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2 ˆ Slijepcevic and Horst, et al.

character. This article investigates the usefulness ofExplainable Arti�cial Intelligence(XAI) methods to increase transparency
in automatedclinical gait classi�cationbased on time series. For this purpose, predictions of state-of-the-art classi�cation
methods are explained with a XAI method called Layer-wise Relevance Propagation (LRP). Our main contribution is an
approach that explains class-speci�c characteristics learned by ML models that are trained for gait classi�cation. We investigate
several gait classi�cation tasks and employ di�erent classi�cation methods, i.e., Convolutional Neural Network, Support
Vector Machine, and Multi-layer Perceptron. We propose to evaluate the obtained explanations with two complementary
approaches: a statistical analysis of the underlying data using Statistical Parametric Mapping and a qualitative evaluation
by two clinical experts. A gait dataset comprising ground reaction force measurements from 132 patients with di�erent
lower-body gait disorders and 62 healthy controls is utilized. Our experiments show that explanations obtained by LRP
exhibit promising statistical properties concerning inter-class discriminativity and are also in line with clinically relevant
biomechanical gait characteristics.

CCS Concepts:̂Computing methodologies ! Neural networks ; ˆ Applied computing ! Health care information
systems.

Additional Key Words and Phrases: clinical gait analysis, human gait classi�cation, explainable arti�cial intelligence, layer-wise
relevance propagation, statistical parametric mapping, ground reaction forces, convolutional neural networks
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1 INTRODUCTION
Arti�cial Intelligence (AI) and machine learning (ML) techniques have become almost ubiquitous in our daily
lives by supporting or guiding our decisions and providing recommendations. Impressively, there are certain
medical tasks, such as the detection of skin or breast cancer, that ML approaches have already been able to solve
more e�ciently and e�ectively than humans [16, 21, 42]. Therefore, it is not surprising that ML approaches
are currently becoming popular in the healthcare sector [74]. This trend has also been recognized in the �eld
of clinical gait analysis (CGA) [18, 62]. CGA focuses on the quantitative description and analysis of human
gait from a kinematic (i.e., joint angles), kinetic (i.e., ground reaction forces and joint moments), and muscular
(i.e., electromyographic activity) point of view [9, 80]. Thereby, CGA produces a vast amount of data [22, 55],
which are di�cult to comprehend due to their multi-dimensional and multi-correlated nature [13, 81]. In the
last years, ML methods have been successfully employed in CGA for the classi�cation of patient groups [18, 62]
such as stroke [36, 53], Parkinson's disease [77], cerebral palsy [75], multiple sclerosis [3], osteoarthritis [50],
and patients su�ering from di�erent functional gait disorders [67]. While ML approaches yield promising results
regarding classi�cation performance, most share a central limitation, which is their black-box character [1]. This
means that even if the underlying mathematical principles in these methods are understood, it is often unclear
why a particular prediction has been made and if meaningfully grounded patterns have led to this prediction.
Additionally, the black-box character also hinders ML approaches to provide justi�cations of their predictions.
This is, however, necessary for compliance with legislation such as the General Data Protection Regulation
(GDPR, EU 2016/679) [1, 17, 23]. These factors currently limit the application of ML-based decision-support
systems in medical practice [26, 60].

Due to the aforementioned reasons, the �eld ofExplainable Arti�cial Intelligence(XAI) gained increasing
attention in recent years. Di�erent approaches have been proposed (see Section 2: Related work). In general,
XAI methods intend to illustrate how complex and non-linear ML models operate and how they produced their
predictions. However, explanation is understood in the sense of providing more di�erentiated insights into the
behaviour of ML models in order to fathom the dependence of the results on input variables (without claiming
to give causation). Even though research in XAI is still in an early stage, the application of such approaches in
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medicine has already raised attention [26, 73]. The motivation is to increase the traceability and trust of medical
professionals in ML approaches [27]. However, application of XAI methods to the �eld of CGA remains to be
investigated. A �rst step in that direction has recently been taken by Horst et al. [29] for explaining predictions
in gait-based person recognition.

