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Abstract—Federated Learning (FL) is currently the most widely
adopted framework for collaborative training of (deep) machine
learning models under privacy constraints. Albeit it’s popularity,
it has been observed that Federated Learning yields suboptimal
results if the local clients’ data distributions diverge. To address
this issue, we present Clustered Federated Learning (CFL), a
novel Federated Multi-Task Learning (FMTL) framework, which
exploits geometric properties of the FL loss surface, to group
the client population into clusters with jointly trainable data
distributions. In contrast to existing FMTL approaches, CFL does
not require any modifications to the FL communication protocol
to be made, is applicable to general non-convex objectives
(in particular deep neural networks) and comes with strong
mathematical guarantees on the clustering quality. CFL is flexible
enough to handle client populations that vary over time and
can be implemented in a privacy preserving way. As clustering
is only performed after Federated Learning has converged to a
stationary point, CFL can be viewed as a post-processing method
that will always achieve greater or equal performance than
conventional FL by allowing clients to arrive at more specialized
models. We verify our theoretical analysis in experiments with
deep convolutional and recurrent neural networks on commonly
used Federated Learning datasets.

I. INTRODUCTION

Federated Learning [3][4][5][6][7] is a distributed training
framework, which allows multiple clients (typically mobile or
IoT devices) to jointly train a single deep learning model on
their combined data in a communication-efficient way, without
requiring any of the participants to reveal their private training
data to a centralized entity or to each other. Federated Learning
realizes this goal via an iterative three-step protocol where in
every communication round t, the clients first synchronize with
the server by downloading the latest master model θt. Every
client then proceeds to improve the downloaded model, by
performing multiple iterations of stochastic gradient descent
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with mini-batches sampled from it’s local data Di, resulting in
a weight-update vector

∆θt+1
i = SGDk(θt, Di)− θt, i = 1, ..,m (1)

Finally, all clients upload their computed weight-updates to
the server, where they are aggregated by weighted averaging
according to

θt+1 = θt +

m∑
i=1

|Di|
|D|

∆θt+1
i (2)

to create the next master model. The procedure is summarized
in Algorithm 2.

Federated Learning implicitly makes the assumption that it is
possible for one single model to fit all client’s data generating
distributions ϕi at the same time. Given a model fθ : X → Y
parametrized by θ ∈ Θ and a loss function l : Y × Y → R≥0

we can formally state this assumption as follows:

Assumption 1. ("Federated Learning"): There exists a
parameter configuration θ∗ ∈ Θ, that (locally) minimizes the
risk on all clients’ data generating distributions at the same
time:

Ri(θ
∗) ≤ Ri(θ) ∀θ ∈ Bε(θ∗), i = 1, ..,m (3)

for some ε > 0. Hereby

Ri(θ) =

∫
l(fθ(x), y)dϕi(x, y) (4)

is the risk function associated with distribution ϕi.

It is easy to see that this assumption is not always satisfied.
Concretely it is violated if either (a) clients have disagreeing
conditional distributions ϕi(y|x) 6= ϕj(y|x) or (b) the model
fθ is not expressive enough to fit all distributions at the same
time. Simple counter examples for both cases are presented in
Figure 1.

In the following we will call a set of clients and their data
generating distributions ϕ congruent (with respect to f and l)
if they satisfy Assumption 1 and incongruent if they don’t.

In this work, we argue that Assumption 1 is frequently
violated in real Federated Learning applications, especially
given the fact that in Federated Learning clients (a) can
hold arbitrary non-iid data, which can not be audited by the
centralized server due to privacy constraints and (b) typically
run on limited hardware which puts restrictions on the model
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Fig. 1: Two toy cases in which the Federated Learning
Assumption is violated. Blue points belong to clients from
the first cluster while orange points belong to clients from the
second cluster. Left: Federated XOR-problem. An insufficiently
complex model is not capable of fitting all clients’ data
distributions at the same time. Right: If different clients’
conditional distributions diverge, no single model can fit all
distributions at the same time. In both cases the data on clients
belonging to the same cluster can be easily separated.

complexity. For illustration consider the following practical
scenarios:

Varying Preferences: Assume a scenario where every client
holds a local dataset of images of human faces and the goal is to
train an ’attractiveness’ classifier on the joint data of all clients.
Naturally, different clients will have varying opinions about
the attractiveness of certain individuals, which corresponds to
disagreeing conditional distributions on all clients’ data. Assume
for instance that one half of the client population thinks that
people wearing glasses are attractive, while the other half thinks
that those people are unattractive. In this situation one single
model will never be able to accurately predict attractiveness of
glasses-wearing people for all clients at the same time (confer
also Figure 1 right).

Limited Model Complexity: Assume a number of clients
are trying to jointly train a language model for next-word
prediction on private text messages. In this scenario the statistics
of a client’s text messages will likely vary a lot based on

demographic factors, interests, etc. For instance, text messages
composed by teenagers will typically exhibit different statistics
than than those composed by elderly people. An insufficiently
expressive model will not be able to fit the data of all clients
at the same time.

Presence of Adversaries: A special case of incongruence
is given, if a subset of the client population behaves in an
adversarial manner. In this scenario the adversaries could
deliberately alter their local data distribution in order to encode
arbitrary behavior into the jointly trained model, thus affecting
the model decisions on all other clients and causing potential
harm.

The goal in Federated Multi-Task Learning is to provide every
client with a model that optimally fits it’s local data distribution.
In all of the above described situations the ordinary Federated
Learning framework, in which all clients are treated equally
and only one single global model is learned, is not capable of
achieving this goal.

