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Abstract: This paper is a compilation of the most recent machine learning methods used
in the Berlin Brain-Computer Interface. In the field of Brain-Computer Interfacing, machine
learning has been mainly used to extract meaningful features from noisy signals of large
dimensionality and to classify them to transform them into computer commands. Recently,
our group developed different methods to deal with noisy, non-stationary and high dimensional
signals. These approaches can be seen as variants of the algorithm Common Spatial Patterns
(CSP). All of them outperform CSP in the different conditions for which they were developed.
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1. INTRODUCTION

One relevant type of Human-Machine Interface is the
Brain Computer Interface (BCI). It translates the intent
of a subject measured from brain signals into control
actions to command machines or computer applications.
To measure the brain activity, the majority of BCI sys-
tems rely on electroencephalography (EEG), because it is
relatively cheap, easy to acquire, minimally intrusive and
does not involve any risks for the user. However, EEG
has a very poor signal to noise ratio and is highly non-
stationary. These are major challenges for BCI systems
that limit their application in real-life settings. It has
been shown that a non-negligible portion of the healthy
population, estimated 30%, cannot achieve BCI control to
an acceptable level Guger et al. (2003). This percentage
may become as high as 100% for patients depending on
their pathology. Early EEG-BCI efforts were based on
neuro-feedback training on the part of the user that lasted
on the order of days or even months, in Machine Learning-
based systems it suffices to collect examples of EEG signals
in a so-called calibration measurement during which the
user is cued to perform a small set of mental tasks. This
data is then used to adapt the system to the specific brain
signals of each user (machine training) Blankertz et al.
(2006). Typical algorithms used in this stage are Common
Spatial Patterns (CSP) and linear classifiers Blankertz
et al. (2008). CSP enhances the class differences of band-
pass brain signals by optimized weighting of the sensors,
assuming that the brain sources can be inferred with a lin-
ear inverse model. This step of adaptation, together with
the individual selection of the motor imagery (MI) tasks
to perform, is instrumental for effective BCI performance
?

despite the large inter-subject variability of the respective
brain signals. However, CSP exhibits some drawbacks. It
needs a considerable amount of training data to obtain
robust spatial filters and avoid overfitting. CSP is a su-
pervised algorithm whose number of parameters increases
quadratically with the number of EEG channels involved
(as the dimension of the covariance matrices increases),
bearing a high risk of overfitting when using little training
samples or in the presence of outliers. Also, it does not
take into account the non-stationarities present in EEG
data and it is not possible to combine it with different
types of signals.
In this paper we present four machine-learning based ap-
proaches that have recently been developed to cope with
these problems. In particular, Common Spatial Pattern
Patches (CSPP) deal with the small sample size problem,
stationary CSP (sCSP) allows finding more stationary
filters, the divergence-based CSP framework permits the
definition of robust filters and their regularization and
Source Power Co-modulation (SPoC) finds components in
the multivariate oscillatory signal (generally EEG in the
case of BCI systems) that exhibit a co-modulation between
spectral power and a given univariate signal.

2. COMMON SPATIAL PATTERNS

Common Spatial Patterns (CSP) (Ramoser et al., 2000)
is a discriminative algorithm that determines the spatial
filters W from band-pass filtered EEG data such that the
difference between the variances of the filtered data for the
two classes is maximized.
This is done by a simultaneous diagonalization of the
estimated covariance matrices Σ1 = X1X

>
1 and Σ2 =

X2X
>
2 of the data for the two classes:



W>Σ1W = Λ1 (1)

W>Σ2W = Λ2, (2)

s.t. Λ1 + Λ2 = I (3)

where Λ1 and Λ2 are diagonal matrices and each λ on the
diagonal corresponds to an eigenvector w>. In this way,
the eigenvectors are the same for both decompositions and
the same eigenvector, i.e. a spatial filter, corresponds to a
large eigenvalue for one class and to a small eigenvalue for
the other class. Since eigenvectors with large eigenvalues
correspond to a large variance of the data, spatial filters
with extreme eigenvalues maximize the difference in the
variances for the two classes.
The sum of the formulas in Eq. 3 forms the generalized
eigenvalue problem:

Σ2W = (Σ1 + Σ2)WΛ (4)

Choosing D filters corresponding to extreme eigenvalues
(either close to 1 or close to 0) the filtered data ŝ(t) =

