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character. This article investigates the usefulness of Explainable Artificial Intelligence (XAI) methods to increase transparency
in automated clinical gait classification based on time series. For this purpose, predictions of state-of-the-art classification
methods are explained with a XAI method called Layer-wise Relevance Propagation (LRP). Our main contribution is an
approach that explains class-specific characteristics learned byMLmodels that are trained for gait classification. We investigate
several gait classification tasks and employ different classification methods, i.e., Convolutional Neural Network, Support
Vector Machine, and Multi-layer Perceptron. We propose to evaluate the obtained explanations with two complementary
approaches: a statistical analysis of the underlying data using Statistical Parametric Mapping and a qualitative evaluation
by two clinical experts. A gait dataset comprising ground reaction force measurements from 132 patients with different
lower-body gait disorders and 62 healthy controls is utilized. Our experiments show that explanations obtained by LRP
exhibit promising statistical properties concerning inter-class discriminativity and are also in line with clinically relevant
biomechanical gait characteristics.

CCS Concepts: • Computing methodologies→ Neural networks; • Applied computing→Health care information
systems.

Additional KeyWords and Phrases: clinical gait analysis, human gait classification, explainable artificial intelligence, layer-wise
relevance propagation, statistical parametric mapping, ground reaction forces, convolutional neural networks
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Djordje Slijepcevic, Fabian Horst, Brian Horsak, Sebastian Lapuschkin, Anna-Maria Raberger, Andreas Kranzl, Wojciech
Samek, Christian Breiteneder, Wolfgang Immanuel Schöllhorn, and Matthias Zeppelzauer. 2020. Explaining Machine Learning
Models for Clinical Gait Analysis. 1, 1 (July 2020), 42 pages. https://doi.org/10.1145/1122445.1122456

1 INTRODUCTION
Artificial Intelligence (AI) and machine learning (ML) techniques have become almost ubiquitous in our daily
lives by supporting or guiding our decisions and providing recommendations. Impressively, there are certain
medical tasks, such as the detection of skin or breast cancer, that ML approaches have already been able to solve
more efficiently and effectively than humans [16, 21, 42]. Therefore, it is not surprising that ML approaches
are currently becoming popular in the healthcare sector [74]. This trend has also been recognized in the field
of clinical gait analysis (CGA) [18, 62]. CGA focuses on the quantitative description and analysis of human
gait from a kinematic (i.e., joint angles), kinetic (i.e., ground reaction forces and joint moments), and muscular
(i.e., electromyographic activity) point of view [9, 80]. Thereby, CGA produces a vast amount of data [22, 55],
which are difficult to comprehend due to their multi-dimensional and multi-correlated nature [13, 81]. In the
last years, ML methods have been successfully employed in CGA for the classification of patient groups [18, 62]
such as stroke [36, 53], Parkinson’s disease [77], cerebral palsy [75], multiple sclerosis [3], osteoarthritis [50],
and patients suffering from different functional gait disorders [67]. While ML approaches yield promising results
regarding classification performance, most share a central limitation, which is their black-box character [1]. This
means that even if the underlying mathematical principles in these methods are understood, it is often unclear
why a particular prediction has been made and if meaningfully grounded patterns have led to this prediction.
Additionally, the black-box character also hinders ML approaches to provide justifications of their predictions.
This is, however, necessary for compliance with legislation such as the General Data Protection Regulation
(GDPR, EU 2016/679) [1, 17, 23]. These factors currently limit the application of ML-based decision-support
systems in medical practice [26, 60].
Due to the aforementioned reasons, the field of Explainable Artificial Intelligence (XAI) gained increasing

attention in recent years. Different approaches have been proposed (see Section 2: Related work). In general,
XAI methods intend to illustrate how complex and non-linear ML models operate and how they produced their
predictions. However, explanation is understood in the sense of providing more differentiated insights into the
behaviour of ML models in order to fathom the dependence of the results on input variables (without claiming
to give causation). Even though research in XAI is still in an early stage, the application of such approaches in
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medicine has already raised attention [26, 73]. The motivation is to increase the traceability and trust of medical
professionals in ML approaches [27]. However, application of XAI methods to the field of CGA remains to be
investigated. A first step in that direction has recently been taken by Horst et al. [29] for explaining predictions
in gait-based person recognition.
The primary aim of this article is to investigate and explain which class-specific characteristics ML models

learn from CGA data, i.e., time series. For this purpose, we train several classification models for different
gait classification tasks and extract prediction explanations from the trained models via Layer-wise Relevance
Propagation (LRP). Subsequently, the explanations of the individual predictions are aggregated to obtain class-
specific model explanations. The assessment of the resulting explanations is, however, a challenge since no
ground truth exists for automatically generated explanations in CGA. In contrast to images, which are more
frequently subject to explainability studies [2, 19, 58, 59], the evaluation of explanations becomes particularly
challenging when the input signals are more abstract and thus not straightforward to interpret, as often is the case
with biomedical signals. Recently, it has been shown that XAI approaches do not necessarily refer to the actual
prediction of the classification model and sometimes even build upon unrelated information [2]. Thus, a more
comprehensive investigation of explanations obtained by XAI methods is necessary to verify whether they are
meaningful and justified. To account for the above-mentioned challenges, we suggest a two-step approach for the
evaluation of the obtained explanations. First, we analyze the discriminatory power of the obtained explanations
from a statistical perspective. For this purpose, we leverage Statistical Parametric Mapping (SPM) [51] – a method
building upon random field theory – to derive statistical measures along with the input signals and thereby
investigate how statistically justified the obtained explanations are. Second, two experienced clinical experts
interpret the explainability results from a clinical perspective, to evaluate whether obtained explanations match
characteristics from clinical practice.
Our investigation focuses on two leading research questions:

(1) Which input features or signal regions are most relevant for automatic gait classification?
(2) To what extent are input features or signal regions identified as being relevant for a given gait classification

task statistically justified and in line with clinical assessment?

In addition to these two leading questions, we investigate several further aspects that may influence classi-
fication performance as well as explainability in more detail, including the influence of different classification
methods, the impact of data normalization, and the role of different input signal components (i.e., the horizontal
forces, measurements of the affected leg and measurements of the unaffected leg). We perform our investigation
on the GaitRec dataset [28], which contains ground reaction force measurements from clinical practice. We
design prediction models for different gait classification tasks and derive possible explanations from the resulting
models that are based on relevance scores. These relevance scores are directly related to specific regions in the
input signal. Subsequently, we analyze the explanations from a statistical as well as a clinical perspective. The
results show that explanations share promising statistical properties concerning class discriminativity and thus
indicate that predictions are grounded on statistically justified information for the task. Further, we show that
input features considered as relevant can also be interpreted as meaningful and clinically relevant biomechanical
gait characteristics. Overall, our investigation demonstrates the usefulness of XAI in the domain of gait classifi-
cation, exemplifies how to apply XAI methods to gait measurement data, and suggests approaches to evaluate
their quality. The performed study suggests that XAI methods can be useful to better understand and interpret
automatic predictions in clinical gait analysis and thus has the potential to yield an added value for clinical
practice in future.
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2 RELATED WORK
Methods from XAI can be grouped according to the type of explanation they provide. We distinguish between
XAI approaches for (i) data exploration, (ii) prediction explanation and (iii)model explanation based on
an adaptation of the taxonomy introduced by Arya et al. [6]. In the following, we briefly introduce the three
different types of approaches and their capabilities.
Data exploration includes methods from the fields of visual analytics, statistics and unsupervised machine

learning. As such, the methods are not capable of explaining a model but rather the data on which the model
is trained. These methods focus on projecting the data into a space where it is possible to find meaningful
structures or clusters and thus understand the data in more detail. A popular approach for data exploration
introduced by Maaten and Hinton [39] is T-distributed Stochastic Neighbor Embedding (t-SNE), which projects
high-dimensional data into a lower-dimensional and visualizable space. The projection is performed in a way that
the cluster structure in the original data space is optimally exposed. Thereby, an understanding of the data and
the identification of typical patterns and clusters in the data is facilitated. Other approaches in this category are
visual analytics approaches that employ advanced techniques for the interactive visualization of data to support
data exploration, i.e., finding characteristic patterns or dependencies within data [76, 78].
Prediction explanation aims at explaining the local behavior of a model, i.e., the prediction for a given input

instance. For a classification task, these methods can provide, for example, explanations about which part of
the input influenced the classifier’s prediction the most. For classification of gait data, the explanation should
highlight all relevant signal regions and characteristic signal shapes in the input data, which are associated with a
particular gait disorder. Two main categories can be distinguished for explaining the local behavior of a machine
learning model: i) self-explaining models and ii) post-hoc methods.
Self-explaining models integrate components that learn relationships between input data and predictions

during training. Simultaneously, they learn how these relationships relate to terms from a predefined dictionary
and consequently generate explanations from them. A self-explaining approach which does not visually highlight
relevant regions in input data but generates textual explanations was proposed by Hendricks et al. [24]. This self-
explaining model combines a Convolutional Neural Network (CNN) and a Recurrent Neural Network (RNN). The
CNN learns discriminative features to perform a classification task, while the RNN generates textual explanations
of the prediction. This approach cannot be applied to a previously trained model in a post-hoc manner, which
limits the practical applicability of such approaches.