In order to incorporate the above presented problems with
incongruent data generating distributions, we suggest to gener-
alize the conventional Federated Learning Assumption:

Assumption 2. ("Clustered Federated Learning"): There
exists a partitioning C = {c1, .., ck},

⋃k
i=1 ck = {1, ..,m} of

the client population, such that every subset of clients c ∈ C
satisfies the conventional Federated Learning Assumption.

The remainder of this manuscript is organized as follows:
In the next section (II) we will derive a computationally
efficient tool based on the cosine similarity between the clients’
gradient updates that provably allows us to infer whether
two members of the client population have the same data
generating distribution, thus making it possible for us to infer
the clustering structure C. Based on the theoretical insights
in section II we present the Clustered Federated Learning
Algorithm in section III. After reviewing related literature in
section IV, we address implementation details in section V and
demonstrate that our novel method can be implemented without
making modifications to the Federated Learning communication
protocol (section V-A). We furthermore show that our method
can be implemented in a privacy preserving way (section V-B)
and is flexible enough to handle client populations that vary over
time (section V-C). Finally, in section VI, we perform extensive
experiments on a variety of convolutional and recurrent neural
networks applied to common Federated Learning datasets.

II. COSINE SIMILARITY BASED CLUSTERING

In this paper, we address the question of how to solve
distributed learning problems that satisfy Assumption 2 (which
generalizes the Federated Learning Assumption 1). This will
require us to first identify the correct partitioning C, which at
first glance seems like a daunting task, as under the Federated
Learning paradigm the server has no access to the clients’ data,
their data generating distributions or any meta information
thereof.
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An easier task than trying to directly infer the entire clustering
structure C, is to find a correct bi-partitioning in the sense of
the following definition:

Definition 1. Let m ≥ k ≥ 2 and

I : {1, ..,m} → {1, .., k}, i 7→ I(i) (5)

be the mapping that assigns a client i to it’s data generating
distribution ϕI(i). Then we call a bi-partitioning c1∪̇c2 =
{1, ..,m} with c1 6= ∅ and c2 6= ∅ correct if and only if

I(i) 6= I(j) ∀i ∈ c1, j ∈ c2. (6)

In other words, a bi-partitioning is called correct, if clients
with the same data generating distribution end up in the same
cluster. It is easy to see, that the clustering C = {c1, .., ck} can
be obtained after exactly k − 1 correct bi-partitions.

In the following we will demonstrate that there exists an
explicit criterion based on which a correct bi-partitioning can be
inferred. To see this, let us first look at the following simplified
Federated Learning setting with m clients, in which the data
on every client was sampled from one of two data generating
distributions ϕ1, ϕ2 such that

Di ∼ ϕI(i)(x, y). (7)

Every Client is associated with an empirical risk function

ri(θ) =
∑
x∈Di

lθ(f(xi), yi) (8)

which approximates the true risk arbitrarily well if the number
of data points on every client is sufficiently large

ri(θ) ≈ RI(i)(θ) :=

∫
x,y

lθ(f(x), y)dϕI(i)(x, y). (9)

For demonstration purposes let us first assume equality in (9).
Then the Federated Learning objective becomes

F (θ) :=

m∑
i=1

|Di|
|D|

ri(θ) = a1R1(θ) + a2R2(θ) (10)

with a1 =
∑
i,I(i)=1 |Di|/|D| and a2 =

∑
i,I(i)=2 |Di|/|D|.

Under standard assumptions it has been shown [8][9] that the
Federated Learning optimization protocol described in equations
(1) and (2) converges to a stationary point θ∗ of the Federated
Learning objective. In this point it holds that

0 = ∇F (θ∗) = a1∇R1(θ∗) + a2∇R2(θ∗) (11)

Now we are in one of two situations. Either it holds that
∇R1(θ∗) = ∇R2(θ∗) = 0, in which case we have simultane-
ously minimized the risk of all clients. This means ϕ1 and
ϕ2 are congruent and we have solved the distributed learning
problem. Or, otherwise, it has to hold

∇R1(θ∗) = −a2

a1
∇R2(θ∗) 6= 0 (12)
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Fig. 2: Displayed are the optimization paths of Federated
Learning with two clients, applied to two different toy problems
with incongruent (left) and congruent (right) risk functions.
In the incongruent case Federated Learning converges to a
stationary point of the FL objective where the gradients of
the two clients are of positive norm and point into opposite
directions. In the congruent case there exists an area (marked
grey in the plot) where both risk functions are minimized. If
Federated Learning converges to this area the norm of both
client’s gradient updates goes to zero. By inspecting the gradient
norms the two cases can be distinguished.

and ϕ1 and ϕ2 are incongruent. In this situation the cosine
similarity between the gradient updates of any two clients is
given by

αi,j := α(∇ri(θ∗),∇rj(θ∗)) :=
〈∇ri(θ∗),∇rj(θ∗)〉
‖∇ri(θ∗)‖‖∇rj(θ∗)‖

=
〈∇RI(i)(θ∗),∇RI(j)(θ∗)〉
‖∇RI(i)(θ∗)‖‖∇RI(j)(θ∗)‖

=

{
1 if I(i) = I(j)

−1 if I(i) 6= I(j)
(13)

Consequently, a correct bi-partitioning is given by

c1 = {i|αi,0 = 1}, c2 = {i|αi,0 = −1}. (14)

This consideration provides us with the insight that, in a
stationary solution of the Federated Learning objective θ∗, we
can distinguish clients based on their hidden data generating
distribution by inspecting the cosine similarity between their
gradient updates. For a visual illustration of the result we refer
to Figure 2.

