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A1. SUPPLEMENT

A. Proving the Separation Theorem
The Separation Theorem makes a statement about the cosine

similarities between the gradients of the empirical risk functions
∇θri(θ∗) and ∇θrj(θ∗), which are noisy approximations of
the true risk gradients ∇θRI(i)(θ∗), respective ∇θRI(j)(θ∗).
To simplify the notation let us first re-define

vl = ∇θRl(θ∗), l = 1, .., k (1)

and

Xi = ∇θri(θ∗)−∇θRI(i)(θ∗), i = 1, ..,m (2)

Figure A1 shows a possible configuration in d = 2 with k = 3
different data generating distributions and their corresponding
gradients v1, v2 and v3. The empirical risk gradients Xi+vi(i),
i = 1, ..,m are shown as dashed lines. The maximum angles
between gradients from the same data generating distribution
are shown green, blue and purple in the plot. Among these, the
green angle is the largest one ^maxintra. The plot also shows the
optimal bi-partitioning into clusters 1 and 2 and the minimum
angle between the gradient updates from any two clients in
different clusters ^mincross is displayed in red. As long as

^maxintra < ^mincross (3)

or equivalently

αminintra = cos(^maxintra) > cos(^mincross) = αmaxcross (4)

the clustering will always be correct.
The proof of the Theorem can be organized into three

separate steps:
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Fig. A1: Possible configuration in d = 2 with k = 3
different data generating distributions and their corresponding
gradients v1, v2 and v3. The empirical risk gradients Xi+vi(i),
i = 1, ..,m are shown as dashed lines. The maximum angles
between gradients from the same data generating distribution
are shown green, blue and purple in the plot. Among these, the
green angle is the largest one ^maxintra. The vectors are optimally
bi-partitioned into clusters 1 and 2 and the minimum angle
between the gradient updates from any two clients in different
clusters ^mincross is displayed in red.
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• In Lemma A1.1, we bound the cosine similarity between
two noisy approximations of the same vector αminintra from
below

• In Lemma A1.2, we bound the cosine similarity between
two noisy approximations of two different vectors from
above

• In Lemma A1.3, we show that every set of vectors that
sums to zero can be separated into two groups such
that the cosine similarity between any two vectors from
separate groups can be bounded from above

• Lemma A1.2 and A1.3 together will allow us to bound
the cross cluster similarity αmaxcross from above

Lemma A1.1. Let v,X, Y ∈ Rd with ‖X‖ < ‖v‖ and ‖Y ‖ <
‖v‖ then

α(v +X, v + Y ) ≥ −‖X‖‖Y ‖
‖v‖2

+

√
1− ‖X‖

2

‖v‖2

√
1− ‖Y ‖

2

‖v‖2
.

(5)

Proof: We are interested in vectors X and Y which
maximize the angle between v +X and v + Y . Since

α(v +X, v + Y ) = cos(^(v +X, v + Y )) (6)

and cos is monotonically decreasing on [0, π] such X and Y
will minimize the cosine similarity α. As ‖X‖ < ‖v‖ and
‖Y ‖ < ‖v‖ the angle will be maximized if and only if v,
X and Y share a common 2-dimensional hyperplane, X is
perpendicular to v +X and Y is perpendicular to v + Y and
X and Y point into opposite directions (Figure A2). It then
holds by the trigonometric property of the sine that

sin(^(v, v +X)) =
‖X‖
‖v‖

(7)

and

sin(^(v, v + Y )) =
‖Y ‖
‖v‖

(8)

and hence

cos(^(v +X, v + Y )) = cos(^(v +X) + ^(v + Y )) (9)

≥ cos(sin−1(
‖X‖
‖v‖

) + sin−1(
‖Y ‖
‖v‖

)).

(10)

Since

cos(sin−1(x) + sin−1(y)) = −xy +
√
1− x2

√
1− y2 (11)

the result follows after re-arranging terms.

Lemma A1.2. Let v, w,X, Y ∈ Rd with ‖X‖ < ‖v‖, ‖Y ‖ <
‖w‖ and define

h(v, w,X, Y ) := −‖X‖‖Y ‖
‖v‖2

+

√
1− ‖X‖

2

‖v‖2

√
1− ‖Y ‖

2

‖v‖2
(12)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

v

XY

v + X
v + Y

Fig. A2: We are interested in a configuration for which the
angle between v+X and v+Y is maximized (red in the plot).
As ‖X‖ < ‖v‖ and ‖Y ‖ < ‖v‖ this is exactly the case if the
line {β(v +X)|β ∈ R} is tangential to the circle with center
v and radius ‖X‖ and the line {β(v+Y )|β ∈ R} is tangential
to the circle with center v and radius ‖Y ‖.

