
Robustifying Models Against Adversarial Attacks
by Langevin Dynamics

Vignesh Srinivasan1, Csaba Rohrer1, Arturo Marban1,2,3,
Klaus-Robert Müller2,3,4,5,

∗
, Wojciech Samek1,3,

∗
and Shinichi Nakajima2,3,6,

∗

1Machine Learning Group, Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany,
2Machine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany, 3BiFOLD,

4Dept. of Artificial Intelligence, Korea University, Seoul 136-713, South Korea,
5Max Planck Institute for Informatics, 66123 Saarbrücken, Germany,
6RIKEN AIP, 1-4-1 Nihonbashi, Chuo-ku, Tokyo 103-0027, Japan.

{wojciech.samek}@hhi.fraunhofer.de
{klaus-robert.mueller,nakajima}@tu-berlin.de

Abstract

Adversarial attacks on deep learning models have compromised their performance considerably. As

remedies, a number of defense methods were proposed, which however, have been circumvented by newer

and more sophisticated attacking strategies. In the midst of this ensuing arms race, the problem of

robustness against adversarial attacks still remains a challenging task. This paper proposes a novel, simple

yet effective defense strategy where off-manifold adversarial samples are driven towards high density

regions of the data generating distribution of the (unknown) target class by the Metropolis-adjusted

Langevin algorithm (MALA) with perceptual boundary taken into account. To achieve this task, we

introduce a generative model of the conditional distribution of the inputs given labels that can be learned

through a supervised Denoising Autoencoder (sDAE) in alignment with a discriminative classifier. Our

algorithm, called MALA for DEfense (MALADE), is equipped with significant dispersion—projection

is distributed broadly. This prevents white box attacks from accurately aligning the input to create

an adversarial sample effectively. MALADE is applicable to any existing classifier, providing robust

defense as well as off-manifold sample detection. In our experiments, MALADE exhibited state-of-the-art

performance against various elaborate attacking strategies.

1. Introduction

Deep neural networks (DNNs) [1, 2, 3, 4, 5] have shown excellent performance in many applications,

while they are known to be susceptible to adversarial attacks, i.e., examples crafted intentionally by

adding slight noise to the input [6, 7, 8, 9, 10, 11]. These two aspects are considered to be two sides of

the same coin: deep structure induces complex interactions between weights of different layers, which

provides flexibility in expressing complex input-output relation with relatively small degrees of freedom,

while it can make the output function unpredictable in spots where training samples exist sparsely. If

adversarial attackers manage to find such spots in the input space close to a real sample, they can
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Figure 1: Adversarial attack and defense by MALA and MALADE.

An adversarial sample (red circle) is created by moving the data

point (black circle) away from the data manifold, here the manifold

of images of digit "9". In this low density area, the DNN is

not well trained and thus misclassifies the adversarial sample.

Unsupervised sampling techniques such as MALA (green line)

project the data point back to high density areas, however, not

necessarily to the manifold of the original class. The proposed

MALADE (blue line) takes into account of class information and

thus projects the adversarial sample back to the manifold of images

of digit "9".

(a) Denoising

Autoencoder (DAE)

(b) Supervised Denoising

Autoencoder (sDAE)

Figure 2: DAE and sDAE. (a) DAE is trained so that

corrupted images with Gaussian noise ν are cleaned,

and is known to provide a score function estimator of

the marginal distribution p(x). (b) sDAEs addition-

ally learns from the classification loss, and provides a

score function estimator of the conditional distribu-

tion p(x|y). Detailed discussion is given in Section 3.

manipulate the behavior of classification, which can lead to a critical risk of security in applications, e.g.,

self-driving cars, for which high reliability is required. Different types of defense strategies were proposed,

including adversarial training [12, 13, 14, 15, 16, 17, 18, 19, 20] which incorporates adversarial samples

in the training phase, projection methods [21, 22, 23, 24, 16, 25] which denoise adversarial samples by

projecting them onto the data manifold, and preprocessing methods [26, 27, 28, 29] which try to destroy

elaborate spatial coherence hidden in adversarial samples. Although those defense strategies were shown

to be robust against the attacking strategies that had been proposed before, most of them have been

circumvented by newer attacking strategies. Another type of approaches, called certification-based methods

[30, 31, 32, 33, 20], minimize (bounds of) the worst case loss over a defined range of perturbations, and

provide theoretical guarantees on robustness against any kind of attacks. However, the guarantee holds

only for small perturbations, and the performance of those methods against existing attacks are typically

inferior to the state-of-the-art. Thus, the problem of robustness against adversarial attacks still remains

unsolved.

In this paper, we propose a novel defense strategy, which drives adversarial samples towards high

density regions of the data distribution. Figure 1 explains the idea of our approach. Assume that an

attacker created an adversarial sample (red circle) by moving an original sample (black circle) to an

untrained spot where the target classifier gives a wrong prediction. We can assume that the spot is in a

low density area of the training data, i.e., off the data manifold, where the classifier is not able to perform

well, but still close to the original high density area so that the adversarial pattern is imperceptible to a

human. Our approach is to relax the adversarial sample by the Metropolis-adjusted Langevin algorithm
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(MALA) [34, 35], in order to project the adversarial sample back to the original high density area.

MALA requires the gradient of the energy function, which corresponds to the gradient ∇x log p(x)

of the log probability, a.k.a., the score function, of the input distribution. As discussed in [36], one can

estimate this score function by a Denoising Autoencoder (DAE) [37] (see Figure 2a). However, naively

applying MALA would have an apparent drawback: if there exist high density regions (clusters) close to

each other but not sharing the same label, MALA could drive a sample into another cluster (see the green

line in Figure 1), which degrades the classification accuracy. To overcome this drawback, we perform

MALA driven by the score function of the conditional distribution p(x|y) given label y. We will show

that the score function can be estimated by a Supervised DAE (sDAE) [38, 39] (see Figure 2b) with the

weights for the reconstruction loss and the classification loss appropriately set.

By using sDAE, our novel defense method, called MALA for DEfense (MALADE), relaxes the

adversarial sample based on the conditional gradient ∇x log p(x|y) without knowing the label y of the

test sample. Thus, MALADE drives the adversarial sample towards high density regions of the data

generating distribution for the original class (see the blue line in Figure 1), where the classifier is well

trained to predict the correct label.

