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2Analyzing fMRI Through Recurrent DL

Abstract

The application of deep learning (DL) models to neuroimaging data poses several 

challenges, due to the high dimensionality, low sample size and complex temporo-

spatial dependency structure of these data. Even further, DL models often act as as 

black boxes, impeding insight into the association of cognitive state and brain activity. 

To approach these challenges, we introduce the DeepLight framework, which utilizes 

long short-term memory (LSTM) based DL models to analyze whole-brain functional 

Magnetic Resonance Imaging (fMRI) data. To decode a cognitive state (e.g., seeing the 

image of a house), DeepLight separates an fMRI volume into a sequence of axial brain 

slices, which is then sequentially processed by an LSTM. To maintain interpretability, 

DeepLight adapts the layer-wise relevance propagation (LRP) technique. Thereby, 

decomposing its decoding decision into the contributions of the single input voxels to 

this decision. Importantly, the decomposition is performed on the level of single fMRI 

volumes, enabling DeepLight to study the associations between cognitive state and 

brain activity on several levels of data granularity, from the level of the group down to 

the level of single time points. To demonstrate the versatility of DeepLight, we apply it 

to a large fMRI dataset of the Human Connectome Project. We show that DeepLight 

outperforms conventional approaches of uni- and multivariate fMRI analysis in 

decoding the cognitive states and in identifying the physiologically appropriate brain 

regions associated with these states. We further demonstrate DeepLight’s ability to 

study the fine-grained temporo-spatial variability of brain activity over sequences of 

single fMRI samples.
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1. Introduction

Neuroimaging research has recently started collecting large corpora of experimental 

functional Magnetic Resonance Imaging (fMRI) data, often comprising many hundred 

individuals (e.g., Poldrack et al., 2013; Van Essen et al., 2013). By collecting these 

datasets, researchers want to gain insights into the associations between the cognitive 

states of an individual (e.g., while viewing images or performing a specific task) and the

underlying brain activity, while also studying the variability of these associations across 

the population.

At first sight, the analysis of neuroimaging data thereby seems ideally suited for the 

application of deep learning (DL; Goodfellow et al., 2016; LeCun et al., 2015) methods,

due to the availability of large and structured datasets. Generally, DL can be described 

as a class of representation-learning methods, with multiple levels of abstraction. At 

each level, the representation of the input data is transformed by a simple, but non-linear

function. The resulting hierarchical structure of non-linear transforms enables DL 

methods to learn complex functions. It also enables them to identify intricate signals in 

noisy data, by projecting the input data into a higher-level representation, in which those

aspects of the input data that are irrelevant to identify an analysis target are suppressed 

and those that are relevant are amplified. With this higher-level perspective, DL 

methods can associate a target variable with variable patterns in the input data. 

Importantly, DL methods can autonomously learn these projections from the data and 

therefore do not require a thorough prior understanding of the mapping between input 

data and analysis target (for a detailed discussion, see LeCun et al., 2015). For these 

reasons, DL methods seem ideally suited for the analysis of neuroimaging data, where 

intricate, highly variable patterns of brain activity are hidden in large, high-dimensional 

datasets and the mapping between cognitive state and brain activity is often unknown.

While researchers have started exploring the application of DL models to neuroimaging 

data (e.g., Mensch et al., 2018; Nie et al., 2016; Petrov et al., 2018; Plis et al., 2014; 

Sarraf and Tofighi, 2016; Suk et al., 2014; Yousefnezhad and Zhang, 2018), two major 

challenges have so far prevented broad DL usage: (1) Neuroimaging data are high 

dimensional, while containing comparably few samples. For example, a typical fMRI 

dataset comprises up to a few hundred samples per subject and recently up to several 

hundred subjects (e.g., Van Essen et al., 2013), while each sample contains several 

hundred thousand dimensions (i.e., voxels). In such analysis settings, DL models (as 

well as more traditional machine learning approaches) are likely to suffer from 

overfitting (by too closely capturing those dynamics that are specific to the training 

data, so that their predictive performance does not generalize well to new data). (2) DL 

models have often been considered as non-linear black box models, disguising the 

relationship between input data and decoding decision. Thereby, impeding insight into 

(and interpretation of) the association between cognitive state and brain activity.

To approach these challenges, we propose the DeepLight framework, which defines a 

method to utilize long short-term memory (LSTM) based DL architectures (Donahue et 

al., 2015; Hochreiter and Schmidhuber, 1997) to analyze whole-brain neuroimaging 

data. In DeepLight, each whole-brain volume is sliced into a sequence of axial images. 

To decode an underlying cognitive state, the resulting sequence of images is processed 
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4Analyzing fMRI Through Recurrent DL

by a combination of convolutional and recurrent DL elements. Thereby, DeepLight 

successfully copes with the high dimensionality of neuroimaging data, while modeling 

the full spatial dependency structure of whole-brain activity (within and across axial 

brain slices). Conceptually, DeepLight builds upon the searchlight approach. Instead of 

moving a small searchlight beam around in space, DeepLight explores brain activity 

more in-depth, by looking through the full sequence of axial brain slices, before making 

a decoding decision. To subsequently relate brain activity and cognitive state, 

DeepLight applies the layer-wise relevance propagation (LRP; Bach et al., 2015; 

Lapuschkin et al., 2016) method to its decoding decisions. Thereby, decomposing these 

decisions into the contributions of the single input voxels to each decision. Importantly, 

the LRP analysis is performed on the level of a single input samples, enabling an 

analysis on several levels of data granularity, from the level of the group down to the 

level of single subjects, trials and time points. These characteristics make DeepLight 

ideally suited to study the fine-grained temporo-spatial distribution of brain activity 

underlying sequences of single fMRI samples.

Here, we will demonstrate the versatility of DeepLight, by applying it to an openly 

available fMRI dataset of the Human Connectome Project (Van Essen et al., 2013). In 

particular, to the data of an N-back task, in which 100 subjects viewed images of either 

body parts, faces, places or tools in two separate fMRI experiment runs (for an 

overview, see Section 2.1 and Supplementary Fig. S1). Subsequently, we will evaluate 

the performance of DeepLight in decoding the four underlying cognitive states 

(resulting from viewing an image of either of the four stimulus classes) from the fMRI 

data and identifying the brain regions associated with these states. To this end, we will 

compare the performance of DeepLight to three representative conventional approaches 

to the uni- and multivariate analysis of neuroimaging data, with widespread application 

in the literature. In particular, we will compare DeepLight to the General Linear Model 

(GLM; Friston et al., 1994), searchlight analysis (Kriegeskorte et al., 2006) and whole-

brain Least Absolute Shrinkage Logistic Regression (whole-brain Lasso; Grosenick et 

al., 2013; Wager et al., 2013). Note that the four analysis approaches differ in the 

number of voxels they include in their analyses. While the GLM analyses the data of 

single voxels independent of one another (univariate), the searchlight analysis utilizes 

the data of clusters of multiple voxels (multivariate) and the whole-brain lasso utilizes 

the data of all voxels in the brain (whole-brain). In this comparison, we find that 

DeepLight (1) decodes the cognitive states underlying the fMRI data more accurately 

than these other approaches, (2) improves its decoding performance better with growing

datasets, (3) accurately identifies the physiologically appropriate associations between 

cognitive states and brain activity and (4) identifies these associations on multiple levels

of data granularity (namely, the level of the group, subject, trial and time point). We 

also demonstrate DeepLight’s ability to study the temporo-spatial distribution of brain 

activity over a sequence of single fMRI samples.

2. Methods
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2.1 Experiment paradigm

100 participants performed a version of the N-back task in two separate fMRI runs (for 

an overview, see Supplementary Fig. S1 and Barch et al., 2013). Each of the two runs 

(260s each) consisted of eight task blocks (25s each) and four fixation blocks (15s 

each). Within each run, the four different stimulus types (body, face, place and tool) 

were presented in separate blocks. Half of the task blocks used a 2-back working 

memory task (participants were asked to respond "target" when the current stimulus was

the same as the stimulus 2 back) and the other half a 0-back working memory task (a 

target cue was presented at the beginning of each block and the participants were asked 

to respond "target" whenever the target cue was presented in the block). Each task block

consisted of 10 trials (2.5s each). In each trial, a stimulus was presented for 2s followed 

by a 500 ms interstimulus interval (ISI). We were not interested in identifying any effect

of the N-back task condition on the evoked brain activity and therefore pooled the data 

of both N-back conditions.