If we drop the equality assumption in (9) and allow for an
arbitrary number of data generating distributions, we obtain
the following generalized version of result (13):

Theorem 1 (Separation Theorem). Let D1, .., Dm be the local
training data of m different clients, each dataset sampled from
one of k different data generating distributions ϕ1, .., ϕk, such
that Di ∼ ϕI(i)(x, y). Let the empirical risk on every client
approximate the true risk at every stationary solution of the
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Federated Learning objective θ∗ s.t.

‖∇RI(i)(θ∗)‖ > ‖∇RI(i)(θ∗)−∇ri(θ∗)‖ (15)

and define

γi :=
‖∇RI(i)(θ∗)−∇ri(θ∗)‖

‖∇RI(i)(θ∗)‖
∈ [0, 1) (16)

Then there exists a bi-partitioning c∗1 ∪ c∗2 = {1, ..,m} of the
client population such that that the maximum similarity between
the updates from any two clients from different clusters can be
bounded from above according to

αmaxcross := min
c1∪c2={1,..,m}

max
i∈c1,j∈c2

α(∇ri(θ∗),∇rj(θ∗)) (17)

= max
i∈c∗1 ,j∈c∗2

α(∇ri(θ∗),∇rj(θ∗)) (18)

≤

{
cos( π

k−1 )Hi,j + sin( π
k−1 )

√
1−H2

i,j if H ≥ cos( π
k−1 )

1 else
(19)

with

Hi,j = −γiγj +
√

1− γ2
i

√
1− γ2

j ∈ (−1, 1]. (20)

At the same time the similarity between updates from clients
which share the same data generating distribution can be
bounded from below by

αminintra := min
i,j

I(i)=I(j)

α(∇θri(θ∗),∇θrj(θ∗)) ≥ min
i,j

I(i)=I(j)

Hi,j .

(21)

The proof of Theorem 1 can be found in the Appendix.

Remark 1. In the case with two data generating distributions
(k = 2) the result simplifies to

αmaxcross = max
i∈c∗1 ,j∈c∗2

α(∇θri(θ∗),∇θrj(θ∗)) ≤ max
i∈c∗1 ,j∈c∗2

−Hi,j

(22)

for a certain partitioning, respective

αminintra = min
i,j

I(i)=I(j)

α(∇θri(θ∗),∇θrj(θ∗)) ≥ min
i,j

I(i)=I(j)

Hi,j

(23)

for two clients from the same cluster. If additionally γi = 0
for all i = 1, ..,m then Hi,j = 1 and we retain result (13).

From Theorem 1 we can directly deduce a correct separation
rule:

Corollary 1. If in Theorem 1 k and γi, i = 1, ..,m are in such
a way that

αminintra > αmaxcross (24)

then the partitioning

c1, c2 ← arg min
c1∪c2=c

( max
i∈c1,j∈c2

αi,j). (25)

is always correct in the sense of Definition 1.
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Fig. 3: Clustering quality as a function of the number of data
generating distributions k and the relative approximation noise
γ. For all values of k and γ in the green area, CFL will always
correctly separate the clients (by Theorem 1). For all values
of k and γ in the blue area we find empirically that CFL will
correctly separate the clients with probability close to 1.

Proof: Set

c1, c2 ← arg min
c1∪c2=c

( max
i∈c1,j∈c2

αi,j) (26)

and let i ∈ c1, j ∈ c2 then

αi,j ≤ αmaxcross < αminintra = min
i,j

I(i)=I(j)

αi,j (27)

and hence i and j can not have the same data generating
distribution.

This consideration leads us to the notion of the separation
gap:

Definition 2 (Separation Gap). Given a cosine-similarity matrix
α and a mapping from client to data generating distribution I
we define the notion of a separation gap

g(α) := αminintra − αmaxcross (28)
= min

i,j
I(i)=I(j)

αi,j − min
c1∪c2=c

( max
i∈c1,j∈c2

αi,j) (29)

Remark 2. By Corollary 1 the bi-partitioning (25) will be
correct in the sense of Definition 1 if and only if the separation
gap is greater than zero.

Theorem 1 gives an estimate for the similarities in the
absolute worst-case. In practice αminintra typically will be much
larger and αmaxcross typically will be much smaller, especially
if the parameter dimension d is large. For instance, if we
set d = 102 (which is still many orders of magnitude
smaller than typical modern neural networks), m = 3k, and
assume ∇RI(i)(θ∗) and ∇RI(i)(θ∗)−∇ri(θ∗) to be normally
distributed for all i = 1, ..,m then experimentally we find
(Figure 3) that

P ["Correct Clustering"] = P [g(α) > 0] ≈ 1 (30)

even for large values of k > 10 and

γmax := max
i=1,..,m

γi > 1. (31)
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This means that using the cosine similarity criterion (25) we can
readily find a correct bi-partitioning c1, c2 even if the number
of data generating distributions is high and the empirical risk
on every client’s data is only a very loose approximation of
the true risk.