Our proposed MALADE can be seen as one of the projection methods, most of which have been

circumvented by recent attacking methods. However, MALADE has two essential differences from the

previous projection methods:

Significant dispersion Most projection methods, including Magnet [28], Defense-GAN [23], PixelDefend

[22], and others [24, 25], try to pull the adversarial sample back to the original point (so that the

adversarial pattern is removed). On the other hand, MALADE drives the input sample to anywhere

(randomly) in the closest cluster having the original label. In this sense, MALADE has much larger

inherent randomness and thus resilience than the previous projection methods,

Perceptual boundary taken into account All previous projection methods pull the input sample

into the closest point on the data manifold without the label information into account. On the other

hand, MALADE is designed to drive the input sample into the data manifold of the original class.

The previous projection methods were broken down by aligning adversarial samples such that the

classifier is fooled even after the projection or by finding adversarial samples that is not significantly

moved by the projector [40, 41]. Significant dispersion of MALADE makes these attacking strategies

harder: it prevents any whitebox attack from aligning the input so that MALADE stably moves it to a

targeted untrained spot. Here, the second property is essential: when making dispersion of projection

broad, it can happen that Langevin dynamics carries a sample from the original cluster to a neighboring

cluster with different label, which results in a wrong prediction. sDAE, taking the perceptual boundary

into account, allows us to safely perform Langevin Dynamics within the clusters of the correct label.

Concisely, our contributions in this paper are three fold:

• We prove that a sDAE can provide an estimator for the conditional gradient ∇x log p(x|y), without
knowing the label at the test time.
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• We propose to perform a modified version of MALA suited for defense, i.e., MALADE, which drives

samples towards the high density area of the conditional, instead of the marginal.

• We empirically show that MALADE alone can protect the standard classifiers to get robust

performance on MNIST. On ImageNet, the standard classifiers are completely broken down,

and MALADE alone cannot make them robust. However, MALADE improves the performance

of adversarially trained classifiers. A combined strategy of detection and defense enhances the

performance, and achieves state-of-the-art results in countering adversarial samples on ImageNet.

This paper is organized as follows. We first summarize existing attacking and defense strategies in

Section 2. Then, we propose our method with a novel conditional gradient estimator in Section 3. In

Section 4, we evaluate our defense method against various attacking strategies, and show advantages over

the state-of-the-art defense methods. Section 5 concludes.

2. Existing Methods

In this section, we introduce existing attacking and defense strategies.

2.1. Attacking Strategies

There are two scenarios considered in adversarial attacking. The whitebox scenario assumes that the

attacker has the full knowledge on the target classification system, including the architecture and the

weights of the DNN and the respective defense strategy,4 while the blackbox scenario assumes that the

attacker has access only to the classifier outputs.

2.1.1. Whitebox Attacks (General)

We first introduce representative whitebox attacks, which are effective against general classifiers with

or without defense strategy.

Projected Gradient Descent (PGD) [17]. The PGD attack, a.k.a., the basic iterative method, solves the

following problem iteratively by the projected gradient descent:

min
x′
−J(x′,y)

s.t. ‖x′ − x‖p ≤ ε, x′ ∈ [0, 1]L, (1)

where x ∈ [0, 1]L is the original image, y ∈ {0, 1}K is its (true) label, and ε is the upper-bound of the

amplitude of adversarial patterns. ‖ · ‖p denotes the Lp-norm, and

J(x,y) = −y> log ŷ(x) (2)

is the cross entropy loss of the classifier output ŷ(x) ∈ [0, 1]K . Here, > denotes the transpose of a vector,

and log(·) applies entry-wise.

4As in [40], we assume that the attacker cannot access to the random numbers (nor random seed) generated and used in

stochastic defense processes.
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While Fast Gradient Sign Method (FGSM) [6] corresponds to the first iteration of PGD, iteratively

solving Eq.(1) makes it a strong first-order attack. Several variations can be incorporated into PGD, e.g.,

L1 or L2-norm for the perturbation bound, and use of momentum for better convergence [42].

Carlini-Wagner (CW) [43]. The CW attack optimizes the adversarial pattern τ ∈ RL by solving

min
τ
‖τ‖p + c · F (x+ τ ,y)

s.t. x+ τ ∈ [0, 1]L, (3)

where

F (x+ τ ,y) = max{0, log ŷk∗(x+ τ )−max
k 6=k∗

log ŷk(x+ τ ) + ι}.

Here, c is a trade-off parameter balancing the pattern intensity and the adversariality, k∗ is the true label

id, i.e., yk∗ = 1, and ι is a margin for the sample to be adversarial. Elastic-net Attack to Deep neural

networks (EAD) [44, 45] is a modification of the CW attack where the Lp regularizer is replaced with the

elastic-net regularizer, the sum of L1 and L2 norms.

2.1.2. Whitebox Attacks (Specialized)

Some attacking strategies target specific features of defense strategies, and enhance general whitebox

attacks (introduced in the previous subsection). Reconstruction (R) Regularization [46] is suited for

attacking defense strategies which are equipped with a denoising process, where adversarial pattern is

removed by projection, e.g., by an autoencoder. The sum of the reconstruction loss by the denoising

process and the (negative) cross entropy loss is minimized. Back Pass Differentiable Approximation

(BPDA) [40] was strategized for defenses which prevent whitebox attackers from stably computing the

gradient, e.g., by having non-differentiable layers or artificially inducing randomness. BPDA simply

replaces such layers with identity maps, in order to stably estimate the gradient. This method is

effective when the replaced layer is the denoising process that reconstructs the original input well, so

that ∇xŷk(r(x
′)) ≈∇xŷk(x) holds. The Expectation over Transformation (EOT) [40] method estimates

the gradient by averaging over multiple trails, so that the randomness is averaged out. This method is

effective against any stochastic defense methods.

2.1.3. Blackbox Attacks

In the blackbox scenario, attackers are assumed not to have the knowledge of the system but have

access only to the output decision. Distillation Attack [47, 7] trains a student network and then use

whitebox attacking strategies. Boundary Attack [48] performs random exploration on the input space

to find the closest adversarial point to the original image. Assume that the attacker has full access to

another classifier which was trained for the same purpose as the target classifier. Then, the attacker can

create adversarial samples by any whitebox attack against the known model, and use them to attack the

target classifier. Such an attack is called Transfer Attack [49]. Although, blackbox attacks are a more

likely threat scenario, such attacks are, by definition, weaker than whitebox attacks.
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2.2. Defense Strategies

As mentioned in Section 1, existing methods can be roughly classified into four categories.

Projection Methods. The methods in this category are generally seen as weaker than those in the other

categories. Though many methods were proposed for adversarial defense using preprocessing for projection,

(e.g., bit depth reduction, JPEG compression and decompression, random padding) [26, 29], [40] showed

that they can be easily broken down by BPDA or EOT. Autoencoders can also be used as a preprocessor

to remove adversarial patterns [27, 28], which however were broken down by CW [41].