2.2 FMRI data acquisition & preprocessing

Functional MRI data of 100 unrelated participants for this experiment were provided in 

a preprocessed format by the Human Connectome Project (HCP S1200 release), WU 

Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 

1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH 

Blueprint for Neuroscience Research; and by the McDonnell Center for Systems 

Neuroscience at Washington University. Whole-brain EPI acquisitions were acquired 

with a 32 channel head coil on a modified 3T Siemens Skyra with TR=720 ms, TE=33.1

ms, flip angle=52 deg, BW=2290 Hz/Px, in-plane FOV=208×180mm, 72 slices, 2.0 

mm isotropic voxels with a multi-band acceleration factor of 8. Two runs were acquired,

one with a right-to-left and the other with a left-to-right phase encoding (for further 

methodological details on fMRI data acquisition, see UNurbil et al., 2013).

The Human Connectome Project preprocessing pipeline for functional MRI data 

("fMRIVolume"; Glasser et al., 2013) includes the following steps: gradient unwarping, 

motion correction, fieldmap-based EPI distortion correction, brain-boundary based 

registration of EPI to structural T1-weighted scan, non-linear registration into MNI152 

space, and grand-mean intensity normalization (for further details, see Glasser et al., 

2013; UNurbil et al., 2013). In addition to the minimal preprocessing of the fMRI data 

that was performed by the Human Connectome Project, we applied the following 

preprocessing steps to the data for all decoding analyses: volume-based smoothing of 

the fMRI sequences with a 3mm Gaussian kernel, linear detrending and standardization 

of the single voxel signal time-series (resulting in a zero-centered voxel time-series with

unit variance) and temporal filtering of the single voxel time-series with a butterworth 

highpass filter and a cutoff of 128s, as implemented in Nilearn 0.4.1 (Abraham et al., 

2014). In line with previous work (Jang et al., 2017), we further applied an outer brain 

mask to each fMRI volume. We first identified those voxels whose activity was larger 

than 5% of the maximum voxel signal within the fMRI volume and then only kept those

voxels for further analysis that were positioned between the first and last voxel to fulfill 

this property in the three spatial dimensions of any functional brain volume of our 

dataset. This resulted in a brain mask spanning 74×92×81 voxels (X ×Y ×Z ).
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6Analyzing fMRI Through Recurrent DL

All of our preprocessing was performed by the use of Nilearn 0.4.1 (Abraham et al., 

2014). Importantly, we did not exclude any TR of an experiment block of the four 

stimulus classes from the decoding analyses. However, we removed all fixation blocks 

from the decoding analyses. Lastly, we split the fMRI data of the 100 subjects contained

in the dataset into two distinct training and test datasets (each containing the data of 70 

and 30 randomly assigned subjects). All analyses presented throughout the following 

solely include the data of the 30 subjects contained in the held-out test dataset (if not 

stated otherwise).

2.3 Data availability

The data that support the findings of this study are openly available at the 

ConnectomeDB S1200 Project page of the Human Connectome Project 

(https://db.humanconnectome.org/data/projects/HCP1200).

2.4. Baseline methods

2.4.1 General linear model

The General Linear Model (GLM; Friston et al., 1994) represents a univariate brain 

encoding model (Kriegeskorte and Douglas, 2018; Naselaris et al., 2011). Its goal is to 

identify an association between cognitive state and brain activity, by predicting the time 

series signal of a voxel from a set of experiment predictor:

Y=Xβ+ϵ (1)

Here, Y  presents a T × N dimensional matrix containing the multivariate time series data

of N  voxels and T  time points. X  represents the design matrix, which is composed of
T ×P data points, where each column represents one of P predictors. Typically, each 

predictor represents a variable that is manipulated during the experiment (e.g., the 

presentation times of stimuli of one of the four stimulus classes). β represents a P×N  

dimensional matrix of regression coefficients. To mimic the blood-oxygen-level 

dependent (BOLD) response measured by the fMRI, each predictor is first convolved 

with a hemodynamic response function (HRF; Lindquist et al., 2009), before fitting the
β-coefficients to the data. After fitting, the resulting brain map of β-coefficients 

indicates the estimated contribution of each predictor to the time series signal of each of 

the N  voxels. ϵ  represents a T × N dimensional matrix of error terms. Importantly, the 

GLM analyzes the time series signal of each voxel independently and thereby includes a

separate set of regression coefficients for each voxel in the brain.

2.4.2 Searchlight analysis

The searchlight analysis (Kriegeskorte et al., 2006) is a multivariate brain decoding 

model (Kriegeskorte and Douglas, 2018; Naselaris et al., 2011). Its goal is to identify an

association between cognitive state and brain activity, by probing the ability of a 

statistical classifier to identify the cognitive state from the activity pattern of a small 

clusters of voxels. To this end, the entire brain is scanned with a sphere of a given radius

(the searchlight) and the performance of the classifier in decoding the cognitive states is 

evaluated at each location, resulting in a brain map of decoding accuracies. These  
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decoding accuracies indicate how much information about the cognitive state is 

contained in the activity pattern of the underlying cluster of voxels. Here, we used a 

searchlight radius of 5.6mm and a linear-kernel Support Vector Machine (SVM) 

classifier (if not reported otherwise).

Given a training dataset of T  data points [ yt , xt ]t=1
T

, where xt represents the activity 

pattern of a cluster of voxels at time point t  and yt the corresponding label, the SVM 

(Cortes and Vapnik, 1995) is defined as follows:

ŷ ( x )=sign[∑
t=1

T

α t yt γ (x , xt )+b ] (2)

Here, αt and b are positive constants, whereas γ (x , xt ) represents the kernel function. 

We used a linear kernel function, as implemented in Nilearn 0.4.1 (Abraham et al., 

2014). We then defined the decoding accuracy achieved by the searchlight analysis as 

the maximum decoding accuracy that was achieved at any searchlight location in the 

brain. Similarly, we used the searchlight location that achieved the highest decoding 

accuracy to make decoding predictions (for example, to compute the confusion matrix 

presented in Fig. 2C).

2.4.3 Whole-brain Least Absolute Shrinkage Logistic Regression

The whole-brain Least Absolute Shrinkage Logistic Regression (or whole-brain lasso; 

Grosenick et al., 2013; Wager et al., 2013) represents a whole-brain decoding model 

(Kriegeskorte and Douglas, 2018; Naselaris et al., 2011). It identifies an association 

between cognitive state and brain activity, by probing the ability of a logistic model to 

decode the cognitive state from whole-brain activity (with one logistic coefficient βi per

voxel i in the brain). To reduce the risk of overfitting, resulting from the large number 

of model coefficients, the whole-brain lasso applies Least Absolute Shrinkage 

regularization to the likelihood function of the logistic model (Tibshirani, 1996; 

Tikhonov, 1943). Thereby, forcing the logistic model to perform automatic variable 

selection during parameter estimation, resulting in sparse coefficient estimates (i.e., by 

forcing many coefficient estimates to be exactly 0). In particular, the optimization 

problem of the whole-brain lasso can be defined as follows (again, N  denotes the 

number of voxels in the brain, T  the number of fMRI sampling time points and [ yt , xt ]t=1
T

the set of class labels and voxel values of each fMRI sample):

min
β

{∑
t=1

T

[ yt log σ ( βT xt )+(1− yt ) log (1−σ (βT xt ) )]+λ∑
i=1

N

|βi|} (3)

Here, λ represents the strength of the L1 regularization term (with larger values 

indicating stronger regularization), whereas σ  represents the logistic model:

σ ( x )=
1

1+e−x
(4)

For each voxel i in the brain, the resulting set of coefficient estimates β, indicates the 

contribution of the activity of this voxel to the decoding decision σ (xt ) of the logistic  
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model for a whole-brain fMRI sample xt at time point t. Over the recent years, the 

whole-brain lasso, as well as closely related decoding approaches (e.g., Gramfort et al., 

2013; McIntosh and Lobaugh, 2004; Ryali et al., 2010), have found widespread 

application throughout the neuroscience literature (e.g., Chang et al., 2015, Wager et al.,

2013).