A. Distinguishing Congruent and Incongruent Clients
In order to appropriately generalize the classical Federated

Learning setting, we need to make sure to only split up clients
with incongruent data distributions. In the classical congruent
non-iid Federated Learning setting described in [3] where one
single model can be learned, performance will typically degrade
if clients with varying distributions are separated into different
clusters due to the restricted knowledge transfer between clients
in different clusters. Luckily we have a criterion at hand to
distinguish the two cases. To realize this we have inspect
the gradients computed by the clients at a stationary point
θ∗. When client distributions are incongruent, the stationary
solution of the Federated Learning objective by definition can
not be stationary for the individual clients. Hence the norm
of the clients’ gradients has to be strictly greater than zero.
If conversely the client distributions are congruent, Federated
optimization will be able to jointly optimize all clients’ local
risk functions and hence the norm of the clients’ gradients
will tend towards zero as we are approaching the stationary
point. Based on this observation we can formulate the following
criteria which allow us make the decision whether to split or
not: Splitting should only take place if it holds that both (a)
we are close to a stationary point of the FL objective

0 ≤ ‖
∑

i=1,..,m

Di

|Dc|
∇θri(θ∗)‖ < ε1 (32)

and (b) the individual clients are far from a stationary point of
their local empirical risk

max
i=1,..,m

‖∇θri(θ∗)‖ > ε2 > 0 (33)

Figure 2 gives a visual illustration of this idea for a simple
two dimensional problem. We will also experimentally verify
the clustering criteria (32) and (33) in section VI-B.

In practice we have another viable option to distinguish the
congruent from the incongruent case. As splitting will only
be performed after Federated Learning has converged to a
stationary point, we always have computed the conventional
Federated Learning solution as part of Clustered Federated
Learning. This means that if after splitting up the clients a
degradation in model performance is observed, it is always
possible to fall back to the Federated Learning solution. In this
sense Clustered Federated Learning will always improve the
Federated Learning performance (or perform equally well at
worst).

III. CLUSTERED FEDERATED LEARNING

Clustered Federated Learning recursively bi-partitions the
client population in a top-down way: Starting from an initial
set of clients c = {1, ..,m} and a parameter initialization θ0,

CFL performs Federated Learning according to Algorithm 2,
in order to obtain a stationary solution θ∗ of the FL objective.
After Federated Learning has converged, the stopping criterion

0 ≤ max
i∈c
‖∇θri(θ∗)‖ < ε2 (34)

is evaluated. If criterion (34) is satisfied, we know that all
clients are sufficiently close to a stationary solution of their
local risk and consequently CFL terminates, returning the FL
solution θ∗. If on the other hand, criterion (34) is violated, this
means that the clients are incongruent and the server computes
the pairwise cosine similarities α between the clients’ latest
transmitted updates according to equation (13). Next, the server
separates the clients into two clusters in such a way that the
maximum similarity between clients from different clusters is
minimized

c1, c2 ← arg min
c1∪c2=c

( max
i∈c1,j∈c2

αi,j). (35)

This optimal bi-partitioning problem at the core of CFL can
be solved in O(m3) using Algorithm 1. Since in Federated
Learning it is assumed that the server has far greater computa-
tional power than the clients, the overhead of clustering will
typically be negligible.

As derived in section II, a correct bi-partitioning can always
be ensured if it holds that

αminintra > αmaxcross. (36)

While the optimal cross-cluster similarity αmaxcross can be easily
computed in practice, computation of the intra cluster similarity
requires knowledge of the clustering structure and hence αminintra
can only be estimated using Theorem 1 according to

αminintra ≥ min
i,j

I(i)=I(j)

−γiγj +
√

1− γ2
i

√
1− γ2

j (37)

≥ 1− 2γ2
max. (38)

Consequently we know that the bi-partitioning will be correct
if

γmax <

√
1− αmaxcross

2
. (39)

independent of the number of data generating distributions k!
This criterion allows us to reject bi-partitionings, based on our
assumptions on the approximation noise γmax (which is an
interpretable hyperparameter).

If criterion (39) is satisfied, CFL is recursively re-applied to
each of the two separate groups starting from the stationary
solution θ∗. Splitting recursively continues on until (after
at most k − 1 recursions) none of the sub-clusters violate
the stopping criterion anymore, at which point all groups of
mutually congruent clients C = {c1, .., ck} have been identified,
and the Clustered Federated Learning problem characterized
by Assumption 2 is solved. The entire recursive procedure is
presented in Algorithm 3.
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Algorithm 1: Optimal Bipartition
1 input: Similarity Matrix α ∈ [−1, 1]m,m

2 outout: bi-partitioning c1, c2 satisfying (25)
3 • s← argsort(−α[:]) ∈ Nm2

4 • C ← {{i}|i = 1, ..,m}
5 for i = 1, ..,m2 do
6 • i1 ← si div m; i2 ← si mod m
7 • ctmp ← {}
8 for c ∈ C do
9 if i1 ∈ c or i2 ∈ c then

10 • ctmp ← ctmp ∪ c
11 • C ← C \ c
12 end
13 end
14 • C ← C ∪ {ctmp}
15 if |C| = 2 then
16 return C
17 end
18 end

Algorithm 2: Federated Learning (FL)
1 Input: initial parameters θ, set of clients c, ε1 > 0
2 repeat
3 for i ∈ c in parallel do
4 • θi ← θ
5 • ∆θi ← SGDn(θi, Di)− θi
6 end
7 • θ ← θ +

∑
i∈c
|Di|
|Dc|∆θi

8 until ‖
∑
i∈c
|Di|
|Dc|∆θi‖ < ε1

9 return θ

Algorithm 3: Clustered Federated Learning (CFL)
1 Input: initial parameters θ, set of clients c, γmax ∈ [0, 1],

ε2 > 0
2 • θ∗ ← FederatedLearning(θ, c)

3 • αi,j ← 〈∇ri(θ∗),∇rj(θ∗)〉
‖∇ri(θ∗)‖‖∇rj(θ∗)‖ , i, j ∈ c

4 • c1, c2 ← arg minc1∪c2=c(maxi∈c1,j∈c2 αi,j)
5 • αmaxcross ← maxi∈c1,j∈c2 αi,j

6 if maxi∈c ‖∇ri(θ∗)‖ ≥ ε2 and
√

1−αmax
cross

2 > γmax then
7 • θ∗i , i ∈ c1 ← ClusteredFederatedLearning(θ∗, c1)
8 • θ∗i , i ∈ c2 ← ClusteredFederatedLearning(θ∗, c2)
9 else

