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Abstract

This paper analyzes the predictions of image captioning models with attention
mechanisms beyond visualizing the attention itself. We develop variants of layer-
wise relevance propagation (LRP) and gradient-based explanation methods, tai-
lored to image captioning models with attention mechanisms. We compare the
interpretability of attention heatmaps systematically against the explanations pro-
vided by explanation methods such as LRP, Grad-CAM, and Guided Grad-CAM.
We show that explanation methods provide simultaneously pixel-wise image ex-
planations (supporting and opposing pixels of the input image) and linguistic ex-
planations (supporting and opposing words of the preceding sequence) for each
word in the predicted captions. We demonstrate with extensive experiments that
explanation methods 1) can reveal additional evidence used by the model to make
decisions compared to attention; 2) correlate to object locations with high pre-
cision; 3) are helpful to “debug” the model, e.g. by analyzing the reasons for
hallucinated object words. With the observed properties of explanations, we fur-
ther design an LRP-inference fine-tuning strategy that reduces the issue of object
hallucination in image captioning models, and meanwhile, maintains the sentence
fluency. We conduct experiments with two widely used attention mechanisms:
the adaptive attention mechanism calculated with the additive attention and the
multi-head attention mechanism calculated with the scaled dot product.
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1. Introduction

Image captioning is a setup that aims at generating text descriptions from im-
age representations. This task requires a comprehensive understanding of the im-
age content and a well-performing decoder which translates image features into
sentences. The combination of a convolutional neural network (CNN) and a re-
current neural network (RNN) is a commonly used structure in image caption-
ing models, with CNN as the image encoder and RNN as the sentence decoder
[1, 2, 3]. An established feature of image captioning is the attention mechanism
that enables the decoder to focus on a sub-region of the image when predicting
the next word of the caption [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. Attentions
are usually visualized as attention heatmaps, indicating which parts of the image
are related to the generated words. As such, they are a natural resource to explain
the prediction of a word. Furthermore, attention heatmaps are usually considered
as the qualitative evaluations of image captioning models in addition to the quan-
titative evaluation metrics such as BLEU [16], METEOR [17], ROUGE-L [18],
CIDEr [19], SPICE [20].

Attention heatmaps provide a certain level of interpretability for image cap-
tioning models since they can reflect the locations of objects. However, the out-
puts of image captioning models rely on not only the image input but also the
previously generated word sequence. Attention heatmaps alone meet difficulties
in disentangling the contributions of the image input and the text input.

To gain more insights into the image captioning models, we adapt layer-wise
relevance propagation (LRP) and gradient-based explanation methods (Grad-CAM,
Guided Grad-CAM [21], and GuidedBackpropagation [22]) to explain image cap-
tioning predictions with respect to the image content and the words of the sentence
generated so far. These approaches provide high-resolution image explanations
for CNN models [22, 23]. LRP also provides plausible explanations for LSTM
architectures [24, 25]. Figure 1 shows an example of the explanation results of
attention-guided image captioning models. Taking LRP as an example, both posi-
tive and negative evidence is shown in two aspects: 1) for image explanations, the
contribution of the image input is visualized as heatmaps; 2) for linguistic expla-
nations, the contribution of the previously generated words to the latest predicted
word is shown.
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(b) linguistic explanations of LRP

Figure 1: (a): Image explanations of the word hydrant (the first row) and grass (the second row)
with attention, Grad-CAM, Guided Grad-CAM (G.Grad-CAM) and LRP. (b): The linguistic ex-
planations of LRP for each word in the predicted caption. Blue and red colors indicate negative
and positive relevance scores, respectively.

The explanation results in Figure 1 exhibit intuitive correspondence of the ex-
plained word to the image content and the related sequential input. However, to
our best knowledge, few works quantitatively analyze how accurate the image
explanations are grounded to the relevant image content and whether the high-
lighted inputs are used as evidence by the model to make decisions. We study the
two questions by quantifying the grounding property of attention and explanation
methods and by designing an ablation experiment for both the image explanations
and linguistic explanations. We will demonstrate that explanation methods can
generate image explanations with accurate spatial grounding property, meanwhile,
reveal more related inputs (pixels of the image input and words of the linguistic
sequence input) that are used as evidence for the model decisions. Also, explana-
tion methods can disentangle the contributions of the image and text inputs and
provide more interpretable information than purely image-centered attention.

With explanation methods [26], we have a deeper understanding of image cap-
tioning models beyond visualizing the attention. We also observe that image cap-
tioning models sometimes hallucinate words from the learned sentence correla-
tions without looking at the images and sometimes use irrelevant evidence to make
predictions. The hallucination problem is also discussed in [27], where the au-
thors state that it is possibly caused by language priors or visual mis-classification,
which could be partially due to the biases present in the dataset. The image cap-
tioning models tend to generate those words and sentence patterns that appear
more frequently during training. The language priors are helpful, though, in some
cases. [28] incorporates the inductive bias of natural language with scene graphs
to facilitate image captioning. However, language bias is not always correct, for
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example, not only men ride snowboards [29] and bananas are not always yellow
[30, 31]. To this end, [29] and [31] attempted to generate more grounded captions
by guiding the model to make the right decisions using the right reasons. They
adopted additional annotations, such as the instance segmentation annotation and
the human-annotated rank of the relevant image patches, to design new losses for
training.

In this paper, we reduce object hallucination by a simple LRP-inference fine-
tuning (LRP-IFT) strategy, without any additional annotations. We firstly show
that the explanations, especially LRP, can weakly differentiate the grounded (true-
positive) and hallucinated (false-positive) words. Secondly, based on the findings
that LRP reveals the related features of the explained words and that the sign of
its relevance scores indicates supporting versus opposing evidence (as shown in
Figure 1), we utilize LRP explanations to design a re-weighting mechanism for the
context representation. During fine-tuning, we up-scale the supporting features
and down-scale the opposing ones using a weight calculated from LRP relevance
scores. Finally, we use the re-weighted context representation to predict the next
word for fine-tuning.

LRP-IFT is different from standard fine-tuning which weights the gradients
of parameters with small learning rates to gradually adapt the model parameters.
Instead, it pinpoints the related features/evidence for a decision and guides the
model to tune more on those related features. This fine-tuning strategy resembles
how we correct our cognition bias. For example, when we see a green banana, we
will update the color feature of bananas and keep the other features such as the
shape.

We will demonstrate that LRP-IFT can help to de-bias image captioning mod-
els from frequently occurring object words. Though language bias is intrinsic, we
can guide the model to be more precise when generating frequent object words
rather than hallucinate them. We implement the LRP-IFT on top of pre-trained
image captioning models trained with Flickr30K [32] and MSCOCO2017 [33]
datasets and effectively improve the mean average precision (mAP) of predicted
frequent object words evaluated across the test set. At the same time, the overall
performance in terms of sentence-level evaluation metrics is maintained.

The contributions of this paper are as follows:

• We establish explanation methods that disentangle the contributions of the
image and text inputs and explain image captioning models beyond visual-
izing attention.

• We quantitatively measure and compare the properties of explanation meth-

4



ods and attention mechanisms, including tasks of finding the related fea-
tures/evidence for model decisions, grounding to image content, and the
capability of debugging the models (in terms of providing possible reasons
for object hallucination and differentiating hallucinated words).

• We propose an LRP-inference fine-tuning strategy that reduces object hal-
lucination and guides the models to be more precise and grounded on image
evidence when predicting frequent object words. Our proposed fine-tuning
strategy requires no additional annotations and successfully improves the
mean average precision of predicted frequent object words.

In the rest of this paper, Section 2 introduces recent image captioning models,
the state-of-the-art explanation methods for neural networks, and other related
works. In Section 3, we will introduce the image captioning model structures ap-
plied in this paper. The adaptations of explanation methods to attention-guided
image captioning models are summarized in Section 4. The analyses of attention
and explanations and our proposed LRP-inference fine-tuning strategy are intro-
duced in Section 5.