W>
DX will have smaller dimensionality D < N and the

two classes will be maximally separated by their variance.
A CSP feature is the log-variance of the band-pass and
CSP filtered data.
When the recorded EEG signal contains artifacts or is
nonstationary, CSP may fail causing a significant drop
of BCI performance. The left panel of Figure 1 shows
the effect of artifacts on the CSP algorithm. Here CSP
fails to compute spatial filters which capture MI related
activity. The algorithm rather focuses on an artifactual
trial resulting in a degenerated CSP pattern and poor
classification performance. The right panel of Figure 1
depicts the nonstationarity problem in BCI. Here at the
beginning (left) the classes are perfectly separated by a
hyperplane (dashed line), whereas the same hyperplane
does not separate the classes at later times (right) any-
more. Such change in the feature distribution may lead to
a significant drop in classification accuracy, Vidaurre et al.
(2007).

3. COMMON SPATIAL PATTERNS PATCHES

CSPP is the application of CSP analysis to small sets of
channels (patches), and the combination of the resulting
features Sannelli et al. (2011). The hypothesis is that
applying CSP analysis on just a few channels, the risk of
over-fitting is reduced in comparison to usual CSP, which
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Fig. 1. Left: An artifact leads to a degenerated CSP pat-
tern. The location of the artifact shows much larger
power than the rest of the scalp. Right: A nonstation-
ary feature distribution leads to poor classification
performance because the hyperplane which separated
the classes at the beginning (left) does not separate
the classes at later times (right).

is calculated on all channels available. This is because the
number of parameters to fit for each patch is less than for
CSP. CSPP can be interpreted as a Laplacian filter where
the weights of all channels are data driven optimized. We
will call center of the patch, the channel that is weighted
by 1 in Laplacian filtering.
Each patch can include a different number of surrounding
channels and the position of the centers of the patches can
be chosen, depending on the number of channels available,
on the task and, when training data are already acquired,
also depending on the subject-specific SMR activity. Here,
eight patch forms in combination with a number of centers
going from three to 18 are evaluated. The analyzed patch
forms using the channel C3 as center are shown on the
right of Fig. 2 and the centers of the configurations are
shown on the left of Fig. 2. Similarly to CSP, CSPP are
applied on band-pass and time filtered data. By computing
CSP on one patch with n channels, n filters are obtained.
With Nc patch centers, for each patch p with p = 1, ..., Nc,
one filter per class is selected by the extreme eigenvalues,
i.e. two filters per patch are obtained. By concatenating
all filters, a sparse filter matrix W results with dimension
Nc ×N where N is the number of all available electrodes:

W = [w11,w12, ...,wp1,wp2, ...,wNc1,wNc2] (5)

The matrix W is sparse since each column wpi contains
just n non zero elements. From the resulting ensemble of
filters W , the most informative ones are chosen using the
ratio-of-medians score.
Fig. 3 is an example of how just using 13 channels
with a small patch in C3, Cz and C4, the filters can
change in comparison to Laplacian filters and can become
better class related. The top row presents the classical
Laplacian derivations with 4 neighboring channels in C3,
Cz and C4, while the other three rows depict the CSPP
involving the same channels respectively for the class
combinations Left/Right, Left/Foot and Foot/Right. The
CSPP are calculated on the calibration data of three good
performing users.

3.1 Experimental Results

Data set The evaluation was performed with data of
eleven volunteers. Six participants had very good perfor-
mance, and five had not. All participants performed eight
feedback runs, each of them consisting of 100 trials (50
trials of each class). Two different types of MI, chosen
out of three possibilities (MI of left hand, right hand or
foot) were selected in advance. For seven participants,
previous data with MI performance was available. It was
therefore known which two MI tasks should be used. For
the other four volunteers no prior information could be
used and they were asked to select two out of the three
possible MI tasks. In the first run, the features were six
CSPP obtained by CSP analysis on three small patches
centered on C3, Cz and C4 using the band-pass filtered
data. A broad band 8-32 Hz and time interval 750-3750 ms
were used. CSPP features are the log-variance of the six
CSPP filtered signals. For runs 2 and 3, CSPP analy-
sis on 18 small patches was performed, resulting in 36
CSPP features (2 per patch). To reduce the dimension, a
maximum of six (and minimum of one per class) CSPP
features were automatically selected by ratio-of-medians
score. During the runs, the CSPP filters were re-selected
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Fig. 2. Right: patch configurations centered on C3. Left: channel sets used as center of the patches/Laplacian filters.
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Fig. 3. Top: Small Laplacian filters for C3, Cz and C4.
Bottom: Small CSPP filters centered in C3, Cz and
C4, for the class combination Left/Right (first row),
Left/Foot (second row) and Foot/Right (third row),
calculated on the data of three good performing users.

