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ABSTRACT

Compressed domain human action recognition algorithms are ex-
tremely efficient, because they only require a partial decoding of the
video bit stream. However, the question what exactly makes these
algorithms decide for a particular action is still a mystery. In this
paper, we present a general method, Layer-wise Relevance Propaga-
tion (LRP), to understand and interpret action recognition algorithms
and apply it to a state-of-the-art compressed domain method based
on Fisher vector encoding and SVM classification. By using LRP,
the classifiers decisions are propagated back every step in the action
recognition pipeline until the input is reached. This methodology al-
lows to identify where and when the important (from the classifier’s
perspective) action happens in the video. To our knowledge, this is
the first work to interpret a compressed domain action recognition al-
gorithm. We evaluate our method on the HMDB51 dataset and show
that in many cases a few significant frames contribute most towards
the prediction of the video to a particular class.

Index Terms— Action recognition, interpretable classification,
motion vectors, fisher vector encoding, compressed domain

1. INTRODUCTION

Videos are an integral part of our daily lives. This has in turn cre-
ated a huge demand in content driven analysis, e.g., for surveillance
and copyright protection but also for classifying videos into differ-
ent human action categories by automated annotation systems. Ac-
tion recognition algorithms infer the action performed by a human
in a video using visual cues which are gathered in the form of fea-
tures. Hand crafted features like the Bag of Words (BOW) model
[1], Scale Invariant Feature Transform (SIFT) [2], Histogram of Ori-
ented Gradients (HOG) [3], Motion Boundary Histogram (MBH)
[4] and Fisher vectors (FV) [5] are some of the widely used tech-
niques for action recognition. These features are typically classified
using a linear or non-linear Support Vector Machine (SVM) [6, 7].
Widely used deep learning strategies for action recognition include
[8, 9, 10, 11].

In order to reduce the computational overhead of decoding the
video as well as extracting and processing its frames, motion vectors
from the compressed domain are used to analyze the video content.
Compared to a pixel domain approach, [12] recorded an increase
in speed of two orders of magnitude with only a slight decrease in
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accuracy (if all videos are encoded with the same codec [13]) using
motion vectors.

The nonlinear transformations in computing the features often
lead to a lack of straightforward interpretability of the classifiers de-
cisions. Methods designed for interpreting BOW pipelines include
e.g. [14] – describing a system to explain models incorporating vec-
tor quantization, histogram intersection kernels and SVMs – or the
work of [15] – presenting an algorithm for identifying connected
image regions (support regions) critical for the prediction of a linear
classifier on top of a max-pooling feature aggregation step. While
these methods are limited in their range of applicability, general
explanation techniques such as Layer-wise Relevance Propagation
(LRP) [16] and Deep Taylor [17] have been recently introduced and
applied to image, text and biomedical signal classification problems
[18, 19, 20]. These methods can be adapted to wide range of config-
urations for both BOW-type classifiers and deep neural networks.

In this paper, we utilize the LRP method [21] in the context of
action recognition in compressed domain [12]. The classifier deci-
sions are propagated back every layer in the classification process
in the form of relevances to the Fisher vectors, local descriptors and
finally to the input voxels. The motivation behind applying LRP to
videos is

• Localization: Pinpoint the exact location of action in the
video by highlighting voxels with high relevance.

• Significant frames identification: Identify frames that con-
tribute most for the algorithms to conclude for a given action.

• Feature ranking: Compute how much each feature con-
tributes to the output of the algorithm.

• Visualization: Examine the relevances to help unravel what
the algorithm has learned.

This will enable identification and localization of the exact visual
cues that the algorithm looks for in the frames when classifying a
given video to a particular action.

2. MODEL AND EXPLANATION

Fig. 1 gives an overview of the action recognition model [12] and
also the LRP algorithm [16]. The motion vectors are used to com-
pute spatio-temporal features− Histogram Of Flow (HOF) and Mo-
tion Boundary Histogram (MBH). To compute these features, his-
tograms of motion vectors from an overlapping 32× 32× 5 spatio-
temporal cube are considered. Both HOF and MBH consist of eight
motion bins for different orientations and one no-motion bin. The
descriptors for a video are obtained by stacking the histograms over
all the cubes over all the time slices. MBH is computed by a deriva-
tive of the flow. MBHx and MBHy, the x and y derivatives, have been
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Fig. 1. FV computation and explaining the classifier decision through LRP. The motion vectors are used to compute the spatio-temporal
features − HOF and MBH, which are in turn used to perform FV mapping using a GMM. The output of the linear SVM classifier is used
to compute relevances. The relevances are propagated further until contributions made by each voxel is obtained. In the heatmap, which is
overlaid on the frame, red color indicates positive relevance while blue indicates negative relevance.

shown to reduce the influence of camera motion in action recogni-
tion [4]. These are then mapped to FV, a robust and state-of-the-art
feature mapping approach widely used in computer vision and video
processing [5]. After power- and `2 normalization of the FV, a lin-
ear SVM classifier is used to classify the videos. The mean average
precision (MAP) obtained for this dataset was 42.77%.