Post-hoc methods provide much greater applicability as they can be applied to already trained models. These
methods can be further categorized into i) propagation-based, ii) perturbation-based, and iii) Shapley-value-based
methods. Propagation-based methods determine the contributions of each input feature by (back-)propagating
some quantity of interest from the model’s output layer to the input layer. Sensitivity Analysis [83] has been
introduced to Support Vector Machines (SVM) [8] and CNNs [66] in the form of saliency maps. Layer-wise
Relevance Propagation (LRP) [7, 44] and Deep Learning Important FeaTures (DeepLIFT) [64] are methods that
propagate importance scores from the output layer back to the input, thereby enabling the identification of positive
and negative evidences for a specific prediction. Sensitivity Analysis and the therewith obtained explanations,
in general, suffer from the effects of shattered gradients [10], especially so in more complex (deeper) networks.
Modern approaches to CNN explainability, such as LRP or DeepLift, do not have this problem and work well
for a wider range of network architectures and models in general [32, 46]. Perturbation-based methods, such as
those introduced by Fong and Vedaldi [19] or Zintgraf et al. [82], treat the model as a black box and estimate the
importance of input features by (partially) occluding the input and measuring the effect on the model output.
While some methods produce explanations directly from a perturbation process, others employ a learning
component – e.g., the Interpretable Model-agnostic Explanations (LIME) method [56] – to estimate locally
interpretable surrogate models mimicking the prediction process of the black-box model. Perturbation-based
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methods can be considered to be model-agnostic, as they do not require access to internal model parameters or
structures to operate. However, this model-agnosticism is bought at a considerable computational cost, compared
to propagation-based approaches. Shapley-value-based methods attempt to approximate the Shapley values of
a given prediction. For this purpose, the effect of omitting an input feature is examined, taking into account
all possible combinations of other input features, that can be included or excluded [72]. Lundberg and Lee [38]
proposed the SHapley Additive exPlanations (SHAP) method, which is a unified approach building upon the
theory of Shapley values and existing propagation-based and perturbation-based methods, e.g., LIME, DeepLIFT,
and LRP.
Model explanation provides an interpretation of what a trained model has learned, i.e., the most characteristic

representations or prototypes for an entire class are visualized (e.g., a class of gait disorders in CGA). These
methods can indicate which classes overlap and point out ambiguous input features. In addition to saliency
maps, Simonyan et al. [66] proposed a method for generating a representative visualization for a specific class
that was learned by a CNN. For this purpose, they applied activation maximization, i.e., starting with a blank
image, each pixel is changed by utilizing back-propagation so that the activity of a neuron is increased. The
resulting visualizations give a first impression about the patterns learned but are highly abstract and can only be
interpreted to a limited extent. To generate visualizations that are easier to interpret, Nguyen et al. [48] proposed
a method to constrain the optimization process by image priors that were learned automatically. Lapuschkin et
al. [35] proposed the Spectral Relevance Analysis (SpRAy) which summarizes a model’s learned strategies by
analyzing similarities and dissimilarities over large quantities of input relevance maps computed with respect to
a category of interest.

For gait classification, prediction explanation is desirable to provide clinical experts with detailed information
about which patterns in the input signals are important for a specific prediction. Additionally, based on aggrega-
tions of these explanations, differences between patient groups can be assessed, i.e., in terms of class-specific
model explanations. In this context, post-hoc methods are preferable because they provide a classifier-agnostic
approach (can be applied to any classification model) and do not require retraining or additional labels. We,
therefore, choose a established post-hoc explainability method, i.e., LRP, in our experiments.

3 APPROACH AND METHODOLOGY
The general approach we followed in this study was to design and train classification models for automated gait
classification tasks (see Figure 1B) based on three-dimensional ground reaction forces (GRFs) of both legs (see
Figure 1A), to explain the predictions of these models based on relevance scores that are related to the input
signal space by using LRP (see Figure 1C), and to evaluate these results from a statistical (see Figure 1D) and a
clinical perspective (see Figure 1E). The experimental setup, including a detailed description of the data (pre-)
processing and classification pipeline, can be found in Section 4.

3.1 Gait Classification
The main task in automated gait classification is to determine whether a person has a healthy or pathological gait
pattern based on gait measurements. We employed three-dimensional GRFs of the affected and unaffected side as
input signals and investigated the classification performance of several state-of-the-art classification methods.
Furthermore, the input signals were fed directly into the classification models. This ensures that the results of the
employed explainability method (LRP) can be directly mapped to the original signals. For easier interpretation of
the XAI results, we refrained from using data reduction techniques such as e.g., Principal Component Analysis
(PCA), which are a common practice in automated gait classification [12, 22, 69].
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Fig. 1. Overview of our proposed workflow for data acquisition, prediction and prediction explanation in automated gait
classification, showing the data of one participant belonging to the knee disorder class. (A) The clinical gait analysis consists
of five recordings of each participant walking barefoot (unassisted) a distance of 10 m at a self-selected walking speed. Two
centrally-embedded force plates capture the three-dimensional ground reaction forces (GRFs) during the stance phase of
the right and left foot. (B) The GRF comprising the medio-lateral (𝐺𝑅𝐹𝑀𝐿), anterior-posterior (𝐺𝑅𝐹𝐴𝑃 ), and vertical (𝐺𝑅𝐹𝑉 )
force components of the affected and unaffected side are used as time-normalized and concatenated input vector 𝑥 (1×606-
dimensional) for the prediction of the knee disorder class using a classifier (e.g., CNN). (C) Decomposition of input relevance
scores is achieved using LRP. The color spectrum for the visualization of input relevance scores of the model predictions is
shown in the bottom right corner. Black line segments are irrelevant to the model’s prediction. Warm hues identify input
segments causing a prediction corresponding to the class label, while cool hues are features contradicting the class label. (D)
Statistical and (E) Clinical evaluation of class-specific averaged relevance scores.

3.2 Prediction Explanation
We employed Layer-wise Relevance Propagation (LRP) for prediction explanation [7] as a propagation-based
post-hoc method that provides explanations in the input space, which is the space where the signals are usually
interpreted by experts in clinical practice. LRP reversely iterates over the layered structure of an ML model to
produce an explanation. Consider a neural network:

𝑓 (𝑥) = 𝑓𝐿 ◦ · · · ◦ 𝑓1 (𝑥) . (1)

An SVM model can be regarded as a single-layer neural network, and thus a special case of Equation (1). In
a forward pass, activations are computed at each layer 𝑓𝑙 of the neural network, depending on the learned
parameters of the model and the previous layers’ activations. The activation score in the output layer 𝑓𝐿 forms the
prediction 𝑓 (𝑥), which is then, for a specific class and neuron of interest, back-propagated and redistributed layer
by layer until the input is reached. The method yields time- and signal-resolved input relevance scores 𝑅𝑖 for each
individual value of the input vector 𝑥𝑖 . The redistribution process follows a conservation principle analogous
to Kirchhoff’s laws in electrical circuits, i.e., all relevance assigned to any neuron during the back-propagation
process is redistributed without loss to its inputs in the underlying layer. The relevance back-propagation flow is
illustrated in Figure 2.
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Rj

R = (Ri)i

RkRj←k

Fig. 2. Illustration of the LRP back-propagation procedure applied to a neural network function 𝑓 (𝑥) = 𝑓𝐿 ◦ · · · ◦ 𝑓1 (𝑥). The
prediction at the output is propagated backward in the network, until the input features are reached and relevance scores are
obtained for all input features and hidden units as 𝑅𝑖 , 𝑅 𝑗 and 𝑅𝑘 respectively. The propagation flow is shown in red color.

Various purposeful propagation rules have been proposed in the literature [7, 32, 44]. For example, the
LRP𝜀 rule [7] is defined as:

𝑅 𝑗←𝑘 =
𝑧 𝑗𝑘

𝑧𝑘 + 𝜀 · sign(𝑧𝑘 )
𝑅𝑘 , (2)

where 𝑧 𝑗𝑘 = 𝑎 𝑗𝑤 𝑗𝑘 is the quantity propagated from the 𝑗 th input neuron to the 𝑘 th output neuron within a
given layer, depending on the input activation 𝑎 𝑗 and the learned weight parameters𝑤 𝑗𝑘 . The 𝑧𝑘 =

∑
𝑗 𝑧 𝑗𝑘 is the

pre-activation of the 𝑘 th output neuron, aggregating all forward-propagated 𝑧 𝑗𝑘 , which includes any potential
bias terms. The variable 𝜀 ≥ 0 is a free parameter to tune the decomposition rule with the intent to suppress noisy
forward activations 𝑧 𝑗𝑘 and divisions by zero1. Equation (2) redistributes 𝑅𝑘 proportionally based on the relative
contribution of 𝑧 𝑗𝑘 to 𝑧𝑘 towards all input components 𝑗 . After the step of relevance decomposition, lower layer
neuron relevance is aggregated from incoming relevance messages as 𝑅 𝑗 =

∑
𝑘 𝑅 𝑗←𝑘 .

Other propagation rules such as LRP𝛾 [44], LRP𝛼𝛽 , LRP𝑧𝐵 or LRP♭, are suitable for other application scenarios,
layer types, or particularly deeper neural networks [32, 44, 59] and have been shown to work well in practice [58].

LRP enables to explain the prediction of an ML model as partial contributions of an individual input value.
LRP indicates which information a model uses to predict in favor or against an output class. Thereby, it enables
the interpretation of input relevance scores and their dynamics as representation for a certain class (i.e., healthy
controls or functional disorders in ankle, knee, or hip).
For the explanation of predictions, we decomposed the input relevance scores of each gait trial with LRP. In

order to analyze patterns learned for a specific class, we used LRP to decompose the ground truth label (and not
necessarily the predicted value) of the trial. For the visualization of the explanations, we averaged the underlying
GRF signals and the resulting input relevance scores over all trials of a class.
Given that the models investigated in this study are comparatively shallow and are largely unaffected by

detrimental effects such as gradient shattering [10, 44, 45], we performed relevance decomposition according
to LRP𝜀 with 𝜀 = 10−5 in all layers across the different models (except for the CNN for which we employed the
LRP♭ rule at the input layer, which uniformly distributes a neuron’s relevance score 𝑅𝑘 across its receptive field,
disregarding any applied transformations𝑤 𝑗𝑘 or input activations 𝑎 𝑗 ) [32].