2.5 DeepLight framework

2.5.1 Deep learning model

The DL model underlying DeepLight consists of three distinct computational modules, 

namely a feature extractor, an LSTM, and an output unit (for an overview, see Fig. 1). 

First, DeepLight separates each fMRI volume into a sequence of axial brain slices. 

These slices are then processed by a convolutional feature extractor (LeCun et al., 

1995), resulting in a sequence of higher-level, and lower-dimensional, slice 

representations. These higher-level slice representations are fed to an LSTM (Hochreiter

and Schmidhuber, 1997), integrating the spatial dependencies of the observed brain 

activity within and across axial brain slices. Lastly, the output unit makes a decoding 

decision, by projecting the output of the LSTM into a lower-dimensional space, 

spanning the cognitive states in the data. Here, a probability for each cognitive state is 

estimated, indicating whether the input fMRI volume belongs to each of these states. 

This combination of convolutional and recurrent DL elements is inspired by previous 

research, showing that it is generally well-suited to learn the spatial dependency 

structure of long sequences of input data (Donahue et al., 2015; Marban et al., 2019; 

McLaughlin et al., 2016). Importantly, the DeepLight approach is not dependent on any 

specific architecture of each of these three modules. The DL model architecture 

described in the following is exemplary and derived from previous work (Marban et al., 

2019). Further research is needed to explore the effect of specific module architectures 

on the performance of DeepLight.

The feature extractor used here was composed of a sequence of eight convolution layers

(LeCun et al., 1995). A convolution layer consists of a set of kernels (or filters) w that 

each learn local features of the input image a. These local features are then convolved 

over the input, resulting in an activation map h, indicating whether a feature is present at

each given location of the input:

hi , j=g (∑
k=1

m

∑
l=1

m

(wk ,l ai+k+1, j+ l− 1 )+b) (5)

Here, b represents the bias of the kernel, while g represents the activation function. k  

and l represent the row and column index of the kernel matrix, whereas i and j represent

the row and column index of the activation map.

Generally, lower-level convolution kernels (that are close to the input data) have small 

receptive fields and are only sensitive to local features of small patches of the input data

(e.g., contrasts and orientations). Higher-level convolution kernels, on the other hand, 

act upon a higher-level representation of the input data, which has already been 

transformed by a sequence of preceding lower-level convolution kernels. Higher-level 
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kernels thereby integrate the information provided by lower-level convolution kernels, 

allowing them to identify larger and more complex patterns in the data. We specified the

sequence of convolution layers as follows (see Fig. 1): conv3-16, conv3-16, conv3-16, 

conv3-16, conv3-32, conv3-32, conv3-32, conv3-32 (notation: conv(kernel size) - 

(number of kernels)). All convolution kernels were activated through a rectified linear 

unit function:

g ( z )=max (0 , z ) (6)

Importantly, all kernels of the even-numbered convolution layers were moved over the 

input fMRI slice with a stride size of one voxel and all kernels of odd-numbered layers 

with a stride size of two voxels. The stride size determines the dimensionality of the 

outputted slice representation. An increasing stride indicates more distance between the 

application of the convolution kernels to the input data. Thereby, reducing the 

dimensionality of the output representation at the cost of a decreasing sensitivity to 

differences in the activity patterns of neighbouring voxels. Yet, the activity patterns of 

neighbouring voxels are known to be highly correlated, leading to an overall low risk of 

information loss through a reasonable increase in stride size. To avoid any further loss 

of dimensionality between the convolution layers, we applied zero-padding. Thereby, 

adding zeros to the borders of the inputs to each convolution layer so that the outputs of 

the convolution layers have the same dimensionality as their inputs, if a stride of 1 voxel

is applied, and only decrease in size, when a larger stride is used. The sequence of eight 

convolution layers thereby resulted in a 960-dimensional representation of each volume 

slice.

To integrate the information provided by the resulting sequence of slice representations 

into a higher-level representation of the observed whole-brain activity, DeepLight 

applies a bi-directional LSTM (Hochreiter and Schmidhuber, 1997), containing two 

independent LSTM units. Each of the two LSTM units iterates through the entire 

sequence of input slices, but in reverse order (one from bottom-to-top and the other 

from top-to-bottom). An LSTM unit contains a hidden cell state C, storing information 

over an input sequence of length S with elements as and outputs a vector hs for each 

input at sequence step s. The unit has the ability to add and remove information from C 

through a series of gates. In a first step, the LSTM unit decides what information from 

the cell state C is removed. This is done by a fully-connected logistic layer, the forget 

gate f :

f t=σ (Wf as+U f hs−1+bf ) (7)

Here, σ  indicates the logistic function (see eq. 4), [W ,U ] the gate’s weight matrices and

b the gate’s bias. The forget gate outputs a number between 0 and 1 for each entry in the

cell state C at the previous sequence step s−1. Next, the LSTM unit decides what 

information is going to be stored in the cell state. This operation contains two elements: 

the input gate i, which decides which values of Cs will be updated, and a tanh layer, 

which creates a new vector of candidate values C ' s:
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is=σ (Wias+U ihs−1+bi ) (8)

C 's=tanh (Wc as+U chs− 1+bc ) (9)

tanh ( z )=
e
z
−e

−z

e
z+e− z

(10)

Subsequently, the old cell state Cs−1 is updated into the new cell state Cs:
Cs=f s ⋅Cs−1+is⋅C ' s (11)

Lastly, the LSTM computes its output hs. Here, the output gate o, decides what part of

Cs will be outputted. Subsequently, Cs is multiplied by another tanh layer to make sure 

that hs is scaled between -1 and 1:

os=σ (Woas+Uohs−1+bo ) (12)

hs=os ⋅ tanh (Cs ) (13)

Each of the two LSTM units in our DL model contained 40 output neurons. To make a 

decoding decision, both LSTM units pass their output for the last sequence element to a 

fully-connected softmax output layer. The output unit contains one neuron per cognitive

state in the data and assigns a probability to each of the K  (here, K=4) states, 

indicating the probability that the current fMRI sample belongs to this state:

σ=
e
z j

∑
k=1

K

e
z
k

,with j=1,... , K
 (14)

2.5.2 Layer-Wise Relevance Propagation in the DeepLight framework

To relate the decoded cognitive state and brain activity, DeepLight utilizes the Layer-

Wise Relevance Propagation (LRP; Bach et al., 2015, Lapuschkin et al., 2019; 

Montavon et al., 2017) method. The goal of LRP is to identify the contribution of a 

single dimension d  of an input a (with dimensionality D) to the prediction f (a ) that is 

made by a linear or non-linear classifier f . We denote the contribution of a single 

dimension as its relevance Rd. One way of decomposing the prediction f (a ) is by the 

sum of the relevance values of each dimension of the input:

f (a )≈∑
d=1

D

Rd (15)

Qualitatively, any Rd<0 can be interpreted as evidence against the presence of a 

classification target, while Rd>0 denotes evidence for the presence of the target. 

Importantly, LRP assumes that f (a )>0 indicates evidence for the presence of a target.

Let’s assume the relevance R j
( l)
 of a neuron j at network layer l for the prediction f (a ) is 

known. We would like to decompose this relevance into the messages Ri← j

( l− 1 ,l )
 that are 

sent to those neurons i in layer l −1 which provide the inputs to neuron j:

R j
( l)=∑

iϵ (l)

Ri← j
(l−1 ,l )

(16)
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While the relevance of the output neuron at the last layer L is defined as Rd
(L )= f (a ), the 

dimension-wise relevance scores on the input neurons are given by Rd
(1)

. For all weighted

connections of the DL model in between (see eqs. 5, 7, 8, 9 and 12), DeepLight defines 

the messages Ri← j

( l− 1 ,l )
 as follows:

Ri← j

( l− 1 ,l )=
zij

z j+ϵ ⋅ sign ( z j )
R j

(l )
(17)

Here, zij=ai
( l−1)
wij

(l−1 ,l )
 (w indicating the coefficient weight and a the input) and z j=∑

i

zij

, while ϵ  represents a stabilizer term that is necessary to avoid numerical degenerations 

when z j is close to 0 (we set ϵ=0.001).