10 • θ∗i ← θ∗, i ∈ c
11 end
12 return θ∗i , i ∈ c

IV. RELATED WORK

Federated Learning [3][4][10][7][11][6] is currently the
dominant framework for distributed training of machine learning
models under communication- and privacy constraints. Feder-
ated Learning assumes the clients to be congruent, i.e. that one
central model can fit all client’s distributions at the same time.
Different authors have investigated the convergence properties
of Federated Learning in congruent iid and non-iid scenarios:
[12],[13],[14] and [15] perform an empirical investigation, [8],
[16], [17] and [9] prove convergence guarantees. As argued in
section I conventional Federated Learning is not able to deal
with the challenges of incongruent data distributions. Other
distributed training frameworks [18][19][20][21] are facing the
same issues.

The natural framework for dealing with incongruent data
is Multi-Task Learning [22][23][24]. An overview over recent
techniques for multi-task learning in deep neural networks can
be found in [25]. However all of these techniques are applied
in a centralized setting in which all data resides at one location
and the server has full control over and knowledge about
the optimization process. Smith et al. [1] present MOCHA,
which extends the multi-task learning approach to the Federated
Learning setting, by explicitly modeling client similarity via a
correlation matrix. However their method relies on alternating
bi-convex optimization and is thus only applicable to convex
objective functions and limited in it’s ability to scale to massive
client populations. Corinzia et al. [26] model the connectivity
structure between clients and server as a Bayesian network
and perform variational inference during learning. Although
their method can handle non-convex models, it is expensive to
generalize to large federated networks as the client models are
refined sequentially.

Finally, Ghosh et al. [2] propose a clustering approach,
similar to the one presented in this paper. However their method
differs from ours in the following key aspects: Most significantly
they use l2-distance instead of cosine similarity to determine
the distribution similarity of the clients. This approach has
the severe limitation that it only works if the client’s risk
functions are convex and the minima of different clusters are
well separated. The l2-distance also is not able to distinguish
congruent from incongruent settings. This means that the
method will incorrectly split up clients in the conventional
congruent non-iid setting described in [3]. Furthermore, their
approach is not adaptive in the sense that the decision whether to
cluster or not has to be made after the first communication round.
In contrast, our method can be applied to arbitrary Federated
Learning problems with non-convex objective functions. We
also note that we have provided theoretical considerations that
allow a systematic understanding of the novel CFL framework.

V. IMPLEMENTATION CONSIDERATIONS

A. Weight-Updates as generalized Gradients
Theorem 1 makes a statement about the cosine similarity

between gradients of the empirical risk function. In Federated
Learning however, due to constraints on both the memory of
the client devices and their communication budged, instead
commonly weight-updates as defined in (1) are computed
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and communicated. In order to deviate as little as possible
from the classical Federated Learning algorithm it would
hence be desirable to generalize result 1 to weight-updates.
It is commonly conjectured (see e.g. [27]) that accumulated
mini-batch gradients approximate the full-batch gradient of
the objective function. Indeed, for a sufficiently smooth loss
function and low learning rate, a weight update computed over
one epoch approximates the direction of the true gradient since
by Taylor approximation we have

∇θr(θτ + η∆θτ−1, Dτ ) (40)
= ∇θr(θτ , Dτ ) + η∆θτ−1∇2

θr(θτ , Dτ ) +O(‖η∆θτ−1‖2)
(41)

= ∇θr(θτ , Dτ ) +R (42)

where R can be bounded in norm. Hence, by recursive
application of the above result it follows

∆θ =

T∑
τ=1

∇θr(θτ , Dτ ) ≈
T∑
τ=1

∇θr(θ1, Dτ ) = ∇θr(θ1, D).

(43)

In the remainder of this work we will compute cosine simi-
larities between weight-updates instead of gradients according
to

αi,j :=
〈∆θi,∆θj〉
‖∆θi‖‖∆θj‖

, i, j ∈ c (44)

Our experiments in section VI will demonstrate that computing
cosine similarities based on weight-updates in practice surpris-
ingly achieves even better separations than computing cosine
similarities based on gradients.

B. Preserving Privacy

Every machine learning model carries information about the
data it has been trained on. For example the bias term in the last
layer of a neural network will typically carry information about
the label distribution of the training data. Different authors
have demonstrated that information about a client’s input data
("x") can be inferred from the weight-updates it sends to the
server via model inversion attacks [28][29][30][31][32]. In
privacy sensitive situations it might be necessary to prevent
this type of information leakage from clients to server with
mechanisms like the ones presented in [5]. Luckily, Clustered
Federated Learning can be easily augmented with an encryption
mechanism that achieves this end. As both the cosine similarity
between two clients’ weight-updates and the norms of these
updates are invariant to orthonormal transformations P (such
as permutation of the indices),

〈∆θi,∆θj〉
‖∆θi‖‖∆θj‖

=
〈P∆θi, P∆θj〉
‖P∆θi‖‖P∆θj‖

(45)

a simple remedy is for all clients to apply such a transformation
operator to their updates before communicating them to the
server. After the server has averaged the updates from all clients