2. Related Work

2.1. Image Captioning
Many models adopt the encoder-decoder approach to bridge the gap between

image and text, usually with a CNN as the image encoder and an RNN as the
sentence decoder [1, 2, 3]. Considering that it might be helpful to focus on a
sub-region of the image when generating a word of the caption, various atten-
tion mechanisms have been developed, guiding the model to focus on the relevant
parts of the image when predicting a word. Some representative works include
hard or soft attention [4], semantic attention [6], adaptive attention [7], bottom-
up and top-down attention [8], adaptive attention time [9], hierarchical attention
[10], X-Linear attention [34], and spatio-temporal memory attention [35]. Re-
cently, many works build the attention mechanism with the multi-head attention
originated from Transformer models [11], such as attention on attention [12], en-
tangled transformer [13], multi-modal transformer [14], meshed-memory trans-
former [15]. These attention mechanisms effectively facilitate image captioning
models to better recognize and locate the objects in an image. We will analyze
the adaptive attention mechanism [7, 8, 9, 10] and the multi-head attention mech-
anism [11, 36, 12, 13, 14, 15]. Both attention mechanisms are employed as a
sub-module in a number of works.
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Recognizing and locating the objects in an image is often not sufficient to
generate fine-grained captions. In addition to studying attention mechanisms, a
branch of research explores the relations of objects (e.g. playing with balls) and
object attributes (e.g. a wooden desk). Many of these works build a graph to cap-
ture the relation and attribute representations of objects, such as the scene graph
[28, 37, 38, 39, 40] and visual relation graph [41]. Some other works aim to gen-
erate more fine-grained captions by learning global and local representations in a
distilling fashion [42], by gradually learning the representation via context-aware
visual policy [43], by parsing and utilizing the noun chunks in the reference cap-
tions [44]. The unified VLP [45] learns unified image-text representations in the
spirit of the BERT embedding [46]. VIVO [47] and OSCAR [48] further enhance
the unified representation by incorporating external image-tag pairs for training.
These unified representations can be used in various visual-language tasks. [49]
uses additional rank annotations of the referenced captions.

There are also other challenging directions of image captioning like novel ob-
ject captioning (NOC) and captioning with different styles. NOC tries to pre-
dict novel objects that are not in the image-caption training pairs, which over-
comes the limitation of fixed training vocabulary and achieves better generaliza-
tion [50, 51, 52, 53, 54, 47, 55]. [56] and [57] attempt to generate captions with
controlled sentiments and styles.

2.2. Towards de-biasing visual-language models
The intrinsic composition of the training data can lead to biased visual-language

models. To this end, many works aim to reduce model bias and improve the
grounding property of visual-language models. For visual-question-answering
(VQA) models, [30] learns the language bias in advance by using the textual
question-answer pairs in order to increase the loss computation for biased an-
swers during training. [58] proposes a grounded visual question answering model
that disentangles the yes/no questions and visual concept-related questions. Both
show an effective reduction of the bias for the VQA models. As for image caption-
ing models, [29] designs an appearance confusion loss and a confidence loss using
segmentation annotations to reduce the gender bias of the captioning models. [31]
adopts external human-annotated attention maps to guide the model to generate
more grounded captions. Different from the above methods, we propose an LRP-
inference fine-tuning strategy that requires no additional annotations to mitigate
the influence of language bias for image captioning models. The guidance comes
from the explanation scores obtained from explanation methods.
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2.3. Explanation methods for image captioning models.
Many explanation methods explain the predictions of DNNs such as gradient-

based methods [59, 22, 60, 21], decomposition-based methods [61, 23, 24, 62,
63, 64, 65], and sampling-based methods [66, 67, 68, 69, 70]. These explanation
methods have provided plausible explanations for various DNN architectures in-
cluding CNNs [23, 21, 62, 66, 63, 64, 67, 68, 71], RNNs [24, 65, 66, 64], graph
neural networks (GNNs) [72, 73, 74, 75, 76], and clustering models [77], making
it practical to derive the explanation methods for image captioning models. How-
ever, to our best knowledge, only a few works have studied the interpretability
of image captioning models so far. In principle, gradient-based methods can be
directly applied to image captioning models. Grad-CAM and Guided Grad-CAM
have been used to explain non-attention image captioning models [21]. [78] in-
troduces an explanation method for video captioning models. They further adapt
the method to image captioning models by slicing an image with grids to form a
sequence of image patches, treated as video frames, however, the slicing operation
may cut through object structures. Attention heatmaps are usually considered as
explanations of image captioning models. The question to what extent attention
is suitable as an explanation has been raised in the natural language processing
context [79, 80, 81]. For the image captioning task, although attention heatmaps
can show the locations of object words, they cannot disentangle the contributions
of the image and text inputs. Furthermore, attention heatmaps meet difficulties
to provide pixel-wise explanations that reflect the positive and negative contribu-
tions of pixels and regions. These issues can be addressed by several explanation
methods. For the sake of keeping the scope of analyses within reasonable lim-
its, we will adapt exemplarily LRP, Grad-CAM, and Guided Grad-CAM to image
captioning models.

2.4. Explanation-guided training
Recently, some studies observe that explainable AI is not limited to providing

post-hoc insights into neural networks but can also be applied to train a model.
[82] utilizes the saliency maps of Grad-CAM and Guided Grad-CAM to design a
pixel-wise cross-entropy loss for transfer learning. They show that the pixel-wise
cross-entropy loss can guide the model to make the right decisions using the right
reasons, meanwhile, improve image classification accuracy. [31] also uses Grad-
CAM saliency maps together with additional human-annotated attention maps to
design a ranking loss for image captioning models. They show that the rank-
ing loss can help to generate more grounded captions and maintain sentence flu-
ency. [83] adopts LRP explanations to guide few-shot classification models. They

7



demonstrate that explanation-guided training can improve the model generaliza-
tion and classification accuracy for cross-domain datasets. We will show that LRP
explanations can also help to mitigate the influence of language bias for image
captioning models.

3. Backgrounds of Image Captioning Models

3.1. Notations for image captioning models
In this section, we recapitulate common structures of image captioning mod-

els, which consist of an image encoder, a sentence decoder, and a word predictor
module. To caption a given image, we first encode the image with pre-trained
CNNs or detection modules such as a Faster RCNN and extract a visual feature
I 2 nv⇥dv , where nv and dv are the number and dimension of the visual fea-
ture. For I from a Faster R-CNN, nv would be the number of regions of interest
(ROIs), and for I from a CNN, nv would be the number of spatial elements in a
feature map. Then, the visual feature I is decoded by an LSTM augmented with
an attention mechanism to generate a context representation. Finally, the word
predictor takes the context representation and the hidden state of the decoder as
inputs to predict the next word.

During training, there is a reference sentence as the ground truth, S = (wt)lt=1,
where wt is a word token, and l is the sentence length. At each time step t, the
LSTM updates the hidden state ht and memory cell mt as follows.

xt = [Em(wt�1), Ig] (1)
ht,mt = LSTM(xt,ht�1,mt�1) (2)

where [·] denotes concatenation, Em is a word embedding layer that encodes
words to vectors, Em(wt�1) 2 dw . Ig = 1/nv

P
nv

k=1 I(k) represents an aver-
aged global visual feature. During inference, the wt�1 is the predicted word from
the last step. Then, an attention mechanism ATT (·) uses ht and I to generate a
context representation ct for word prediction.

ct = ATT (ht, I) (3)
pt = Predictor(ht, ct) (4)

where pt is the predicted score over the vocabulary. The concrete implementations
of Em, Ig, ATT (·), and Predictor may vary across different models.
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3.2. Attention mechanisms used in this study
We choose two representative attention mechanisms, adaptive attention [7]

and a modified multi-head attention [11, 12]. They are employed in variants by
several image captioning models, thus aiming at generalizability for our studies.