Importantly, the LSTM also applies another type of connection, which we refer to as 

multiplicative connection (see eqs. 11 and 13). Let z j be an upper-layer neuron whose 

value in the forward pass is computed by multiplying two lower-layer neuron values zg 

and zs such that z j=zg⋅ z s. These multiplicative connections occur when we multiply the

outputs of a gate neuron, whose values range between 0 and 1, with an instance of the 

hidden cell state, which we will call source neuron. For these types of connections, we 

set the relevances of the gate neuron Rg
( l− 1)=0 and the relevances of the source neuron

Rs
( l− 1)=R j

(l)
, where R j

( l)
 denotes the relevances of the upper layer neuron z j (as proposed in

Arras et al., 2017). The reasoning behind this rule is that the gate neuron already decides

in the forward pass how much of the information contained in the source neuron should 

be retained to make the classification. Even if this seems to ignore the values of the 

neurons zg and zs for the redistribution of relevance, these are actually taken into 

account when computing the value R j
( l)
 from the relevances of the next upper-layer 

neurons to which z j is connected by the weighted connections. We refer the reader to 

Samek et al. (2018) and Montavon et al. (2018) for more information about explanation 

methods.

In the context of this work, we decomposed the predictions of DeepLight for the actual 

cognitive state underlying each fMRI sample, as we were solely interested in 

understanding what DeepLight used as evidence in favor of the presence of this state. 

We also restricted the LRP analysis to those brain samples that the DL model classified 

correctly, because we can only assume that the DL model has learned a meaningful 

mapping between brain data and cognitive state, if it is able to accurately decode the 

cognitive state.

2.5.3 DeepLight training

We iteratively trained DeepLight through backpropagation (Rumelhart et al., 1986) over

60 epochs by the use of the ADAM optimization algorithm as implemented in 

tensorflow 1.4 (Abadi et al., 2016). To prevent overfitting, we applied dropout 

regularization to all network layers (Srivastava et al., 2014), global gradient norm 

clipping (with a clipping threshold of 5; Pascanu et al., 2013), as well as an early 

stopping of the training (for an overview of training statistics, see Supplementary Fig. 
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S2). During the training, we set the dropout probability to 50% for all network layers, 

except for the first four convolution layers, where we reduced the dropout probability to 

30% for the first two layers and 40% for the third and fourth layer. Each training epoch 

was defined as a complete iteration over all samples in the training dataset (see Section 

2.2). We used a learning rate of 0.0001 and a batch size of 32. All network weights were

initialized by the use of a normal-distributed random initialization scheme (Glorot and 

Bengio, 2010). The DL model was written in tensorflow 1.4 (Abadi et al., 2016) and the

interprettensor library (https://github.com/VigneshSrinivasan10/interprettensor).

2.5.4 DeepLight brain maps

To generate a set of subject-level brain maps with DeepLight, we first decomposed the 

decoding decisions of DeepLight for each correctly classified fMRI sample of a subject 

with the LRP method (see Section 2.5.2). Importantly, we restricted the LRP analysis to 

those fMRI samples that were collected 5 - 15s after the onset of the experiment block, 

as we expect the HRF (Lindquist et al., 2009) to be strongest within this time period. To

then aggregate the resulting set of relevance maps for each decomposed fMRI sample 

within each cognitive state, we smoothed each relevance map with a 3mm FWHM 

Gaussian kernel and averaged all relevance volumes belonging to a cognitive state, 

resulting in one brain map per subject and cognitive state. Group-level brain maps were 

then obtained, by averaging these subject-level brain maps for all subjects in the held-

out test dataset within each cognitive state, resulting in one group-level brain map per 

cognitive state.

3. Results

3.1 DeepLight accurately decodes cognitive states from fMRI data

A key prerequisite for the DeepLight analysis (as well as all other decoding analyses) is 

that it achieves reasonable performance in the decoding task at hand. Only then we can 

assume that it has learned a meaningful mapping from the fMRI data to the cognitive 

states and interpret the resulting brain maps as informative about these states.

Overall, DeepLight accurately decoded the cognitive states underlying 68.3% of the 

fMRI samples in the held-out test dataset (62.36%, 69.87%, 75.97%, 65.09% for body, 

face, place and tool respectively; Fig. 2A). It generally performed best at discriminating 

the body and place (5.1% confusion in the held-out data), face and tool (7.8% confusion

in the held-out data), body and tool (9.8% confusion in the held-out data) and face and 

place (10.4% confusion in the held-out data) stimuli from the fMRI data, while it did 

not perform as well in discriminating place and tool and body and face stimuli (15% 

confusion in the held-out data respectively).

Note that DeepLight’s performance in decoding the four cognitive states from the fMRI 

data varied over the course of an experiment block (Fig. 2B). DeepLight performed best

in the middle and later stages of the experiment block, where the average decoding 

accuracy reaches 80%. This finding is generally in line with the temporal evolution of 

the hemodynamic response function (HRF; Lindquist et al., 2009) measured by the 
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fMRI (the HRF is known to be strongest 5-10 seconds after to the onset of the 

underlying neuronal activity).

To further evaluate DeepLight’s performance in decoding the cognitive states from the 

fMRI data, we compared its performance in decoding these states to the searchlight 

analysis and whole-brain lasso. For simplicity, we sub-divided this comparison into a 

separate analysis on the group- and subject-level.

3.1.1 Group-level

For the group-level comparison, we trained the searchlight analysis and whole-brain 

lasso on the data of all 70 subjects contained in the training dataset (for details on the 

fitting procedures, see Supplementary Information Section 1). Subsequently, we 

evaluated their performance in decoding the cognitive states in the full held-out test 

data.

DeepLight clearly outperformed the other approaches in decoding the cognitive states. 

While the searchlight analysis achieved an average decoding accuracy of 60% (Fig. 2C) 

and the whole-brain lasso an average decoding accuracy of 47.97% (Fig. 2D), 

DeepLight improved upon these performances by 8.3% (t(29)=5.80, p<0.0001) and 

20.33% (t(29)=13.39, p<0.0001) respectively. 

All three decoding approaches generally performed best at discriminating face and place

stimuli from the fMRI data (Fig. 2A, C-D). Similar to DeepLight, the searchlight 

analysis and whole-brain lasso also performed well at discriminating body and place 

stimuli (3.3% and 12.2% confusion for the searchlight analysis and whole-brain lasso 

respectively, Fig. 2C-D), while they also had more difficulties discriminating body and 

face stimuli from the fMRI data (25% and 20.2% confusion for the searchlight analysis 

and whole-brain lasso respectively, Fig. 2C-D).

A key premise of DL methods, when compared to more traditional decoding 

approaches, is that their decoding performance improves better with growing datasets. 

To test this, we repeatedly trained all three decoding approaches on a subset of the 

training dataset (including the data of 5, 10, 15, 20, 25, 30, 35, 40, 50, 60 and 70 

subjects), and validated their performance at each iteration on the full held-out test data 

(Fig. 2E). Overall, the decoding performance of DeepLight increased by 0.27% 

(t(10)=10.9, p<0.0001) per additional subject in the training dataset, whereas the 

performance of the whole-brain lasso increased by 0.03% (t(10)=3.02, p=0.015) and the 

performance of the searchlight analysis only marginally increased by 0.04% 

(t(10)=2.08, p=0.067). Nevertheless, the searchlight analysis outperformed DeepLight 

in decoding the cognitive states from the data when only little training data were 

available (here, 10 or less subjects (t(29)=-4.39, p<0.0001). The decoding advantage of 

DeepLight, on the other hand, came to light when the data of 50 or more subjects were 

available in the training dataset (t(29)=3.82, p=0.0006). DeepLight consistently 

outperformed the whole-brain lasso, when it was trained on the data of at least 10 

subjects (t(29)=5.32, p=0.0045).
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3.1.2 Subject-level

For the subject-level comparison, we first trained both, the searchlight analysis and 

whole-brain lasso on the fMRI data of the first experiment run of a subject from the 

held-out test dataset (for an overview of the training procedures, see Supplementary 

Information Section 1). We then used the data of the second experiment run of the same 

subject to evaluate their decoding performance (by predicting the cognitive states 

underlying each fMRI sample of the second experiment run). Importantly, we also 

decoded the same fMRI samples with DeepLight. Note that DeepLight, in comparison 

to the other approaches, did not see any data of the subject during the training, as it was 

solely trained on the data of the 70 subjects in the training dataset (see Section 2.1).