1Note that for this purpose the sign function is defined as: sign(𝑥) = 1 iff. 𝑥 ≥ 0; else − 1; [7].
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3.3 Statistical Evaluation
To evaluate the derived relevance scores of LRP, we employ Statistical Parametric Mapping (SPM) [51, 52] which
recently received increased attention in the gait analysis community [11, 49]. While standard inference statistical
approaches tend to reduce time-continuous signals to single time-discrete values for statistical testing, SPM allows
to use the entire time-continuous signals to make probabilistic conclusions. It follows the same notion and logic
as classical inference statistics. The main advantages of SPM are that the statistical results are presented in the
original sampling space and that there is no need for a (potentially biasing) parameterization technique [51, 52].
Since the LRP explanations and the results of SPM reside in the same space (the input signal space), we can
leverage SPM to demonstrate the meaningfulness of LRP explanations from a statistical point of view.

LRP and SPM can both be considered explainability approaches, however, they target different goals. SPM fits
linear models (e.g., general linear models) to the data and tries to explain differences in the data (i.e., differences
between groups or classes). SPM can thus be considered a data-centric explainability method. LRP tries to explain
the inner working of complex (non-linear) models and can thus be considered a model-centric explainability
method. Bothmethods are thus complementary to each other. Another difference is that LRP can explain individual
model predictions (even without using ground-truth information), while SPM explains data characteristics by
taking the ground truth information (group or class information) into account. As part of Section 6.3, we will
discuss the results obtained with both approaches to address the additional value of LRP in CGA.

For the statistical evaluationwe compute independent t-tests using the SPM1D2 package provided by Pataky [52]
for Matlab and investigate differences between each GRF signal between two classes (for visualization purposes
we concatenated the results obtained on each GRF component). To take into account the dependence of SPM
results on the choice of a distinct alpha level, we performed experiments with three different alpha levels: 0.01,
0.05, and 0.1. The output of SPM provides t-values for each point of the investigated time series and the threshold
corresponding to the chosen alpha level. The t-values exceeding this threshold indicate statistically significant
differences in the corresponding sections of the time series. For a better visibility, we depicted these significant
sections as gray-shaded areas in Figure 5 and Figure 6. We used three different shades of gray for the three different
alpha levels, i.e., dark gray for 0.01, gray for 0.05, and light gray for 0.1. Additionally, we computed the effect size
by transforming the resulting t-values to Pearson’s correlation coefficient r using the definition by Rosenthal [57].
The effect size provides an indicator for the discriminativeness of a given signal region independent of the alpha
level.

3.4 Clinical Evaluation
To evaluate the derived relevance scores of LRP from a clinical perspective, two clinical experts with more than
ten and more than twenty-five years’ experience in human gait analysis analyzed the explainability results.
The experts evaluated the extent to which regions with the highest input relevance scores correspond to GRF
characteristics from clinical practice and assessed the usefulness of explainability approaches for CGA.

4 EXPERIMENTAL SETUP

4.1 Data Recording and Dataset
For the gait classification task we utilized a subset of the large-scale GaitRec dataset [28]. This dataset is part
of an existing clinical gait database maintained by a local Austrian rehabilitation center. Before conducting
our experiments approval was obtained from the local Ethics Committee (#GS1-EK-4/299-2014). The employed
dataset contains bilateral three-dimensional ground reaction force (GRF) recordings of patients and healthy

2SPM1D v.0.4, http://www.spm1d.org/
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controls walking unassisted at self-selected walking speed on an approximately 10 m walkway with two centrally-
embedded force plates (Kistler, Type 9281B12, Winterthur, CH). Data were recorded at 2000 Hz, filtered with a
zero-lag Butterworth filter of 2nd order with a cut-off frequency of 20 Hz, time-normalized to 101 points (100%
stance phase), and amplitude-normalized to 100% body weight. During one session participants walked barefoot
or in socks until a minimum number of 5 valid recordings were available. Recordings were defined as valid by an
experienced assessor.

Table 1. Demographic details of the employed dataset for each pre-defined class.

Classes N Age (yrs.)
Mean (SD)

Body Mass (kg)
Mean (SD)

Gender
(m/f)

Walking Speed
(m/s)

Num.
Trials

Healthy Control 62 36.0 (10.8) 72.3 (15.0) 28/34 4.1 (0.3) 310
Hip 37 44.2 (12.5) 81.4 (14.1) 31/6 3.7 (0.3) 185
Knee 52 43.5 (13.8) 85.6 (16.4) 37/15 3.5 (0.4) 260
Ankle 43 42.6 (10.9) 91.6 (20.4) 36/7 3.4 (0.4) 215
Total 194 41.1 (12.4) 81.9 (18.0) 132/62 3.7 (0.5) 970

In total, the dataset comprises GRF measurements from 132 patients with lower-body gait disorders (𝐺𝐷) and
data from 62 healthy controls (𝐻𝐶), both of various physical composition and gender. The dataset includes three
classes of orthopaedic gait disorders associated with the hip (𝐻 , N=37), knee (𝐾 , N=52), and ankle (𝐴, N=43). For
class-specific demographic details of the data refer to Table 1. The dataset is balanced regarding the number
of recorded sessions per person and the number of trials per person. Figure 3 shows an overview of all GRF
measurements of the affected side (except for healthy controls where each step is visualized) per class and the
associated mean and standard deviation. The 𝐺𝐷 classes (𝐴, 𝐻 , and 𝐾 ) include patients after joint replacement
surgery, fractures, ligament ruptures, and related disorders associated with the above-mentioned anatomical
areas. A well-experienced physical therapist with more than a decade of clinical experience manually labeled the
dataset based on the available medical diagnosis of each patient.

4.2 Input Data Preparation
The input data for each classification task is a concatenated version of the three-dimensional GRF signals from
both force plates (see Figure 1). The concatenation of all six GRF signals (three force components per force
plate) results in a 1×606-dimensional input vector for each gait trial. The three-dimensional GRF signals are the
medio-lateral horizontal force (𝐺𝑅𝐹𝑀𝐿), anterior-posterior horizontal force (𝐺𝑅𝐹𝐴𝑃 ), and vertical force (𝐺𝑅𝐹𝑉 ).
The dataset includes only unilateral gait disorders, i.e., disorders where the main physical limitation can be
attributed to one leg (the affected leg/side in the following). The signal components of the affected leg (input
features: 1 to 303) are concatenated first and are followed by the signal components of the unaffected leg (input
features: 304 to 606) in the input vector. For the healthy controls there is no affected and unaffected side (both
sides are unaffected). Thus, the order of the signals was randomly assigned, while ensuring an equal distribution,
to avoid any bias regarding the side.

4.3 Data Normalization
Normalization of input vectors is applied to ensure an equal contribution of all six GRF signals to the classification
models and thus avoids that signals with larger numeric ranges dominate those with smaller numeric ranges [14,
31]. We applied min-max normalization to the input signals and thereby scaled each signal to the range [0, 1].
The global minimum and maximum values were determined separately for each of the six GRF signals over all
trials.
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Fig. 3. Visualization of vertical (left panel), anterior-posterior (central panel), and medio-lateral (right panel) force components
of the body weight-normalized GRF measurements of the affected side available per participant and class. For healthy
controls all available measurements are visualized. Mean and standard deviation signals (calculated per class) are highlighted
as solid and dashed colored lines.

4.4 Classification Tasks
We investigate different classification tasks on the dataset introduced above to provide a more comprehensive pic-
ture on the investigated problem and to enable the differentiation between task-specific and general observations.
Classification tasks include:
• binary classification between healthy controls and all gait disorders (𝐻𝐶/𝐺𝐷),
• binary classification between healthy controls and each gait disorder separately (i.e., 𝐻𝐶/𝐻 , 𝐻𝐶/𝐾 , and
𝐻𝐶/𝐴),
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• multi-class classification between healthy controls and all gait disorders (𝐻𝐶/𝐻/𝐾/𝐴),
• and multi-class classification between all gait disorders (𝐻/𝐾/𝐴).

4.5 Classification Methods
In our experiments, three representative machine learning approaches, i.e., (linear) Support Vector Machine
(SVM), Multi-layer Perceptron (MLP), and Convolutional Neural Network (CNN) were compared in terms of
prediction accuracy and learned input relevance patterns. The SVM models were trained using a standard
quadratic optimization algorithm, with an error penalty parameter 𝐶 = 0.1 and ℓ2-constrained regularization of
the learned weight vector𝑤 . The MLP models comprised of three consecutive fully-connected layers with ReLU
non-linearities activating the hidden neurons and a final SoftMax activation in the output layer. The size of both
hidden layers is 768 whereas the size of the output layer is 𝑐 , where 𝑐 is the number of target classes. The CNN
models process the given data via three consecutive convolutional layers, with a <filter size>-<stride>-<output
channel> configuration of 8-2-24, 8-2-24 and 6-3-48, and ReLUs for non-linear neuron activation. The resulting
48×48 feature mapping is then unrolled into a 2304-dimensional vector, and fed into a fully-connected layer,
which directly maps to the model output. This fully-connected layer is topped with a SoftMax output activation,
which is acting as a multi-class predictor output towards the 𝑐 target classes. Both, the MLP and CNN models,
have been trained via standard error back-propagation using stochastic gradient descent [37] and a mean absolute
(ℓ1) loss function. The training procedure was executed for 3 · 104 iterations of mini batches of five randomly
selected training samples and an initial learning rate of 5 · 10−3. The learning rate was gradually decreased after
every 104-th training iteration to 10−3 by a factor of 0.2 and then to 5 · 10−4 by a factor of 0.5. Model weights
were initialized with random values drawn from a normal distribution with 𝜇 = 0 and 𝜎 =𝑚−

1
2 , where𝑚 is the

number of inputs to each output neuron of the layer [37]. Since the CNN receives as input a 1×606-dimensional
input vector, its convolution operations can be understood as 1D convolutions, moving over the time axis only.
We used 1D convolutions to maintain comparability with the two other classification methods (MLP and SVM).
Preliminary experiments demonstrated negligible differences between 1D and 2D CNNs.