Generative models have been shown to be useful to reconstruct the original image (or to remove the

adversarial patterns) from an adversarial sample [23, 24, 25]. Since the generative model is trained to

generate samples in the data manifold, the generative model effectively projects off-manifold samples

onto the data manifold. The Analysis By Synthesis (ABS) method [21] uses a variational autoencoder to

find the optimal latent vector maximizing the lower bound of the log likelihood of the given input to each

of the class. Most existing strategies in this category have been rendered as ineffective against recent

attacking strategies: Defense-GAN and PixelDefend have been broken down by BPDA [40].

Adversarial Training. In this strategy, adversarial samples are generated by known attacking strategies,

and added to the training data, in order to make the classifier robust against those attacks [7, 15, 50,

16, 17, 18, 19, 20]. The method [17] proposed by Madry et al. (2017), which we refer to as "Madry" in

this paper, withstood many adversarial attacks on MNIST and CIFAR10, and is considered to be the

current state-of-the-art defense strategy that outperforms most of the other existing defense methods

against most of the attacking methods. Adversarial Logit Pairing (ALP) [18] and Feature Denoising (FD)

[20] utilize adversarial training on ImageNet. Methods in this category, typically show higher robustness

than methods in the other categories. However, they have a risk of overfitting to the known attacking

strategies [44, 45] and to intensity of perturbations [17].

In our experiment in Section 4, we choose Madry and FD as the state-of-the-art baselines, respectively,

on MINST and on ImageNet. Madry is known to be the state-of-the-art on MNIST, as mentioned

above. However, it did not show good performance on ImageNet, and was outperformed by ALP, another

adversarial training method with logit pairing [18]. It was later found that the good performance of ALP

in the original paper [18] was due to the small number of iterations in generating adversarial samples, and

the same PGD attack with a larger number of iterations broke it down [51]. FD is equipped with feature

denoising process on top of Madry, and showed excellent performance on ImageNet. However, it was

found that the success of FD comes primarily from successful hyperparameter tuning of Madry (see the

author’s GitHub page5). Thus, Madry and FD are considered to be essentially the same method. Due to

availability of pretrained networks, we use in our experiments a Madry implementation on MNIST, and a

FD implementation on ImageNet.

Certification-based Methods. Certification-based methods employ robust optimization, and obtain provably

robust networks. The idea is to train the classifier by minimizing (upper-bounds of) the worst-case loss over

5https://github.com/facebookresearch/ImageNet-Adversarial-Training/issues/1
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Table 1: Existing adversarial defenses and attacks.

Method Related Work

Projection ABS [21], PixelDefend[22], Defense-GAN[23]

Magnet [28],[24], [25], [26], [27], [29]

Defenses Adversarial Training Madry [17], ALP [18], [19],

FD [20], [7], [15], [16], [50]

Certification based [30, 31, 32, 33, 52]

Blackbox Distillation Attack [47, 7], Boundary Attack [48], Transfer Attack [49]

Attacks Whitebox PGD [17], FGSM [6], CW [43], MIM [42], EAD [44, 45]

Whitebox (Specialized) Reconstruction (R) Regularization [46], BPDA, EOT [40]

a defined range of perturbations, so that creating adversarial samples in the range is impossible. To this

end, one needs to solve a nested optimization problem, which consists of the inner optimization finding the

worst case sample (or the strongest adversarial sample) and the outer optimization minimizing the worst-

case loss. Since the inner optimization is typically non-convex, different relaxations [30, 52, 32, 33, 31]

have been applied for scaling this approach.

The certification-based approach seems a promising direction towards the end of the arms race—it

might protect classifiers against any (known or unknown) attacking strategy in the future. However, the

existing methods still have limitations in many aspects, e.g., structure of networks, scalability, and the

guaranteed range of the perturbation intensity. Typically, the robustness is guaranteed only for small

perturbations, e.g., PGD-L∞ Eq.(1) for ε ≤ 0.1 in MNIST [31, 32, 33], and no method in this category

has shown comparable performance to the state-of-the-art.

Table 1 summarizes the related work for adversarial defense and attack.

3. Proposed Method

In this section, we propose our novel defense strategy, which drives the input sample (if it lies in low

density regions) towards high density regions. We achieve this by using Langevin dynamics.

3.1. Denoising Autoencoders

A denoising autoencoders (DAE) [37, 53] is trained such that data samples contaminated with artificial

noise is cleaned. More specifically, it minimizes the reconstruction error:

Ep′(x)p′(ν)

[
‖r(x+ ν)− x‖2

]
, (4)

where Ep [·] denotes the expectation over the distribution p, x ∈ RL is a training sample subject to

a distribution p(x), and ν ∼ NL(0, σ
2I) is an L-dimensional artificial Gaussian noise with mean zero

and variance σ2. p′(·) denotes an empirical (training) distribution of the distribution p(·), namely,

Ep′(x) [g(x)] = N−1
∑N

n=1 g(x
(n)) where {x(n)}Nn=1 are the training samples.
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Proposition 1. [36] Under the assumption that r(x) = x+ o(1)6, the minimizer of the DAE objective

Eq.(4) satisfies

r(x)− x = σ2∇x log p(x) + o(σ2), (5)

as σ2 → 0.

Proposition 1 states that a DAE trained with a small σ2 can be used to estimate the gradient of the log

probability. In a blog [54], it was shown that the residual is proportional to the score function of the

noisy input distribution for any σ2, i.e.,

r(x)− x = σ2∇x log

∫
NL(x;x

′, σ2IL)p(x
′)dx′. (6)

3.2. Metropolis-adjusted Langevin Algorithm (MALA)

MALA is an efficient Markov chain Monte Carlo (MCMC) sampling method which uses the gradient

of the energy (negative log-probability E(x) = − log p(x)). Sampling is performed sequentially by

xt+1 = xt + α∇x log p(xt) + κ, (7)

where α is the step size, and κ is random perturbation subject to N (0, δ2IL). By appropriately controlling

the step size α and the noise variance δ2, the sequence is known to converge to the distribution p(x).7

3.3. Supervised Denoising Autoencoders (sDAE)

Let y ∈ {0, 1}K be (the 1-of-K representation of) the label of a training image x ∈ [0, 1]L, and

ŷ(x) ∈ [0, 1]K be the classifier output (normalized by the final soft-max layer). We propose to train a

supervised denoising autoencoder (sDAE) [38, 39] by minimizing the following functional with respect to

the function r : RL 7→ RL:

Ep′(x,y)p′(ν)

[
‖r(x+ ν)− x‖2 + 2σ2J (r(x+ ν),y)

]
. (8)

The difference from the DAE objective Eq.(4) is in the second term, which is proportional to the cross

entropy loss, defined in Eq.(2) . With this additional term, sDAE provides the gradient estimator of the

log-joint-probability log p(x,y) averaged over the training (conditional) distribution, as shown below.