3.2.1. Adaptive attention mechanism
The adaptive attention mechanism generates a context representation by cal-

culating a set of weights over the visual feature I and a sentinel feature st that
represents the textual information. At time step t:

st = �(Wxxt +Whht�1)� tanh(mt) (5)

Wx 2 dh⇥dx and Wh 2 dh⇥dh are trainable parameters. dh and dx denote
the dimension of the hidden state and xt, respectively. � denotes the sigmoid
function. The weights for I and st are calculated as follows:

a = wa tanh(IWI +Wght) (6)
b = wa tanh(Wsst +Wght)) (7)

↵t = softmax(a) 2 nv (8)
�t = softmax([a, b])(nv+1) 2 1 (9)

ct = (1� �t)
Xnv

k=1
↵t(k)

I(k) + �tst (10)

where WI 2 dh⇥nv , Ws and Wg 2 nv⇥dh , wa 2 nv are trainable parame-
ters1. ↵t 2 nv is the attention weight for I . It tells the model which regions
within the image to use for generating the next word. �t is the (nv + 1)th element
of the softmax over [a, b], corresponding to the weight for the component b. It
balances the visual and textual information used to predict the next word. We use
the following expression to summarize the adaptive attention mechanism.

ct = ATTada(ht, st, I) (11)

3.2.2. Multi-head attention mechanism
The multi-head attention is defined with a triplet of query (Q), key (K), and

value (V ). To apply the multi-head attention to the sentence decoder, we adopt ht

as the query and two distinct linear projections of I as K and V .

Q = ht,K = IWk,V = IWv (12)

1Adaptive attention mechanism encodes the visual feature I with the same dimension as the
hidden state, dv = dh, I 2 nv⇥dh .
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where WK ,WV 2 dv⇥dh . We evenly split the hidden dimension dh to obtain
multiple triplets of (Q(i), K(i), V (i)), denoted as multiple heads. For each head,
the attention weight over V (i) is the scaled dot product of Q(i) and K(i) and we
can obtain a weighted feature v(i) as follows.

↵(i) = softmax(
Q(i)K(i)T

p
dh/nh

) 2 nv

v(i) =
nvX

k=1

↵(i)
(k)V

(i)
(k) 2

dh/nh

(13)

where nh is the number of head2. By concatenating the weighted feature of each
head, we can obtain the integral attended feature v, which is further fed to a linear
layer to generate the visual representation.

v = [v(0), . . . ,v(nh)] 2 dh

v̂ = Wvv + bv
(14)

where Wv 2 dh⇥dh and bv 2 dh are trainable parameters.
Under the image captioning setup, there are cases where the visual feature is

less relevant to the predicted word, e.g. “a” and “the”. Thus, we add another
gate to control the visual information, which is consistent with many recent image
captioning models using the multi-head attention module [12, 13, 15]. This also
shares the same spirit of �t in the adaptive attention mechanism, which controls
the proportion of image and textual information. Specifically, we generate the
gate using the hidden state and the gated output ct is the context representation
for prediction.

ct = �(Wmhht + bmh)� v̂ (15)

where Wmh 2 dh⇥dh and bmh 2 dh are trainable parameters and � is the
sigmoid function. We briefly summarize the multi-head attention mechanism as
follows.

ct = ATTmha(ht, I) (16)

2In most of the works using multi-head attention, dh is divisible by nh.
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Figure 2: The model structures of two image captioning models. (a): The Ada-LSTM model
with the adaptive attention mechanism and an LSTM + fc module as the word predictor. (b): the
MH-FC model with the multi-head attention mechanism and an fc layer as the word predictor.

3.2.3. Image captioning models with adaptive attention and multi-head attention
We build two image captioning models in this paper. The details of the two

models are illustrated in Figure 2. The left of Figure 2 is the Ada-LSTM model
that consists of an adaptive attention module and an LSTM followed by a fully
connected (fc) layer as the word predictor. Note that the xt is adjusted accordingly
to incorporate the predictor. On the right is the MH-FC model that adopts a multi-
head attention module followed by an fc layer as the word predictor. Both model
structures are commonly used [7, 8, 12, 43, 44].

The image captioning models are usually trained with cross-entropy loss in
the first stage:

L = Lce(p,y) (17)

where p = (pt)lt=0 is the predicted scores over vocabulary, l is the sentence
length, and y is the ground truth label of a referenced caption. Then, the mod-
els are further optimized with the SCST algorithm from [84]. SCST optimizes
non-differentiable evaluation metrics, e.g. CIDEr score [19], using reinforcement
learning:

R = Ss,Sgreedyvp[metric(Ss, Sgt)� metric(Sgreedy, Sgt)] (18)

where R is the reward, Ss is the sampled sentence from the predicted distribution
p = (pt)lt=0, Sgreedy is the predicted sentence with greedy search, and Sgt is the
referenced caption. The training objective is to obtain higher reward R. CIDEr is
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usually adopted to calculate the reward and some papers also call this algorithm
as CIDEr optimization [8, 12].

4. Explanation methods for image captioning models

In this section, we will explain how to adapt LRP [23], Grad-CAM, and
Guided Grad-CAM [21] for use in attention-guided image captioning models. For
brevity, we will use Grad* to denote Grad-CAM and Guided Grad-CAM.

Grad* methods are based on gradient backpropagation and can be directly
applied to the attention-guided image captioning models. Grad* methods first
backpropagate the gradient of a prediction till the visual feature I , denoted as
g(I) 2 nv⇥dv . Then, we can obtain a channel-wise weight from g(I) for the
visual feature I , which is wI =

P
nv

k=1 g(I)(k) 2 dv . I is further summed
up over the feature dimension, weighted by wI , to generate the class activation
map, CAM = ReLU(

P
dv

k=1 wI(k)
I(k)) 2 nv , which reflects the importance of

each pixel in the feature map. Grad-CAM reshapes and up-samples the class ac-
tivation map to generate the image explanations. To obtain fine-grained and high-
resolution explanations, Grad-CAM is fused with GuidedBackpropagation [22] by
element-wise multiplication. GuidedBackpropagation can be easily implemented
in pytorch by writing a custom torch.autograd.Function wrapping the
stateless ReLU layers. This fused method is Guided Grad-CAM. The linguistic
explanations of Grad* methods are obtained by summing up the gradients of the
word embeddings. Next, we will elaborate on LRP for image captioning models.

We briefly introduce the basics of LRP. For an in-depth introduction, we refer
to a book chapter like [85]. LRP explains neural networks by assigning a rel-
evance score to every neuron within the network. The relevance assignment is
achieved by backpropagating the relevance score of a target prediction along the
network topology until the inputs according to LRP rules.

Consider the basic component of neural networks as a linear transformation
followed by an activation f(·).

zj =
X

i

wijyi + bj

ẑj = f(zj)
(19)

where yi is the input neuron, zj is the linear output, and ẑj is the activation output.
We use R(·) to denote the relevance score of a neuron. Suppose R(ẑj) is known,
we would like to distribute R(ẑj) to all of its input neurons yi, denoted as relevance
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attribution Ri j . We refer to two LRP rules for relevance backpropagation that
are frequently applied [23, 86, 87, 88]:

1. ✏-rule
Ri j = R(ẑj)

yiwij

zj + ✏� sign(zj)
(20)

where ✏ is a small positive number. The stabilizer term ✏� sign(zj) guaran-
tees that the denominator is non-zero.

2. ↵-rule

Ri j = R(ẑj)

 
(1 + ↵)

(yiwij)+

z+
j

� ↵
(yiwij)�

z�
j

!
(21)

where ↵ > 0, (·)+ = max(·, 0), and (·)� = min(·, 0). By separating yiwij

and zj into positive and negative parts, the ↵-rule ensures a boundedness
of relevance terms. The parameter ↵ determines the ratio of focus on pos-
itive and negative contribution during relevance backpropagation, from the
output ẑj to all of its inputs yi.

The relevance of neuron yi is the summation of all its incoming relevance
attribution flows.