The primary aim of this article is to investigate and explain which class-speci�c characteristics ML models
learn from CGA data, i.e., time series. For this purpose, we train several classi�cation models for di�erent
gait classi�cation tasks and extract prediction explanations from the trained models via Layer-wise Relevance
Propagation (LRP). Subsequently, the explanations of the individual predictions are aggregated to obtain class-
speci�c model explanations. The assessment of the resulting explanations is, however, a challenge since no
ground truth exists for automatically generated explanations in CGA. In contrast to images, which are more
frequently subject to explainability studies [2, 19, 58, 59], the evaluation of explanations becomes particularly
challenging when the input signals are more abstract and thus not straightforward to interpret, as often is the case
with biomedical signals. Recently, it has been shown that XAI approaches do not necessarily refer to the actual
prediction of the classi�cation model and sometimes even build upon unrelated information [2]. Thus, a more
comprehensive investigation of explanations obtained by XAI methods is necessary to verify whether they are
meaningful and justi�ed. To account for the above-mentioned challenges, we suggest a two-step approach for the
evaluation of the obtained explanations. First, we analyze the discriminatory power of the obtained explanations
from a statistical perspective. For this purpose, we leverage Statistical Parametric Mapping (SPM) [51] � a method
building upon random �eld theory � to derive statistical measures along with the input signals and thereby
investigate how statistically justi�ed the obtained explanations are. Second, two experienced clinical experts
interpret the explainability results from a clinical perspective, to evaluate whether obtained explanations match
characteristics from clinical practice.

Our investigation focuses on two leading research questions:

(1) Which input features or signal regions are most relevant for automatic gait classi�cation?
(2) To what extent are input features or signal regions identi�ed as being relevant for a given gait classi�cation

task statistically justi�ed and in line with clinical assessment?

In addition to these two leading questions, we investigate several further aspects that may in�uence classi-
�cation performance as well as explainability in more detail, including the in�uence of di�erent classi�cation
methods, the impact of data normalization, and the role of di�erent input signal components (i.e., the horizontal
forces, measurements of the a�ected leg and measurements of the una�ected leg). We perform our investigation
on theGaitRec dataset [28], which contains ground reaction force measurements from clinical practice. We
design prediction models for di�erent gait classi�cation tasks and derive possible explanations from the resulting
models that are based on relevance scores. These relevance scores are directly related to speci�c regions in the
input signal. Subsequently, we analyze the explanations from a statistical as well as a clinical perspective. The
results show that explanations share promising statistical properties concerning class discriminativity and thus
indicate that predictions are grounded on statistically justi�ed information for the task. Further, we show that
input features considered as relevant can also be interpreted as meaningful and clinically relevant biomechanical
gait characteristics. Overall, our investigation demonstrates the usefulness of XAI in the domain of gait classi�-
cation, exempli�es how to apply XAI methods to gait measurement data, and suggests approaches to evaluate
their quality. The performed study suggests that XAI methods can be useful to better understand and interpret
automatic predictions in clinical gait analysis and thus has the potential to yield an added value for clinical
practice in future.
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2 RELATED WORK
Methods from XAI can be grouped according to the type of explanation they provide. We distinguish between
XAI approaches for (i)data exploration , (ii) prediction explanation and (iii) model explanation based on
an adaptation of the taxonomy introduced by Arya et al. [6]. In the following, we brie�y introduce the three
di�erent types of approaches and their capabilities.

Data exploration includes methods from the �elds of visual analytics, statistics and unsupervised machine
learning. As such, the methods are not capable of explaining a model but rather the data on which the model
is trained. These methods focus on projecting the data into a space where it is possible to �nd meaningful
structures or clusters and thus understand the data in more detail. A popular approach for data exploration
introduced by Maaten and Hinton [39] is T-distributed Stochastic Neighbor Embedding (t-SNE), which projects
high-dimensional data into a lower-dimensional and visualizable space. The projection is performed in a way that
the cluster structure in the original data space is optimally exposed. Thereby, an understanding of the data and
the identi�cation of typical patterns and clusters in the data is facilitated. Other approaches in this category are
visual analytics approaches that employ advanced techniques for the interactive visualization of data to support
data exploration, i.e., �nding characteristic patterns or dependencies within data [76, 78].

Prediction explanation aims at explaining the local behavior of a model, i.e., the prediction for a given input
instance. For a classi�cation task, these methods can provide, for example, explanations about which part of
the input in�uenced the classi�er's prediction the most. For classi�cation of gait data, the explanation should
highlight all relevant signal regions and characteristic signal shapes in the input data, which are associated with a
particular gait disorder. Two main categories can be distinguished for explaining the local behavior of a machine
learning model: i)self-explainingmodels and ii)post-hocmethods.