Note that, unlike the previous work [38, 39], we fix the balance (weights) between the reconstruction loss

(first term) and the supervised loss (second term), which is essential in the following analysis.

One can see the classifier output as an estimator for the conditional distribution on the label given an

image. We denote by p̃ the estimated probability based on the classifier output, i.e., we use the following

notation:

p̃(y|x) ≡ y>ŷ(x), p̃(x,y) ≡ p̃(y|x)p(x), p̃(x|y) ≡ p̃(y|x)
p(y)

. (9)

6This assumption is not essential as we show in the proof in Appendix A.
7For convergence, a rejection step after Eq.(7) is required. However, it was observed that a variant, called MALA-approx

[55], without the rejection step gives reasonable sequence for moderate step sizes. We use MALA-approx in our proposed

method.
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Theorem 1. The minimizer of the sDAE objective Eq.(8) satisfies

r(x)− x = σ2Ep(y|x) [∇x log p̃(x,y)] +O(σ3). (10)

(Sketch of proof) Similarly to the analysis in [36], we first Taylor expand r(x+ ν) around x, and write

the sDAE objective similar to the contrastive autoencoder [56, 57] objective (The objective contains a

higher order term than in [36] since we do not assume that r(x) = x+ o(1)). After that, applying the

second order Euler-Lagrange equation gives Eq.(10) as a stationary condition. The complete proof is

given in Appendix A. �

If the label distribution is flat (or equivalently the number of training samples for all classes is the

same), i.e., p(y) = 1/K, the residual of sDAE gives

r(x)− x = σ2Ep(y|x) [∇x log p̃(x|y)] +O(σ3).

The first term is the gradient of the (estimated) log-conditional -distribution on the label, where the label

is estimated from the prior knowledge (the expectation is taken over the training distribution of the label,

given x). If the number of training samples are non-uniform over the classes, the weight (or the step size)

should be adjusted so that all classes contribute equally to the sDAE training.

3.4. MALA with sDAE for Defense (MALADE)

As discussed in Section 1, MALA drives the input into high density regions but not necessarily to the

cluster sharing the same label with the original image (see Figure 1). To overcome this drawback, we

propose MALA for defence (MALADE), which drives samples into high density regions of the conditional

training distribution p(x|y), instead of the marginal p(x). More specifically, sampling is performed by

xt+1 = xt + αEp(y|xt) [∇x log p(xt|y)] + κ. (11)

MALADE generates samples at every step using the score function ∇x log p(xt|y), for which an estimator

is provided by a sDAE. α is the step size which describes the stride to be taken at every step and ν is

the noise term. Figure 3 shows a typical example, where MALADE (top-row) successfully drives the

adversarial sample to the correct cluster, while MALA (bottom-row) drives it to a wrong cluster.

3.5. MALADE for Detection while Defending

Adversarial samples, especially with large perturbations, lie off the manifold and can have a higher

norm of the score function compared to the clean samples. Such samples are easier to detect (and then

reject) rather than to fix by defense methods. In most practice applications, it is not necessary to fix all

adversarial samples, as long as they can be identified as adversarial and rejected.

The Magnet [28] defense was proposed with a detection procedure, where the samples with the norm

of the score function estimator (by DAE) larger than a threshold θ, i.e.,

‖∇x log p(x0)‖ > θ, (12)
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Figure 3: The top-left is the original image, from which the adversarial image (second column) was crafted. The third to

the fifth columns show the images after N = 1, 10, and 25 steps of MALADE (top-row) and of MALA with the marginal

distribution (bottom-row). Below each image, the prediction output ŷk∗ for the original label k∗ ="6" and that for the

label with the highest output, i.e., k = argmaxk 6=k∗ ŷk, are shown. In this example, MALADE, trained with perceptional

information, drives the adversarial sample towards the right cluster with the original label "6". On the other hand, although

MALA successfully removed the adversarial pattern for "8", it brought the sample into a neighboring cluster with a wrong

label "5".

are identified as adversarial, and thus rejected. In a similar fashion, we identify a sample as adversarial, if

the score function estimator by sDAE is larger than a threshold:

‖∇x log p̃(x0|y)‖ > θ. (13)

The threshold θ is set so that the false positive rate is controlled. We show in Section 4.5 that this

combined strategy of detection and defense is highly useful when defense alone is not robust enough.

4. Experiments

In this section, we empirically evaluate our proposed MALADE against various attacking strategies,

and compare it with the state-of-the-art baseline defense strategies.

4.1. Datasets

We conduct experiments on the following datasets:

MNIST: MNIST consists of handwritten digits from 0-9. The dataset is split into training, validation

and test set with 50, 000, 10, 000 and 10, 000 images, respectively. MNIST, in spite of being a small

dataset, remains to be considered as adversarially robust.

ImageNet: ImageNet dataset consisting of 1, 000 classes [58]. Each class contains around 1, 300 training

images and 50, 000 test images in total. The images have a resolution of 224× 224× 3. For the

purpose of evaluation, we used the NIPS 2017: Adversarial Learning Development Set8. This dataset

8https://www.kaggle.com/google-brain/nips-2017-adversarial-learning-development-set
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Table 2: Summary of classification performance on MNIST. For each attacking scenario, i.e., whitebox/blackbox and bounds

for the amplitude of adversarial patterns, the lowest row gives the worst case result over the considered attacking strategies.

Setting Condition Attack CNN Madry CNN + MALADE Madry + MALADE

FGSM 11.77 97.52 93.54 95.59

PGD 0.00 93.71 94.22 95.76

L∞ R+PGD - - 92.65 93.51

ε = 0.3 BPDA - - 84.74 94.70

BPDAwEOT - - 82.48 91.54

MIM 0.00 97.66 94.32 94.53

worst case 0.00 93.71 82.48 91.54

PGD 0.00 0.02 93.51 92.18

whitebox L∞ BPDA - - 66.16 83.90

ε = 0.4 BPDAwEOT - - 62.15 80.65

worst case 0.00 0.02 62.15 80.65

FGM 30.79 97.68 94.68 96.05

L2 PGD 0.01 92.68 95.91 96.76

ε = 4 CW 0.00 85.53 90.07 91.14

worst case 0.0 85.53 90.07 91.14

L2-L1 EAD 0.00 0.01 31.00 30.59

β = 0.01 and c = 0.01

ρ = 0.25 SaltnPepper 36.49 41.61 80.41 80.72

blackbox T = 5, 000 Boundary Attack 32.39 1.10 93.79 95.80

Transfer Attack 9.19 63.47 76.87 71.40

worst case 9.19 1.10 76.87 71.40

was introduced in the NIPS 2017 Adversarial Learning challenges containing 1000 ImageNet-like

images, and their corresponding labels to be used in the competition.