R(yi) =
X

j

Ri j (22)

LRP has provided plausible explanations for CNNs [23], RNNs such as LSTM
[24], and also GNNs [72]. These modules are commonly used in image captioning
models. To explain image captioning models with LRP, we define next how to
apply LRP to the attention mechanisms.

From Section 3, we have seen that attention mechanisms involve non-linear
interactions of the visual features and the hidden states of the decoder. However,
the attention mechanisms mainly serve as weighting operations for features. Thus,
we consider an attention mechanism as a linear combination over a set of features
with weights such that LRP relevance scores are not backpropagated through the
weights. This is consistent with the “signal-take-all” redistribution explored in
[89]. In this way, we can directly apply LRP rules to distribute the relevance
score of the context representation to the visual features according to the attention
weights and bypass the computations within the attention mechanisms.

To give an overview of LRP for image captioning models, we take the Ada-
LSTM model as an example and elaborate on each step of the explanation in Fig-
ure 3 and Algorithm 1. It is important to realize here, that LRP follows topologi-
cally the same flow as the gradient backpropagation (except the attention mecha-
nisms) along the edges of a directed acyclic graph. The difference lies in replacing
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Figure 3: The LRP relevance backpropagation flow path through the Ada-LSTM model.

the partial derivatives on the edges by LRP redistribution rules motivated by the
deep Taylor framework [61].

We initialize the relevance score of a target word, R(wT ), from the output of
the last fc layer (the logits). Then, as illustrated in Figure 3, LRP-type operations
for computing R(·) are applied to the layers fc, �, Language LSTM, ATTada, De-
coder LSTM, and Encoder. The LRP operations used for these layers are shown
as the =) in Algorithm 1. For each word to be explained, LRP assigns a rele-
vance score to every pixel of the input image (R(image)) and every word of the
sequence input (R(wT�1), . . . , R(w1)). We can visualize the image explanation
as a heatmap after averaging R(image) over the channel dimension. The rele-
vance score of each preceding word is the summation of the relevance scores over
the word embedding. In the experiments, we will also use the relevance score to
denote the explanation scores of gradient-based methods.

5. Experiments

5.1. Model preparation and implementation details
We train the Ada-LSTM model and the MH-FC model on Flickr30K [32] and

MSCOCO2017 [33] datasets for the following experiments3.
Dataset: We prepare the Flickr30K dataset as per the Karpathy split [2]. For

MSCOCO2017, we use the original validation set as the offline test set and extract
5000 images from the training set as the validation set. The train/validation/test

3https://github.com/SunJiamei/LRP-imagecaptioning-pytorch.git
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Algorithm 1: LRP for Ada-LSTM model to explain wT . The appearing symbols correspond to those in
Figure 3. Notations: ↵t (Eq. (8)), �t (Eq. (9)), and st (Eq. (5)), ✏-rule (Eq. (20)), ↵-rule (Eq. (21)) , [·]
denotes concatenation.

Require: R(wT ), ↵t,�t

Ensure: R(image), R(wT�1), . . . , R(w1)

1: R(wT ), fc
✏-rule
=====) R(cT + h2

T )

2: R(cT + h2
T ),� ✏-rule

=====) R1(cT ), R(h2
T )

3: for t 2 [T, . . . , 0, start] do

4: R(h2
t ),Language-LSTM ✏-rule

=====) R2(ct), R(h1
t ), R1(h2

t�1)

5: R1(ct) +R2(ct), ATTada
✏-rule
=====) R(st), Rt(I)

6: R(h1
t ), R(st),Decoder LSTM ✏-rule

=====) R(Em(wt�1)), Rt(Ig), R2(h
2
t�1)| {z }

=R(x1
t )

, R(h1
t�1)

7: R(Em(wt�1))
P
==) R(wt�1)

8: end for

9: P
t Rt(I),

P
t Rt(Ig),CNN

✏-rule,↵-rule
==========) R(image)

10: return R(image), R(wT�1), . . . , R(w1)

sets are with 110000/5000/5000 images. Vocabularies are built only on the train-
ing set. We encode the words that appear less than 3 and 4 times as an unknown
token <unk> for Flickr30K and MSCOCO2017, respectively, resulting in 9585
and 11026 vocabularies for the two datasets.

Encoder: We experiment with CNN and FasterRCNN as the image encoder.
The CNN features are extracted from the pre-trained VGG16 [90] on ImageNet,
specifically, we use the output of “block5 conv3” with a shape of 14 ⇥ 14 ⇥ 512.
The Faster RCNN encoder provides bottom-up image features corresponding to
the candidate regions for object detection. We refer to Detectron2 [91]4 to extract
nv = 36 features per image with 2048 channels each. Both the CNN features
and the bottom-up features are further processed by a linear layer to generate the
visual feature I 2 nv⇥dv .

Decoder and predictor: We train the Ada-LSTM and MH-FC models in Fig-
ure 2, with dv, dh = 512 for CNN features and dv, dh = 1024 for bottom-up
features. The word embedding dimension is 512 for all the models. The number
of multiple heads for MH-FC model is 8.

LRP parameters: We follow the suggestions of [86] on the best practice for
LRP rules. We use ↵-rule for convolutional layers with ↵ = 0 and ✏-rule for fully
connected layers and LSTM layers with ✏ = 0.01.

4https://github.com/airsplay/py-bottom-up-attention.git
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Table 1: The performance of the Ada-LSTM model and the MH-FC model on the test set of
Flickr30K and MSCOCO2017 datasets. The performance of AdaATT, SCST, BUTD models are
from the corresponding papers. BU and CNN denote bottom-up features and CNN features, re-
spectively.

Flickr30K FBERT CIDEr SPICE ROUGE-L METEOR
Ada-LSTM-CNN 90.56 51.54 13.87 46.79 20.18
Ada-LSTM-BU 90.04 63.03 16.52 49.32 21.94
MH-FC-CNN 90.54 53.65 14.85 46.92 20.71
MH-FC-BU 90.14 63.22 16.90 49.22 22.37
AdaATT [7] (CNN+fc) – 53.10 14.50 46.70 20.40
MSCOCO2017 FBERT CIDEr SPICE ROUGE-L METEOR
Ada-LSTM-CNN 91.83 107.03 19.49 54.34 26.10
Ada-LSTM-BU 91.01 111.87 19.17 55.04 25.93
MH-FC-CNN 91.85 108.16 20.10 54.42 26.45
MH-FC-BU 91.29 120.31 21.80 56.52 28.02
MSCOCO2014 FBERT CIDEr SPICE ROUGE-L METEOR
AdaATT [7] (CNN+fc) – 108.50 19.40 54.90 26.60
SCST:att2all [84] (CNN+fc) – 114.00 – 55.70 26.70
BUTD [8] (BU + LSTM) – 120.10 21.40 56.90 27.70

Training details: We adopt the Adam optimizer for training, with �1 = 0.8,
�2 = 0.999, and a learning rate lr = 0.0005. We anneal lr by 20% when the
CIDEr score does not improve for the last 3 epochs and stop the training when the
CIDEr score does not improve for 6 epochs. We further optimize the models with
the SCST optimization [84] using CIDEr score with lr = 0.0001. For the models
using CNN features, we also fine-tune the CNN encoder with lr = 0.0001 before
applying the SCST optimization.

Table 1 lists the performance of the Ada-LSTM model and the MH-FC model.
We generate the captions with beam search (beam size=3) and report five evalu-
ation metrics of image captioning task: METEOR [17], ROUGE-L [18], SPICE
[20], CIDEr [19], and the FBERT (idf) metric of BERTScore [92]. To validate our
models, we include the performance of some benchmark image captioning mod-
els with similar model structures. AdaATT [7] is the first paper that proposes the
adaptive attention mechanism. SCST [84] adapts reinforcement learning to image
captioning and optimizes non-differentiable evaluation metrics. BUTD [8] adopts
the bottom-up features and uses an LSTM as the word predictor. We can see that
our models are properly trained and achieve comparable performance.