4.6 Performance Evaluation
The prediction accuracies were reported over a stratified ten-fold cross validation configuration, where eight
partitions of the data are used for training, one partition is used as validation set and the remaining partition
is reserved for testing. The samples from each class were distributed evenly while ensuring that all gait trials
from an individual participant are placed in the same partition of the data to rule out person-related information
influencing the measured model performance during testing. All results are reported as mean with standard
deviation (SD), unless otherwise stated. Additionally, we calculated the Zero Rule baseline (ZRB) for each
classification task. The ZRB refers to the theoretical accuracy obtained by assigning class labels according to the
prior probabilities of the classes, i.e., the target labels are always set to the class with the greatest cardinality in
the training dataset.

4.7 Implementation
The implementation of the three ML methods and the LRP method was conducted within the software framework
Python 3.7 (Python Software Foundation, USA). Data preprocessing, SPM, and the visualization of the results were
performed in Matlab 2017b (MathWorks, USA). Our source code and the utilised dataset are publicly available at:
https://github.com/sebastian-lapuschkin/explaining-deep-clinical-gait-classification.
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5 RESULTS
We first present the results obtained in our classification experiments as well as from the explainability analysis
and then discuss them in detail in Section 6. We start with a presentation of the classification accuracies achieved
for the different classification methods, tasks, and normalization methods (Section 5.1) and continue with a
presentation of the explainability results obtained by LRP (Section 5.2).

5.1 Classification Results
The mean prediction accuracy showed a clear superiority over the ZRB for all three classification methods
(CNN, SVM, and MLP) and all classification tasks (see Figure 4 and supplementary Table S1). A 2×2 repeated
measures analysis of variance (ANOVA) (classification method: CNN, SVM, and MLP; normalization: min-max
and non-normalized) conducted for each classification task only indicated a significant difference in classification
accuracy between the three classifiers for task 𝐻𝐶/𝐺𝐷 (𝐹2,18 = 4.038, p = 0.036, 𝜂2𝑝 = 0.310). However, differences
were in general not relevant (<2%) and additional pairwise Bonferroni-corrected post-hoc tests failed to identify
any differences as significant. No other significant differences were found for the classifiers’ performances.
Regarding normalization, ANOVA revealed two simple main effects of normalization for task 𝐻/𝐾/𝐴 (𝐹1,9 =
7.269, p = 0.025, 𝜂2𝑝 = 0.447) and task 𝐻𝐶/𝐻/𝐾/𝐴 (𝐹1,9 = 9.054, p = 0.015, 𝜂2𝑝 = 0.502). Estimated marginal means
for normalization during Bonferroni-corrected post-hoc tests showed a performance increase of 6% and 3% for
𝐻/𝐾/𝐴 and 𝐻𝐶/𝐻/𝐾/𝐴, respectively. No further significant effects and differences were found.

5.2 Explainability Results
In the following, we present in detail the results for classification task 𝐻𝐶/𝐺𝐷 together with respective result
visualizations. Figure 5 shows an exemplary result for prediction explanation by LRP, i.e., the averaged signals
together with the color-coded averaged relevance values for each of the 606 input values for task 𝐻𝐶/𝐺𝐷 with
min-max normalized GRF signals. The input relevance values point out which GRF characteristics were most
relevant for (or contradictory to) the classification of a certain class (𝐻𝐶 or 𝐺𝐷). For visualization, input values
neutral to the prediction (𝑅𝑖 ≈ 0) are shown in black color, while warm hues indicate input values supporting
the prediction (𝑅𝑖 ≫ 0) of the analyzed class and cool hues identify contradictory input values (𝑅𝑖 ≪ 0). For
binary classification tasks (𝐻𝐶/𝐺𝐷 , 𝐻𝐶/𝐻 , 𝐻𝐶/𝐾 , and 𝐻𝐶/𝐴), note that a high input relevance value for one
class results in a contradictory input relevance value for the other class. Therefore, the total relevance, which
is the absolute sum of the relevance scores of both classes is a good indicator for the overall relevance of an
input value for a respective classification task. The higher the total relevance at a certain signal region, the more
discriminative is this region for the two underlying classes.
Figure 5 illustrates the signal regions of high input relevance for the classification between the 𝐻𝐶 and 𝐺𝐷

class. These regions are prevalent within all GRF signal components. The most relevant regions for distinguishing
between the two classes have been found to include the local minima and maxima in the affected 𝐺𝑅𝐹𝑉 signal. A
similar pattern, though less pronounced, appears in the unaffected 𝐺𝑅𝐹𝑉 . For 𝐺𝑅𝐹𝐴𝑃 , LRP identified relevant
regions in the affected and unaffected signals, with the maximum peak in the affected signal being the most
pronounced. For 𝐺𝑅𝐹𝑀𝐿 , relevant information appears to be predominantly located around the first lateral
peak of the affected side and the second lateral peak of the unaffected side. The identified regions of high total
relevance according to LRP agree to a large extent with the signal regions assessed as significantly different by
SPM (gray-shaded areas in Figure 5).

Figure 6 shows the effect size obtained via SPM and the total relevance according to LRP for the task 𝐻𝐶/𝐺𝐷
(with min-max normalized GRF signals as in Figure 5) and all three employed classification methods (CNN, SVM,
and MLP). The relevance scores agree strongly between the three classification methods. In fact, only some signal
regions are prioritized differently, e.g., the affected and unaffected 𝐺𝑅𝐹𝑀𝐿 at the beginning and end of the signal.

, Vol. 1, No. 1, Article . Publication date: July 2020.



565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

Explaining Machine Learning Models for Clinical Gait Analysis • 13

30

40

50

60

70

80

90

100

C
N

N
: 

A
cc

u
ra

cy
 (

%
)

30

40

50

60

70

80

90

100

S
V

M
: 

A
cc

u
ra

cy
 (

%
)

HC/GD HC/H HC/K HC/A H/K/A HC/H/K/A

30

40

50

60

70

80

90

100

M
L

P
: 

A
cc

u
ra

cy
 (

%
)

Min-Max Normalization
No Normalization
Zero-Rule Baseline

Fig. 4. Overview of the prediction accuracy obtained for the three employed classification methods (CNN, SVM and MLP)
and all classification tasks with min-max normalized and non-normalized input signals, reported as boxplots enhanced with
the classification accuracies obtained over ten-fold cross validation (represented as individual dots).

These results show that the investigated classification methods rely on the same regions in the input data with
only small exceptions.
For the sake of brevity, only the results for the classification task 𝐻𝐶/𝐺𝐷 were presented. For results of the

other classification tasks we refer the reader to the supplementary Figures S4, S7, S10 (CNN), Figures S6, S9, S12
(SVM), and Figures S5, S8, S11 (MLP). The discussion in the following will incorporate all classification tasks.
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Fig. 5. Results overview for the classification of healthy controls (𝐻𝐶) and the aggregated class of all three gait disorders (𝐺𝐷)
based on min-max normalized GRF signals using a CNN as classifier. (A) Averaged GRF signals for 𝐻𝐶 and 𝐺𝐷 . The first
three signals represent the three GRF components of the affected side and are followed by the three GRF components of
the unaffected side. Note that the data for both sides are composed of three GRF components (e.g., input features of the
affected side: 1 to 101 (𝐺𝑅𝐹𝑀𝐿), 102 to 202 (𝐺𝑅𝐹𝐴𝑃 ), and 203 to 303 (𝐺𝑅𝐹𝑉 )). This means, for example, that input features 21
(𝐺𝑅𝐹𝑀𝐿), 122 (𝐺𝑅𝐹𝐴𝑃 ) and 233 (𝐺𝑅𝐹𝑉 ) all correspond to the relative time of 20% of the same stance phase. The areas, which
are depicted in three different shades of grey for the three different alpha levels, i.e., dark grey for 0.01, grey for 0.05, and
light grey for 0.1, highlight regions in the input signals where SPM indicates statistically significant differences between
both classes (i.e., 𝐻𝐶 and 𝐺𝐷). (B) Averaged GRF signals of all test trials as a line plot for the healthy controls class, with a
band of one standard deviation, color coded via input relevance values for the class (𝐻𝐶) obtained by LRP. (C) Averaged GRF
signals of all test trials are shown as a line plot for the class of all the gait disorders (𝐺𝐷), in the same format as in (B). (D)
Line plots showing the effect size computed as Pearson’s correlation coefficient and total relevance based on the absolute
sum of the LRP relevance values of both classes (𝐻𝐶 and 𝐺𝐷). The total relevance correlates with the local discriminativity
of the input signal for the classification task.

6 DISCUSSION
The primary aim of this article is to investigate whether XAI methods can enhance explainability of ML predictions
in clinical gait classification. In this section, the classification results are analyzed, compared, and interpreted in
terms of classification accuracy and relevance-based explanations. These explanations are, furthermore, evaluated
from a statistical and clinical viewpoint. Additionally, we discuss dependencies, influences, and interesting
observations with respect to different classificationmethods, tasks, normalizationmethods, and signal components
(horizontal forces and affected/unaffected leg signals).
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Fig. 6. Comparison of different classification methods (CNN, SVM, and MLP) for the classification of healthy controls and
the class of all three gait disorders (𝐻𝐶/𝐺𝐷) based on min-max normalized GRF signals. The comparison is based on the
total relevance of the LRP results as well as statistically significant differences (gray-shaded areas) and effect size computed
as Pearson’s correlation coefficient. Note that the gray-shaded areas and the effect size (green curve) are the same, while the
total relevance varies between the three classification methods.

6.1 Classification Results
The results expressed in terms of classification accuracy (presented in Figure 4 and supplementary Table S1)
demonstrate a comparable level of performance between the three different machine learning methods (CNN,
SVM, and MLP). The achieved performance level is not only interesting by itself but also important information
for further explainability experiments. The reason is that an objective analysis of explainability by a post-hoc
method like LRP is only meaningful if the classification model can robustly differentiate between the target
classes, i.e., a certain model quality is necessary to draw meaningful conclusions from explainability results. An
analysis of unreliable classification models bears the potential risk that unstable patterns, noise, and spurious
correlations bias the explainability results. For this reason, we excluded the classification tasks 𝐻𝐶/𝐻/𝐾/𝐴
and 𝐻/𝐾/𝐴 from our further investigation, as the tasks could not be solved with sufficient accuracy (average
classification accuracy above 80%). For the binary classification tasks this risk is much lower, because the higher
classification accuracies (and deviations from ZRB) obtained suggest that robust features can be found in the
input data.