Self-explaining models integrate components that learn relationships between input data and predictions
during training. Simultaneously, they learn how these relationships relate to terms from a prede�ned dictionary
and consequently generate explanations from them. A self-explaining approach which does not visually highlight
relevant regions in input data but generates textual explanations was proposed by Hendricks et al. [24]. This self-
explaining model combines a Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN). The
CNN learns discriminative features to perform a classi�cation task, while the RNN generates textual explanations
of the prediction. This approach cannot be applied to a previously trained model in a post-hoc manner, which
limits the practical applicability of such approaches.

Post-hoc methods provide much greater applicability as they can be applied to already trained models. These
methods can be further categorized into i) propagation-based, ii) perturbation-based, and iii) Shapley-value-based
methods.Propagation-based methodsdetermine the contributions of each input feature by (back-)propagating
some quantity of interest from the model's output layer to the input layer. Sensitivity Analysis [83] has been
introduced to Support Vector Machines (SVM) [8] and CNNs [66] in the form of saliency maps. Layer-wise
Relevance Propagation (LRP) [7, 44] and Deep Learning Important FeaTures (DeepLIFT) [64] are methods that
propagate importance scores from the output layer back to the input, thereby enabling the identi�cation of positive
and negative evidences for a speci�c prediction. Sensitivity Analysis and the therewith obtained explanations,
in general, su�er from the e�ects of shattered gradients [10], especially so in more complex (deeper) networks.
Modern approaches to CNN explainability, such as LRP or DeepLift, do not have this problem and work well
for a wider range of network architectures and models in general [32, 46]. Perturbation-based methods, such as
those introduced by Fong and Vedaldi [19] or Zintgraf et al. [82], treat the model as a black box and estimate the
importance of input features by (partially) occluding the input and measuring the e�ect on the model output.
While some methods produce explanations directly from a perturbation process, others employ a learning
component � e.g., the Interpretable Model-agnostic Explanations (LIME) method [56] � to estimate locally
interpretable surrogate models mimicking the prediction process of the black-box model. Perturbation-based
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methods can be considered to be model-agnostic, as they do not require access to internal model parameters or
structures to operate. However, this model-agnosticism is bought at a considerable computational cost, compared
to propagation-based approaches.Shapley-value-based methodsattempt to approximate the Shapley values of
a given prediction. For this purpose, the e�ect of omitting an input feature is examined, taking into account
all possible combinations of other input features, that can be included or excluded [72]. Lundberg and Lee [38]
proposed the SHapley Additive exPlanations (SHAP) method, which is a uni�ed approach building upon the
theory of Shapley values and existing propagation-based and perturbation-based methods, e.g., LIME, DeepLIFT,
and LRP.

Model explanation provides an interpretation of what a trained model has learned, i.e., the most characteristic
representations or prototypes for an entire class are visualized (e.g., a class of gait disorders in CGA). These
methods can indicate which classes overlap and point out ambiguous input features. In addition to saliency
maps, Simonyan et al. [66] proposed a method for generating a representative visualization for a speci�c class
that was learned by a CNN. For this purpose, they applied activation maximization, i.e., starting with a blank
image, each pixel is changed by utilizing back-propagation so that the activity of a neuron is increased. The
resulting visualizations give a �rst impression about the patterns learned but are highly abstract and can only be
interpreted to a limited extent. To generate visualizations that are easier to interpret, Nguyen et al. [48] proposed
a method to constrain the optimization process by image priors that were learned automatically. Lapuschkin et
al. [35] proposed the Spectral Relevance Analysis (SpRAy) which summarizes a model's learned strategies by
analyzing similarities and dissimilarities over large quantities of input relevance maps computed with respect to
a category of interest.

For gait classi�cation, prediction explanation is desirable to provide clinical experts with detailed information
about which patterns in the input signals are important for a speci�c prediction. Additionally, based on aggrega-
tions of these explanations, di�erences between patient groups can be assessed, i.e., in terms of class-speci�c
model explanations. In this context, post-hoc methods are preferable because they provide a classi�er-agnostic
approach (can be applied to any classi�cation model) and do not require retraining or additional labels. We,
therefore, choose a established post-hoc explainability method, i.e., LRP, in our experiments.