5.2. Explanation results and evaluation
Section 1 has shown some examples of the explanation results generated by

LRP, Grad-CAM, Guided Grad-CAM. In comparison to attention heatmaps, we
observe the following.
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Attention Grad-CAM G. Grad-CAM LRPinput

A red fire hydrant sitting in the grass in a →field

Attention Grad-CAM G. Grad-CAM LRPrandom

A red fire hydrant in the grass →field

Image 
ablation

Word 
ablation

field: a red fire hydrant sitting in the grass in a

Figure 4: The image ablation (upper) and word ablation (lower) experiment. For image ablation,
the first row shows the image explanations of the word hydrant, the second row shows the masked
patches with high relevance scores.

Firstly, explanation methods can disentangle the contributions of the image in-
put and the textual input, which is beyond the interpretability that attention mecha-
nisms can provide. Secondly, some explanation methods provide high-resolution,
pixel-wise image explanations, such as LRP and Guided Grad-CAM. Thirdly,
LRP explicitly shows the positive and negative evidence used by the model to
make decisions. In the following experiments, we will quantitatively evaluate the
information content of attention, LRP, Grad-CAM, and Guided Grad-CAM with
two ablation experiments and one object localization experiment. The ablation
experiment aims to measure the information in the visual domain and the text
domain, expressed by the relevance scores assigned to pixels and words. The ob-
ject localization experiment evaluates the visual grounding property of relevance
scores for image regions.

5.2.1. Ablation experiment
We conduct the ablation experiment for both the image explanations and the

linguistic explanations, as illustrated in Figure 4. We demonstrate the approach
using the same example in Section 1 based on the caption: A red fire hydrant
sitting in the grass in a field.

The first row of Figure 4 shows the image explanations of the word hydrant,
which highlight parts of the image related to the hydrant. To assess whether the
highlighted areas contribute to the prediction, we firstly segment the image into
non-overlapping 8⇥8 patches. Secondly, we sum the relevance scores within each
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patch as the patch relevance. Thirdly, we mask the top-20 high-relevance patches
with the training data mean, to eliminate the contributions of these patches. The
top-20 high-relevance patches found by different explanation methods are shown
in the second row of Figure 4. Finally, we predict a caption on the masked image.
If the masked areas are important to the prediction, the model will be less confi-
dent to predict the target word or will not generate the target word at all from the
masked image.

The linguistic explanations reflect the contributions of the previously gener-
ated sequence. For example, when generating the word field, the model perhaps
uses the words “”sitting, “in”, and “a” as related evidence. Similar to the idea of
the image ablation experiment, we remove the top-3 relevant words in the preced-
ing sequence and forward the modified sequence to the model in a teacher-forcing
manner. Finally, we observe the new probability of the target word. We do not
modify the image for the word ablation experiment. If the removed words are
strongly related to the prediction, the new probability of the target word will drop
considerably compared to its original value.

We conduct the ablation experiment using image captioning models trained
on the MSCOCO2017 dataset and CNN features. We report the results on the test
set. For the word ablation experiment, we consider the predicted words with a
sequence index greater than 6 so that there is a sufficiently long preceding word
sequence to avoid evaluating purely frequency-based predictions in the experi-
ment. For the image ablation experiment, we consider all the predicted object
words. A random ablation is included as a baseline.

Figure 5 shows the results of word-ablation experiments. The words we ex-
plain are split into object words and stop-words. We show the frequency of prob-
ability drop, and the difference between the original word probability and the new
word probability after the word deletion (denoted as an average score of prob-
ability drop). A higher average score of probability drop means the model is
less confident to make the original prediction after ablation, therefore, the ablated
words are more strongly related to the prediction. LRP and gradient-based expla-
nation methods achieve a decrease in prediction probability more often and with
greater impact than the random ablation, indicating that the words found by expla-
nation methods are used by the model as important evidence to predict the target
word. LRP achieves both the highest frequency and the highest average score of
probability drop.

In our word ablation experiment, we use 8 heads for the multi-head attention
mechanism of the MH-FC model, resulting in 8 sets of attention weights. This is
computationally too heavy for use in the image ablation experiment. We, there-
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Figure 5: The results of the word ablation experiment on MSCOCO2017 test set. The numbers of
evaluated object words and stop-words are 3,710 and 11,686 for the Ada-LSTM model, and 3,359
and 11,512 for the MH-FC model. Higher average scores and higher frequencies are better.

fore, implement the image ablation experiment with the Ada-LSTM model and
show how often the model fails to generate the target word after the image ab-
lation, as shown in Figure 6 (left). We can see that high-resolution explanations
from the evaluated explanation methods LRP, Guided Grad-CAM, and Guided-
Backpropagation achieve a higher frequency of object words vanishing, indicating
that the highlighted areas are related to the evidence for model decisions.

With the above experiment results, we verify that using explanation methods
adds information compared to relying on attention heatmaps alone.

5.2.2. Measuring the correlation of explanations to object locations
Many studies employ attention heatmaps as a tool to verify the visual ground-

ing property qualitatively [4, 7, 12, 10, 35]. In this part, we will quantify the cor-
relation of explanation results to object locations and show that high-resolution
explanations can also achieve a high correlation to the object locations.

To assess the correlation of explanations to object locations, we utilize the
bounding box annotations of the MSCOCO2017 dataset and extend the correct-
ness measure from [93], which evaluates the grounding property of attention
heatmaps, to the explanation results. For a correctly predicted object word, we
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Figure 6: Left: the results of the image ablation experiment using the Ada-LSTM model. There
are 9,645 evaluated object words. Higher frequency is better. Right: the average correctness of
object localization. There are 4,691/4,649 correctly predicted words for the Ada-LSTM/MH-FC
model using the MSCOCO2017 test set. Higher correctness scores mean better localization. G.
denotes Guided. G.Back denotes GuidedBackpropagation.

first obtain the relevance scores of the image input, R(image), with explanation
methods and average R(image) over the channel dimension, resulting in a spatial
explanation E 2 h⇥w, where h and w are the height and width of the image.
We keep the positive scores of E for object localization. The correctness is the
proportion of the relevance scores within the bounding box.

Ep = norm(max(E, 0)) (23)

correctness =

P
ij2bbox Ep[i, j]P

ij
Ep[i, j]

2 [0, 1] (24)

where the norm(·) is the normalization with the maximal absolute value. For the
MH-FC model with the multi-head attention mechanism, we generate the explana-
tions for each head, R(image)(i), by only backpropagating the relevance scores or
gradients through head i. The correctness of the MH-FC model is the maximum
across the correctness(i) of all the heads, i.e.

correctnessMH�FC = max
i

(correctness(i)) (25)

Higher correctness means the relevance scores concentrate more within the bound-
ing box, indicating a better grounding property. Figure 6 (right) shows the average
correctness of all the correctly predicted object words across the MSCOCO2017
test set, evaluated with image captioning models trained using CNN features.

First of all, the MH-FC model achieves consistently higher correctness than
the Ada-LSTM model, indicating that there is at least one head of the MH-FC
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model that accurately locates the object, especially for attention and LRP where
there is a large discrepancy of the correctness between the Ada-LSTM and the
MH-FC models.

Secondly, high-resolution explanations provided by LRP, Guided Grad-CAM,
and GuidedBackpropagation achieve comparable or higher correctness than at-
tention. The notable exception is due to the spatial localization property of the
multiple heads in the MH-FC model. Combining the results of the ablation exper-
iments, explanation methods tend to find parts of objects which correlate well to
the prediction.

Thirdly, to further get insights into the role of the sign of the relevance scores,
we calculate the correctness using the absolute value of the negative relevance
scores, En = norm(max(�E, 0)). As shown in Figure 6 (right), the low correct-
ness of “LRP-neg” and the high correctness of “G. Grad-CAM-neg” verifies that
the positive/negative sign of LRP relevance scores reveals the support/opposition
of a pixel to the predictions, while for Guided Grad-CAM, both positive and neg-
ative relevance scores are related to the predictions and irrelevant pixels have low
absolute relevance scores.