Fig. 4: An exemplary parameter tree created by Clustered
Federated Learning. At the root node resides the conventional
Federated Learning model, obtained by converging to a sta-
tionary point θ∗ of the FL objective over all clients {1, ..,m}.
In the next layer, the client population has been split up into
two groups, according to their cosine similarities and every
subgroup has again converged to a stationary point θ∗0 respective
θ∗1 . Branching continues recursively until no stationary solution
satisfies the splitting criteria. In order to quickly assign new
clients to a leaf model, at each edge e of the tree the server
caches the pre-split weight-updates ∆e of all clients belonging
to the two different sub-branches. This way the new client can
be moved down the tree along the path of highest similarity.

and broadcasted the average back to the clients they simply
apply the inverse operation

∆θ =
1

n

n∑
i=1

∆θi = P−1(
1

n

n∑
i=1

P∆θi) (46)

and the Federated Learning protocol can resume unchanged.
Other multi-task learning approaches require direct access to
the client’s data and hence can not be used together with
encryption, which represents a distinct advantage for CFL in
privacy sensitive situations.

C. Varying Client Populations and Parameter Trees

Up until now we always made the assumption that all clients
participate from the beginning of training. Clustered Federated
Learning however is flexible enough to handle client populations
that vary over time.

In order to incorporate this functionality, the server, while
running CFL, needs to build a parameter tree T = (V,E) with
the following properties:
• The tree contains a node v ∈ V for every (intermediate)

cluster cv computed by CFL
• Both cv and the corresponding stationary solution θ∗v

obtained by running the Federated Learning Algorithm
2 on cluster cv are cached at node v

• At the root of the tree vroot resides the Federated
Learning solution over the entire client population with
cvroot = {1, ..,m}.
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• If the cluster cvchild
was created by bi-partitioning the

cluster cvparent
in CFL then the nodes vparent and vchild

are connected via a directed edge e ∈ E
• At every edge e(vparent → vchild) the pre-split weight-

updates of the children clients

∆e = {SGDn(θ∗vparent
, Di)− θv∗parent

|i ∈ cvchild
}
(47)

are cached
An exemplary parameter tree is shown in Figure 4. When a
new client joins the training it can get assigned to a leaf cluster
by iteratively traversing the parameter tree from the root to a
leaf, always moving to the branch which contains the more
similar client updates according to Algorithm 4.

Another feature of building a parameter tree is that it
allows the server to provide every client with multiple models
at varying specificity. On the path from root to leaf, the
models get more specialized with the most general model
being the FL model at the root. Depending on application and
context, a CFL client could switch between models of different
generality. Furthermore a parameter tree allows us to ensemble
multiple models of different specificity together. We believe
that investigations along those lines are a promising direction
of future research.

Putting all pieces from the previous sections together, we arrive
at a protocol for general privacy-preserving CFL which is
described in Algorithm 5

Algorithm 4: Assigning new Clients to a Cluster
1 Input: new client with data Dnew, parameter tree

T = (V,E)
2 • v ← vroot
3 while |Children(v)| > 0 do
4 • v0, v1 ← Children(v)
5 • ∆θnew ← SGDn(θ∗v , Dnew)− θ∗v
6 • α0 ← max∆θ∈∆(v→v1)

α(∆θnew,∆θ)
7 • α1 ← max∆θ∈∆(v→v2)

α(∆θnew,∆θ)
8 if α0 > α1 then
9 • v ← v0

10 else
11 • v ← v1

12 end
13 end
14 return cv , θ∗v

VI. EXPERIMENTS

A. Practical Considerations
In section II we showed that the cosine similarity criterion

does distinguish different incongruent clients under three
conditions: (a) Federated Learning has converged to a stationary
point θ∗, (b) Every client holds enough data s.t. the empirical
risk approximates the true risk, (c) cosine similarity is computed
between the full gradients of the empirical risk. In this section

Algorithm 5: Clustered Federated Learning with Privacy
Preservation and Weight-Updates

1 input: initial parameters θ0, branching parameters
ε1, ε2 > 0, empirical risk approximation error bound
γmax ∈ [0, 1), number of local iterations/ epochs n

2 outout: improved parameters on every client θi
3 init: set initial clusters C = {{1, ..,m}}, set initial models

θi ← θ0 ∀i = 1, ..,m, set initial update ∆θc ← 0 ∀c ∈ C,
clients exchange random seed to create permutation
operator P (optional, otherwise set P to be the identity
mapping)

4 while not converged do
5 for i = 1, ..,m in parallel do
6 Client i does:
7 • θi ← θi + P−1∆θc(i)
8 • ∆θi ← P (SGDn(θi, Di)− θi)
9 end

10 Server does:
11 • Ctmp ← C
12 for c ∈ C do
13 • ∆θc ← 1

|c|
∑
i∈c ∆θi

14 if ‖∆θc‖ < ε1 and maxi∈c ‖∆θi‖ > ε2 then
15 • αi,j ← 〈∆θi,∆θj〉

‖∆θi‖‖∆θj‖
16 • c1, c2 ← arg minc1∪c2=c(maxi∈c1,j∈c2 αi,j)
17 • αmaxcross ← maxi∈c1,j∈c2 αi,j

18 if γmax <
√

1−αmax
cross

2 then
19 • Ctmp ← (Ctmp \ c) ∪ c1 ∪ c2
20 end
21 end
22 end
23 • C ← Ctmp
24 end
25 return θ

we will demonstrate that in practical problems none of these
conditions have to be fully satisfied. Instead, we will find
that CFL is able to correctly infer the clustering structure
even if clients only hold small datasets and are trained to an
approximately stationary solution of the Federated Learning
objective. Furthermore we will see that cosine similarity can
be computed between weight-updates instead of full gradients,
which even improves performance.