4.2. Attacking Strategies

We explore traditional whitebox attacking strategies, PGD, CW, MIM and EAD, as well as adaptive

strategies, R+PGD, BPDA and EOT. We also include blackbox attacking strategies in our evaluation

– Boundary Attack, SaltnPepper and Transfer Attack. We also explore possible attacking methods

suitable against our proposed MALADE by combining BPDA and EOT to counter the randomness and

significant dispersion inherent in MALADE. We first make sure that the attacking methods are applied

with appropriate parameter setting and pay careful attention to the fairness of the presented evaluation

[59].

4.3. Baseline Defense Strategies

We choose the following state-of-the-art methods for comparison against MALADE,
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Figure 4: Magnet vs MALADE: Magnet [28] is a pro-

jection method which makes use of an autoencoder as a

preprocessing step. MALADE on the other hand, is a

random sampling algorithm which uses an sDAE only for

estimating the conditional gradient at every time step. The

significant dispersion of MALADE makes it hard for at-

tackers to accurately align adversarial samples to targeted

spots.
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Figure 5: Classification accuracy against BPDA with EOT

on MNIST. Madry breaks down for adversarial samples

which have a perturbation higher than 0.3. MALADE

boosts the robustness when applied to either CNN or

Madry, much more than Magnet does.

Madry [17] and FD [20] (adversarial training) Madry and FD are the state-of-the-art adversarial

training methods, which showed best performance, respectively, on MNIST and on ImageNet.

As discussed in Section 2.2, both are considered to be essentially the same method. We used a

pretrained Madry model9 in the MNIST experiment, and a pretrained FD model10 in the ImageNet

experiment.

Magnet [28] Magnet can be considered as a special case of MALA – with the step size α = σ2 and the

number of steps N = 1 with no Gaussian noise added (see Figure 4). Similar to MALADE, Magnet

can be applied to adversarial training methods, possibly providing state-of-the-art baselines.

4.4. Results on MNIST

We first show our extensive experiments on MNIST. Table 2 shows classification accuracy of the

original convolutional neural network (CNN) classifier, the CNN classifier protected by MALADE

(CNN+MALADE), the Madry classifier, i.e., the classifier trained with adversarial samples, and the

Madry classifier protected by MALADE (Madry+MALADE). Each classifier was attacked with several

strategies including different Lp-norms. The Madry classifier was trained on the adversarial samples

created by PGD-L∞ for ε = 0.3. As expected, Madry is robust against PGD-L∞ up to ε ≤ 0.3.

Consistently with the author’s report [17], it is also robust against PGD-L2 up to ε ≤ 4.5. However,

Madry is broken down by PGD-L∞ for ε > 0.4 and PGD-L2 for ε > 6. Furthermore, EAD method

completely breaks down Madry. On the other hand, our proposed MALADE is robust against PGD-L∞

and PGD-L2 in a wide range of ε, and is not completely broken down by EAD.

9https://github.com/MadryLab/mnist_challenge
10https://github.com/facebookresearch/ImageNet-Adversarial-Training
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(a) FPR = 0% (b) FPR = 0.1% (c) FPR = 1% (d) FPR = 5%

Figure 6: Classification accuracy on ImageNet. The panel (a) shows pure defense performance, while (b)–(d) show defense

with detection performance for different false positive rate. While the pure (FPR=0%) defense strategy with MALADE

shows a marginal gain, combining detection with defense (FPR>0%) significantly improves the performance. The plot for

ALP in the panel (a) indicates the reported value in ALP [18], which outperformed all previous classifiers on ImageNet but

was later shown to be outperformed by FD.

We also investigated the robustness against attacks adapted to MALADE, i.e., R, BPDA, EOT, and

their combinations (see Section 2.1.2). We see in Table 2 that the elaborated attacks reduce the accuracy

of Madry+MALADE to some extent, but their effect is limited. Table 2 also shows results under the

blackbox scenario with the state-of-the-art attacking strategies – SaltnPepper, Boundary attack and

Transfer Attacks. The table clearly shows high robustness of MALADE against those attacks, while Madry

exhibits vulnerability against them. Especially, for larger ε and different norm bounds, Madry+MALADE,

as well as CNN+MALADE, significantly outperforms Madry and CNN.

Figure 5 depicts the classification accuracy as a function of ε against BPDA with EOT, the most

effective attack against MALADE. We see that MALADE applied both to CNN and Madry significantly

improves the performance, for high epsilons. Figure 5 also shows the performance of Magnet applied

to CNN (CNN + Magnet), as well as Madry (Madry + Magnet), as other baseline methods. We see

that Magnet fails to improve the performance of Madry, and Madry without MALADE breaks down for

perturbations higher than 0.3.

4.5. Results on ImageNet

Next we show experimental results on ImageNet. Figure 6a shows the defense accuracy on ImageNet

in the same format as in Figure 5: the curves corresponds to the plain classifier (ResNet152) and the

adversarially trained classifier (FD) with and without Magnet and MALADE. Unfortunately, ResNet152

is completely broken down (the accuracy is zero for ε > 0) and neither Magnet nor MALADE improve

the performance. It is known that, when the data space is high dimensional as of ImageNet, the

decision boundary of normal classifiers (that are not trained with adversarial samples) tend to be highly

complicated and have large untrained spots [8, 15, 60, 61, 62, 63]. Consequently, there is no existing

projection method that can protect them, to the best of our knowledge.

On the other hand, adversarially trained classifiers such as FD tend to have smoother decision

boundary [63, 64, 65, 66, 67]. We observe that FD is not broken down, and MALADE contributes to

improve the robustness. The performance by MALADE is enhanced when it is combined with adversarial

detection (see Section 3.5). We determine the threshold θ in Eq.(13) so that the false positive rate, i.e.,

the proportion of the original test samples identified as adversarial, is equal to target values. Figure 6
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shows the classification accuracy for different false positive rates. Compared with FD and FD + Magnet,

FD + MALADE shows significant improvement. Note that, in the scenario where defender is equipped

with a detector, the attacker optimizes samples so that they fool both the detector and the defense

systems, which can be achieved by minimizing the detection amplitude, i.e., the left-hand side of Eq.(13),

in addition to the (negative) cross entropy loss.