Last but not least, our correctness evaluation results over various explana-
tion methods under the image captioning scenario are consistent with some prior
works. GuidedBackpropagation and LRP generate more coherent explanations
for MRI data than other gradient-based methods [94], despite failing certain sanity
checks postulated in [95]. This underlines the importance of considering multiple
criteria in contrast to decisions based on selected axiomatic requirements. Fur-
thermore, the sign of LRP relevance scores is meaningful [86]. Both properties
can be helpful for model debugging [95, 96, 97]. In the next section, we will show
how we use LRP to “debug” and improve image captioning models.

5.3. Reducing object hallucination with explanation
In our experiment, we observe the common hallucination problem of image

captioning models. Image captioning models sometimes generate object words
that are not related to the image content, which is possibly caused by the learned
language priors. The vocabulary and sentence patterns of the image-caption pairs
are intrinsically biased toward frequent occurrences. As illustrated in Figure 7, the
vocabulary count distribution of the predicted words is close to that of the training
vocabulary.

A language bias can be helpful for image captioning models. [28] learns the
inductive language bias to guide the model to deduce the object relations and at-
tributions. However, it can also cause mistakes. For example, the models could be

21



0
5000
10000
15000
20000
25000
30000
35000
40000
45000

0
50

100
150
200
250
300
350
400
450

m
an

w
om

an
pe

op
le

sh
irt

m
en gi
rl

bo
y

do
g

st
re

et
w

at
er

w
om

en
ch

ild
pe

rs
on

ch
ild

re
n

ha
t

ba
ll

bu
ild

in
g

fie
ld

ba
ck

gr
ou

nd
do

gs

Flickr30K

Ada-LSTM-CNN MH-FC-CNN Ada-LSTM-BU

MH-FC-BU dataset vocab

(a) Top-20 frequent object words

0
10000
20000
30000
40000
50000
60000
70000
80000

0
200
400
600
800

1000
1200
1400
1600
1800

m
an

pe
op

le
w

om
an

str
ee

t
ta

bl
e

pe
rs

on
fie

ld
te

nn
is

tra
in

pl
at

e
ro

om do
g ca
t

w
at

er
ba

se
ba

ll
ba

th
ro

om sig
n

ki
tc

he
n

fo
od

gr
as

s
bu

s
pi

zz
a

bu
ild

in
g

cl
oc

k
pi

ct
ur

e

MSCOCO2017

Ada-LSTM-CNN MH-FC-CNN Ada-LSTM-BU

MH-FC-BU dataset vocab

(b) Top-25 frequent object words

Figure 7: The counts of top-k frequently appearing object words in Flick30K and MSCOCO2017
training set (right ordinate) and the counts of the predicted object words in the test set (left ordi-
nate).

A black and white cat standing next to a person.

Aman sitting on a chair in front of a TV. A man holding a banana in his hand.Aclose up of a person on a cellphone.

A person sitting on a bench with a skateboard. A bedroom with a bed a chair and a television.

(a) (b)

(e) (f)

(c)

(d)

Figure 8: The LRP image explanations of hallucinated words (blue) in the generated image cap-
tions. Blue and red pixels indicate negative and positive relevance scores, respectively.

flawed when predicting gender [29] or always paint bananas yellow irrespective
of their actual color [30, 31]. To this end, we explore the explanations of halluci-
nated words and investigate using approaches from explainability to reduce object
hallucination.

5.3.1. Exploring the explanations of hallucinated words
Based on the findings in Section 5.2 that high-resolution explanations obtained

by LRP and Guided Grad-CAM correlate to the object locations and reflect well
the related evidence for predictions, we explore the difference of image expla-
nations between grounded (true-positive) and hallucinated (false-positive) object
words. Figure 8 illustrates some examples of LRP image explanations for hallu-
cinated words.

In Figure 8 (a) to (e), the LRP image explanations show more negative scores,
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Table 2: The AUC scores calculated with different statistics and explanation methods. G. denotes
Guided and G.Back denotes GuidedBackpropagation. Higher AUC means the statistic can better
differentiate the hallucinated words. The AUC score calculated with 1� � is 0.6005.

AUC LRP G.Grad-CAM Grad-CAM Attention G.Back
quantile-5%(E) 0.6022 0.4392 0.5936 0.5598 0.4621
quantile-50%(E) 0.5821 0.5358 0.5730 0.5136 0.5168

max(E) 0.5168 0.5743 0.5580 0.5169 0.5575
mean(E) 0.5798 0.4319 0.5857 0.5308 0.4648

implying that the model generates hallucinated words mainly with the linguistic
information rather than the image information. In Figure 8 (f), the model mistakes
the yellow frisbee for a banana, evidenced by red pixels (positive scores).

We now quantify the difference in image explanations between true-positive
and false-positive object words. Specifically, we use the statistics of image expla-
nations (the E mentioned in Section 5.2.2) to differentiate the hallucinated words.

We assign a label 1/0 to the true-positive/false-positive predicted words, re-
spectively. Each word is also assigned with a statistic calculated from the image
explanation E, such as the maximum value (max(E)), the 5% and 50% quantiles
(quantile-5%/50%(E)), and the mean (mean(E)). We also evaluate 1 � � from
Eq. (10) of the adaptive attention mechanism. We remind that the adaptive atten-
tion mechanism contains a sentinel feature st that represents the text-dominant
information. It then learns a weight, �t, which controls the proportion of linguis-
tic information used for predictions. Thus, it is a model-intrinsic baseline to show
differences between grounded and hallucinated object words.

We calculate the AUC scores, using the labels and statistics of true-positive
and false-positive words. A higher AUC score indicates a better differentiation
between hallucinated and grounded words. Table 2 lists the AUC scores computed
with various explanation methods. We conduct the experiment with the Ada-
LSTM model trained on Flickr30K dataset, because its vocabularies are more
imbalanced than that of the MSCOCO2017 dataset. The results are reported on the
test set of Flickr30K. The evaluated words are the top-20 frequent object words5

with 715 false-positive and 1,027 true-positive cases.
The LRP quantile-5%(E) achieves a slightly higher AUC score than 1�� and

can weakly recognize the hallucinated words, which indicates that true-positive
words are usually with higher LRP quantile-5%(E) and false-positive words are

5These most frequent object words are: dogs, building, person, background, field, women, hat,
ball, children, child, water, street, boy, dog, girl, men, shirt, people, woman, man.
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with lower LRP quantile-5%(E). The statistics of LRP all obtain AUC scores
greater than 0.5, which verifies that the LRP image explanations consist of lower
relevance scores for false-positive words, and thus, reflect less supporting evi-
dence for the hallucinated words.

In the next section, we will introduce a fine-tuning strategy that builds upon
LRP-based explanations to reduce object hallucination.

5.3.2. Using LRP explanations to reduce object hallucination
We introduce an LRP-inference fine-tuning (LRP-IFT) strategy that can help

to de-bias a pre-trained image captioning model and reduce object hallucination.
We design a re-weighting mechanism inspired by two properties of LRP expla-
nations: 1) meaningfulness of the positive and negative sign of LRP relevance
scores, indicating the support and opposition to the predictions; 2) the property of
finding the regions and evidence in the image used by the model to make predic-
tions. In particular, we design weights for the input features of the last fc layer
using the LRP relevance scores and embed the re-weighted features into the model
for fine-tuning. We elaborate on each step of the fine-tuning strategy with Algo-
rithm 2 and detail the underlying idea as follows.

To fine-tune an image captioning model M, we generate an initial caption
first.

(pt)
l

t=0 = M(I) (26)
h(wt) = argmax(pt) (27)

where I is the image , pt 2 V is the probability distribution over the vocabulary
at time step t, V is the vocabulary size, and h(wt) is the label of the word wt.