If

〈v, w〉
‖v‖‖w‖

≤ h(v, w,X, Y ) (13)

then it holds

α(v +X,w + Y ) ≤α(v, w)h(v, w,X, Y ) (14)

+
√

1− α(v, w)2
√
1− h(v, w,X, Y )2

(15)

Proof: Analogously to the argument in Figure A2, the
angle between v + X and w + Y is minimized, when v, w,
X and Y share a common 2-dimensional hyperplane, X is
orthogonal to v +X , Y is orthogonal to w + Y , and X and
Y point towards each other. The minimum possible angle is
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then given by

^(v +X,w + Y ) = ^(v, w)− ^(v, v +X)− ^(w,w + Y )

(16)
≥ max(0, (17)

cos−1(
〈v, w〉
‖v‖‖w‖

) (18)

− sin−1(
‖X‖
‖v‖

)+ (19)

− sin−1(
‖Y ‖
‖v‖

)) (20)

which can be simplified to

^(v +X,w + Y ) ≥ max(0, cos−1(
〈v, w〉
‖v‖‖w‖

) (21)

− cos−1(−‖X‖‖Y ‖
‖v‖2

+

√
1− ‖X‖

2

‖v‖2

√
1− ‖Y ‖

2

‖v‖2
))

(22)

Under condition (13) then second term in the maximum is
greater than zero and we get

cos(^(v +X, v + Y )) (23)

≤ cos( cos−1(
〈v, w〉
‖v‖‖w‖

) (24)

− cos−1(−‖X‖‖Y ‖
‖v‖2

+

√
1− ‖X‖

2

‖v‖2

√
1− ‖Y ‖

2

‖v‖2
))

(25)
≤ cos( cos−1(α(v, w))− cos−1(h(v, w,X, Y ))) (26)

Since

cos(cos−1(x)− cos−1(y)) = xy +
√
1− x2

√
1− y2 (27)

the result follows after re-arranging terms.

Lemma A1.3. Let v1, .., vk ∈ Rd, d ≥ 2, γ1, .., γk ∈ R>0 and

k∑
i=1

γivi = 0 ∈ Rd (28)

then there exists a bi-partitioning of the vectors c1 ∪ c2 =
{1, .., k} such that

max
i∈c1,j∈c2

α(vi, vj) ≤ cos(
π

k − 1
) (29)

Proof:
Lemma A1.3 can be equivalently stated as follows:
Let v1, .., vk ∈ Rd, d ≥ 2, γ1, .., γk ∈ R>0 and

k∑
i=1

γivi = 0 ∈ Rd (30)

then there exists a bi-partitioning of the vectors c1 ∪ c2 =
{1, .., k} such that

min
i∈c1,j∈c2

^(vi, vj) ≥
π

k − 1
(31)

As the angle between two vectors is invariant under multi-
plication with positive scalars γ > 0 we can assume w.l.o.g
that γi = 1 i = 1, .., k.

Let us first consider the case where d = 2. Let e1 ∈ R2

be the first standard basis vector and assume w.l.o.g that the
vectors v1, .., vk are sorted w.r.t. their angular distance to e1
(they are arranged circular as shows in Figure A3). As all
vectors lie in the 2d plane, we know that the sum of the angles
between all neighboring vectors has to be equal to 2π.

k∑
i=1

^(vi, v(i+1) mod k) = 2π (32)

Now let

i∗1 = arg max
i∈{1,..,k}

^(vi, v(i+1) mod k) (33)

and

i∗2 = arg max
i∈{1,..,k}\i∗1

^(vi, v(i+1) mod k) (34)

be the indices of the largest and second largest angles between
neighboring vectors and define the following clusters:

c1 = {i mod k|i∗1 < i ≤ i∗2 + k[i∗2 < i∗1]} (35)
c2 = {i mod k|i∗2 < i ≤ i∗1 + k[i∗2 > i∗1]}} (36)

where [x] = 1 if x is true and [x] = 0 is x is false. Then
by construction the second largest angle ^(vi∗2 , v(i∗2+1) mod k)
minimizes the angle between any two vectors from the two
different clusters c1, c2 (see Figure A3 for an illustration):

min
i∈c1,j∈c2

^(vi, vj) = ^(vi∗2 , v(i∗2+1) mod k) (37)

Hence in d = 2 we can always find a partitioning c1, c2 s.t.
the minimum angle between any two vectors from different
clusters is greater or equal to the 2nd largest angle between
neighboring vectors. This means the worst case configuration of
vectors is one where the 2nd largest angle between neighboring
vectors is minimized. As the sum of all k angles between
neighboring vectors is constant according to (32), this is exactly
the case when the largest angle between neighboring vectors
is maximized and all other k − 1 angles are equal.