Another aspect we assessed is the influence of normalization on the input data (see Figure 4 and supplementary
Table S1). The normalization of the input data is important for machine learning since highly differing value
ranges can have a negative influence on the classification model, i.e., input variables with a higher value range
have a stronger influence on the predictions [14, 31]. The same appears to be the case for gait data, where
the normalization of the input data strongly influences the classification models, as can be observed from the
relevance scores of the horizontal forces in Figure 5 and supplementary Figure S13. Surprisingly, however,
min-max normalization does not significantly improve the classification results (see Figure 4 and supplementary
Table S1) for the investigated classification tasks. This raises the question of whether the use of 𝐺𝑅𝐹𝑉 alone
would already be sufficient to solve the classification tasks. We discuss this seemingly contradictory behavior in
the following section.
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6.2 Explainability Results
In the following, we discuss different related aspects with regard to our first leading research question: “Which
input features or signal regions are most relevant for automatic gait classification?”. The visualizations
for all classification tasks and classification methods can be found in the supplementary Figures S1–S12.
Which input features are relevant for the classification of functional gait disorders? LRP identified

several regions of high relevance in the GRF signals for all classification tasks. The ML models often used regions
(and not single time-discrete values) encompassing peaks and valleys in the GRF signals to distinguish between
the different classes, e.g., for task 𝐻𝐶/𝐺𝐷 using the CNN (see Figure 5) in the affected and unaffected 𝐺𝑅𝐹𝑉 (all
three local maxima and minima), affected 𝐺𝑅𝐹𝐴𝑃 (both peaks), unaffected 𝐺𝑅𝐹𝐴𝑃 (first peak), affected 𝐺𝑅𝐹𝑀𝐿

(first lateral peak), and unaffected𝐺𝑅𝐹𝑀𝐿 (both lateral peaks). The highest total relevance scores are found in the
signals of the affected side and most commonly in 𝐺𝑅𝐹𝑉 for all investigated classification tasks. This is in line
with earlier studies, e.g., where the peaks and valley (as time-discrete parameters) of the affected 𝐺𝑅𝐹𝑉 showed
the highest discriminatory power [67].
Are signal regions of the unaffected side important for the classification of functional gait disorders?

Across all classification tasks, relevant regions are also pronounced in the GRF signals of the unaffected side, but
less than in those of the affected side. In earlier studies [68, 69], we showed that the omission of the unaffected
side during classification negatively affected classification accuracy. The explainability results confirm this
observation. The unaffected side seems to capture complementary information relevant to the classification task
under consideration. In particular, the identified relevant regions in the GRF signals occur at similar relative (e.g., in
both peaks of 𝐺𝑅𝐹𝑉 ) or absolute (e.g., the second peak of the affected 𝐺𝑅𝐹𝐴𝑃 and the first peak of the unaffected
𝐺𝑅𝐹𝐴𝑃 ) time points of the stance phases of the unaffected and affected side.

Are the anterior-posterior and medio-lateral forces relevant for the task? While the highest total rele-
vance scores can be observed in 𝐺𝑅𝐹𝑉 in most cases, relevant regions are always also observed in the horizontal
GRF signals (𝐺𝑅𝐹𝐴𝑃 and 𝐺𝑅𝐹𝑀𝐿). However, the locations and degree of relevance within the horizontal signals
varies for different classification tasks, e.g., for task 𝐻𝐶/𝐴, the highest relevance scores occur in the affected
𝐺𝑅𝐹𝐴𝑃 (and 𝐺𝑅𝐹𝑉 ) and hardly any relevant region in 𝐺𝑅𝐹𝑀𝐿 (see supplementary Figure S10), while the highest
relevance score for the task 𝐻𝐶/𝐻 appears at the beginning of the affected𝐺𝑅𝐹𝑀𝐿 (see supplementary Figure S4).

What is the impact of normalization on explainability results? Normalization of input data is a standard
procedure prior to classification with ML models to ensure equal numerical ranges of different signals [14, 31].
XAI methods such as LRP allow to visualize the effects of normalization on the predictions of ML models directly
at the level of the input signals. To gain a deeper understanding of these effects and the underlying data, we
also conducted experiments without normalization of input data (see supplementary Figures S13 – S24). For the
classification of non-normalized GRF signals, the most relevant input values are located in 𝐺𝑅𝐹𝑉 , i.e., especially
the two peaks and the valley in between are relevant for the tasks. A minimal degree of relevance can be observed
in the peaks of the affected and unaffected 𝐺𝑅𝐹𝐴𝑃 signals. The reason for the absence of relevant regions in the
horizontal forces could be their small value range. The rather small range compared to the 𝐺𝑅𝐹𝑉 component
may lead to a smaller influence on the training of the classification models. Explainability results for min-max
normalized input data show that highly relevant regions are identified in the horizontal forces of the affected and
unaffected side (e.g., Figure 5). Thus, normalization amplifies the relevance of values in the horizontal forces
and thereby makes them similarly important as 𝐺𝑅𝐹𝑉 . Based on the LRP relevance scores, we conclude that
normalization is important to obtain unbiased predictions of ML models (bias introduced by different signal
amplitudes).
Are all identified relevant regions necessary for the task? For all classification tasks and classification

methods, with min-max normalized input data, many regions of the GRF signals are identified to be relevant for
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classification according to LRP. The classification performance with and without normalization does, however,
not vary significantly for the binary classification tasks (see classification results in Section 5.1). This raises the
question of whether all regions identified as relevant are necessary to achieve peak performance in classification or
whether some of them are redundant (i.e., not yielding an increase in classification performance when combined).
Note that the assumption of redundancy is supported by the fact that the three GRF components represent
individual dimensions of the same three-dimensional physical process. Thus, a strong correlation is a priori given
in the data.

To answer the question, we conducted additional experiments with occluded parts of the input vector and eval-
uated the changes in classification performance. Occlusion is realized by replacing the horizontal forces (𝐺𝑅𝐹𝐴𝑃
and 𝐺𝑅𝐹𝑀𝐿) of both sides (affected and unaffected) with zero values. Table 2 shows the classification results for
the experiments with occluded input signals as deviation from the mean classification accuracy of the experi-
ments with non-occluded input signals. The results decrease on average when the horizontal forces are occluded
(except for tasks 𝐻𝐶/𝐺𝐷 and 𝐻𝐶/𝐴 using the CNN). Thus, relevant regions in the horizontal forces cannot be
completely redundant to those in𝐺𝑅𝐹𝑉 and, therefore, represent also complementary information. This is in line
with previous quantitative performance evaluations [68, 69]. However, the classification results of the binary
classification tasks are not influenced by the occlusion of horizontal forces in a statistically significant way. This
was confirmed by several dependent t-tests (p > 0.05) with Bonferroni-Holm [25] correction. Our results indicate
that the relevant regions identified by LRP may represent an over-complete set, which exhibits a certain degree
of redundancy, as removing relevant sections does not necessarily lead to reduced classification performance.
However, redundancy is not necessarily a negative property, as it may help to achieve higher robustness to noise
and possibly also to outliers and missing data [29].

Table 2. Classification results for the experiment with occluded horizontal forces (𝐺𝑅𝐹𝐴𝑃 ,𝐺𝑅𝐹𝑀𝐿), in percent. The results are
reported as mean deviation from the prediction accuracy of the original input signals presented in Figure 4 and supplementary
Table S1, i.e., negative values signify a decrease and positive values an improvement in classification performance.

Task Normalization CNN SVM MLP
HC/GD min-max 0.2 -1.4 -1.4
HC/H min-max -4.5 -6.5 -4.9
HC/K min-max -2.1 -3.7 -4.2
HC/A min-max 1.5 -0.9 -1.3

Do different ML methods rely on different patterns? A comparison of the three employed classification
methods is depicted in Figure 6. Across all binary classification tasks, relevant signal regions for all three
classification methods are largely consistent, especially with respect to their location. Minor differences exist
in the amplitude of the relevance scores, e.g., at the beginning of the affected 𝐺𝑅𝐹𝑉 or the second peak in the
affected 𝐺𝑅𝐹𝐴𝑃 (see Figure 6). The similarities between MLP and SVM are more pronounced. The remaining
binary classification tasks, i.e., 𝐻𝐶/𝐻 (see supplementary Figures S4, S5, and S6), 𝐻𝐶/𝐾 (see supplementary
Figures S7, S8, and S9) and𝐻𝐶/𝐴 (see supplementary Figures S10, S11, and S12) confirm these findings. Although,
LRP clearly shows where the prediction is grounded, it cannot explain why these patterns are important. However,
it allows to identify and compare the learning strategies of different classification methods.
Canwe derive additional properties of themodels from the explanations, e.g., different learning strate-

gies? Explanations provided by local XAI methods, such as LRP, inform about a model’s reasoning on individual
samples. A more general understanding about the model’s learned patterns can be obtained via the evaluation of
larger sets of sample-specific explanations [34]. In the previous sections, we achieved this by averaging relevance
patterns across all samples of a given class. To perform a more detailed analysis that is able to identify different
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learning strategies of the ML models, we propose the use of Spectral Relevance Analysis (SpRAy) [35] as described
in [5] for clinical gait data. The basic idea of this approach is to cluster the relevance patterns obtained for
different samples and classes and to analyze the resulting clusters and subclusters.
SpRAy is a statistical analysis method for the explorative discovery of a model’s characteristic prediction

strategies from XAI-based relevance patterns. With its core in Spectral Clustering [43, 47], the method discovers
structure within the set of given relevance patterns and yields, among its outputs, a spectral embedding Φ
together with suggested groupings within the embedding in form of 𝑘 cluster labels. Here, the embedding Φ
directly corresponds to the individual relevance patterns, under consideration of their local, global, and potentially
non-linear affinity structure. Sets of samples with similar relevance patterns are tightly grouped together in
the spectral embedding space, while samples with dissimilar patterns are located far apart. Together with the
suggested cluster labels, the analytically derived solution in Φ can then be visualized in R2, e.g., via a t-SNE
projection [5, 39]. We implemented and evaluated SpRAy using the CoRelAy3 framework [4] for Python.
Figure 7 shows exemplary SpRAy results for task 𝐻𝐶/𝐺𝐷 (with min-max normalized GRF signals) using the