In Figures 6b–6d, the accuracy of FD + Magnet and FD + MALADE decreases on non-adversarial

samples, i.e., at ε = 0, as FPR increases. This is because we counted the false positive samples as

“failures,” and therefore the accuracy at = 0 is upper-bounded by (1− FPR). This amounts to treating

the costs of the false positives and the false negatives equally. However, in the adversarial detection and

defense scenario [28], the cost of false positives is considered to be much lower than the cost of the false

negatives, because the system can ask for a new sample or human interaction for the non-adversarial

samples detected as adversarial (false positives), while the adversarial samples that fool both the detector

and the defended classifier (false negatives) can lead to serious consequences, e.g., fatal accidents resulting

in injury or death in the self-driving application. To treat the false positives and false negatives separately,

[28] proposed a definition of “correct decisions,” where the false positive samples are not counted as

“failures,” and no accuracy drop at ε = 0 would be observed. Although this definition is appropriate, we

did not adopt it in Figures 6b–6d, because the definition makes the accuracy non-decreasing as FPR

increases, and therefore makes the comparison unfair with FD that is not equipped with adversarial

detection.

The contribution of adversarial detection to the final accuracy is indirect. When the defender uses

a detector, the attacker needs to balance between fooling the classifier and hiding from the detector.

As a result, the attacking samples are easier to detect, if the defense method is stronger. This way the

difference in defence performance between Magnet and MALADE can be enhanced. Figure 7 shows the

histograms of the score function norms of clean and adversarial samples, where the adversarial samples

were generated against FD + Magnet (a) and against FD + MALADE (b), respectively. As observed,

the separation between the clean and the adversarial samples is clear for FD + MALADE, which implies

that fooling MALADE is harder, and adversarial samples against FD + MALADE are easier to detect.

5. Concluding Discussion

The threat of adversarial sample still remains an unresolved issue, even on a small toy dataset like

MNIST. State-of-the-art robust methods do not scale well to larger data or models.

In this work, we have proposed to use the Metropolis-adjusted Langevin algorithm (MALA) which is

guided through a supervised DAE—MALA for DEfense (MALADE). This framework allows us to drive

adversarial samples towards the underlying data manifold and thus towards the high density regions of the

data generating distribution, where the nonlinear learning machine is trained well with sufficient training

data. In this process, the gradient is computed not based on the marginal input distribution but on the

conditional input distribution given an output, and it is estimated by a supervised DAE with the weights

for balancing reconstruction and supervision appropriately set. This prevents MALADE from driving

samples into a neighboring cluster with a wrong label, and gives rise to high generalization performance
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Figure 7: The histograms of the norm of the score function of the clean samples and the adversarial samples against FD +

Magnet (a) and those against FD + MALADE (b). The separation is clearer in (b), because the attacker has to pull the

sample far away from the data manifold to fool the FD + MALADE classifier than the FD + Magnet classifier. As a result,

the adversarial samples against FD+MALADE are easier to detect than those against FD + Magnet.

that significantly reduces the effect of adversarial attacks. We have shown that the MALADE improves

the robustness of the state-of-the-art methods in countering adversarial samples on not just small datasets

– MNIST [28, 17] but also on larger datasets – ImageNet [20].

Let us briefly reflect on the fundamental changes that we have proposed in this work as they may hold

value beyond their excellent practical results and may hold a wider applicability. First, broad projection

of the samples by MALADE onto the high density region of the manifold adds further resilience against

attacks into the picture as attackers cannot easily adapt to MALADE even in a whitebox scenario. Second

establishing the conditional estimate through the sDAE helps use class information for projecting back

into the relevant high density areas. Also this concept may serve as a blueprint for other estimators.

Finally, decomposing defense into detection and Langevin dynamics steps turn out helpful. This is because

attackers have to control two points distant from each other, in order to avoid from being detected at the

input point and to fool the classifier after many Langevin steps.

Future work on MALADE includes stabilizing the prediction by majority voting from a collection of

the generated samples after burn-in and in developing tools which estimate the gradient more accurately in

high dimensional space. Other future work includes analyzing the attacks and defenses using interpretation

methods [68, 69], and applying the supervised DAE to other applications such as federated or distributed

learning [70, 71, 72].
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Appendix A. Proof of Theorem 1

sDAE is trained so that the following functional is minimized with respect to the function r : RL 7→ RL:

Ep′(x,y)p′(ν)

[
‖r(x+ ν)− x‖2 + 2σ2J (r(x+ ν),y)

]
, (A.1)

which is a finite sample approximation to the true objective

g(r) =

∫ (
‖r(x+ ν)− x‖2 − 2σ2Ep(y|x)

[
y> log ŷ(r(x+ ν))

])
p(x)NL(ν;0, σ

2I)dxdν. (A.2)

For small σ2, the Taylor expansion of the l-th component of r around x gives

rl(x+ ν) = rl(x) + ν
> ∂rl
∂x

+
1

2
ν>

∂2rl
∂x∂x

ν +O(σ3),

where ∂2f
∂x∂x is the Hessian of a function f(x). Substituting this into Eq.(A.2), we have

g(r) =

∫ { L∑

l=1

(
rl(x) + ν

> ∂rl
∂x

+
1

2
ν>

∂2rl
∂x∂x

ν − xl
)2

− 2σ2Ep(y|x)
[
y> log ŷ(r(x))

]
}
p(x)dxNL(ν;0, σ

2I)dν +O(σ3)

=

∫ { L∑

l=1

(
(rl(x)− xl)2 + (rl(x)− xl)ν>

∂2rl
∂x∂x

ν +
∂rl
∂x

>
νν>

∂rl
∂x

)

− 2σ2Ep(y|x)
[
y> log ŷ(r(x))

]
}
p(x)dxNL(ν;0, σ

2I)dν +O(σ3)

=

∫ { L∑

l=1

(
(rl(x)− xl)2 + σ2 (rl(x)− xl) tr

(
∂2rl
∂x∂x

)
+ σ2

∥∥∥∥
∂rl
∂x

∥∥∥∥
2
)

− 2σ2Ep(y|x)
[
y> log ŷ(r(x))

]
}
p(x)dx+O(σ3). (A.3)

Thus, the objective functional Eq.(A.2) can be written as

g(r) =

∫
Gdx+O(σ3), (A.4)

where

G =

{
L∑

l=1

((
rl(x)− xl + σ2tr

(
∂2rl
∂x∂x

))
(rl(x)− xl) + σ2

∥∥∥∥
∂rl
∂x

∥∥∥∥
2
)

− 2σ2Ep(y|x)
[
y> log ŷ(r(x))

]
}
p(x). (A.5)

We can find the optimal function minimizing the functional Eq.(A.4) by using calculus of variations.