DeepLight clearly outperformed the other decoding approaches, by decoding the 

cognitive states more accurately for 28 out of 30 subjects, when compared to the 

searchlight analysis (while the searchlight analysis achieved an average decoding 

accuracy of 47.2% across subjects, DeepLight improved upon this performance by 

22.4%, with an average decoding accuracy of 69.3%, t(29)= 11.28, p<0.0001; Fig. 3A), 

and for 29 out of 30 subjects, when compared to the whole-brain lasso (while the whole-

brain lasso achieved an average decoding accuracy of 37% across subjects, DeepLight 

improved upon this performance by 32%; t(29)=15.74, p<0.0001; Fig. 3B). 

To further ascertain that the observed differences in decoding performance between the 

searchlight and DeepLight did not result from the linearity contained in the Support 

Vector Machine (SVM; Cortes and Vapnik, 1995) of the the searchlight analysis, we 

replicated our subject-level searchlight analysis, by the use of a non-linear radial basis 

function kernel (RBF; Cortes and Vapnik, 1995, M1ller et al., 2001, Schölkopf and 

Smola, 2002) SVM (Supplementary Fig. S3). However, the decoding accuracies 

achieved by the RBF-kernel SVM were not meaningfully different from those of the 

linear-kernel SVM (t(29)=-1.75, p=0.09). 

Lastly, we also compared the subject-level decoding performance of the whole-brain 

lasso to that of a recently proposed extension of this approach (TV-L1, for 

methodological details see Gramfort et al., 2013). The TV-L1 approach combines the 

Least Absolute Shrinkage Regularization (L1; see eq. 3) of the whole-brain lasso with 

an additional Total-Variation (TV) penalty (Michel et al., 2011), to better account for 

the spatial dependency structure of fMRI data. Yet, we found that the whole-brain lasso 

performed better at decoding the cognitive states from the subject-level fMRI data than 

TV-L1 (t(29)=3.79, p=0.0007 ; see Supplementary Fig. S4).

3.2 DeepLight identifies physiologically appropriate associations 

between cognitive states and brain activity

Our previous analyses have shown that DeepLight has learned a meaningful mapping 

between the fMRI data and cognitive states, by accurately decoding these states from 

the data. Next, we therefore tested DeepLight’s ability to identify the brain areas 

associated with the cognitive states, by decomposing its decoding decisions with the 

LRP method (see Section 2.5). Subsequently, we compared the resulting brain maps of 

DeepLight to those of the GLM, searchlight analysis and whole-brain lasso. Again, we 
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sub-divided this comparison into a separate analysis on the group- and subject-level. 

Note that due to the diverse statistical nature of the three baseline approaches, the values

of their brain maps are on different scales and have different statistical interpretations 

(for methodological details, see Section 2.4). Further, all depicted brain maps in Fig. 4-6

are  projected onto the inflated cortical surface of the FsAverage5 surface template 

(Fischl, 2012) for better visibility. 

To evaluate the quality of the brain maps resulting from each analysis approach, we 

performed a meta-analysis of the four cognitive states with NeuroSynth (for details on 

NeuroSynth, see Supplementary Information Section 2 and Yarkoni et al., 2011). 

NeuroSynth provides a database of mappings between cognitive states and brain 

activity, based on the empirical neuroscience literature. Particularly, the resulting brain 

maps used here indicate whether the probability that an article reports a specific brain 

activation is different, when it includes a specific term (e.g., "face") compared to when 

it does not. With this meta-analysis, we defined a set of regions-of-interest (ROIs) for 

each cognitive state (as defined by the terms "body", "face", "place", and "tools"), in 

which we would expect the various analysis approaches to identify a positive 

association between the cognitive state and brain activity (for an overview, see Fig. 4A).

These ROIs were defined as follows: the upper parts of the middle and inferior temporal

gyrus, the postcentral gyrus, as well as the right fusiform gyrus for the body state, the 

fusiform gyrus (also known as the fusiform face area FFA; Haxby et al., 2001, Heekeren

et al., 2004) and amygdala for the face state, the parahippocampal gyrus (or 

parahippocampal place area PPA; Haxby et al., 2001, Heekeren et al., 2004) for the 

place state and the upper left middle and inferior temporal gyrus as well as the left 

postcentral gyrus for the tool state. 

To ensure comparability with the results of the meta-analysis, we restricted all analyses 

of brain maps to the estimated positive associations between brain activity and cognitive

states (i.e., positive relevance values as well as positive GLM and whole-brain lasso 

coefficients, see Section 2.4 and Supplementary Information Section 1). A negative Z-

value in the meta-analysis indicates a lower probability that an article reports a specific 

brain activation when it includes a specific term, compared to when it does not include 

the term. A negative value in the meta-analysis is therefore conceptually different to 

negative values in the brain maps of our analyses (e.g., negative relevance values or 

negative whole-brain lasso coefficients). These can generally be interpreted as evidence 

against the presence of a cognitive state, given the specific set of cognitive states in our 

dataset (e.g., a negative relevance indicates evidence for the presence of any of the other

cognitive states considered).

3.2.1 Group-level

To determine the voxels that each analysis approach associated with a cognitive state, 

we defined a threshold for the values of each group-level brain map, indicating those 

voxels that are associated most strongly with the cognitive state. For the GLM analysis, 

we thresholded all P-values at an expected false discovery rate (Benjamini & Hochberg,

1995; Genovese, Lazar & Nichols, 2002) of 0.1 (Fig. 4B). Similarly, for all decoding 

analyses, we thresholded each brain map at the 90th percentile of its values (Fig. 4C-E). 

For the whole-brain lasso and DeepLight, the remaining 10 percent of values indicate 
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those brain regions whose activity these approaches generally weight most in their 

decoding decisions. For the searchlight analysis, the remaining 10 percent of values 

indicate those brain regions in which the searchlight analysis achieved the highest 

decoding accuracy. 

All analysis approaches correctly associated activity in the upper parts of the middle and

inferior temporal gyrus with body stimuli. The GLM, whole-brain lasso and DeepLight 

also correctly associated activity in the right fusiform gyrus with body stimuli. Only 

DeepLight correctly associated activity in the postcentral gyrus with these stimuli. The 

GLM, whole-brain lasso and DeepLight further all correctly associated activity in the 

right FFA with face stimuli. None of the approaches, however, associated activity in the 

left FFA with face stimuli. Interestingly, the searchlight analysis did not associate the 

FFA with face stimuli at all. All analysis approaches also correctly associated activity in

the PPA with place stimuli. Lastly, for tool stimuli, the GLM and whole-brain lasso 

correctly associated activity in the left inferior temporal sulcus with stimuli of this class.

The searchlight analysis and whole-brain lasso only did so marginally. None of the 

approaches associated activity in the left postcentral gyrus with tool stimuli.

Overall, DeepLight’s group-level brain maps accurately associated each of the ROIs 

with their respective cognitive states. Interestingly, DeepLight also associated a set of 

additional brain regions with the face and tool stimulus classes that were not identified 

by the other analysis approaches (see Fig. 4E). For face stimuli, these regions are the 

orbitofrontal cortex and temporal pole. While the temporal pole has been shown to be 

involved in the ability of an individual to infer the desires, intentions and beliefs of 

others (theory-of-mind; for a detailed review, see Olson et al., 2007), the orbitofrontal 

cortex has been associated with the processing of emotions in the faces of others (for a 

detailed review, see Adolphs, 2002). For tool stimuli, DeepLight additionally utilized 

the activity of the temporoparietal junction (TPJ) to decode these stimuli. The TPJ has 

been shown to be associated with the ability of an individual to discriminate self-

produced actions and the actions produced by others and is generally regarded of as a 

central hub for the integration of body-related information (for a detailed review, see 

Decety and Grèzes, 2006). Although it is not clear why only DeepLight associated these

brain regions with the face and tool stimulus classes, their assumed functional roles do 

not contradict this association.