using all previous trials. Note, that only 36 EEG channels
are required for this design. For run 4, CSP and CSPP
features were concatenated. For each patch form in Fig. 2,
a generalization error was calculated by 4-fold CV where
for each fold: 1) two to six CSPP and CSP features were
calculated on the training set, concatenated, and used to
train the Linear Discrimant Analysis (LDA) and 2) the
test set was spatially filtered by the selected CSPP+CSP
filters and the resulting features classified by the trained
LDA. The patch form with the best generalization error
was selected. Finally, CSPP (with the chosen patch form),
CSP and LDA were trained on the whole data set. During
the runs, the calculated CSP, CSPP and LDA are used to
calculate the features and for online classification, but the
pooled mean of the features was adapted after each trial
and used to update the bias of the classifier, Vidaurre et al.
(2011).

BCI performance In Fig. 4 the accuracy obtained by
offline-online simulation with the CSPP design is com-
pared to the online performance. The average across users

of the same category (Cat. I are good performers, Cat. II
are bad online performers with good calibration accuracy
and Cat. III are users with bad calibration accuracy) is
presented. Each point is the mean over 20 trials, while each
bar is the mean over one run. Two different shades for LAP
respectively CSPP design, light for LAP and dark for CSP.
Purple is run 1, turquoise are runs 2 and 3 and green is run
4. The subject-independent CSPP improved the accuracy
for all BCI users in run 1. While in the original study users
with bad performance could only reach a 70% of accuracy
in run 4 or 5, the CSPP design allows this to happen within
the first three runs for all users except for one.

4. STATIONARY AND DIVERGENCE-BASED
COMMON SPATIAL FRAMEWORK

4.1 Stationary CSP

The CSP algorithm maximizes the variance ratio of two
MI classes, but does not optimize for stationarity of the
feature distribution. The main idea of stationary CSP
(sCSP) Samek et al. (2012) is to extract filters that
maximize the variance ratio, but at the same time keep the
variance estimation along the projected direction as stable
as possible across trials (i.e., keep the feature distribution
stationary). Formally, the following quantity is minimized
for each class c

Dc(w) = w>

(
1

n

n∑
i=1

F
(
Σi

c − Σc

))
︸ ︷︷ ︸

∆c

w ≈

≈ 1

n

n∑
i=1

∣∣w>Σi
cw − w>Σcw

∣∣ (6)

where Σi
c is the covariance matrix of the i-th trial of class

c and Σc is the average covariance matrix of class c and
F is an operator to make symmetric matrices be positive
definite by flipping negative eigenvalues. Intuitively sCSP
aims to extract features that maximize the “between-
class distance” (i.e., the variance ratio) and minimize
the “within-class variance” (i.e., measured as absolute
deviation). Since sCSP applies the operator F in Eq. (6),
the spatial filters can be computed very efficiently by
maximizing the Rayleigh quotient
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Fig. 4. Performance of CSPP during the first 5 runs of the co-adaptive calibration study compared with the original
performance. Each point is the mean of the accuracy across 20 trials (thin lines) and across the users of the
corresponding category. Each bold line is the mean across 100 trials of the corresponding run. LAP original
experiment: runs 1-3 with subject-independent classifier and supervised adaptation, runs 4-5 with CSP+small
LAP re-selection (supervised adaptation). CSPP design: run 1 with subject-independent classifier and supervised
adaptation, runs 2-3 with small CSPPs re-selection (supervised adaptation), runs 4-5 with CSPP+CSP (automatic
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Rc(w) =
w>Σcw

w>(Σ1 + Σ2 + λ(∆1 + ∆2))w
(7)

where λ is a regularization parameter.

4.2 Divergece-based Spatial Filtering Framework

Recently, the authors of Samek et al. (2013) showed that
spatial filter computation can be cast into a divergence
framework (divCSP). Mathematically, spatial filters are
computed by maximizing a symmetric divergence between
the probability distribution of both classes:

V∗ = argmax
V

D̃
(
N
(
0,V>Σ1V

)
|| N

(
0,V>Σ2V

))
where N (0,Σ) denotes the Gaussian distribution, with
mean 0 and covariance Σ. Note that for the case of
Kullback-Leibler divergence, the method extracts CSP
filters.