CNN as classification method. Based on the clustering provided in Figure 7C and 7F, we see that the relevance
patterns are grouped into clusters. This indicates that the ML model learned different classification strategies.
Considering the ground truth class labels (see Figure 7D), we see that the model’s explanations for the overall
gait disorder (𝐺𝐷) class are grouped into distinct clusters that contain samples from the individual gait disorder
classes (𝐻 , 𝐾 , and 𝐴), even though the model was never explicitly trained to do so in this classification task. This
means that the model learned different strategies for different pathological subclasses in 𝐺𝐷 . Considering the
participant labels (see Figure 7B and Figure 7E), we can see that the relevance patterns of the five trials of a
participant are often clustered together (Figure 7B and 7E). This means that the model learns similar strategies
for the samples belonging to one participant. From a biomechanical perspective, this is plausible because each
individual person has unique gait patterns that differ from the gait patterns of other individuals [30]. For clinical
experts, it is important to see that the model is able to reflect such patterns.
In conclusion, SpRAy demonstrates the ability of ML models to learn patterns and dependencies in the data

without explicit label information. For the clinical domain, this ability is of great value, since pathologies have
various manifestations (that are sometimes even beyond the expertise of a clinical expert).

6.3 Statistical Evaluation
In the following, we investigate the statistical properties of the signal regions found to be relevant by LRP to
answer the second leading research question: To what extent are input features or signal regions identified
as being relevant for a given gait classification task statistically justified?”. To answer this question, we
leverage SPM, which provides statistical inference estimates for each value of the input vector. We compare
the LRP regions with those considered as significantly different by SPM. Results show that in the vast majority
of cases, the SPM analysis shows statistically significant differences in regions which are also highly relevant
for classification according to LRP. Thus, for binary classification tasks, it seems that ML models base their
predictions primarily on features that are also significantly different between the two classes. This can be observed
across all classification tasks (e.g., see Figure 5D for task 𝐻𝐶/𝐺𝐷). As the total relevance increases, the effect size
usually also increases. We performed a cross-correlation to determine the relationship between the effect size
and the total relevance. Both curves show highly correlated behavior for the min-max normalized input data
for all classification tasks: 𝐻𝐶/𝐺𝐷 (r = 0.76), 𝐻𝐶/𝐻 (r = 0.66), 𝐻𝐶/𝐾 (r = 0.76), and 𝐻𝐶/𝐴 (r = 0.78). However,
minimal differences between the results of LRP and SPM can be detected, e.g., the location of the first relevant
signal region in the unaffected 𝐺𝑅𝐹𝑉 . For all classification tasks, we observed that LRP already considers the
slope to the first𝐺𝑅𝐹𝑉 peak of the unaffected leg as relevant for the classification, whereas SPM, slightly shifted,

3https://github.com/virelay/corelay
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Fig. 7. The spectral embedding Φ derived via SpRAy from LRP explanations for the CNN model on test data, visualized via
t-SNE for samples labeled as healthy controls (𝐻𝐶 ; N=30; subfigures A-C) and the aggregated class of all three gait disorders
(𝐺𝐷 = {𝐻,𝐾,𝐴}; N=65; subfigures D-F). Each column of panels marks the embedded sample explanations with respect to
different sets of labels as indicated by color: (subfigures A/D) ground truth class labels (𝐻𝐶 ,𝐻 ,𝐾 ,𝐴), (subfigures B/E) ground
truth participant labels, and (subfigures C/F) cluster labels inferred via SpRAy for 𝑘 = 8 clusters on Φ before projecting the
spectral embedding into R2 via t-SNE. The figure shows that the relevance patterns are grouped into clusters, indicating that
the ML model learned different classification strategies.

emphasizes the region encompassing the peak itself with a high effect size. Future research is needed to address
this observation and examine differences between LRP and SPM in more detail.
Concerning our second research question, we conclude that the relevance estimates according to LRP are to

the greatest extent statistically justified. The second part of the research question regarding the validity of the
explanations with respect to clinical assessment is investigated in the following section.

6.4 Clinical Evaluation
To what extent are input features or signal regions identified as being relevant for a given gait classi-
fication task in line with clinical assessment? This question is answered in the following by two clinical
experts in human gait analysis. To assist the reader in following the discussion and to facilitate the interpretation
of the input signals, the domain-specific terms and gait cycle definitions are described in Figure 8. For further
details on the principles of human gait and its clinical implications, the interested reader is referred to literature
such as Perry and Burnfield [54] or Winter [80].
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Fig. 8. Overview of the most relevant gait events during the stance phase. In clinical gait analysis, a gait cycle (100%) is
defined from the initial contact of one foot to the subsequent initial contact of the same foot. During the first approximately
60% of the gait cycle, referenced as the stance phase (relevant time range for the present work), the foot has contact to the
ground. The beginning of the stance phase is defined as initial contact with the ground (typically by the heel), then body
weight is shifted to the supporting leg (loading response and mid-stance), followed by terminal stance (forward propulsion),
pre-swing (preparation of the swing phase), and toe-off. Adapted from [9, 63].

The explainability results for classification of healthy controls (𝐻𝐶) and the aggregated class of all three
gait disorders (𝐺𝐷) based on min-max normalized GRF signals illustrate clinically meaningful patterns (see
Figure 5). High LRP relevance scores occurred during loading response, terminal stance, and pre-swing in𝐺𝑅𝐹𝐴𝑃
and 𝐺𝑅𝐹𝑀𝐿 as well as in loading response, mid stance, terminal stance, and pre-swing in 𝐺𝑅𝐹𝑉 . These phases
are especially sensitive toward gait anomalies as loading response requires the absorption of body weight and
terminal stance plays an essential role for forward propulsion [33]. Both aspects are affected in case of gait
impairments due to a diminished walking speed (requiring less absorption or push-off) as well as factors that
go along with an injury, such as the presence of pain, a decreased range of motion, and/or lessened muscle
strength [65, 79]. When analyzing the explainability results in more detail, one can identify specific gait dynamics
that can be traced back to an impairment at a certain joint level.
For classification task 𝐻𝐶/𝐴 (see supplementary Figure S10) we can observe pronounced peaks in the total

relevance curves of 𝐺𝑅𝐹𝐴𝑃 and 𝐺𝑅𝐹𝑉 caused by alterations in the terminal stance and pre-swing phase of the
affected side. This is in agreement with the observations of Son et al. [70] who found a significantly increased
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propulsive force (𝐺𝑅𝐹𝐴𝑃 in terminal stance) for patients with chronic ankle instability. They also identified an
increased 𝐺𝑅𝐹𝑉 during late terminal stance (push-off) compared to healthy controls which is also in line with
the relevance scores obtained in our study. Both, our explainability results and the study of Son et al. [70] did not
indicate any relevance or difference to healthy controls in the 𝐺𝑅𝐹𝑀𝐿 .
For classification task 𝐻𝐶/𝐾 , the highest LRP relevance scores are present in 𝐺𝑅𝐹𝑉 , 𝐺𝑅𝐹𝐴𝑃 , and 𝐺𝑅𝐹𝑀𝐿 (see

supplementary Figure S7). Changes in 𝐺𝑅𝐹𝑉 may result from lessened knee flexibility that hinders typical knee
dynamics over the entire course of the stance phase. More precisely, healthy walking requires a slightly flexed
knee joint during initial contact followed by a knee flexion thereafter, by definition called loading response.
During the mid stance phase the walker’s center of gravity is shifted forward and thus demands further knee
extension. This is in line with the study of Cook et al. [15] who analyzed the effects of restricted knee flexion
and walking speed on the 𝐺𝑅𝐹𝑉 . According to their results, the loading rate (slope during loading response),
unloading rate (slope during pre-swing), and peak 𝐺𝑅𝐹𝑉 of the restricted leg showed significant speed-knee
flexion restriction interactions.
Highest LRP relevance values for the classification task 𝐻𝐶/𝐻 are obtained during loading response and

terminal stance in 𝐺𝑅𝐹𝑉 of the affected side (see supplementary Figure S4). McCrory et al. [41] and Martinez-
Ramirez et al. [40] identified the 𝐺𝑅𝐹𝑉 as an objective measure of gait for patients following hip arthroplasty.
McCrory et al. [41] found significant differences between patients and healthy controls in several variables of the
𝐺𝑅𝐹𝑉 such as the first and second local peaks, impulse, and stance time. They also identified that the unaffected
side holds relevant information as significant differences were found in the 𝐺𝑅𝐹𝑉 either compared to the control
group or the affected side. This is also seen in our obtained LRP relevance scores for the classification task 𝐻𝐶/𝐻
where two distinct relevance peaks are present for 𝐺𝑅𝐹𝑉 for the first and second 𝐺𝑅𝐹𝑉 peak of the affected
side. These results are also in agreement with Martinez-Ramirez et al. [40] who demonstrated that patients after
successful hip arthroplasty still show significantly altered𝐺𝑅𝐹𝑉 for both the affected and unaffected leg including
a continuing 𝐺𝑅𝐹𝑉 asymmetry between both sides.

With regard to our second research question, we conclude that signal regions with high relevance according to
LRP can be largely associated with clinical gait analysis literature and are plausible from a clinical point of view
according to two domain experts.