Assume now that the angle between two neighboring vectors
is greater than π. That would mean that there exists a separating
line l which passes through the origin and all vectors v1, .., vk
lie on one side of that line. This however is impossible since∑k
l=1 vl = 0. This means that the largest angle between

neighboring vectors can not be greater than π. Hence in the
worst-case scenario

^(vi∗2 , v(i∗2+1) mod k) ≥
2π − π
k − 1

=
π

k − 1
. (38)

This concludes the proof for d = 2.
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Now consider he case where d > 2. Let c1, c2 be a clustering
which maximizes the minimum angular distance between any
two clients from different clusters. Let

i∗, j∗ = arg min
i∈c1,j∈c2

^(vi, vj) (39)

then vi∗ and vj∗ are the two vectors with minimal angular
distance. Let A = [vi∗ , vj∗ ] ∈ Rd,2 and consider now the
projection matrix

P = A(ATA)−1AT (40)

which projects all d-dimensional vectors onto the plane spanned
by vi∗ and vj∗ . Then be linearity of the projection we have

0 = P0 = P (

k∑
i=1

vi) =

k∑
i=1

P (vi) (41)

Hence the projected vectors also satisfy the condition of the
Lemma. As

^(Pvi∗ , Pvj∗) = ^(vi∗ , vj∗) (42)

and

^(Pvi, Pvj) ≥ ^(vi, vj) (43)

for all i, j /∈ {i∗, j∗} the clustering c1, c2 is still optimal after
projecting and we have found a 2d configuration of vectors
satisfying the assumptions of Lemma A1.3 with the same
minimal cross-cluster angle. In other words, we have reduced
the d > 2 case to the d = 2 case, for which we have already
proven the result. This concludes the proof.

Theorem A1.4 (Separation Theorem). Let D1, .., Dm be the
local training data of m different clients, each dataset sampled
from one of k different data generating distributions ϕ1, .., ϕk,
such that Di ∼ ϕI(i)(x, y). Let the empirical risk on every
client approximate the true risk at every stationary solution of
the Federated Learning objective θ∗ s.t.

‖∇RI(i)(θ∗)‖ > ‖∇RI(i)(θ∗)−∇ri(θ∗)‖ (44)

and define

γi :=
‖∇RI(i)(θ∗)−∇ri(θ∗)‖

‖∇RI(i)(θ∗)‖
∈ [0, 1) (45)

Then there exists a bi-partitioning c∗1 ∪ c∗2 = {1, ..,m} of the
client population such that that the maximum similarity between
the updates from any two clients from different clusters can be
bounded from above according to

αmaxcross := min
c1∪c2={1,..,m}

max
i∈c1,j∈c2

α(∇ri(θ∗),∇rj(θ∗)) (46)

= max
i∈c∗1 ,j∈c∗2

α(∇ri(θ∗),∇rj(θ∗)) (47)

≤

{
cos( π

k−1 )Hi,j + sin( π
k−1 )

√
1−H2

i,j if H ≥ cos( π
k−1 )

1 else
(48)
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Fig. A3: Possible configuration in d = 2. The largest and 2nd
largest angle between neighboring vectors (red) separate the
two optimal clusters. The largest angle between neighboring
vectors is never greater than π.

with

Hi,j = −γiγj +
√

1− γ2i
√
1− γ2j ∈ (−1, 1]. (49)

At the same time the similarity between updates from clients
which share the same data generating distribution can be
bounded from below by

αminintra := min
i,j

I(i)=I(j)

α(∇θri(θ∗),∇θrj(θ∗)) ≥ min
i,j

I(i)=I(j)

Hi,j .

(50)

Proof: For the first result, we know that in every stationary
solution of the Federated Learning objective θ∗ it holds

k∑
l=1

γi∇θRl(θ∗) = 0 (51)

and hence by Lemma A1.3 there exists a bi-partitioning ĉ1 ∪
ĉ2 = {1, .., k} such that

max
l∈ĉ1,j∈ĉ2

α(∇θRl(θ∗),∇θRj(θ∗)) ≤ cos(
π

k − 1
) (52)

Let

c1 = {i|I(i) ∈ ĉ1, i = 1, ..,m} (53)

and

c2 = {i|I(i) ∈ ĉ2, i = 1, ..,m} (54)
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and set for some i ∈ c1 and j ∈ c2:

v = ∇θRI(i)(θ∗) (55)

X = ∇θri(θ∗)−∇θRI(i)(θ∗) (56)

w = ∇θRI(j)(θ∗) (57)

Y = ∇θrj(θ∗)−∇θRI(j)(θ∗) (58)

Then α(v, w) ≤ cos( π
k−1 ) and the result follows directly from

Lemma A1.2.
The second result follows directly from Lemma A1.1 by

setting

v = ∇θRI(i)(θ∗) (59)

X = ∇θri(θ∗)−∇θRI(i)(θ∗) (60)

Y = ∇θrj(θ∗)−∇θRI(i)(θ∗) (61)
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