3.2.2 Subject-level

The goal of the subject-level analysis was to test the ability of each analysis approach to

identify the physiologically appropriate associations between brain activity and 

cognitive state on the level of each individual.

To quantify the similarity between the subject-level brain maps and the results of the 

meta-analysis, we defined a similarity measure. Given a target brain map (e.g., the 

results of our meta-analysis), this measure tests for each voxel in the brain whether a 

source brain map (e.g., the results of our subject-level analyses) correctly associates this

voxel’s activity with the cognitive state (true positive), falsely associates the voxel’s 

activity with the cognitive state (false positives) or falsely does not associate the voxel’s

activity with the cognitive state (false negatives). Particularly, we derived this measure 
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from the well-known F1-score in machine learning (see Supplementary Information 

Section 3 as well as Goutte and Gaussier, 2005). The benefit of the F1-score, when 

compared to simply computing the ratio of correctly classified voxels in the brain, is 

that it specifically considers the brain map’s precision and recall and is thereby robust to

the overall size of the ROIs in the target brain map. Here, precision describes the 

fraction of true positives from the total number of voxels that are associated with a 

cognitive state in the source brain map. Recall, on the other hand, describes the fraction 

of true positives from the overall number of voxels that are associated with a cognitive 

state in the target brain map. Generally, an F1-score of 1 indicates that the brain map 

has both, perfect precision and recall with respect to the target, whereas the F1-score is 

worst at 0.

To obtain an F1-score for each subject-level brain map (for details on the estimation of 

subject-level brain maps with the three baseline analysis approaches, see Supplementary

Information Section 1), we again thresholded each individual brain map. For the GLM, 

we defined all voxels with a P-value greater than 0.005 (uncorrected) as not associated 

with the cognitive state and all others as associated with the cognitive state. For the 

searchlight analysis, whole-brain lasso and DeepLight, we defined all voxels with a 

value below the 90th percentile of the values within the brain map as not associated with

the cognitive state and all others as associated with the cognitive state. 

Overall, DeepLight’s subject-level brain maps had meaningfully larger F1-scores for the

body, face and place stimulus classes, when compared to those of the GLM 

(t(29)=10.46, p<0.0001 for body stimuli, Supplementary Fig. S5A; t(29)=13.04, 

p<0.0001 for face stimuli, Supplementary Fig. S5D; t(29)=9.26, p<0.0001 for place 

stimuli, Supplementary Fig. S5G), searchlight analysis (t(29)=13.26, p<0.0001 for body 

stimuli, Supplementary Fig. S5B; t(29)=8.57, p<0.0001 for face stimuli, Supplementary 

Fig. S5E; t(29)==4.25, p=0.0002, for place stimuli, Supplementary Fig. S5H), and 

whole-brain lasso (t(29)=20.93, p<0.0001 for body stimuli, Supplementary Fig. S5C; 

t(29)=48.32, p<0.0001 for face stimuli, Supplementary Fig. S5F; t(29)=22.43, 

p<0.0001, for place stimuli, Supplementary Fig. S5I). For tool stimuli, the GLM and 

searchlight generally achieved higher subject-level F1-scores than DeepLight (t(29)=-

8.19, p<0.0001, Supplementary Fig. S5J; t(29)=-4.39, p=0.0001, Supplementary Fig. 

S5K for the GLM and searchlight respectively), whereas DeepLight outperformed the 

whole-brain lasso analysis (t(29)=18.31, p<0.0001, Supplementary Fig. S5L). 

To ascertain that the results of this comparison were not dependent on the thresholds 

that we chose, we replicated the comparison for each combination of the 85th, 90th and 

95th percentile threshold for the brain maps of the searchlight analysis, whole-brain 

lasso and DeepLight, as well as a P-threshold of 0.05, 0.005, 0.0005 and 0.00005 for the

brain maps of the GLM. Within all combinations of percentile values and P-thresholds, 

the presented results of the F1-comparison were generally stable (see Supplementary 

Table S3-6).
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3.3 DeepLight accurately identifies physiologically appropriate 

associations between cognitive states and brain activity on multiple 

levels of data granularity

DeepLight’s ability to correctly identify the physiological appropriate associations 

between cognitive states and brain activity is exemplified in Figure 5. Here, the 

distribution of relevance values for the four cognitive states is visualized on three 

different levels of data granularity of an exemplar subject (namely, the subject with the 

highest decoding accuracy in Fig. 3A-B): First, on the level of the overall distribution of

relevance values of each cognitive state of this subject (Fig. 5A; incorporating an 

average of 47 TRs per cognitive state), then on the level of the first experiment block of 

each cognitive state in the first experiment run (Fig. 5B; incorporating an average of 12 

TRs per cognitive state) and lastly on the level of a single brain sample of each 

cognitive state (Fig. 5C; incorporating a single TR per cognitive state).

On all three levels, DeepLight utilized the activity of a similar set of brain regions to 

identify each of the four cognitive states. Importantly, these regions largely overlap with

those identified by the DeepLight group-level analysis (Fig. 4E) as well as the results of 

the meta-analysis (Fig. 4A).

3.4 DeepLight’s relevance patterns resemble temporo-spatial 

variability of brain activity over sequences of single fMRI samples

To further probe DeepLight’s ability to analyze single time points, we next studied the 

distribution of relevance values over the course of a single experiment block (Fig. 6). In 

particular, we plotted this distribution as a function of the fMRI sampling-time over all 

subjects for the first experiment block of the face and place stimulus classes in the 

second experiment run. We restricted this analysis to the face and place stimulus 

classes, as the neural networks involved in processing face and place stimuli, 

respectively, have been widely characterized (see, for example Haxby et al., 2001 as 

well as Heekeren et al., 2004). For a more detailed overview, we also created two videos

for the two experiment blocks depicted in Figure 6 (Supplementary Videos 1 and 2). 

These videos display the temporal evolution of relevance values for each fMRI sample 

in the original fMRI sampling time of the face (Supplementary Video 1) and place 

(Supplementary Video 2) experiment blocks.

In the beginning of the experiment block, DeepLight was generally uncertain which 

cognitive state the observed brain samples belonged to, as it assigned similar 

probabilities to each of the cognitive states considered (Fig. 6A-B). As time progressed, 

however, DeepLight’s certainty increased and it correctly identified the cognitive state 

underlying the fMRI samples. At the same time, it started assigning more relevance to 

the target ROIs of the face and place stimulus classes (Fig. 6C-F), as indicated by the 

increasing F1-scores resulting from a comparison of the brain maps at each sampling 

time point with the results of the meta-analysis (Fig. 6G-H; all brain maps were again 

thresholded at the 90th percentile for this comparison). Interestingly, the relevances 

started peaking in the target ROIs 5s after the onset of the experiment block. The 
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temporal evolution of the relevances thereby mimics the hemodynamic response 

measured by the fMRI (Lindquist et al., 2009).

To further evaluate the results of this analysis, we replicated it by the use of the whole-

brain lasso group-level decoding model (see Section 2.4 and Supplementary Information

Section 1). In particular, we multiplied the fMRI samples of all test subjects collected at 

each sampling time point with the coefficient estimates of the whole-brain lasso group-

level model. Subsequently, we averaged the resulting weighted fMRI samples within 

each sampling time point depicted in Fig. 6G-H and computed an F1-score for a 

comparison of the resulting average brain maps with the results of the meta-analysis (as 

described in section 3.2.2). Interestingly, we found that the F1-scores of the whole-brain

lasso analysis varied much less over the sequence of fMRI samples and were throughout

lower than those of DeepLight. Thereby, indicating that the brain maps of the whole-

brain lasso analysis exhibit comparably little variability over the course of an 

experiment block with respect to the target ROIs defined for the face and place stimulus 

classes.