In the divergence framework, robustness to artifacts can
be achieved by decomposing the divergence between the
average class distributions into the sum of trialwise di-
vergences and limiting the influence of single (potentially
outlier) terms (see Samek et al. (2013)). This changes the
objective function into

V∗ = argmax
V

∑
i

D̃
(
N
(
0,V>Σi

1V
)
|| N

(
0,V>Σi

2V
))

Beta divergence 1 , Bhattacharyya distance and Gamma
divergence have been proposed as robust measures in this
framework (see Samek et al. (2013); Brandl et al. (2015)).

By adding a regularization term to the objective one
can easily use data from additional subjects or enforce
specific properties such as stationarity on the solution. The
objective function then has the form

1 Beta divergence between distributions p and q is defined as
Dβ (p || q) = 1

β

∫
(pβ − qβ)pdx− 1

β+1

∫
(pβ+1 − qβ+1)dx

L(V) = (1− ν)D̃
(
V>Σ1V || V>Σ2V

)︸ ︷︷ ︸
CSP Term

−

− ν∆︸︷︷︸
Regularization Term

(8)

where ∆ is the regularization term that can be arbitrarily
defined, depending on the type of invariance we want
to achieve, and ν is a regularization parameter trading-
off the influence of the CSP objective function and the
regularization term. Similarly as for the sCSP algorithm
(but without using an approximation 2 ) one can enforce
stationarity on the feature distribution by using the fol-
lowing regularization term

∆ =
1

2n

2∑
c=1

n∑
i=1

D
(
V>Σi

cV || V>ΣcV
)
, (9)

4.3 Experimental Results

Data Set The Vital BCI data set Blankertz et al.
(2010) contains EEG recordings from 80 healthy subjects
performing MI tasks with the left and right hand or
with the feet. It consists of one calibration and one
feedback session, both recorded on the same day. In
the calibration session visual cues (arrows pointing left,
right, down) indicated which MI task should be performed
and three runs with 25 trials of each motor condition
were recorded. Then, the best binary combination of MI
tasks were selected and the subjects performed feedback
with three runs of 100 trials each (some users performed
only one or two runs). Visual feedback, i.e., a cursor
moving on the screen, was provided to the user while
performing MI. Note that this feedback was lacking in
the calibration phase. The signals were recorded from 118
Ag/AgCl electrodes, band-pass filtered between 0.05 and
200 Hz and downsampled to 100 Hz. All subjects in this
study were BCI novices.

The following preprocessing is applied in the experiments
performed on this data set. We manually select 62 elec-
2 The sCSP approximation fails if the trialwise covariance matrices
are not jointly diagonalizable.



trodes densely covering the motor cortex and filter the
data in the frequency range 8-30 Hz with a 5th order
Butterworth filter. Furthermore, we use a fixed time seg-
ment from 750 to 3500 ms after the trial start for feature
extraction.

BCI Performance In the following we evaluate the sta-
tionary CSP method (sCSP), the robust divCSP algo-
rithm based on symmetric beta divergence (β-divCSP)
and the divCSP algorithm with regularization towards
stationarity (reg-divCSP) on the Vital BCI data set. The
following parameters are used in the experiment: λ, ν =
{0, 2−10, 2−9, . . . , 20} and β = {0, 0.0001, 0.001, 0.01, 0.05,
0.1, 0.15, 0.2, 0.25, 0.5, 0.75, 1, 1.5, 2, 5}. The parameters are
selected by 5-fold cross-validation on the calibration data.
The one-sided Wilcoxon sign-rank test is applied to test
significance.

Figure 5 visualizes the results. One can see that all three
methods significantly improve the BCI performance over
the CSP baseline by reducing nonstationarity and the
influence of artifacts.

