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ABSTRACT

This paper investigates the robustness of two state-of-the-
art action recognition algorithms: a pixel domain approach
based on 3D convolutional neural networks (C3D) and a com-
pressed domain approach requiring only partial decoding of
the video, based on feature description using motion vectors
and Fisher vector encoding (MV-FV). We study the robust-
ness of the two algorithms against: (i) quality variations, (ii)
changes in video encoding scheme, (iii) changes in resolu-
tions. Experiments are performed on the HMDB51 dataset.
Our main findings are that C3D is robust to variations of
these parameters while the MV-FV is very sensitive. Hence,
we consider C3D as a baseline method for our analysis. We
also analyze the reasons behind these different behaviors and
discuss their practical implications.

Index Terms— Compressed domain analysis, human ac-
tion recognition, convolutional neural networks, fisher vector
encoding, robust classification

1. INTRODUCTION

Videos have become an integral part of our day to day lives.
Today videos already comprise the majority of consumer in-
ternet traffic. By 2019 it is estimated to make up to 80% of all
uploads and downloads which corresponds to 1.6 zettabytes1

per year [1]. The transmission and storage of such huge
amount of video data was only made possible through the
use of steadily improving video compression algorithms such
as specified by the currently most used H.264 coding stan-
dard [2] or its successor H.265 [3]. Video coding standards
only specify the decoding process to ensure interoperability.
Therefore, video sequences on the internet differ in a mul-
titude of parameters, mainly influenced by the choice of the
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codec, the encoder implementation, the target bitrates, noise
level, and so on.

In the field of machine learning and computer vision,
videos are often processed and analyzed to extract useful and
relevant information. Possible applications include face de-
tection and identification, object recognition, video retrieval,
and video copy detection. Also action recognition, the topic
of this paper, is a very popular task which involves analyzing
the videos to identify the performed actions. It has several
applications including activity recognition, human-computer
interaction, and video surveillance.

Traditionally, action recognition algorithms perform a
pixel domain analysis, i.e., take a set of video frames as in-
put and annotate the video with predefined action categories
(e.g. walking, kissing, swimming etc.). Popular pixel domain
approaches are bag-of-words models [4] and deep learning
methods [5, 6, 7, 8]. A practical disadvantage of these ap-
proaches is that they require a full decoding of the video
before starting the analysis which increases the computation
time and memory requirements. Recently, action recognition
in compressed domain have proven to be a faster alternative
to pixel domain approaches [9, 10]. This is due to the fact
that the compressed domain features can be extracted by only
the partial decoding of the video. In terms of performance,
the state-of-the-art compressed domain algorithms presented
in [9, 10] have slightly worse recognition accuracy compared
to the state-of-the-art pixel domain approaches [7, 8, 11].

Typically, action recognition algorithms are studied in
very controlled settings where training and testing videos
come from the same source and have similar quality. How-
ever, the quality of online videos varies due to differences
in compression ratio and encoding scheme. From a practical
point of view the best performing action recognition method
is useless if it is unable to cope with this variability. In this
paper, we study the robustness against variations of quality,
resolution and encoding scheme, of state-of-the-art action
recognition algorithm in the compressed domain approach.
A pixel domain method is considered as a baseline performer
since it is robust to variations of these parameters.

This paper is organized as follows. Section 2 introduces



the two action recognition algorithms used in the paper. Sec-
tion 3 investigates the robustness of both methods on the
HMDB51 dataset. We conclude this work with a discussion
and an outlook in Section 4.

2. ACTION RECOGNITION

Compressed Domain MV-FV: Hand-crafted features like
histograms of oriented flow (HOF), motion boundary his-
tograms (MBH) in combination with histogram of oriented
gradients have shown state-of-the-art results for action recog-
nition using optical flow [11]. The compressed domain action
recognition method described in [10] requires only a partial
decoding of the bit stream to extract the motion vectors as
shown in Fig. 1. It then uses these coarse motion vectors to
construct HOF and MBH features [10].

To compute the local hand-crafted features, histograms of
motion vectors from a 32 × 32 × 5 spatio-temporal cube are
considered. The histograms of both HOF and MBH consist of
eight motion bins for different orientations and one no-motion
bin. The local descriptors for a video are then obtained by
stacking the histograms over all the cubes over all the time
slices. Fig. 2a displays sample frames from videos encoded
using x265 with quantization parameters (QP) 0, 30, and 50,
respectively. Fig. 2b visualizes the motion vector flows of the
respective frames by color encoding the motion vectors ac-
cording to their orientation and magnitude. Fig. 2c illustrates
the computation of the HOF features using the motion vector
flow.