If wt is not a stop-word, we will explain the predicted label h(wt) through the
last fc layer using LRP and obtain the relevance scores of the context representa-
tion and the hidden state, R(ct) and R(ht). (Remember that ct + ht is the input
of the last fc layer.)

We then normalize R(ct) and R(ht) with the maximal absolute value, so that
their values are in [�1,+1], and generate a new word probability distribution p̂t

as follows.

!ct = norm(R(ct)) + 1 2 [0, 2] (28)
!ht = norm(R(ht)) + 1 2 [0, 2] (29)
p̂t = fc(!ct � ct + !ht � ht) (30)
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Algorithm 2: LRP-inference fine-tuning

Require: predicted sequence:(wt)lt=0, predicted probability:(pt)lt=0
Ensure: LRP-inference prediction:(p̂t)lt=0
1: for t 2 [0, . . . , l] do

2: if wt not in stop-words then

3: p
h(wt)
t , fc

LRP
==) R(ct), R(ht)

4: R(ct)
Eq. (28)
=====) !ct

5: R(ht)
Eq. (29)
=====) !ht

6: p̂t = fc(!ct � ct + !ht � ht)
7: else

8: p̂t = pt

9: end if

10: end for

11: return (p̂t)lt=0

In LRP explanations, positive relevance is attributed to features supporting the
prediction of the target class and negative relevance is attributed to contradicting
features. The operations performed in Eqs. (28) and (29) construct a weight !
such that ! < 1 for the opposing features and ! > 1 for the supporting features.
The re-weighting mechanism will thus up-scale the supporting features and down-
scale the opposing ones.

During fine-tuning, we use the LRP-inference prediction p̂ = (p̂t)lt=0 to calcu-
late the loss. For the cross-entropy loss function, we can combine both the original
loss and the new loss with a parameter � 2 [0, 1]. The loss function from Eq. (17)
is updated as follows.

L = �Lce(p,y) + (1� �)Lce(p̂,y) (31)

where Lce denotes the cross-entropy loss and y is the ground truth label. We can
also use p̂ for the SCST optimization and the reward formula from Eq. (18) is
re-written as follows.

R = Ss,Sgreedyvp̂[metric(Ss, Sgt)� metric(Sgreedy, Sgt)] (32)

where we replace the original probability distribution p with the LRP-inference
one p̂. R is the reward, Ss is the sampled sentence, Sgreedy is the greedily sampled
sentence, and Sgt is the referenced caption.

Different from standard fine-tuning, LRP-IFT disentangles the contributions
of the visual information, R(ct), and the hidden state, R(ht). It selects and fine-
tunes the more related features rather than training all the features generally.
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Table 3: The mean average precision (mAP) of the predicted frequent object words. (ce) denotes
that the models are trained only with cross-entropy loss and the other models are optimized with
SCST. BU and CNN denote bottom-up features and CNN features. Bold numbers indicate better
results. Higher mAP means less object hallucination.

dataset Flickr30K MSCOCO2017
mAP baseline LRP-IFT baseline LRP-IFT
Ada-LSTM-CNN 52.95 54.47 72.29 73.85

Ada-LSTM-BU 63.84 64.61 78.57 80.55

MH-FC-CNN 55.98 57.71 73.74 73.42
MH-FC-BU 64.46 64.98 78.10 77.71
Ada-LSTM-CNN (ce) 58.53 60.80 73.65 74.00

Ada-LSTM-BU (ce) 60.70 65.01 79.06 79.80

MH-FC-CNN (ce) 55.50 59.23 77.15 76.87
MH-FC-BU (ce) 64.08 66.10 81.02 81.16

To evaluate the performance of the LRP-IFT, we observe the mean average
precision (mAP) of the frequent object words6. The motivation of LRP-IFT is
to guide the model to make more grounded captions rather than thoroughly enu-
merate all objects within an image. Therefore, we do not use the recall and F1
score.

Table 3 lists the mAP of the models with or without LRP-IFT. We implement
the LRP-IFT on two sets of pre-trained models. The first set of models are from
Table 1 that are optimized with SCST optimization, and we refer to Eq. (32) to
fine-tune the models for one epoch. The second set of models are trained only
with cross-entropy loss, denoted as (ce) in the table and we refer to Eq. (31) with
� = 0.5 to fine-tune the models for one epoch. For the baseline models, we fine-
tune the two sets of models with standard SCST optimization or cross-entropy
loss with the same training hyperparameters.

As shown in Table 3, the mAP is effectively improved after LRP-IFT for both
sets of models except the MH-FC models trained on the MSCOCO2017 dataset.
We discuss the mAP results from three aspects: 1) the MSCOCO2017 dataset has
a more balanced vocabulary and more training data than the Flickr30K dataset,
which results in less biased models. This also explains the more pronounced im-
provement of mAP on the Flickr30K dataset; 2) the multi-head attention mech-
anism has better grounding property as discussed in Section 5.2.2, which is the

6The frequent object words of Flickr30K are the same as Section5.3.1. The top-25 frequent
object words of MSCOCO2017 datasets include: clock, kitchen, picture, water, food, pizza, grass,
building, bus, sign, bathroom, baseball, dog, room, cat, plate, train, field, tennis, person, table,
street, woman, people, man.
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Table 4: The performance of the Ada-LSTM model and the MH-FC model with or without LRP-
IFT on the test set of Flickr30K and MSCOCO2017 datasets. L. denotes LRP-inference fine-tuned
models. (ce) denotes that the models are trained only with cross-entropy loss and the other models
are further optimized with SCST. BU and CNN denote bottom-up features and CNN features. FB :
FBERT , C: CIDEr, S: SPICE, R: ROUGE-L, M: METEOR.

dataset Flickr30K MSCOCO2017
FB C S R M FB C S R M

Ada-LSTM-CNN 90.6 51.1 13.9 46.4 20.0 91.7 107.1 19.5 54.2 26.1
L.Ada-LSTM-CNN 90.6 50.9 14.0 46.7 20.1 91.2 106.8 19.2 54.0 26.0
Ada-LSTM-BU 90.0 63.8 16.4 49.3 22.1 91.0 111.6 19.2 55.3 25.9
L.Ada-LSTM-BU 90.0 61.9 16.5 49.2 21.9 91.0 111.1 19.3 55.2 25.9
MH-FC-CNN 89.9 53.3 14.5 46.5 20.5 91.1 108.8 20.1 54.6 26.5
L.MH-FC-CNN 89.7 52.7 14.2 46.0 20.0 91.0 107.5 20.1 54.3 26.3
MH-FC-BU 90.1 63.5 17.1 49.4 22.5 91.3 120.9 21.8 56.6 28.1
L.MH-FC-BU 90.1 63.5 17.0 49.1 22.4 91.3 120.8 21.9 56.7 28.1
Ada-LSTM-CNN(ce) 89.7 44.6 13.3 44.4 19.0 91.7 96.2 18.1 52.9 25.1
L.Ada-LSTM-CNN(ce) 89.6 43.5 13.1 44.0 18.9 91.5 92.3 18.0 52.1 24.9
Ada-LSTM-BU(ce) 90.0 53.3 15.6 47.3 21.2 91.9 107.4 19.8 54.9 26.9
L.Ada-LSTM-BU(ce) 89.9 52.2 15.6 47.0 21.2 91.7 103.0 19.6 54.1 26.3
MH-FC-CNN (ce) 89.7 46.5 13.7 44.8 19.4 90.7 97.1 18.8 53.1 25.5
L.MH-FC-CNN(ce) 89.6 47.3 14.1 45.6 19.8 90.7 97.2 18.8 53.0 25.4
MH-FC-BU(ce) 90.0 52.3 15.2 46.2 20.9 91.8 105.8 19.9 54.7 26.7
L.MH-FC-BU(ce) 89.8 52.7 15.3 46.5 21.0 91.8 105.7 19.9 54.6 26.6

possible reason why LRP-IFT obtains similar mAP for the MH-FC model trained
on the MSCOCO2017 dataset; 3) as expected, the image captioning models with
bottom-up features consistently obtain higher mAP than those with CNN features,
demonstrating the potential of better feature representation for visual-language
models such as VIVO [47] and OSCAR [48].