5. SOURCE POWER CO-MODULATION

The core idea of the SPoC approach Dähne et al. (2014)
is to (i) decompose the multivariate EEG data into a
set of source components and (ii) to use the information
contained in a target variable (z, a scalar function of time)
to guide the decomposition. The result of this approach
is a set of spatial filters, W, which directly optimize
the co-modulation between the target variable z and the
power time course of the spatially filtered signal. In a
neuroimaging context, this target variable will typically
either represent a behavioral measure as the final output
of the central nervous activity (e.g. reaction time, sensory
detection, task rating, motor evoked potentials, etc.) or
a parameter of external stimuli (e.g. when studying how
amplitude modulation of neuronal oscillations correlate
with stimulus properties). Also, SPoC has an advantage
over blind source separation methods such as for example
Independent Component Analysis (ICA) Comon (1994),
because it has more information at its disposal (the target
variable). The SPoC algorithm is intimately related to the
Common Spatial Pattern (CSP) algorithm family. When
the target variable z is binary, classical CSP is obtained
as a special case of SPoC. One may thus view SPoC as a
regression extension of CSP to continuous target variables.

The derivation of SPoC is as follows: we assume that the
EEG data x(t) has been band-pass filtered in the frequency
band of interest. Thus, the power of the projected signal
w>x(t) within a small time interval is well approximated
by the variance of w>x(t) within that interval. We refer
to such time intervals as epochs and assume that the EEG
data can be divided up into consecutive or overlapping
epochs of suitable length 3 . Epochs will be indexed by
the index e. We assume the target variable z to only

3 Working with epoched data instead of continuous data does not
represent a loss of generality, because all of the following derivations
can be reformulated for continuous data as well, provided that the
target variable changes slowly enough. We choose to work with
epoched data because it resembles the format of data obtained in
trial-based experiments.

have a single value per epoch, which can be achieved by
appropriate re-sampling. Furthermore we assume without
loss of generality that z has zero mean and unit variance,
which can be achieved by normalization.

It is our goal to approximate the target variable z with the
bandpower/variance of a source component. We denote
this estimate by φ, which depends on a spatial filter w.
Let Var

[
w>x(t)

]
(e) denote the variance of w>x(t) in a

given epoch e. This epoch-wise variance of the projected
signal will serve as the approximation of z. Thus we have

z(e) ≈ φ(e) = Var
[
w>x(t)

]
(e) = w>C(e)w , (10)

where C(e) denotes the covariance matrix of the e-th
epoch. Let us further define the matrix

Cz := 〈C(e)z(e)〉 , (11)

where the 〈·〉 denotes the average over epochs. Then the
objective function that is optimized by SPoC is given by

Cov [φ(e), z(e)] = w>Czw, (12)

with respect to the following norm constraint:

Var
[
w>x(t)

]
= w>Cw

!
= 1. (13)

This constraint optimization problem can be solved using
the method of Lagrange multipliers. Setting the first
derivative of the corresponding Lagrangian to zero leads
to the following generalized eigenvalue equation:

Czw = λCw, (14)

where the eigenvalue λ corresponds to the covariance
between φ and z.

5.1 Applications

SPoC has been successfully applied in the context of a
visuomotor workload paradigm. In such a setting where
binary labels may not be available, a suitable target
variable can be extracted from task-related error rates or
other physiological indicators of stress level such as skin
conductance or heart rate. In the study by Schultze-Kraft
et al. (2013), an extension of SPoC to multivariate target
variables was employed to find a linear combination of the
three mentioned workload indicators that best correlated
with the band-power modulations of brain rhythms. The
scalp maps of the SPoC components clearly reflected the
known impact of workload on the human EEG. On the one
hand, modulations of the theta frequency band-power, as
extracted by SPoC, showed a decrease during low workload
condition and an increase during high workload condition.
As for the alpha frequency band the power modulations of
the SPoC components showed the opposite effect.

In very recent study, Meinel et al. (2015) used SPoC
to identify individual oscillatory components that predict
reaction times in a sequential visual isometric pinch task
(SVIPT). Such a task is applied to patients in the sub-
acute and chronic phase of stroke in order to reveal hand
motor deficits. The utilization of the SPoC approach al-
lowed for the extraction of a component showing band
power co-modulation with the reaction time of the hand
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Fig. 5. Performance comparison between CSP and sCSP, β-divCSP and reg-divCSP.

motor task. Despite of the relative small number of epochs
and the low SNR of EEG, components are surprisingly sta-
ble over subjects and test folds. This finding is encouraging
the expansion of the workflow to a larger frequency band
range and other performance metrics of the SVIPT.

6. CONCLUSIONS

This paper presents a summary of current machine learn-
ing methods for spatial filtering developed at the Machine
Learning Group of the Technical University of Berlin. All
of them represent an improvement to the state-of-the-
art regarding different problems that occur in electroen-
cephalographic signals.
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