3 APPROACH AND METHODOLOGY
The general approach we followed in this study was to design and train classi�cation models for automated gait
classi�cation tasks (see Figure 1B) based on three-dimensional ground reaction forces (GRFs) of both legs (see
Figure 1A), to explain the predictions of these models based on relevance scores that are related to the input
signal space by using LRP (see Figure 1C), and to evaluate these results from a statistical (see Figure 1D) and a
clinical perspective (see Figure 1E). The experimental setup, including a detailed description of the data (pre-)
processing and classi�cation pipeline, can be found in Section 4.

3.1 Gait Classification
The main task in automated gait classi�cation is to determine whether a person has a healthy or pathological gait
pattern based on gait measurements. We employed three-dimensional GRFs of the a�ected and una�ected side as
input signals and investigated the classi�cation performance of several state-of-the-art classi�cation methods.
Furthermore, the input signals were fed directly into the classi�cation models. This ensures that the results of the
employed explainability method (LRP) can be directly mapped to the original signals. For easier interpretation of
the XAI results, we refrained from using data reduction techniques such as e.g., Principal Component Analysis
(PCA), which are a common practice in automated gait classi�cation [12, 22, 69].

, Vol. 1, No. 1, Article . Publication date: July 2020.



236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282
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Fig. 1. Overview of our proposed workflow for data acquisition, prediction and prediction explanation in automated gait
classification, showing the data of one participant belonging to the knee disorder class. (A) The clinical gait analysis consists
of five recordings of each participant walking barefoot (unassisted) a distance of 10 m at a self-selected walking speed. Two
centrally-embedded force plates capture the three-dimensional ground reaction forces (GRFs) during the stance phase of
the right and le� foot. (B) The GRF comprising the medio-lateral (�'� "! ), anterior-posterior (�'� �% ), and vertical (�'� + )
force components of the a�ected and una�ected side are used as time-normalized and concatenated input vectorG(1� 606-
dimensional) for the prediction of the knee disorder class using a classifier (e.g., CNN). (C) Decomposition of input relevance
scores is achieved using LRP. The color spectrum for the visualization of input relevance scores of the model predictions is
shown in the bo�om right corner. Black line segments are irrelevant to the model's prediction. Warm hues identify input
segments causing a prediction corresponding to the class label, while cool hues are features contradicting the class label. (D)
Statistical and (E) Clinical evaluation of class-specific averaged relevance scores.

3.2 Prediction Explanation
We employed Layer-wise Relevance Propagation (LRP) for prediction explanation [7] as a propagation-based
post-hoc method that provides explanations in the input space, which is the space where the signals are usually
interpreted by experts in clinical practice. LRP reversely iterates over the layered structure of an ML model to
produce an explanation. Consider a neural network:

5¹Gº = 5! � � � � � 51¹Gº ” (1)

An SVM model can be regarded as a single-layer neural network, and thus a special case of Equation(1). In
a forward pass, activations are computed at each layer5; of the neural network, depending on the learned
parameters of the model and the previous layers' activations. The activation score in the output layer5! forms the
prediction5¹Gº, which is then, for a speci�c class and neuron of interest, back-propagated and redistributed layer
by layer until the input is reached. The method yields time- and signal-resolved input relevance scores' 8 for each
individual value of the input vectorG8. The redistribution process follows a conservation principle analogous
to Kirchho�'s laws in electrical circuits, i.e., all relevance assigned to any neuron during the back-propagation
process is redistributed without loss to its inputs in the underlying layer. The relevance back-propagation �ow is
illustrated in Figure 2.
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Fig. 2. Illustration of the LRP back-propagation procedure applied to a neural network function5¹Gº = 5! � � � � � 51¹Gº. The
prediction at the output is propagated backward in the network, until the input features are reached and relevance scores are
obtained for all input features and hidden units as' 8, ' 9 and' : respectively. The propagation flow is shown in red color.

Various purposeful propagation rules have been proposed in the literature [7, 32, 44]. For example, the
LRPY rule [7] is de�ned as:

' 9 : =
I 9:

I : ¸ Y� sign¹I : º
' : • (2)

whereI 9: = 09F 9: is the quantity propagated from the9th input neuron to the: th output neuron within a
given layer, depending on the input activation09 and the learned weight parametersF 9: . TheI : =

Í
9I 9: is the

pre-activation of the: th output neuron, aggregating all forward-propagatedI 9: , which includes any potential
bias terms. The variableY� 0 is a free parameter to tune the decomposition rule with the intent to suppress noisy
forward activationsI 9: and divisions by zero1. Equation(2)redistributes' : proportionally based on the relative
contribution of I 9: to I : towards all input components9. After the step of relevance decomposition, lower layer
neuron relevance is aggregated from incoming relevance messages as' 9 =

Í
: ' 9 : .