In the experiments of this section we consider the following
Federated Learning setup: All experiments are performed on
either the MNIST [33] or CIFAR-10 [34] dataset using m = 20
clients, each of which belonging to one of k = 4 clusters. Every
client is assigned an equally sized random subset of the total
training data. To simulate an incongruent clustering structure,
every clients’ data is then modified by randomly swapping
out two labels, depending on which cluster a client belongs
to. For example, in all clients belonging to the first cluster,
data points labeled as "1" could be relabeled as "7" and vice
versa, in all clients belonging to the second cluster "3" and
"5" could be switched out in the same way, and so on. This
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Fig. 5: Separation gap g(α) as a function of the number of data
points on every client for the label-swap problem on MNIST
and CIFAR. From Corollary 1 we know that CFL will always
find a correct bi-partitioning if g(α) > 0. On MNIST this is
already satisfied if clients hold as little as 20 data points if
weight-updates are used for the computation of the similarity
α.

relabeling ensures that both ϕ(x) and ϕ(y) are approximately
the same across all clients, but the conditionals ϕ(y|x) diverge
between different clusters. We will refer to this as "label-swap
augmentation" in the following. In all experiments we train
multi-layer convolutional neural networks and adopt a standard
Federated Learning strategy with 3 local epochs of training.
We report the separation gap (Definition 2)

g(α) := αminintra − αmaxcross (48)

which according to Corollary 1 tells us whether CFL will
correctly bi-partition the clients:

g(α) > 0⇔ "Correct Clustering" (49)

Number of Data points: We start out by investigating the
effects of data set size on the cosine similarity. We randomly
subsample from each client’s training data to vary the number
of data points on every client between 10 and 200 for MNIST
and 100 and 2400 for CIFAR. For every different local data set
size we run Federated Learning for 50 communication rounds,
after which training progress has come mostly to halt and
we can expect to be close to a stationary point. After round
50, we compute the pairwise cosine similarities between the
weight-updates and the separation gap g(α). The results are
shown in Figure 5. As expected, g(α) grows monotonically
with increasing data set size. On the MNIST problem as little as
20 data points on every client are sufficient to achieve correct
bi-partitioning in the sense of Definition 1. On the more difficult
CIFAR problem a higher number of around 500 data points is
necessary to achieve correct bi-partitioning.

Proximity to Stationary Solution: Next, we investigate
the importance of proximity to a stationary point θ∗ for the
clustering. Under the same setting as in the previous experiment
we reduce the number of data points on every client to 100
for MNIST and to 1500 for CIFAR and compute the pairwise
cosine similarities and the separation gap after each of the first
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Fig. 6: Separation gap g(α) as a function of the number of
communication rounds for the label-swap problem on MNIST
and CIFAR. The separation quality monotonically increases
with the number of communication rounds of Federated
Learning. Correct separation in both cases is already achieved
after around 10 communication rounds if α is computed using
weight-updates.

50 communication rounds. The results are shown in Figure
6. Again, we see that the separation quality monotonically
increases with the number of communication rounds. On
MNIST and CIFAR as little as 10 communication rounds are
necessary to obtain a correct clustering.

Weight-Updates instead of Gradients: In both the above
experiments we computed the cosine similarities α based on
either the full gradients

αi,j =
〈∇θri(θ),∇θrj(θ)〉
‖∇θri(θ)‖‖∇θrj(θ)‖

("Gradient") (50)

or Federated weight-updates

αi,j =
〈∆θi,∆θj〉
‖∆θi‖‖∆θj‖

("Weight-Update") (51)

over 3 epochs. Interestingly, weight-updates seem to provide
even better separation g(α) with fewer data points and at a
greater distance to a stationary solution. This comes in very
handy as it allows us to leave the Federated Learning com-
munication protocol unchanged. In all following experiments
we will compute cosine similarities based on weight-updates
instead of gradients.

B. Distinguishing Congruent and Incongruent Clients
In this subsection, we experimentally verify the validity of

the clustering criteria (32) and (33) in a Federated Learning
experiment on MNIST with two clients holding data from
incongruent and congruent distributions. In the congruent case
client one holds all training digits "0" to "4" and client two
holds all training digits "5" to "9". In the incongruent case,
both clients hold a random subset of the training data, but
the distributions are modified according to the "label swap"
rule described above. Figure 7 shows the development of the
average update norm (equation (32)) and the maximum client
norm (equation (33)) over the course of 1000 communication
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Fig. 7: Experimental verification of the norm criteria (33)
and (32). Displayed is the development of gradient norms
over the course of 1000 communication rounds of Federated
Learning with two clients holding data from incongruent (left)
and congruent distributions (right). In both cases Federated
Learning converges to a stationary point of F (θ) and the
average update norm (32) goes to zero. In the congruent case
the maximum norm of the client updates (33) decreases along
with the server update norm, while in contrast in the incongruent
case it stagnates and even increases.

rounds. As predicted by the theory, in the congruent case the
average client norm converges to zero, while in the incongruent
case it stagnates and even increases over time. In both cases
the server norm tends to zero, indicating convergence to a
stationary point (see Figure 7).

C. Clustered Federated Learning
In this section, we apply CFL as described in Algorithm 5

to different Federated Learning setups, which are inspired by
our motivating examples in the introduction. In all experiments,
the clients perform 3 epochs of local training at a batch-size
of 100 in every communication round.