The optimal function satisfies the following Euler-Lagrange equation: for each l = 1, . . . , L,

∂G

∂rl
−

L∑

m=1

∂

∂xm

∂G

∂(r′l)m
+

L∑

m=1

L∑

m′=m+1

∂2

∂xm∂xm′

∂G

∂(R′′l )m,m′
= 0, (A.6)

where r′l =
∂rl
∂x ∈ RL is the gradient (of rl with respect to x) and R′′l = ∂rl

∂x∂x ∈ RL×L is the Hessian.
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We have

∂G

∂rl
=

{
2 (rl(x)− xl) + σ2tr

(
∂2rl
∂x∂x

)
− 2σ2 ∂Ep(y|x)

[
y> log ŷ(r(x))

]

∂rl

}
p(x),

∂G

∂(r′l)m
= 2σ2 ∂rl

∂xm
p(x),

∂G

∂(R′′l )m,m′
= δm,m′σ

2 (rl(x)− xl) p(x),

and therefore

∂

∂xm

∂G

∂(r′l)m
= 2σ2

(
∂2rl
∂x2m

p(x) +
∂rl
∂xm

∂p(x)

∂xm

)
,

∂2

∂xm∂xm′

∂G

∂(R′′l )m,m′
= σ2δm,m′

∂

∂xm

((
∂rl
∂xm′

− δl,m′
)
p(x) + (rl(x)− xl)

∂p(x)

∂xm′

)

= σ2δm,m′

(
∂2rl
∂x2m

p(x) + 2

(
∂rl
∂xm

− δl,m
)
∂p(x)

∂xm
+ (rl(x)− xl)

∂2p(x)

∂x2m

)
,

where δm,m′ is the Kronecker delta. Substituting the above into Eq.(A.6), we have
{
2 (rl(x)− xl) + σ2tr

(
∂2rl
∂x∂x

)
− 2σ2 ∂Ep(y|x)[y> log ŷ(r(x))]

∂rl

}
p(x)

+ σ2
∑L

m=1

∑L
m′=m+1 δm,m′

(
∂2rl
∂x2

m
p(x) + 2

(
∂rl
∂xm
− δl,m

)
∂p(x)
∂xm

+ (rl(x)− xl) ∂2p(x)
∂x2

m

)

− 2σ2
∑L

m=1

(
∂2rl
∂x2

m
p(x) + ∂rl

∂xm

∂p(x)
∂xm

)
= 0,

and therefore
(
rl(x)− xl − σ2 ∂Ep(y|x)

[
y> log ŷ(r(x))

]

∂rl

)(
1 +

σ2

2p(x)
tr
(
∂2p(x)

∂x∂x

))
− σ2 1

p(x)

∂p(x)

∂xl
= 0. (A.7)

It holds that

∂ log p(x)

∂xm
=

1

p(x)

∂p(x)

∂xm
, (A.8)

∂2 log p(x)

∂xm∂xm′
=

∂

∂xm′

(
1

p(x)

∂p(x)

∂xm

)

= −∂ log p(x)
∂xm′

∂ log p(x)

∂xm
+

1

p(x)

∂2p(x)

∂xm∂xm′
, (A.9)

∂Ep(y|x)
[
y> log ŷ(r(x))

]

∂rl
=
∂
∑K

k=1 p(yk|x) log ŷk(r(x))
∂rl

=
∑K

k=1p(yk|x)
∂ log ŷk(r(x))

∂rl

=
∑K

k=1p(yk|x)
∂ log ŷk(x)

∂xl

∣∣∣∣∣
x=r(x)

= Ep(y|x)


y> ∂ log ŷ(x)

∂xl

∣∣∣∣∣
x=r(x)


 . (A.10)

By substituting Eqs.(A.8)–(A.10) into Eq.(A.7), we have

rl(x)− xl − σ2Ep(y|x)


y> ∂ log ŷ(x)

∂xl

∣∣∣∣∣
x=r(x)





(
1 +

σ2

2

(
tr
(
∂2 log p(x)

∂x∂x

)
+

∥∥∥∥
∂ log p(x)

∂x

∥∥∥∥
2
))

− σ2 ∂ log p(x)
∂xl

= 0,
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and therefore

rl(x)− xl = σ2Ep(y|x)


y> ∂ log ŷ(x)

∂xl

∣∣∣∣∣
x=r(x)




+ σ2 ∂ log p(x)

∂xl

(
1 +

σ2

2

(
tr
(
∂2 log p(x)

∂x∂x

)
+

∥∥∥∥
∂ log p(x)

∂x

∥∥∥∥
2
))−1

= σ2Ep(y|x)


y> ∂ log ŷ(x)

∂xl

∣∣∣∣∣
x=r(x)


+ σ2 ∂ log p(x)

∂xl
+O(σ4).

Taking the asymptotic term in Eq.(A.4) into account, we have

rl(x)− xl = σ2Ep(y|x)


y> ∂ log ŷ(x)

∂xl

∣∣∣∣∣
x=r(x)


+ σ2 ∂ log p(x)

∂xl
+O(σ3),

which implies that r(x) = x+O(σ2). Thus, we conclude that

rl(x)− xl = σ2Ep(y|x)

[
∂ log p̃ (y|x)

∂xl

]
+ σ2 ∂ log p(x)

∂xl
+O(σ3)

= σ2Ep(y|x)

[
∂

∂xl
log p̃(x,y)

]
+O(σ3), (A.11)

where we used

Ep(y|x)


y> ∂ log ŷ(x)

∂xl

∣∣∣∣∣
x=r(x)


 = Ep(y|x)

[
y>

∂ log ŷ(x)

∂xl

]
+O(σ2)

= Ep(y|x)

[
∂ log y>ŷ(x)

∂xl

]
+O(σ2),

and the notation in Eq.(9). This completes the proof of Theorem 1.

Appendix B. Implementation Details

We implemented our attacks with the help of repositories including cleverhans11, Madry12, Magnet13,

FD14 among others. The code was written in Tensorflow [73]

Appendix B.1. Hyper-parameter Settings for the Attacks

Appendix B.1.1. PGD

PGD attack was an untargeted attack as it is the simplest strategy for attacking. Learning rate of

0.01 was found to provide for a strong attack while number of iterations was tested for different values

and fixed at N = 1000. Similar hyper-parameters were used for MIM attack.