Fisher vectors have been widely used as a robust global
descriptor [12]. To obtain Fisher vector representations from
local descriptors, Gaussian Mixture Models (GMM) are
learned. Consider a D-dimensional feature I = (x1, x2, . . . , xD)
extracted from a video and the parameters of the GMM to be
θ = (µk,Σk, πk; k = 1, 2, . . . ,K). The GMM then asso-
ciates each local descriptor to a mode k in the mixture with a
strength given by a posterior probability. The Fisher vectors
are then computed by stacking the mean and covariance vec-
tors of all the modes in the mixtures [12]. In MV-FV method,
Fisher vectors are computed for the HOG and MBH features
respectively. The computed Fisher vectors are then aggre-
gated to obtain a fixed length representation for each video.
A linear SVM is used to infer the action.

Pixel Domain C3D: The 3D Convolutional Neural Network
based method in [8] is a pixel domain method (we refer it to
as C3D). Since the application of 2D convolution on videos
has been shown to result in the loss of temporal informa-
tion [5, 7], C3D implements 3D convolution and 3D pooling
operations to mitigate this issue [8]. C3D operates on 16
consecutive frames from a video at a time. Using decon-
volution method described in [13], it was found that in the
initial frames, C3D learns the appearance of the objects while
the motion of the learned object is tracked in the following

frames. Thus, C3D takes into account both the appearance
and the motion of an object [8].

3. EVALUATION

3.1. Dataset And Setup

Evaluation was performed on the HMDB51 dataset, which
contains 6766 videos. HMDB51 contains 51 different action
categories each having around 100 videos [14]. The sequence
length of each video is about 5 seconds. Video sequences
focus on the particular actions only and do not contain multi-
ple actions. The dataset was split into training (3570 videos),
validation (1666 videos), and test (1530 videos) set.
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Fig. 3: Average of bitrates for the videos from HMDB51
dataset transcoded to H.264 and H.265 for QPs 0-50.

Videos in HMDB51 were collected from various sources
and originally encoded with MPEG-4 Part 2 / DivX. For our
analysis, videos were transcoded to H.264 [2] and H.265 [3]
using the x264 and x265 implementations in FFmpeg. For
both H.264 and H.265, an IPPP coding GOP structure was
adopted with a single I frame and no B frames. The opera-
tional point of the encoder defining the quality was set by the
Quantization Parameter (QP). Fig. 3 shows the bitrates of the
videos encoded with x264 and x265 for QPs from 0 to 50,
averaged over the whole dataset. On average, the videos used
in our experiments have similar range of bitrates for x264 and
x265.

MV-FV Setup: Unlike [10], which first samples the mo-
tion vector flow with a coarse 16×16 pixel spatial resolution
and then uses bilinear interpolation to increase the resolution
of the flow field, we created an 8×8 motion vector field by
considering the codec-specific inter-prediction features. For
H.264, we sampled the motion vectors of 16×8, 8×16, and
8×8 macroblock partitions. For H.265, we sampled the mo-
tion vectors from each prediction unit. In order to simplify
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Fig. 1: Overview of pixel and compressed domain methods. Since the compressed domain method requires only the partial
decoding of the video stream, it is much faster compared to the pixel domain method. In terms of accuracy, state-of-the-art
pixel domain methods perform better.

(a) Visualization of prediction units and
their respective motion vectors for QPs 0,
30, and 50. At lower QP levels, the en-
coder tends to split the frame into smaller
prediction units, hence the motion vector
flow is more fine-granular. Circles mark
the beginning point of the motion vectors.

(b) Visualization of the motion vector flow
using a color wheel. Orientation and mag-
nitude of the motion vectors are coded by
different hue and saturation levels, respec-
tively. Darker tones of a color imply mo-
tion vectors with greater magnitude.

(c) The motion vectors from a 32 × 32 ×
5 cube are discretized into histogram bins
based on their direction and magnitude.