6.5 On the Usefulness of XAI Methods for Clinical Gait Analysis
XAI methods increase transparency and can make the decision process of ML models more comprehensible
for clinical experts. Transparency of state-of-the-art ML models is crucial to promote the acceptance of such
systems in clinical practice, allowing clinicians to benefit from high, and in some cases already better than
human [16, 21, 42], classification accuracy that ML models achieve.
In the previous subsections (i.e., Sections 6.3 and 6.4), we showed that explainability results are consistent

from a statistical and domain experts’ point of view. In particular, regions of high relevance according to LRP are
highly discriminatory according to SPM, and the clinical experts could also associate these regions with clinical
explanations. Having evaluated the explainability results, we now want to address the question:What is the
added value that XAI methods can provide to clinical practice?

The two experts reported that they mainly focus on regions in the 𝐺𝑅𝐹𝑉 signals during the evaluation process
of patients in the clinical practice. In particular, the evaluation of the unaffected 𝐺𝑅𝐹𝑉 is very important for
the clinicians. The main motivation for this is that many compensatory patterns manifest in this signal, i.e., as
patients try to put as little weight on the affected leg as possible, they take shorter steps with the unaffected leg.
This is reflected in a reduced slope in the unaffected 𝐺𝑅𝐹𝑉 during loading response.

Our explainability results show that in addition to regions in 𝐺𝑅𝐹𝑉 , regions in 𝐺𝑅𝐹𝑀𝐿 and 𝐺𝑅𝐹𝐴𝑃 are also
highly relevant for the classification tasks. These signals are less considered in clinical practice. However, the
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relevant regions in 𝐺𝑅𝐹𝑀𝐿 and 𝐺𝑅𝐹𝐴𝑃 indicate additional information about the classification of pathological
gait patterns.
Explainability approaches can lead to novel insights and a deeper understanding of the models and the

underlying data as illustrated in the following example. In the clinical evaluation of the explainability results, the
experts identified also relevant regions for the ML models that are not directly related to the specific functional
gait disorders, according to their personal expertise and the literature. The experts assumed that, e.g., the relevant
regions in the affected and unaffected 𝐺𝑅𝐹𝑉 in particular during mid-stance, terminal stance, and pre-swing are
strongly influenced by differences in walking speed between healthy controls and patients. From this observation
the clinical experts derived the hypothesis that the trained ML models might be biased by the walking speed.
Using the 𝐻𝐶/𝐾 classification tasks as an example, we examine whether there is a significant difference in

walking speed between 𝐻𝐶 and 𝐾 . An independent samples t-test revealed a statistically significant difference in
walking speed between 𝐻𝐶 and 𝐾 (p < 0.001). The differences in walking speed affect the shape of the signals
(although the signals were time-normalized) and the ML models could have learned these dissimilarities. To
assess the influence of walking speed on the ML models, we repeated the experiment for the task 𝐻𝐶/𝐾 on a
subsample of the original data. This subsample does not exhibit statistically significant differences with respect
to walking speed (independent samples t-test; p = 0.068). A comparison of the explainability results obtained for
task 𝐻𝐶/𝐾 (with min-max normalized GRF signals) using CNNs that were trained on the original and walking
speed-matched data are presented in Figure 9. The results clearly show that most of the relevant regions according
to LRP for the walking speed-matched data agree with the regions obtained for the original data (with only small
changes in amplitude). However, relevant regions in the unaffected𝐺𝑅𝐹𝑉 after loading response are less relevant
for the model trained on walking speed-matched data. Thus, in contrast to the model trained on the original data,
this model barely takes these regions into account. The conclusion that can be drawn is that these regions are
related to differences in walking speed.
Using our XAI approach, we have been able to show that some degree of walking speed-related bias was

learned in the original models, but that this influence was not as strong as assumed by the clinical experts.
Another interesting aspect of the experiment concerns the SPM results. While the trend of effect size and the
total relevance remain similar, the statistically significant regions are clearly reduced (compare gray-shaded areas
for both settings in Figure 9), showing the sensitivity of SPM to the alpha level.
Overall, we showed that our proposed XAI approach exhibits substantial usefulness for the clinical setting,

as we were able to demonstrate that: (i) regions in the signals which are less focused in the literature and
clinical evaluation, i.e., 𝐺𝑅𝐹𝐴𝑃 and 𝐺𝑅𝐹𝑀𝐿 , also contain informative and relevant regions that can be associated
to the underlying pathology, (ii) ML models learn different strategies for different samples and patient groups
(experiment with SpRAy, see Section 6.2), and (iii) XAI methods allow the identification of biases in ML models,
e.g., with respect to normalization or walking speed-related differences between classes.
The increased transparency provides additional insights into the working mechanisms of the trained ML

models, enabling clinicians to better understand them and increase their level of trust [71].

6.6 Limitations and Future Work
A fundamental problem in evaluating the explainability results is the absence of a ground truth. A challenge
in interpreting the explainability results is that alterations of the input signals can be caused not only by the
influence of a pathology, but also by other independent parameters, e.g., a lower walking speed or an increased
body mass. To minimize potential biases introduced by independent parameters on prediction explanations,
future research should attempt to develop normalization procedures for input signals that compensate such
influencing factors or develop classification models that inherently learn the relationship between influencing
factors and input signals.
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Walking Speed-matched Data

Original Data

Fig. 9. Comparison of explainability results of the original (top) andwalking speed-matched (bottom) data for the classification
task 𝐻𝐶/𝐾 based on the min-max normalized GRF signals using CNN.

Another limiting factor is that we solely used GRF signals for classification. This does not perfectly reflect the
best practice in clinical gait analysis where clinicians usually base medical decisions on a combination of GRF
and 3D kinematic data [9]. The additional use of kinematic data is expected to improve the classification accuracy
to an appropriate level for clinical application, in particular for multi-class classification tasks. However, 3D
kinematic data are prone to several difficulties such as inconsistencies due to inter-assessor and inter-laboratory
differences [20, 61]. This makes it more difficult to create a homogeneous, large-scale, and real-world data set
compared to using simple data, such as GRF signals. Thus, the utilized GaitRec data [28] provide a large-scale
dataset with an easy to comprehend clinical example, which allows to showcase how XAI methods can support
transparency of ML models and their predictions.
Besides visual explanations as presented in this paper, a translation into human understandable textual

explanations would be desired for clinical application. An interesting direction for future research is the generation
of textual explanations based on biomechanical parameters estimated from the input signals. This would enable
approaches that exceed pure explainability and provide deeper interpretations for clinical experts in the form
of, e.g., "there is a high probability of a pathology in the knee due to a limited knee extension during the mid
stance phase".
We will conduct further research to compare different explanation methods and rule-based approaches [32]

for different classification tasks and datasets. In addition, we want to point out that quantitative and objective
methods are necessary to assess the quality of prediction explanations [58] including datasets with respective
ground truth explanations.
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7 CONCLUSION
The present findings highlight that machine learning models base their predictions on meaningful features of
GRF signals in clinical gait classification tasks that are in accordance with a statistical and clinical evaluation.
Hence, XAI methods which provide explainability for predictions made by machine learning models, such as
LRP, can be promising solutions to increase justification of automatic classification predictions in CGA and can
help to make the prediction processes comprehensible to clinical and legal experts. Thereby, XAI may facilitate
the application of ML-based decision-support systems in clinical practice. Within the scope of our analysis we
were able to show that:

• Highly relevant regions were identified in the signals of the affected and unaffected side. Thus, the unaffected
side captures additional information which are relevant for automated gait classifications.
• For time series data such as GRF signals, SPM has shown to be a suitable statistical reference. Highly
relevant regions in the input data (according to LRP) are in the most cases also significantly different and
in line with clinical evaluation.
• In addition to 𝐺𝑅𝐹𝑉 , the horizontal forces contain regions of high relevance, which is consistent with
clinical gait analysis literature.
• ML models seem to learn an over-complete set of features that may contain redundant information. This
might explain why the occlusion of horizontal forces and input normalization in our experiments had
negligible influence on the classification accuracies.
• ML models for gait classification are able to learn different strategies for individual persons and patient
groups.
• Explainability approaches can help to detect bias in ML models and help to assess their correct working,
which is important for clinicians to enable building trust in the predictions of these models.

This paper represents a first step towards establishing explainability of ML approaches for time series classification.
Thereby, we want to promote the application of ML in clinical gait analysis to support medical decision-making
in the future.
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SUPPLEMENTARY MATERIAL
The supplementary material presents additional results we generated for the paper

"Explaining Machine Learning Models for Clinical Gait Analysis".
The primary aim of this article is to explain which class-specific characteristics ML models learn from CGA data.

For this purpose, we investigate different gait classification tasks, employ a representative set of classification
methods – (linear) Support Vector Machine (SVM), Multi-layer Perceptron (MLP), and Convolutional Neural Net-
work (CNN) –, and a Explainable Artificial Intelligence (XAI) method – Layer-wise Relevance Propagation (LRP)
– to explain predictions at the signal (input) level. Subsequently, the explanations of the individual predictions are
aggregated to obtain class-specific model explanations. Since there is no ground truth for automatically generated
explanations in this context, we we suggest a two-step approach for the evaluation of the obtained explanations.
First, we analyze the discriminatory power of the obtained explanations from a statistical perspective. For this
purpose, we leverage Statistical Parametric Mapping (SPM) to derive statistical measures along with the input
signals and thereby investigate how statistically justified the obtained explanations are. Second, two experienced
clinical experts interpret the explainability results from a clinical perspective, to evaluate whether obtained
explanations match characteristics from clinical practice.
The dataset employed, comprises ground reaction force (GRF) measurements from 132 patients with gait

disorders (𝐺𝐷) and data from 62 healthy controls (𝐻𝐶). The 𝐺𝐷 class is furthermore differentiated into three
classes of gait disorders associated with the hip (𝐻 ), knee (𝐾), and ankle (𝐴). The classification tasks, which
represent the basis of the XAI investigation, due to high classification accuracies obtained, include a binary
classification between healthy controls and all gait disorders (𝐻𝐶/𝐺𝐷), and a binary classification between healthy
controls and each gait disorder separately, i.e., 𝐻𝐶/𝐻 , 𝐻𝐶/𝐾 , and 𝐻𝐶/𝐴. The classification results obtained for
all classification tasks, are presented in supplementary Table S1.