Other propagation rules such as LRPW[44], LRPUV, LRPI � or LRP£, are suitable for other application scenarios,
layer types, or particularly deeper neural networks [32, 44, 59] and have been shown to work well in practice [58].

LRP enables to explain the prediction of an ML model as partial contributions of an individual input value.
LRP indicates which information a model uses to predict in favor or against an output class. Thereby, it enables
the interpretation of input relevance scores and their dynamics as representation for a certain class (i.e., healthy
controls or functional disorders in ankle, knee, or hip).

For the explanation of predictions, we decomposed the input relevance scores of each gait trial with LRP. In
order to analyze patterns learned for a speci�c class, we used LRP to decompose the ground truth label (and not
necessarily the predicted value) of the trial. For the visualization of the explanations, we averaged the underlying
GRF signals and the resulting input relevance scores over all trials of a class.

Given that the models investigated in this study are comparatively shallow and are largely una�ected by
detrimental e�ects such as gradient shattering [10, 44, 45], we performed relevance decomposition according
to LRPY with Y= 10� 5 in all layers across the di�erent models (except for the CNN for which we employed the
LRP£ rule at the input layer, which uniformly distributes a neuron's relevance score' : across its receptive �eld,
disregarding any applied transformationsF 9: or input activations09) [32].

1Note that for this purpose the sign function is de�ned as: sign¹Gº = 1 i�. G � 0; else � 1; [7].
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3.3 Statistical Evaluation
To evaluate the derived relevance scores of LRP, we employ Statistical Parametric Mapping (SPM) [51, 52] which
recently received increased attention in the gait analysis community [11, 49]. While standard inference statistical
approaches tend to reduce time-continuous signals to single time-discrete values for statistical testing, SPM allows
to use the entire time-continuous signals to make probabilistic conclusions. It follows the same notion and logic
as classical inference statistics. The main advantages of SPM are that the statistical results are presented in the
original sampling space and that there is no need for a (potentially biasing) parameterization technique [51, 52].
Since the LRP explanations and the results of SPM reside in the same space (the input signal space), we can
leverage SPM to demonstrate the meaningfulness of LRP explanations from a statistical point of view.

LRP and SPM can both be considered explainability approaches, however, they target di�erent goals. SPM �ts
linear models (e.g., general linear models) to the data and tries to explain di�erences in the data (i.e., di�erences
between groups or classes). SPM can thus be considered a data-centric explainability method. LRP tries to explain
the inner working of complex (non-linear) models and can thus be considered a model-centric explainability
method. Both methods are thus complementary to each other. Another di�erence is that LRP can explain individual
model predictions (even without using ground-truth information), while SPM explains data characteristics by
taking the ground truth information (group or class information) into account. As part of Section 6.3, we will
discuss the results obtained with both approaches to address the additional value of LRP in CGA.

For the statistical evaluation we compute independentt-tests using theSPM1D2 package provided by Pataky [52]
for Matlab and investigate di�erences between each GRF signal between two classes (for visualization purposes
we concatenated the results obtained on each GRF component). To take into account the dependence of SPM
results on the choice of a distinct alpha level, we performed experiments with three di�erent alpha levels: 0.01,
0.05, and 0.1. The output of SPM providest-values for each point of the investigated time series and the threshold
corresponding to the chosen alpha level. Thet-values exceeding this threshold indicate statistically signi�cant
di�erences in the corresponding sections of the time series. For a better visibility, we depicted these signi�cant
sections as gray-shaded areas in Figure 5 and Figure 6. We used three di�erent shades of gray for the three di�erent
alpha levels, i.e., dark gray for 0.01, gray for 0.05, and light gray for 0.1. Additionally, we computed thee�ect size
by transforming the resultingt-values to Pearson's correlation coe�cientr using the de�nition by Rosenthal [57].
The e�ect size provides an indicator for the discriminativeness of a given signal region independent of the alpha
level.

3.4 Clinical Evaluation
To evaluate the derived relevance scores of LRP from a clinical perspective, two clinical experts with more than
ten and more than twenty-�ve years' experience in human gait analysis analyzed the explainability results.
The experts evaluated the extent to which regions with the highest input relevance scores correspond to GRF
characteristics from clinical practice and assessed the usefulness of explainability approaches for CGA.