LRP [16] aims to decompose the predictions of a trained classi-
fier in terms of mappings performed during prediction time, in order
to attribute to each input component xi a proportional share
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by which it contributes to the classifier output, explaining its rele-
vance to the final prediction in its given state. Here, zij signifies the
value of some forward mapping operation1 of an input component
i at layer l to component j in layer (l + 1) and bj is a bias term.
Above formula is then applied iteratively – under consideration of
the classifier architecture and beginning at the last layer of computa-
tion performed by the model – until the input layer is reached. The
algorithm is initialized with R(l+1)

j = f(x) as the top layer rele-
vance input. This fulfills the layer-wise conservation property [16]

∀l :
∑
i

R
(l)
i = f(x), (2)

ensuring implicitly normalized relevance values within all layers of
computation. Positive values R(l)

i speak for the presence of a pre-
diction target in input component i and negative values against it.
Note that equation 1 is the most basic decomposition rule from [16]
and can be extended to support max-pooling instead of sum-pooling
feature aggregation.

The authors of [18] have successfully applied LRP to a FV-based
object detection system for single images, revealing unexpected and
strongly biased prediction strategies of the learned model in direct
comparison to several deep neural networks and discovering flaws
in the PASCAL VOC 2007 [22] data set. Quantitative results have

1Fig. 1 shows three forward mappings: (1) motion vector → descriptor,
(2) descriptor → FV, (3) FV → SVM output

shown that for FV mapping, the introduction of an additional nu-
merical stabilizer term to equation 1 results in pixel-level relevance
maps representing the classifier reasoning more accurately. The LRP
formulas used in this work are shown in Fig. 1.

3. HEATMAP COMPUTATION

This section provides a step by step approach to compute LRP for
videos, following a more in-depth explanation of the process shown
in Fig. 1.

3.1. Global Descriptor Level Relevances

The model to explain [12] is a linear SVM classifier on top of an im-
proved FV mapping layer, as given in Fig. 1. That is, after comput-
ing the FV mappings and sum-aggregating over all global descrip-
tors, power- and `2 normalization steps are applied, which have been
shown to reduce the sparsity of the descriptor and increase model ac-
curacy. This is equivalent to applying a Hellinger’s kernel function
to the unnormalized FV [5]. We compute global descriptor level rel-
evances R(3)

d , as given in Fig. 1. R(3)
d are the relevances per dimen-

sion d of the FV passed through the predictor, where the decision
function of the model is decomposed in its dual form. The kernel
mapping Φ(·) realizes the normalization steps applied after the FV
mapping step and i is indexing the model’s support vector parame-
ters.

3.2. Local Feature Level Relevances

In order to compute local feature level relevances R(2)
l , we make

use of zld, which describes the output of the FV mapping step of
a descriptor l to output dimension d. For numerical stabilization,
we extend the denominator in equation 1 to zj + ε · sign(zj), where
ε = 100 and the sign-function is adapted such that sign(x ≥ 0) = 1
and −1 otherwise, to avoid divisions by very small values due to
compensating mappings zld [16, 18]. Note that choosing appropriate
parametrizations for the decomposition, complementing the forward
mappings of the classifier, is critical to achieving the best possible
results.
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Fig. 2. The relevances from the final heatmapping layer R(1)

(v,t) computed at different time instances. The above figure is taken from a test
video from the class ride horse with the relevances and corresponding motion vectors overlaid on top of the frame representing an actor riding
on a horse moving towards the camera.

Fig. 3. Frames with the highest relevanceR(1) from different videos
for the class chew.

3.3. Frame Level Relevances

Since the local features are computed from an overlapping spatio-
temporal grid of size 32 × 32 × 5, R(2)

l are distributed over these
different voxels in the video as R(1)

(v,t), where v describes a voxel co-
ordinate at time t. All the pixels in a voxel share the same relevance.
This is the main reason for the block shaped structures visible in all
the heatmap figures given here.

3.4. Feature-wise Frame Level Relevances

The action recognition model in [12] makes use of HOF, MBHx and
MBHy features. The local feature relevance R(2)

l , can be consid-
ered as an augmentation of the relevances of each feature. Since
the features here are stacked, feature-wise relevance R(2)

(l,f), where f
corresponds a particular local feature, can be obtained by taking an
appropriate subset of R(2)

(l) . R(2)

(l,f) can again be distributed over the
voxels in the video.