4. Discussion

Neuroimaging data have a complex temporo-spatial dependency structure that renders 

modeling and decoding of experimental data a challenging endeavor. With DeepLight, 

we propose a new data-driven framework for the analysis and interpretation of whole-

brain neuroimaging data that scales well to large datasets and is mathematically non-

linear, while still maintaining interpretability of the data. To decode a cognitive state, 

DeepLight separates a whole-brain fMRI volume into its axial slices and processes the 

resulting sequence of brain slices by the use of a convolutional feature extractor and 

LSTM. Thereby, accounting for the spatially distributed patterns of whole-brain brain 

activity within and across axial slices. Subsequently, DeepLight relates cognitive state 

and brain activity, by decomposing its decoding decisions into the contributions of the 

single input voxels to these decisions with the LRP method. Thus, DeepLight is able to 

study the associations between brain activity and cognitive state on multiple levels of 

data granularity, from the level of the group down to the level of single subjects, trials 

and time points.

To demonstrate the versatility of DeepLight, we have applied it to an openly available 

fMRI dataset of 100 subjects viewing images of body parts, faces, places and tools. 

With these data, we have shown that the DeepLight 1) decodes the underlying cognitive 

states more accurately from the fMRI data than conventional means of uni- and 

multivariate brain decoding, 2) improves its decoding performance better with growing 

datasets, 3) accurately identifies the physiologically appropriate associations between 

cognitive states and brain activity, 4) can study these associations on multiple levels of 

data granularity, from the level of the group down to the level of single subjects, trials 

and time points and 5) can capture the temporo-spatial variability of brain activity over 

sequences of single fMRI samples.
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4.1 Transferring DeepLight to other fMRI datasets

The DeepLight architecture used here is exemplary. Future research is needed to 

evaluate how the specific architectural choices for its three sub-modules (the 

convolutional feature extractor, LSTM unit and softmax output layer; see Section 2.5) 

will effect its performance. In the following, we will briefly outline how the proposed 

architecture can be transferred to the analysis of other fMRI datasets with different 

spatial resolution and decoding targets. Importantly, online minimal changes are 

necessary in order to adapt DeepLight’s architecture for the analysis of such fMRI 

datasets.

DeepLight first processes an fMRI volume within each axial slice, by computing a 

higher-level, and lower-dimensional, representation of the slices with the convolutional 

feature extractor. Here, the spatial sensitivity of DeepLight to the fine-grained activity 

differences of neighboring voxels within each slice is determined by the stride size 

applied by the convolution layers. The stride size indicates the distance between the 

application of the convolution kernels to the axial slices of the fMRI volume (see eq. 5).

Generally, a larger stride decreases DeepLight’s sensitivity for fine-grained differences 

in the activity of neighboring voxels, as it increases the distance between the 

applications of the convolution kernels to the input slice. Reversely, a smaller stride size

increases DeepLight’s sensitivity for the fine-grained activity differences of neighboring

voxels, as it decreases the distance between the applications of the convolution kernels. 

For example, when analyzing fMRI volumes that have a lower spatial resolution than 

the ones used here, containing fewer voxels per axial slice (and thereby less information

about the distribution of brain activity within each slice), we would recommend to 

decrease the stride size for more of DeepLight’s convolution layers, in order to best 

leverage the information contained in these voxels.

After the application of the convolutional feature extractor, DeepLight integrates the 

information of the resulting higher-level slice representations, by the use of a bi-

directional LSTM. Here, each of the two LSTM units iterates through the entire 

sequence of slice representations, before forwarding its output. The proposed DeepLight

architecture therefore does not require any modification in order to accommodate fMRI 

datasets with a different number of axial slices per volume, as it generalizes to any 

sequence length.  

Further, the number of neurons in the softmax output layer is directly determined by the 

number of decoding targets considered in the data (one output neuron per decoding 

target). In the case of a continuous decoding target (for example, by predicting a 

subject’s score in a cognitive test), the softmax output layer can be replaced with a 

linear regression layer. The LRP decomposition approach (see Section 2.5.2) also 

applies to continuous output variables (for further details on the application of the LRP 

approach to continuous output variables, see Bach et al., 2015 and Montavon et al., 

2017). 

Lastly, recent exploratory empirical work has shown that even for more complex fMRI 

decoding analyses, encompassing up to 400 subjects and 20 distinct cognitive states (see

Thomas et al., 2019), DeepLight does not require more than 64 neurons per layer. We 
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would therefore not recommend to increase the number of neurons further, as this will 

also lead to an overall increased risk of overfitting.   

4.2 Comparison to baseline methods

4.2.1 General linear model

The GLM is conceptually different from the other neuroimaging analysis approaches 

considered in this work. It aims to identify an association between cognitive state and 

brain activity, by modeling (or predicting) the time series signal of a single voxel as a 

linear combination of a set of experiment predictors (see Section 2.4). It is thereby 

limited in three meaningful ways that do not apply to DeepLight: First, the time series 

signal of a voxel is generally very noisy. The GLM treats each voxel’s signal as 

independent of one another, thereby, not leveraging the evidence that is shared across 

the time series signal of multiple voxels. Second, even though the linear combination of 

a set of experiment predictors might be able to explain variance in the observed fMRI 

data, it does not necessarily provide evidence that this exact set of predictors is encoded 

in the neuronal response. Generally, the same linear model (in terms of its predictions) 

can be constructed from many different (even random) sets of predictors (for a detailed 

discussion of this "feature fallacy", see Kriegeskorte and Douglas, 2018). The results of 

the GLM analysis thereby solely indicate that the measured neuronal response is highly 

structured and that this structure is preserved across individuals, whereas the labels 

assigned to its predictors might be arbitrary. Third, the performance of the GLM in 

predicting the response signal of a voxel is typically not evaluated on independent data, 

which leaves unanswered how well its results generalize to new data.

4.2.2 Searchlight analysis

DeepLight generally outperformed the searchlight analysis in decoding the cognitive 

states from the fMRI data. In small datasets (here, the data of 10 or less subjects), 

however, the performance of the searchlight analysis was superior. In contrast to 

DeepLight, the searchlight analysis decodes a cognitive state from single clusters of 

only few voxels. Its input data, as well as the number of parameters in its decoding 

model, are thereby considerably smaller, leading to an overall lower risk of overfitting. 

Yet, this advantage comes at the cost of additional constraints that have to be considered

when choosing between both approaches. If a cognitive state is associated with the 

activity of a small brain region only, the searchlight analysis will generally be more 

sensitive to the activity of this region than DeepLight, as it has learned a decoding 

model that is specific to the activity of the region. If, however, the cognitive state is not 

identifiable by the activity of a single brain region only, but solely in conjunction with 

the activity of another spatially distinct brain region, the searchlight analysis will not be 

able to identify this association, due to its narrow spatial focus. DeepLight, on the other 

hand, will generally be less sensitive to the specifics of the activity of a local brain 

region, but perform better in identifying a cognitive state from spatially wide-spread 

brain activity. When choosing between both approaches, one should therefore consider 

whether the assumed associations between brain activity and cognitive state specifically 

involve the activity of a local brain region only, or whether the cognitive state is 

associated with the activity of spatially distinct brain regions.
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4.2.3 Whole-brain lasso

In contrast to DeepLight, the whole-brain lasso analysis is based on a linear decoding 

model. It assigns a single coefficient weight to each voxel in the brain and makes a 

decoding decision by computing a weighted sum over the activity of an input fMRI 

volume. Importantly, due to the strong regularization that is applied to the coefficients 

during the training, many coefficients equal 0. The resulting set of coefficients thereby 

resembles a brain mask, defining a set of fixed brain regions whose activity the whole-

brain lasso utilizes to decode a cognitive state. DeepLight, on the other hand, utilizes a 

hierarchical structure of non-linear transforms of the fMRI data. It projects each fMRI 

volume into a more abstracted, higher-level space. This abstracted (and more flexible) 

view enables DeepLight to better account for the variable patterns of brain activity 

underlying a cognitive state (within and across individuals). This ability is exemplified 

in Figure 6, as well as Supplementary Videos 1 - 2, where we visualize the variable 

patterns of brain activity that DeepLight associates with the face and place stimulus 

classes throughout an experiment block. The relevance patterns of DeepLight mimic the

hemodynamic response and peak in the ROIs 5-10s after the onset of the experiment 

block. Importantly, we find that the whole-brain lasso does not exhibit such temporo-

spatial variability.