4 EXPERIMENTAL SETUP

4.1 Data Recording and Dataset
For the gait classi�cation task we utilized a subset of the large-scaleGaitRec dataset [28]. This dataset is part
of an existing clinical gait database maintained by a local Austrian rehabilitation center. Before conducting
our experiments approval was obtained from the local Ethics Committee (#GS1-EK-4/299-2014). The employed
dataset contains bilateral three-dimensional ground reaction force (GRF) recordings of patients and healthy

2SPM1Dv.0.4, http://www.spm1d.org/

, Vol. 1, No. 1, Article . Publication date: July 2020.



377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

Explaining Machine Learning Models for Clinical Gait Analysiŝ 9

controls walking unassisted at self-selected walking speed on an approximately 10 m walkway with two centrally-
embedded force plates (Kistler, Type 9281B12, Winterthur, CH). Data were recorded at 2000 Hz, �ltered with a
zero-lag Butterworth �lter of 2nd order with a cut-o� frequency of 20 Hz, time-normalized to 101 points (100%
stance phase), and amplitude-normalized to 100% body weight. During one session participants walked barefoot
or in socks until a minimum number of 5 valid recordings were available. Recordings were de�ned as valid by an
experienced assessor.

Table 1. Demographic details of the employed dataset for each pre-defined class.

Classes N
Age (yrs.)
Mean (SD)

Body Mass (kg)
Mean (SD)

Gender
(m/f)

Walking Speed
(m/s)

Num.
Trials

Healthy Control 62 36.0 (10.8) 72.3 (15.0) 28/34 4.1 (0.3) 310
Hip 37 44.2 (12.5) 81.4 (14.1) 31/6 3.7 (0.3) 185
Knee 52 43.5 (13.8) 85.6 (16.4) 37/15 3.5 (0.4) 260
Ankle 43 42.6 (10.9) 91.6 (20.4) 36/7 3.4 (0.4) 215
Total 194 41.1 (12.4) 81.9 (18.0) 132/62 3.7 (0.5) 970

In total, the dataset comprises GRF measurements from 132 patients with lower-body gait disorders (�� ) and
data from 62 healthy controls (�� ), both of various physical composition and gender. The dataset includes three
classes of orthopaedic gait disorders associated with the hip (� , N=37), knee ( , N=52), and ankle (� , N=43). For
class-speci�c demographic details of the data refer to Table 1. The dataset is balanced regarding the number
of recorded sessions per person and the number of trials per person. Figure 3 shows an overview of all GRF
measurements of the a�ected side (except for healthy controls where each step is visualized) per class and the
associated mean and standard deviation. The�� classes (� , � , and ) include patients after joint replacement
surgery, fractures, ligament ruptures, and related disorders associated with the above-mentioned anatomical
areas. A well-experienced physical therapist with more than a decade of clinical experience manually labeled the
dataset based on the available medical diagnosis of each patient.

4.2 Input Data Preparation
The input data for each classi�cation task is a concatenated version of the three-dimensional GRF signals from
both force plates (see Figure 1). The concatenation of all six GRF signals (three force components per force
plate) results in a 1� 606-dimensional input vector for each gait trial. The three-dimensional GRF signals are the
medio-lateral horizontal force (�'� "! ), anterior-posterior horizontal force (�'� �% ), and vertical force (�'� + ).
The dataset includes only unilateral gait disorders, i.e., disorders where the main physical limitation can be
attributed to one leg (thea�ected leg/sidein the following). The signal components of the a�ected leg (input
features: 1 to 303) are concatenated �rst and are followed by the signal components of the una�ected leg (input
features: 304 to 606) in the input vector. For the healthy controls there is no a�ected and una�ected side (both
sides are una�ected). Thus, the order of the signals was randomly assigned, while ensuring an equal distribution,
to avoid any bias regarding the side.

4.3 Data Normalization
Normalization of input vectors is applied to ensure an equal contribution of all six GRF signals to the classi�cation
models and thus avoids that signals with larger numeric ranges dominate those with smaller numeric ranges [14,
31]. We applied min-max normalization to the input signals and thereby scaled each signal to the range»0•1¼.
The global minimum and maximum values were determined separately for each of the six GRF signals over all
trials.
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