Label permutation on Cifar-10: We split the CIFAR-10
training data randomly and evenly among m = 20 clients,
which we group into k = 4 different clusters. All clients be-
longing to the same cluster apply the same random permutation
Pc(i) to their labels such that their modified training and test
data is given by

D̂i = {(x, Pc(i)(y))|(x, y) ∈ Di} (52)

respective

ˆDtest
i = {(x, Pc(i)(y))|(x, y) ∈ Dtest}. (53)

The clients then jointly train a 5-layer convolutional neural
network on the modified data using CFL with 3 epochs of
local training at a batch-size of 100. Figure 8 (top) shows
the joint training progression: In the first 50 communication
rounds, all clients train one single model together, following the
conventional Federated Learning protocol. After these initial
50 rounds, training has converged to a stationary point of the
Federated Learning objective and the client test accuracies
stagnate at around 20%. Conventional Federated Learning
would be finalized at this point. At the same time, we observe
(Figure 8, bottom) that a distinct gap g(α) = αminintra − αmaxcross
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Fig. 8: CFL applied to the "permuted labels problem" on CIFAR
with 20 clients and 4 different permutations. The top plot shows
the accuracy of the trained model(s) on their corresponding
validation sets. The bottom plot shows the separation gaps g(α)
for all different clusters. After an initial 50 communication
rounds a large separation gap has developed and a first split
separates out the purple group of clients, which leads to an
immediate drastic increase of accuracy for these clients. In
communication rounds 100 and 150 this step is repeated until
all clients with incongruent distributions have been separated.
After the third split, the model accuracy for all clients has
more than doubled and the separation gaps in all clusters have
dropped to below zero which indicates that the clustering is
finalized.

has developed ( 1 ), indicating an underlying clustering structure.
In communication round 50 the client population is therefore
split up for the first time, which leads to an immediate 25%
increase in validation accuracy for all clients belonging to
the "purple" cluster which was separated out 2 . Splitting
is repeated in communication rounds 100 and 150 until all
clusters have been separated and g(α) has dropped to below
zero in all clusters ( 3 ), which indicates that clustering is
finalized. At this point the accuracy of all clients has more
than doubled the one achieved by the Federated Learning
solution and is now at close to 60% 4 . This underlines, that
after standard FL, our novel CFL can detect, the necessity
for subsequent splitting and clustering which enables arriving
at significantly higher performance. In addition, the cluster
structure found can potentially be illuminating as it provides
interesting insight about the composition of the complex
underlying data distribution.

Language Modeling on Ag-News: The Ag-News corpus
is a collection of 120000 news articles belonging to one of
the four topics ’World’, ’Sports’, ’Business’ and ’Sci/Tech’.
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Fig. 9: CFL applied to the Ag-News problem. The top plot
shows the perplexity achieved by the different clients on their
local test set (lower is better). The clients are separated in
communication rounds 30, 60 and 90. After the final separation
the perplexity of all clients on their local test set has dropped
to less than 36, while the Federated Learning solution (black,
dotted) still stagnates at a perplexity of 42.

We split the corpus into 20 different sub-corpora of the same
size, with every sub-corpus containing only articles from one
topic and assign every corpus to one client. Consequently
the clients form four clusters based on what type of articles
they hold. Every Client trains a two-layer LSTM network to
predict the next word on it’s local corpus of articles. Figure 9
shows 100 communication rounds of multi-stage CFL applied
to this distributed learning problem. As we can see, Federated
Learning again converges to a stationary solution after around
30 communication rounds. At this solution all clients achieve a
perplexity of around 43 on their local test set. After the client
population has been split up in communication rounds 30, 60
and 90, the four true underlying clusters are discovered. After
the 100th communication round the perplexity of all clients
has dropped to less than 36. The Federated Learning solution,
trained over the same amount of communication rounds, still
stagnates at an average perplexity of 42.

VII. CONCLUSION

In this paper we presented Clustered Federated Learning, a
framework for Federated Multi-Task Learning that can improve
any existing Federated Learning Framework by enabling the
participating clients to learn more specialized models. Clustered
Federated Learning makes use of our theoretical finding, that (at
any stationary solution of the Federated Learning objective) the
cosine similarity between the weight-updates of different clients
is highly indicative of the similarity of their data distributions.

This crucial insight allows us to provide strong mathematic
guarantees on the clustering quality under mild assumptions
on the clients and their data, even for arbitrary non-convex
objectives.

We demonstrated that CFL can be implemented in a
privacy preserving way and without having to modify the FL
communication protocol. Moreover, CFL is able to distinguish
situations in which a single model can be learned from the
clients’ data from those in which this is not possible and only
separates clients in the latter case.

Our experiments on convolutional and recurrent deep neural
networks show that CFL can achieve drastic improvements
over the Federated Learning baseline in terms of classification
accuracy / perplexity in situations where the clients’ data
exhibits a clustering structure.
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[4] J. Konečnỳ, H. B. McMahan, D. Ramage, and P. Richtárik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

[5] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, and K. Seth, “Practical secure aggregation
for privacy preserving machine learning.” IACR Cryptology ePrint
Archive, vol. 2017, p. 281, 2017.

[6] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman,
V. Ivanov, C. Kiddon, J. Konecny, S. Mazzocchi, H. B. McMahan
et al., “Towards federated learning at scale: System design,” arXiv
preprint arXiv:1902.01046, 2019.

[7] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning: Chal-
lenges, methods, and future directions,” arXiv preprint arXiv:1908.07873,
2019.

[8] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang, “On the convergence
of fedavg on non-iid data,” arXiv preprint arXiv:1907.02189, 2019.

[9] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V. Smith,
“On the convergence of federated optimization in heterogeneous net-
works,” arXiv preprint arXiv:1812.06127, 2018.

[10] S. Caldas, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan, V. Smith, and
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