Fig. 2: Visualization of the motion vectors and coding block structure of a single frame in one sample video from HMDB51
dataset transcoded to H.265 at QPs 0, 30, and 50.



data processing, motion vectors from both the codecs were
arranged in an uniform 8×8 grid. For the block sizes larger
than 8×8, motion vectors were duplicated to provide unifor-
mity. For example, in the case of H.264, motion vectors in
16×16, 8×16, and 16×8 blocks were duplicated to assign a
motion vector to each 8×8 block.

C3D Setup: To train a C3D model, the training set of
videos with the best quality (QP=0) was chosen for H.264 as
well as H.265. Models were computed by finetuning the C3D
network over the pretrained model of the Sports-1M dataset
[7]. In the test phase, the network is given an input of 16
frames stacked together. The predictions from the softmax
layer over the various inputs for a video were averaged to ob-
tain one inferred action for the video.

3.2. Experiments

This work investigates the robustness of the classification
accuracy of MV-FV for videos encoded with H.264. For the
analysis, experiments were performed under different sce-
narios. In [15], it is argued that the accuracy of compressed
domain algorithms suffer at the extremes of the QP range (0
or 50). At the higher extreme of the QP range, accuracy of the
motion vectors decrease due to degradations in video quality
and the obtained features are not very accurate. At the lower
extreme, the decrease in accuracy might be caused by the
increasing proportion of intra-coded blocks in P frames for
which no motion vectors are available. Hence, for the com-
pressed domain algorithm MV-FV, we avoided using training
videos encoded at QP 0 and instead used training videos en-
coded at QP 5.

Same Encoder “SE” Test: Compression of videos lead
to a reduced size of the video at the cost of quality. In this
experiment, we analyze the effect of decrease in quality on
the performance of the action recognition methods using the
HMDB51 dataset transcoded to H.265.

a Train: H.265 encoded videos at QP = 5 for MV-FV.
Test: H.265 encoded videos at QP = 0, 5, ..., 50.

b Train: H.265 encoded videos at QP = 0, 5, ..., 50.
Test: H.265 encoded videos at QP = 0, 5, ..., 50 resp.

Cross Encoder “CE” Test: The main aim of this test is to
evaluate the robustness of MV-FV when trained using videos
encoded with one codec and tested with videos encoded with
another codec. This might be particularly useful in a large-
scale video analysis scenario in which training and test videos
might not necessarily be encoded with the same codec.

Train: H.265 encoded videos at QP = 5.
Test: H.264 encoded videos at QP = 0, 5, .., 50.

Resolution “RE” Test: In an actual scenario, test videos can
have different resolutions in addition to variations in quality

and encoding schemes. This test is performed to test the ro-
bustness of a trained model to given dataset with respect to
variations in its resolutions. Towards this goal, the resolution
of the videos are changed to 360p, 720p and 1080p at QP 25.

Train: H.264 encoded videos at resolution = 360p.
Test: H.264 encoded videos at resolution = 360p, 720p,

1080p.

The mean average precision is computed by averaging over
the recognition accuracy over all the test videos.

3.3. Analysis
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Fig. 4: Comparison of mean average precision (MAP) ob-
tained for the compressed domain (MV-FV) for the SE and
CE tests as described in Section 3.2. The MAP for the pixel
domain (C3D) is given as a baseline.

C3D was found to perform similar in all the tests de-
scribed below. Hence, the results of test SE (a) are displayed
as a baseline for comparison.

SE Test: Varying QP has a strong effect on the motion
vectors, as illustrated in Fig. 2c. QP affects the rate-distortion
optimization performed in the encoder and thus changes the
decision of encoder in the motion estimation process. Hence,
motion vectors have a different distribution for each QP. This
varying distribution of the motion vectors affects the accuracy
of the system, if training videos and test videos are encoded
with different QPs, making the compressed domain MV-FV
method much less robust to changes in the compression ratio
than the C3D method.

We observe in Fig. 4 that a classifier, which was trained
with motion vectors from videos encoded with a particular
QP, experiences a drop in accuracy when tested with videos
encoded with a different QP. But, when they are trained and
tested on the same QP, as in SE tests (b), they tend to have
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Fig. 5: Average precision (AP) computed for classes encoded with H.265 for the SE test (a) over QPs. Given are sample frames
from each of the classes. AP score of 0% is represented by the color blue while a score of 100% is given by color red as
displayed by the colorbar on the right.

higher accuracy. This is a classic case of a classifier overfit-
ting to a particular distribution of the motion vectors. How-
ever, in practice, it is not feasible to train a model multiple
times over a range of QPs. Hence, robustness of MV-FV is
quite sensitive to the particular QP it is trained on.