Furthermore, LRP-IFT maintains the overall performance on the sentence
level, as shown in Table 4. Figure 9 illustrates some example captions of the
baseline models and the LRP-inference fine-tuned models. LRP-IFT is conducted
on the non-stop words and can improve the precision of the frequent object words.
As shown in Figure 9, with LRP-IFT, the model can correct or remove the hallu-
cinated words and maintain the sentence structure. This can partially explain why
the sentence-level performance is very close to that of the baseline models. We
will provide more detailed analyses of the sentence-level performance in Section
5.4.

From the above analyses, the LRP-IFT can effectively de-bias and reduce ob-
ject hallucination for a biased image captioning model, meanwhile, maintain the
sentence-level performance in terms of FBERT , CIDEr, SPICE, METEOR, and
ROUGE-L. On the other hand, this fine-tuning strategy does not degrade the per-
formance of a less biased image captioning model notably. We remark that the
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Baseline: A blond woman in a blue 
shirt is riding a bike in a crowd.

LRP-IFT : A blond woman in a blue 
tank top is sitting on  a bench in a crowd.

Baseline: A group of people are 
standing on a beach.

LRP-IFT : A group of people are 
standing on a boardwalk in the beach.

Baseline: A man in a jean jacket is 
holding a cellphone in his arms.

LRP-IFT: A young boy in a green jacket 
is standing in front of a library.

Baseline: A brown dog is sitting in the 
grass.

LRP-IFT : A brown dog is standing in 
the water.

Baseline: Two young boys are playing 
with toys on a floor.

LRP-IFT : A baby in a white shirt is 
playing with a game.

Baseline: A group of people sitting 
around a table with a cake.

LRP-IFT : A group of people playing a 
video game in a living room.

Baseline: A group of people sitting on a 
couch.

LRP-IFT : A group of people sitting at a 
table eating.

Baseline: A group of pizzas sitting on a 
table.

LRP-IFT : A group of pictures of pizza 
on a plate.

Figure 9: Examples of the captioning results with or without LRP-IFT. Blue color marks the
hallucinated words and red color marks the words corrected by LRP-IFT.

LRP-IFT requires no additional training parameters and human annotations. The
fine-tuning procedure is also analogous to the human’s recognition process that
we first build prior knowledge by learning the objects, relations, and attributes
and update related features when facing new shifts in distributions.

5.4. Discussion and outlook
In the experiments of LRP-IFT, we have observed that LRP-IFT alleviates

the object hallucination issue of image captioning models measurably. However,
we can also see that LRP-IFT does not effectively improve sentence-level perfor-
mance. In this part, we will further analyze the effects of the LRP re-weighting
mechanism and we will take a closer look at the samples where LRP-IFT im-
proves the sentence-level performance. We conclude by proposing a potential
future direction where the LRP-inference training can be helpful.

5.4.1. On limitations of the LRP re-weighting mechanism
We performed an analysis on the samples where LRP-IFT improves or de-

grades sentence-level performance. At first, for each word in a ground truth cap-
tion, we computed the count of that word within the training set. Then, for each
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Table 5: The average c(Sgt) over the ground truth captions from two sets of samples: the LRP-IFT-
improved set, where LRP-IFT increases the CIDEr scores, and the LRP-IFT-degraded set, where
LRP-IFT decreases the CIDEr scores. (ce) denotes that the models are trained only with cross-
entropy loss. The other models are further optimized with SCST. BU and CNN denote bottom-up
features and CNN features. Bold numbers indicate lower counts of the ground truth words in the
training set. This statistic can be interpreted as a heuristic for training data density.

dataset Flickr30K MSCOCO2017
average counts LRP-IFT-improved LRP-IFT-degraded LRP-IFT-improved LRP-IFT-degraded
Ada-LSTM-CNN 26.1 35.2 123.7 134.0
Ada-LSTM-BU 30.1 31.4 130.8 134.7
MH-FC-CNN 29.3 31.4 124.4 132.8
MH-FC-BU 29.3 29.7 118.7 139.0
Ada-LSTM-CNN (ce) 34.4 28.5 124.4 137.0
Ada-LSTM-BU (ce) 31.7 28.1 119.0 150.6
MH-FC-CNN (ce) 29.4 30.6 128.0 142.6
MH-FC-BU (ce) 22.6 35.9 124.7 148.5

ground truth caption in the test set, we find the minimum of the word counts,
denoted as c(Sgt), over the non-stop words in the caption Sgt:

c(Sgt) = min
wt2Sgt

count(wt) (33)

where count(wt) returns the counts of the word wt in the training set.
This statistic c(Sgt) for test set captions can be viewed as a heuristic 1-gram

estimate of the training data density for the linguistic modality of image caption-
ing. For images with multiple ground truth captions, we take the minimum of
c(Sgt) over all the captions of one image. We verified that taking the average
yields the same qualitative results.

Finally, we compute the average of this heuristic c(Sgt) for two sets of im-
ages: 1) the images on which LRP-IFT improves the predictions compared to
the baseline model and 2) the images for which LRP-IFT degrades the predictions
compared to the baseline model. We refer to the sentence-level evaluation metrics,
such as the CIDEr score, to separate the two sets of image samples.

Table 5 lists the results of average c(Sgt) using CIDEr scores for performance
comparison. We observe a clear correlation across most of the models (except
only one): The LRP-IFT-improved set exhibits a lower average c(Sgt), while
the LRP-IFT-degraded set shows a higher average c(Sgt). In summary, LRP-IFT
achieves a tradeoff. It performs worse on those test images with a higher estimate
of the sample density, where the base model seemingly generalizes sufficiently
well. On the other hand, it achieves an improvement on images with lower train-
ing data density. The results using other metric scores for comparison lead to the
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same finding. This makes intuitively sense as one can expect that captions sup-
ported by a higher amount of training data would profit less from learning with
explanations. A similar correlation for using explanations to improve age pre-
diction models using image data is reported in [98]. The authors observe that
using explanations improves predictions on the poorly performing age subset 48-
53 years, which has a small sample size, while slightly degrades the performance
on age subsets with larger sample sizes.

There are further possible reasons for the non-improved sentence-level perfor-
mance. [27] points out that hallucinating less does not necessarily render higher
sentence-level evaluation metrics [29, 31, 99], which is also in line with our ob-
servations in Table 4. Furthermore, LRP-IFT implements the re-weighting mech-
anism on top of pre-trained models as a fine-tuning step, making it challenging to
achieve larger changes over pre-trained models.

5.4.2. An outlook for re-weighting mechanisms based on explanations
Based on the above analyses, we surmise that the LRP re-weighting mecha-

nism could be helpful for novel object captioning (NOC). NOC aims to predict
those object words that are unseen by the model during training. It also faces the
challenge of unbalanced training data, in an even more extreme case where some
object words are not shown in the training data. For example, [52] proposed a
pointing mechanism to combine the sentence correlation representation and ob-
ject representation, which dynamically decides whether to include an object word
from a detection model. The LRP re-weighting mechanism could be helpful here
to better guide the model when and where to include the detected objects in the
caption.

6. Conclusion

We adapt LRP and gradient-based explanation methods to explain the attention-
guided image captioning models beyond visualizing attention. With extensive
qualitative and quantitative experiments, we demonstrate that explanation meth-
ods provide more interpretable information than attention, disentangle the con-
tributions of the visual and linguistic information, help to debug the image cap-
tioning models such as mining the reasons for the hallucination problem. With the
properties of LRP explanations, we propose an LRP-inference fine-tuning strategy
that can successfully de-bias image captioning models and alleviate object hallu-
cination. The proposed fine-tuning strategy requires no additional annotations and
training parameters.
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