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CNN @ KWS
Classes : 2, Batch-Size: 20

5/5 5/1
0

5/2
0

5/5
0

5/1
00

5/2
00

5/4
00

Clients

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CNN @ KWS
Classes : 10, Batch-Size: 20

5/5 5/1
0

5/2
0

5/5
0

5/1
00

5/2
00

5/4
00

Clients

0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

LSTM @ F-MNIST
Classes : 2, Batch-Size: 20

5/5 5/1
0

5/2
0

5/5
0

5/1
00

5/2
00

5/4
00

Clients

0.4
0.5
0.6
0.7
0.8
0.9

Ac
cu

ra
cy

LSTM @ F-MNIST
Classes : 10, Batch-Size: 20

5/5 5/1
0

5/2
0

5/5
0

5/1
00

5/2
00

5/4
00

Clients

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Logistic @ MNIST
Classes : 2, Batch-Size: 20

5/5 5/1
0

5/2
0

5/5
0

5/1
00

5/2
00

5/4
00

Clients

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Logistic @ MNIST
Classes : 10, Batch-Size: 20

STC
FedAvg
signSGD
STC + m.
FedAvg + m.
signSGD + m.

Fig. 14: Final accuracy achieved after training for a fixed
number of iterations on four different learning tasks (top to
bottom) and two different setups of the learning environment
(left, right). Displayed is the relation between the final accuracy
and the client participation fraction for different compression
methods.

SATTLER ET AL. – ROBUST AND COMMUNICATION-EFFICIENT FEDERATED LEARNING FROM NON-IID DATA 17

1 2 5 20 100
Batch-Size

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR,
Clients: 10/100, Classes : 2

1 2 5 20 100
Batch-Size

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR,
Clients: 10/100, Classes : 10

1 2 5 20 100
Batch-Size

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CNN @ KWS,
Clients: 10/100, Classes : 2

1 2 5 20 100
Batch-Size

0.88

0.89

0.90

0.91

0.92

Ac
cu

ra
cy

CNN @ KWS,
Clients: 10/100, Classes : 10

1 2 5 20 100
Batch-Size

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

LSTM @ F-MNIST,
Clients: 10/100, Classes : 2

1 2 5 20 100
Batch-Size

0.750

0.775

0.800

0.825

0.850

0.875

Ac
cu

ra
cy

LSTM @ F-MNIST,
Clients: 10/100, Classes : 10

1 2 5 20 100
Batch-Size

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Logistic @ MNIST,
Clients: 10/100, Classes : 2

1 2 5 20 100
Batch-Size

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Logistic @ MNIST,
Clients: 10/100, Classes : 10

STC
FedAvg
signSGD
STC + m.
FedAvg + m.
signSGD + m.

Fig. 15: Final accuracy achieved after training for a fixed
number of iterations on four different learning tasks (top to
bottom) and two different setups of the learning environment
(left, right). Displayed is the relation between the final accuracy
and the size of the mini-batches used during training for
different compression methods.

0.90 0.95 1.00
Unbalancedness

0.2

0.4

0.6

Ac
cu

ra
cy

VGG11* @ CIFAR
Classes : 2, Clients: 10/100

0.90 0.95 1.00
Unbalancedness

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

VGG11* @ CIFAR
Classes : 10, Clients: 10/100

0.90 0.95 1.00
Unbalancedness

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

CNN @ KWS
Classes : 2, Clients: 10/100

0.90 0.95 1.00
Unbalancedness

0.9075

0.9100

0.9125

0.9150

0.9175

Ac
cu

ra
cy

CNN @ KWS
Classes : 10, Clients: 10/100

0.90 0.95 1.00
Unbalancedness

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

LSTM @ F-MNIST
Classes : 2, Clients: 10/100

0.90 0.95 1.00
Unbalancedness

0.84

0.85

0.86

Ac
cu

ra
cy

LSTM @ F-MNIST
Classes : 10, Clients: 10/100

0.90 0.95 1.00
Unbalancedness

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

Logistic @ MNIST
Classes : 2, Clients: 10/100

0.90 0.95 1.00
Unbalancedness

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

Logistic @ MNIST
Classes : 10, Clients: 10/100

STC
FedAvg
signSGD
STC + m.
FedAvg + m.
signSGD + m.

Fig. 16: Final accuracy achieved after training for a fixed
number of iterations on four different learning tasks (top to
bottom) and two different setups of the learning environment
(left, right). Displayed is the relation between the final accuracy
and the balancedness in size of the local datasets for different
compression methods.

	Introduction
	Challenges of the Federated Learning Environment
	Related Work
	Limitations of existing compression methods
	Preliminary Experiments
	Results

	Sparse Ternary Compression
	Extending to Downstream Compression
	Weight Update Caching for Partial Client Participation
	Eliminating Redundancy

	Experiments
	Momentum in Federated Optimization
	Non-iid-ness of the Data
	Robustness to other Parameters of the Learning Environment
	Communication-Efficiency

	Lessons Learned
	Conclusion
	References
	Appendix A: Encoding and Decoding
	Appendix B: Data Splitting
	Appendix C: Combining Sparsity and Delay
	Appendix D: Results: Learning Environments