Results of SE tests (a) shown in Fig. 4 (denoted as
MV FV SE a) display the lack of robustness of MV-FV
against quality variations. A significant decrease in MAP
is observed due to the more complex motion estimation struc-
ture of H.265, which makes the obtained local histogram
features overfit for the quality level on which they were
trained.

CE Test: MV-FV performs significantly worse when training
and test videos are not encoded with the same codec, as ob-
served in Fig. 4. Since MV-FV operates on motion vectors, a
model which was trained using the motion vectors produced
by the H.265 encoder, performs worse when tested using
H.264 encoded videos. Enhanced motion estimation and mo-
tion vector prediction techniques in H.265 lead to generation
of a significantly different set of motion vectors (compared to
H.264) on the same video content at a similar quality. This
observation can also be explained via the overfitting phe-
nomenon, as mentioned above for the SE test. Hence, the
reduction in accuracy.

RE Test: Motion vectors are also very sensitive to the reso-
lution of videos. The distribution of the motion vectors of a
video in a different resolution can be quite different from the
distribution of motion vectors of the video in its original res-
olution. The main take-away from this test is that the MV-FV
trained on a particular resolution also tends to overfit to mo-
tion vectors from that resolution. Here, the model trained on
videos at 360p resolution were found to perform well when
tested with videos at the same resolution. When this model
was tested with videos at 720p and 1080p resolution, then it
performed significantly worse.

Fig. 5 displays the average precision (AP) of various
classes and the behavior they exhibit under SE test. AP gives
the percentage of videos correctly classified for a given class.
Some classes like Throw and Wave have very low average
precision even for the best quality of the video. In the Fig. 5i,
classes like Brush hair and Pushup are quite robust. They
start to lose their accuracy significantly after QP 40.

Kiss and Ride horse are a set of classes which are ob-
served to be have considerably high AP at all QP in Fig. 5iii.
Although the videos in these classes are accurately classified,
their constant high AP can also be attributed to higher recall
values. When videos are compressed with a high QP, the fea-
tures belonging to classes like Kiss, Talk and Turn, which fo-
cus on the face of the person in the video, could be similar.
And hence, at higher QPs, Talk and Turn are misclassified



as Kiss, while Cartwheel and Ride bike are misclassified as
Ride horse.

Overfitting behavior is observed in classes Catch and Pour
in the Fig. 5iv. They show a high AP for the videos with same
QP, while performing poorly against videos with all other
QPs. We also find that classes that are observed to overfit tend
to have localized action in general like catching and pouring
− movement of hands alone.

4. DISCUSSION AND FUTURE WORK

In this paper, we evaluated the robustness of action recogni-
tion algorithms in compressed domain against compression,
changes in encoding scheme and changes in resolution. The
action recognition performance of the compressed domain al-
gorithm (MV-FV) fluctuates significantly with compression
ratio variations. Different encoding schemes for training and
testing leads to a significant decrease in accuracy. The same
is true for variations in resolutions. As a benchmark, we
compared our results to a state-of-the-art pixel domain action
recognition algorithm C3D.

Supervised learning algorithms for human action recogni-
tion require immense amounts of data for satisfactory recog-
nition performance. As the popularity of applications such as
adaptive video streaming has been increasing, it is becoming
more and more important to ensure the robustness of the ac-
tion recognition algorithms against compression artifacts of
different compression levels and resolutions. In some use
cases, test videos might have a significantly degraded quality
compared to the original videos on which the action recog-
nition algorithm was trained. For this reason, it is very im-
portant to understand the effects of video compression and
transmission errors on existing video analysis technologies.

In future work, we will investigate the advantages and
limitations of compressed and pixel domain methods by ana-
lyzing what exactly classifiers rely on in order to distinguish
between human actions [16] and by comparing different
models [17]. Furthermore, we plan to incorporate additional
features (such as DCT coefficients and macroblock types)
into compressed domain action recognition algorithms and
increase the robustness of the algorithms against compression
and noise. There is scope for plenty of future work to make
the features more robust and transferable to ensure the ro-
bustness of video analysis applications, such as human action
recognition.
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