4. ANALYSIS

By keeping mind the motivation for applying LRP in videos as elab-
orated in section. 1, we analyze different aspects and advantages of
computing the relevance scores in videos.

4.1. Localization

Heatmaps computed by LRP are an intuitive way to understand and
visualize what the algorithm has learned. LRP for SVM classifi-

cation provides positive, negative and neutral evidence for a given
class. Positive relevances computed for true positive videos lead us
the particular voxels where action (from the classifier’s perspective)
occurs. Fig. 2 displays the movement of an actor riding a horse in
a given video. The positive relevances displayed by red provides
for an insightful method to identify and localize when and where
the action is performed in a video. The localization of the action
can also be found in Fig. 4a and 4c, where the actor performs action
pushup and hit, respectively. High relevance can be observed over
and around the actor’s upper body as the action is being performed.

4.2. Significant Frames Identification

Given a video, all the frames are given as input to the algorithm. Al-
though, to decide on the output, the algorithm needs not take into ac-
count all the frames equally. Frames that are most crucial for the al-
gorithm can be found by aggregating the relevance over each frame.
Fig. 6 shows the sum of relevances for each frame plotted against
the number of frames in a video for the class sit-up. Frames with an
upward and downward motion of the actor produce a high relevance
score, while the frames where the actor pauses get lower relevance.

4.3. Feature Rank

Features that contribute most to the output of the algorithm can also
be found by computing feature-wise frame level relevances. Fig. 4
gives a sample frame from 4 videos of different classes after dis-
tributing the relevances of each feature to the input voxels in the
LRP process. As can be seen in all the subfigures in Fig. 4, videos
were found to have different relevances for different features. This
was also confirmed by computing the contribution of each feature
for all the videos, as shown in Fig. 5. MBHy displayed high rele-
vances while HOF obtained the least relevance score indicating that
contriubtion of MBHy was more accounted for by the classifier for
this particular dataset. This can be attributed to two factors - MBH
is a derivative of the flow and hence is already a more robust feature.
Another factor is from an intuitive observation that many classes in
this dataset had an actor performing vertical motion like sit up and
pushups. In Fig. 4a, since the actor performs pushups, most motion
vectors are found to be in the vertical direction. Hence, contributing
for higher MBHy relevance.
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Fig. 4. Feature-wise R(1) plotted for a frame with high relevance from a video belonging to class pushup, turn, hit and golf respectively. The
top row shows relevances of MBHy, while the center and bottom row represents relevances of HOF and MBHx, respectively.
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Fig. 5. The contribution of each feature towards classifiers decision
for all true positive videos in the dataset

Fig. 6. Sum of relevance over each frame plotted against number of
frames in the video for the action sit-up.

4.4. Visualization

Heatmaps can also be used to unravel and visualize the learning pro-
cess of the algorithm. Fig. 3 gives the heatmap for a few true pos-
itive videos from the class chew. Since this approach makes use
of only the motion vectors, large motion vectors can skew the his-
togram components. The videos from chew which have a close-up
shot of a person chewing, exhibit this phenomenon. Motion vectors
observed in videos from chew appear to have relatively large motion
vectors from the movement of head compared to the motion vectors
due to the act of chewing. Incidentally, the heatmap also produces
the strongest relevance in that region. This indicates that the algo-
rithm has found and learned a common pattern in videos from the
class chew - that of small movement in head - rather than chewing.

The heatmaps from the class golf also provided for some inter-
esting observations as shown in Fig. 4d. The algorithm has learned
the motion of the swing of an object correctly by using spatio-
temporal features. However, in a video, coincidentally, the swing of
a towel obtained a high relevance indicating that the algorithm used
it to classify the video as belonging to class golf.

5. DISCUSSION AND FUTURE WORK

In this work, we have presented the LRP method to interpret and
understand the predictions of a compressed domain action recogni-
tion algorithm. LRP efficiently propagates the classifiers decisions
back to voxels in the video, thus finding the contribution of the dif-
ferent voxels in the form of relevances. We demonstrated localiza-
tion of the action performed by identifying the significant voxels and
frames. In addition feature-wise relevance was computed demon-
strating the contribution made by each feature towards the classifiers
decision.

Future work will use the heatmaps as cue for recomputing the
features and classify the videos again from voxels with relatively
high relevance, in this manner unsupervised preprocessing via LRP
may ultimately contribute to denoising and thus higher accuracy.
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