The following figures visualize the relevance-based explanations obtained with LRP. The input vector for the
classifiers comprises concatenated affected and unaffected GRF signals. These GRF signals are time-normalized to
101 points (100% stance phase), thus the input vector contains 606 values. For each value LRP provides whether
they are relevant or not for the classification. Sub-figure (A) shows mean GRF signals averaged over each class of
the classification task. The shaded areas in all sub-figures highlight areas in the input signals where SPM resulted
in a statistically significant difference between both classes. Sub-figure (B) shows mean GRF signals (including
a band of one standard deviation) for the 𝐻𝐶 class. The input relevance indicates which GRF characteristics
were most relevant for (or contradictory to) the classification of a certain class. For visualization, input values
neutral to the prediction (𝑅𝑖 ≈ 0) are shown in black, while warm hues indicate input values supporting the
prediction (𝑅𝑖 ≫ 0) of the analyzed class and cool hues identify contradictory input values (𝑅𝑖 ≪ 0). Sub-figure (C)
depicts mean GRF signals averaged over a pathological class (𝐻 , 𝐾 , or 𝐴) or all gait disorders (𝐺𝐷), in the same
format as in sub-figure (B). Sub-figure (D) shows the effect size computed as Pearson’s correlation coefficient and
the total relevance, which is calculated as the sum of the absolute input relevance values of both classes. The
total relevance indicates the common relevance of the input signal for the classification task.
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CLASSIFICATION RESULTS

Table S1. Overview of the prediction accuracy obtained for the three employed classification methods (CNN, SVM and MLP)
and all classification tasks with min-max normalized and non-normalized input signals, reported in pairs of mean (standard
deviation) over the ten-fold cross validation in percent. Note that the Zero-Rule Baseline (ZRB) is task-specific.

Task Normalization ZRB CNN SVM MLP
HC/GD no norm. 68.0 87.8 (4.5) 88.6 (4.9) 88.1 (4.8)
HC/GD min-max 68.0 88.0 (5.0) 88.4 (5.3) 88.8 (5.0)
HC/H no norm. 62.6 85.1 (8.2) 85.9 (8.4) 86.6 (7.9)
HC/H min-max 62.6 85.5 (8.0) 87.1 (7.6) 86.7 (8.5)
HC/K no norm. 54.4 84.8 (9.9) 85.7 (9.0) 86.1 (7.9)
HC/K min-max 54.4 85.9 (9.3) 88.5 (7.2) 88.5 (7.6)
HC/A no norm. 59.0 88.7 (5.5) 89.1 (5.9) 88.3 (6.3)
HC/A min-max 59.0 86.7 (8.3) 87.6 (7.4) 86.5 (8.1)
H/K/A no norm. 39.4 48.0 (10.1) 46.4 (9.5) 45.9 (11.0)
H/K/A min-max 39.4 50.7 (9.8) 51.8 (9.6) 47.4 (10.9)
HC/H/K/A no norm. 32.0 55.0 (8.7) 58.7 (7.5) 55.6 (7.6)
HC/H/K/A min-max 32.0 57.5 (7.0) 59.5 (8.5) 59.2 (7.6)
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EXPLAINABILITY RESULTS

Classification Task: 𝐻𝐶/𝐺𝐷 | Classification method: 𝐶𝑁𝑁

Fig. S1. Result overview for the classification of healthy controls and the aggregated class of all three gait disorders (𝐻𝐶/𝐺𝐷)
based on min-max normalized GRF signals using a CNN as classifier.

Classification Task: 𝐻𝐶/𝐺𝐷 | Classification method:𝑀𝐿𝑃

Fig. S2. Result overview for the classification of healthy controls and the aggregated class of all three gait disorders (𝐻𝐶/𝐺𝐷)
based on min-max normalized GRF signals using an MLP as classifier.
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Classification Task: 𝐻𝐶/𝐺𝐷 | Classification method: 𝑆𝑉𝑀

Fig. S3. Result overview for the classification of healthy controls and the aggregated class of all three gait disorders (𝐻𝐶/𝐺𝐷)
based on min-max normalized GRF signals using an SVM as classifier.

Classification Task: 𝐻𝐶/𝐻 | Classification method: 𝐶𝑁𝑁

Fig. S4. Result overview for the classification of healthy controls (𝐻𝐶) and hip injury class (𝐻 ) based on min-max normalized
GRF signals using a CNN as classifier.
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Classification Task: 𝐻𝐶/𝐻 | Classification method:𝑀𝐿𝑃

Fig. S5. Result overview for the classification of healthy controls (𝐻𝐶) and hip injury class (𝐻 ) based on min-max normalized
GRF signals using an MLP as classifier.

Classification Task: 𝐻𝐶/𝐻 | Classification method: 𝑆𝑉𝑀

Fig. S6. Result overview for the classification of healthy controls (𝐻𝐶) and hip injury class (𝐻 ) based on min-max normalized
GRF signals using an SVM as classifier.
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Classification Task: 𝐻𝐶/𝐾 | Classification method: 𝐶𝑁𝑁

Fig. S7. Result overview for the classification of healthy controls (𝐻𝐶) and knee injury class (𝐾 ) based on min-max normalized
GRF signals using a CNN as classifier.

Classification Task: 𝐻𝐶/𝐾 | Classification method:𝑀𝐿𝑃

Fig. S8. Result overview for the classification of healthy controls (𝐻𝐶) and knee injury class (𝐾 ) based on min-max normalized
GRF signals using an MLP as classifier.
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Classification Task: 𝐻𝐶/𝐾 | Classification method: 𝑆𝑉𝑀

Fig. S9. Result overview for the classification of healthy controls (𝐻𝐶) and knee injury class (𝐾 ) based on min-max normalized
GRF signals using an SVM as classifier.

Classification Task: 𝐻𝐶/𝐴 | Classification method: 𝐶𝑁𝑁

Fig. S10. Result overview for the classification of healthy controls (𝐻𝐶) and ankle injury class (𝐴) based on min-max
normalized GRF signals using a CNN as classifier.
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Classification Task: 𝐻𝐶/𝐴 | Classification method:𝑀𝐿𝑃

Fig. S11. Result overview for the classification of healthy controls (𝐻𝐶) and ankle injury class (𝐴) based on min-max
normalized GRF signals using an MLP as classifier.

Classification Task: 𝐻𝐶/𝐴 | Classification method: 𝑆𝑉𝑀

Fig. S12. Result overview for the classification of healthy controls (𝐻𝐶) and ankle injury class (𝐴) based on min-max
normalized GRF signals using an SVM as classifier.
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EXPLAINABILITY RESULTS – NON-NORMALIZED DATA

Classification Task: 𝐻𝐶/𝐺𝐷 | Classification method: 𝐶𝑁𝑁

Fig. S13. Result overview for the classification of healthy controls and the aggregated class of all three gait disorders (𝐻𝐶/𝐺𝐷)
based on non-normalized GRF signals using a CNN as classifier.

Classification Task: 𝐻𝐶/𝐺𝐷 | Classification method:𝑀𝐿𝑃

Fig. S14. Result overview for the classification of healthy controls and the aggregated class of all three gait disorders (𝐻𝐶/𝐺𝐷)
based on non-normalized GRF signals using an MLP as classifier.
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Classification Task: 𝐻𝐶/𝐺𝐷 | Classification method: 𝑆𝑉𝑀

Fig. S15. Result overview for the classification of healthy controls and the aggregated class of all three gait disorders (𝐻𝐶/𝐺𝐷)
based on non-normalized GRF signals using an SVM as classifier.

Classification Task: 𝐻𝐶/𝐻 | Classification method: 𝐶𝑁𝑁

Fig. S16. Result overview for the classification of healthy controls (𝐻𝐶) and hip injury class (𝐻 ) based on non-normalized
GRF signals using a CNN as classifier.
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Fig. S17. Result overview for the classification of healthy controls (𝐻𝐶) and hip injury class (𝐻 ) based on non-normalized
GRF signals using an MLP as classifier.

Classification Task: 𝐻𝐶/𝐻 | Classification method: 𝑆𝑉𝑀

Fig. S18. Result overview for the classification of healthy controls (𝐻𝐶) and hip injury class (𝐻 ) based on non-normalized
GRF signals using an SVM as classifier.
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Classification Task: 𝐻𝐶/𝐾 | Classification method: 𝐶𝑁𝑁

Fig. S19. Result overview for the classification of healthy controls (𝐻𝐶) and knee injury class (𝐾 ) based on non-normalized
GRF signals using a CNN as classifier.

Classification Task: 𝐻𝐶/𝐾 | Classification method:𝑀𝐿𝑃

Fig. S20. Result overview for the classification of healthy controls (𝐻𝐶) and knee injury class (𝐾 ) based on non-normalized
GRF signals using an MLP as classifier.
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Fig. S21. Result overview for the classification of healthy controls (𝐻𝐶) and knee injury class (𝐾 ) based on non-normalized
GRF signals using an SVM as classifier.

Classification Task: 𝐻𝐶/𝐴 | Classification method: 𝐶𝑁𝑁

Fig. S22. Result overview for the classification of healthy controls (𝐻𝐶) and ankle injury class (𝐴) based on non-normalized
GRF signals using a CNN as classifier.
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Fig. S23. Result overview for the classification of healthy controls (𝐻𝐶) and ankle injury class (𝐴) based on non-normalized
GRF signals using an MLP as classifier.

Classification Task: 𝐻𝐶/𝐴 | Classification method: 𝑆𝑉𝑀

Fig. S24. Result overview for the classification of healthy controls (𝐻𝐶) and ankle injury class (𝐴) based on non-normalized
GRF signals using an SVM as classifier.
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