Appendix B.1.2. BPDAwEOT

The attack strategy against MALADE was tested for its effectiveness by varying the number of steps

of EOT to be computed. N = 30 was found to be sufficient for optimal convergence of the attack.

11https://github.com/tensorflow/cleverhans
12https://github.com/MadryLab/mnist_challenge
13https://github.com/carlini/MagNet
14https://github.com/facebookresearch/ImageNet-Adversarial-Training
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Appendix B.1.3. CW

Hyper-parameters tuned include learning rate = 0.1 and number of iterations N = 1000, initial constant

c = 100, binary search step = 1 and confidence = 0. The optimizer used here was Adam optimizer.

Appendix B.1.4. EAD

Hyper-parameters tuned for attacking MALADE include learning rate = 0.01 and number of iterations

N = 100, initial constant c = 0.01, binary search step = 9 and confidence = 0. Increasing the number

of iterations did not show any increase in the strength of the attack. On the other hand, increasing

the number of iterations proved useful for attacking [17], although with all the hyper-parameters being

the same. The Adam optimizer was investigated for this attack as recommended by [44, 45], however

Gradient Descent optimizer proved better in the convergence of the attack.

Appendix B.2. Score Function Estimation

Appendix B.2.1. Training sDAE

The score function ∇x log p(x) provided by DAE is dependent on the noise σ2 added to the input

while training the DAE. While too small values for σ2 make the score function highly unstable, too large

values blur the score. The same is true for the score function ∇x log p(x|y) provided by MALADE. Here

in our experiments on MNIST, we trained the DAE as well as the sDAE with σ2 = 0.15. Such a large

noise is beneficial for reliable estimation of the score function [55]. On the other hand, for ImageNet, we

used σ2 = 0.1.

Appendix B.2.2. Step Size for Malade

The score function provided by MALADE drives the generated sample towards high density regions

in the data generating distributions. With the direction provided by the score function, α controls the

distance to move agt each step. With large α, there is possibility of jumping out of the data manifold.

While annealing α and δ2 would provides best results as the samples move towards high density region

[34, 74]. In our experiments, we train the sDAE (or DAE) first, followed by searching for good parameters

for the α and number of steps on the training or validation set. This reasonable procedure allows for

manually finetuning the step size and number of steps based on the difficulty of the dataset, such that

they samples are driven to the nearest high density region of the correct label in polynomial time. In the

case of adversarial robustness, it also important to select the hyperparameters such that the off-manifold

adversarial examples are returned to the data manifold of the correct label in the given number of steps.

These parameters are then fixed and evaluated on the test set for each of the datasets.

Appendix B.3. Model Architecture

Appendix B.3.1. Classifier and DAE (and sDAE) Architectures

On MNIST, we used a classifier with two convolution layers and two fully connected layers for the

CNN architecture. The classifier was trained from scratch. For Madry, we used the code provided on the
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GitHub page15. The sDAE (and DAE) for MNIST had two convolution layers on the encoder along with

two deconvolution layers and one final convolution layer on the decoder side. The same architecture was

used for training the autoencoder used in Magnet.

FD classifier and pretrained weights were used as per the instructions provided on the GitHub Page16.

For sDAE as well as for the autoencoder in Magnet, we used a Tiramisu network [75].

15https://github.com/MadryLab/mnist_challenge
16https://github.com/facebookresearch/ImageNet-Adversarial-Training
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Appendix C. Adversarial Samples

(a) ε = 0.3 (b) ε = 0.4

Figure C.8: Sample adversarial images crafted by a PGD attack with L∞ norm are shown here.

(a) ε = 0.3 (b) ε = 0.4

Figure C.9: Sample adversarial images crafted by R+PGD attack with L∞ norm are shown here.

(a) ε = 0.3 (b) ε = 0.4

Figure C.10: Sample adversarial images crafted by a BPDA attack with L∞ norm are shown here.
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(a) ε = 0.3 (b) ε = 0.4

Figure C.11: Sample adversarial images crafted by a BPDAwEOT attack with L∞ norm are shown here.

(a) Adversarial Examples against

Madry with εL∞ = 0.93, εL1
=

125.39, εL2
= 8.18

(b) Adversarial Examples against

Madry + MALADE with

εL∞ = 0.83, εL1
= 22.64, εL2

= 3.55

Figure C.12: Sample adversarial images crafted by EAD attack are shown here. The attack fails to converge for many

images despite our best effort to finetune the algorithm.

(a) Adversarial Examples against

Madry with εL∞ = 0.56, εL1
=

11.36, εL2
= 1.38

(b) Adversarial Examples against

Madry + MALADE with

εL∞ = 0.54, εL1
= 200.46, εL2

= 8.34

Figure C.13: Sample adversarial images crafted by a Boundary attack are shown here. Some images fail to become adversarial

during the initialization of the algorithm with random uniform noise and hence are retained as the original image.
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(a) Images corrupted by Salt and Pepper Noise Attack with

εL∞ = 0.99, εL1
= 98.02, εL2

= 9.70

Figure C.14: Sample adversarial images crafted by adding salt and pepper noise are shown here. The mean of the magnitude

of the perturbations over the entire test dataset for each distance measure is given below each image.
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(a)

(b)

Figure C.15: Sample images for the MALADE algorithm against a PGD attack with L∞ norm are shown here. The rows

indicate the norm of the perturbation used by the attacked while the columns indicate the intermittent steps taken by

MALADE to defend the attack. The classifier’s decision is displayed in yellow in the top right corner of each image. Due to

gradient obfuscation, the adversarial sampels are not very strong and hence MALADE is very robust here.
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(a)

(b)

Figure C.16: Sample images for the MALADE algorithm against a BPDAwEOT attack with L∞ norm are shown here. The

rows indicate the norm of the perturbation used by the attacked while the columns indicate the intermittent steps taken by

MALADE to defend the attack. The classifier’s decision is displayed in yellow in the top right corner of each image. Since

the gradients are computed only until the input to the classifier, there is no gradient obfuscation and hence the attack is

strong.
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(a)

(b)

Figure C.17: Sample images for the MALADE algorithm against a BPDAwEOT attack with L∞ norm are shown here. The

rows indicate the norm of the perturbation used by the attacked while the columns indicate the intermittent steps taken by

MALADE to defend the attack. The classifier’s decision is displayed in yellow in the top right corner of each image.
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(a)

(b)

Figure C.18: Sample images for the MALADE algorithm against a BPDAwEOT attack with L∞ norm are shown here. The

rows indicate the norm of the perturbation used by the attacked while the columns indicate the intermittent steps taken by

MALADE to defend the attack. The classifier’s decision is displayed in yellow in the top right corner of each image.
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