4.3 Disentangling temporally distinct associations between cognitive 

state and brain activity

DeepLight’s ability to identify a cognitive state through variable patterns of brain 

activity makes it ideally suited for the analysis of the fine-grained spatial distribution of 

brain activity over temporal sequences of fMRI samples. For example, Hunt and 

Hayden (2017) recently raised the question whether the neural networks involved in 

reward-based decision making can be subdivided into a set of spatially distinct and 

temporally discrete network components, or whether the underlying networks act in 

parallel, with highly recurrent activity patterns. Answering this question is difficult with

conventional approaches to the analysis of neuroimaging data, such as the baseline 

methods included in this paper. These often learn a fixed mapping between brain 

activity and cognitive state, by aggregating over the information provided by a sequence

of fMRI samples (e.g., by estimating a single coefficient weight for each voxel from a 

sequence of fMRI data). The resulting brain maps thereby only indicate whether there 

exist spatially distinct brain regions that are associated with a cognitive state, without 

providing any insight whether the activity patterns are temporally discrete. While these 

methods can be adapted to specifically account for the temporal differences in the 

activity patterns of these regions (e.g., by analyzing different time points independent of

one another), these adaptations often require specific hypotheses about the studied 

temporal differences (e.g., by needing to specify the different time points to analyze). 

DeepLight, on the other hand, operates purely data-driven and is thereby able to 

autonomously identify an association between spatially distinct patterns of brain activity

and a cognitive state at temporally discrete time points.
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4.4 Integrative analysis of multimodal neuroimaging data

DeepLight is not bound to fMRI data, but can be easily extended to other neuroimaging 

modalities. One such complementary modality, with a higher temporal, but lower spatial

resolution, is the Electroencephalography (EEG). While a plethora of analysis 

approaches have been proposed for the integrative analysis of EEG and fMRI data, 

these often incorporate restrictive assumptions to enable the integrative statistical 

analysis of these two data types, with clearly distinct spatial, temporal and physiological

properties (for a detailed review, see Jorge et al., 2014). DeepLight, on the other hand, 

represents a data-driven analysis framework. By providing both, EEG and fMRI data as 

separate inputs to the DL model, DeepLight could learn the fine-grained temporal 

structure of brain activity from the EEG data, while utilizing the fMRI data to localize 

the spatial brain regions underlying this activity. Recently, researchers have already 

demonstrated the usefulness of interpretable DL methods for the analysis of EEG data 

(Sturm et al., 2016).

4.5 Extending DeepLight

Lastly, we would like to highlight several possible extensions of the DeepLight 

approach, resulting from its flexible and modular architecture. First, DeepLight can be 

extended to specifically account for the temporo-spatial distribution of brain activity 

over sequences of fMRI samples, by the addition of another recurrent network layer. 

This layer would process each of the higher-level whole-brain representations resulting 

from the currently proposed architecture. This extension would enable DeepLight to 

more specifically account for the temporal distribution of brain activity. Second, 

DeepLight can be extended to the integrative analysis of neuroimaging data from 

multiple cognitive tasks and experiments. For example, by adding one neuron to the 

output layer for each cognitive state from each task. This extension would enable a more

thorough analysis of the differences (and similarities) between the associations of 

cognitive state and brain activity across multiple tasks and experiments.
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Figure legends

Figure 1: Illustration of the DeepLight approach. A whole-brain fMRI volume is sliced 

into a sequence of axial images. These images are then passed to a DL model consisting 

of a convolutional feature extractor, an LSTM and an output unit. First, the 

convolutional feature extractor reduces the dimensionality of the axial brain slices 

through a sequence of eight convolution layers. The resulting sequence of higher-level 

slice representations is then fed to a bi-directional LSTM, modeling the spatial 

dependencies of brain activity within and across brain slices. Lastly, the DL model 

outputs a decoding decision about the cognitive state underlying the fMRI volume, 

through a softmax output layer with one output neuron per cognitive state in the data. 

Once the prediction is made, DeepLight utilizes the LRP method to decompose the 

prediction into the contributions (or relevance) of the single input voxels to the 

prediction. Thereby, enabling an analysis of the association between fMRI data and 

cognitive state.

Figure 2: Group-level decoding performance of DeepLight, the searchlight analysis and 

whole-brain lasso. A: Confusion matrix of DeepLight’s decoding decisions. B: Average 

decoding performance of DeepLight over the course of an experiment block. C-D: 

Confusion matrix for the decoding decisions of the group-level searchlight analysis (C) 

and whole-brain lasso (D). E: Average decoding accuracy of the searchlight (green), 

whole-brain lasso (blue) and DeepLight (red), when these are repeatedly trained on a 

subset of the subjects from the full training dataset. Black dashed horizontal lines 

indicate chance level.

Figure 3:  Subject-level decoding performance comparison of DeepLight (red) to the 

searchlight analysis (A; green) and whole-brain lasso (B; blue). Black scatter points 

indicate the average decoding accuracy for a subject. Colored lines indicate the average 

decoding accuracy across all 30 test subjects. 

Figure 4: Group-level brain maps for each cognitive state and analysis approach: A: 

Results of a NeuroSynth meta-analysis for the terms "body", "face", "place" and "tools".

The brain maps were thresholded at an expected false discovery rate of 0.01. Red boxes 

highlight the regions-of-interest for each cognitive state. B: Results of the GLM group-

level analysis. The brain maps of the GLM analysis were thresholded at an expected 

false discovery rate of 0.1. C-E: Results of the group-level searchlight analysis (C), 

whole-brain lasso (D) and DeepLight (E). The brain maps of the searchlight analysis, 

whole-brain lasso, and DeepLight were thresholded at the 90th percentile of their 

values. Note that the values of the brain maps are on different scales between analysis 
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approaches, due to their different statistical nature. All brain maps are projected onto the

inflated cortical surface of the FsAverage5 surface template (Fischl, 2012).

Figure 5: Exemplary DeepLight brain maps for each of the four cognitive states on 

different levels of data granularity for a single subject. All brain maps belong to the 

subject with the highest decoding accuracy in the held-out test dataset. A: Average 

relevance maps for all correctly classified TRs of the subject (with an average of 47 TRs

per cognitive state). B: Average relevance maps for all correctly classified TRs of the 

first experiment block of each cognitive state in the first experiment run (with an 

average of 12 TRs per cognitive state). C: Exemplar relevance maps for a single TR of 

the first experiment block of each cognitive state in the first experiment run. All 

relevance maps were thresholded at the 90th percentile of their values and projected 

onto the inflated cortical surface of the FsAverage5 surface template (Fischl, 2012).

Figure 6: DeepLight analysis of the temporo-spatial distribution of brain activity in the 

first experiment block of the face and place stimulus classes in the second experiment 

run of the held-out test dataset. A-B: Average predicted probability that the fMRI data 

collected at each sampling time point belongs to each of the four cognitive states. C & 

E: Results of a meta-analysis with the NeuroSynth database for the face and place 

stimulus classes (for details on the meta-analysis, see Supplementary Information 

Section 1). D & F: Group-level brain maps for seven fMRI sampling time points from 

the experiment block. Each group-level brain map at each time point is computed as an 

average over the relevance maps of each subject for this time point. Each group-level 

brain map is thresholded at the 90th percentile of its values. All brain maps are 

projected onto the inflated cortical surface of the FsAverage5 surface template (Fischl, 

2012). G-H: F1-score for each group-level brain map at each sampling time point of the 

experiment block. The F1-score quantifies the similarity between the group-level brain 

map and the results of the meta-analysis (C & E) (for further details on the F1-score, see

Section 3.2.2 and Supplementary Information Section 2). Red indicates the results of the

F1-score comparison for the brain maps of DeepLight, whereas blue indicates the results

of this comparison for the brain maps of the whole-brain lasso analysis (for further 

details on the F1-comparison for the whole-brain lasso analysis, see Section 3.4).
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