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Abstract— Cellular imaging with confocal fluorescence laser
microscopy gave rise to many new insights into the cellular
machinery. One interesting observation suggests that morphol-
ogy of cell nucleus plays a key role for neutrophilic function,
which is an essential part of the innate immune system of
most mammals. Due to the increasing availability of high
resolution 3D images coming from the microscope, machine
learning becomes a promising tool for automatically discovering
underlying hidden structures. Here, the major difficulty consists
of selecting an appropriate representation for characterizing the
morphology of cell nucleus. In this work we tackle this problem
and propose a fully unsupervised mechanism for finding struc-
ture in high-throughput 3D image data. The key component of
our approach is based on Generic Fourier Transform (GFT)
for 2D images, which for 3D involves spherical coordinate
transformation prior to fast Discrete Fourier Transformation.
On top on GFT we apply dimensionality reduction with
Principal Component Analysis, followed by generative cluster
analysis with a Gaussian Mixture Model. We validate our new
approach first on a synthetic 3D-MNIST dataset with random
rotations, where quantitative and qualitative results confirm the
applicability of the proposed pipeline for exploring shape space
in a purely unsupervised manner. Then we apply our proposed
technique to a new collected dataset of high resolution 3D
images of neutrophile nuclei suggesting a clustering model with
six significant clusters of morphological cell nuclei prototypes.
We visualize differences in the cell shape clusters by providing
prototypical examples of neutrophilic cell nuclei.

I. INTRODUCTION

Confocal laser fluorescence microscopy has become a
standard tool allowing for observation of cellular components
in remarkable three dimensional spatial resolution. With
fluorescent proteins or dyes it is possible to make discrete
cellular components visible in a highly specific manner.
Analyzing these high-throughput microscopic data is crucial
to understand cell biology. Moreover, establishing a data
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driven pipeline can accelerate research by guiding experi-
mental designs towards interesting questions concerning the
relationship between environmental factors and morpholog-
ical properties [1], [2]. This is a challenging task due to
numerous computational considerations involved, ranging
from image acquisition all the way to shape analysis and
pattern recognition and interpretation.

Most previous studies characterizing cell nuclei focused
on 2D microscopy, but since the cell lives in three di-
mensions, potentially important spatial information is nei-
ther observed nor considered [3]. Moreover, these studies
focused mainly on differences in shapes between multiple
experimental conditions yielding a supervised setting [3],
[4], while fully unsupervised identification of morphological
structures without any user annotations has only attracted
little attention in cell biological applications [5]. However,
since labels are often very expensive to acquire or are
simply unknown, unsupervised data analysis is a promising
approach for the discovery of structure in the data [1].
Most common methods for unsupervised learning include
dimensionality reduction and clustering, where clustering can
be used to extract subpopulations sharing similar properties
according to some predefined metric [6]. The major difficulty
of selecting an appropriate representation of 3D shapes is the
need for invariance w.r.t. affine transformations. In particular,
invariance w.r.t. rotations is the most important requirement
for comparing shapes appropriately such that the same shape
in different orientations yields the same representation.

Existing methods for 3D cell shape representation either
use shape features like size or eccentricity [7], [8], which
although rotation invariant, are too coarse for fine-grained
discrimination [9], or solely rely on shape boundary infor-
mation by extracting meshes from the voxel grid [3], [4].
The latter in the presence of noise yields unstable shape
representations, thus affecting the reliability and introducing
additional hyper-parameters highly specific to the data [9].
For a detailed review of shapes features in general we refer
to [10] or [9]. Recently proposed methods for learning shape
representation with data augmentation and Convolutional
Neural Networks [11], [12] have been shown to be invariant
only locally to small rotations but not globally to arbitrarily
large transformations. In fact, it is an active field of research
how to achieve the latter [13], [14].

We overcome the robustness and locality limitations by
using generic Fourier transformation in the spherical image
domain to obtain a reliable and rotation invariant shape
feature representation of 3D cell nuclei images. Based on
that we contribute a novel analysis pipeline that permits
clustering of 3D images of neutrophil cell nuclei with respect
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Fig. 1: Preprocessing of raw microscopy data as described in Section II-B, where each slice represents a 3D image as the
summation along z-stack.

to their shapes. Members within one cluster share common
morphological properties, thereby enabling the visualization
and exploration of rotation invariant biological 3D images.

The rest of the paper is organized as follows. After giving
an introduction to the biological background and the data in
Section II, we describe our analysis pipeline in Section III.
Quantitative evaluation of our method is performed on a
synthetic 3D-MNIST dataset in Section IV-A. We apply our
method to the neutrophil cell nuclei data in Section IV-B and
conclude the paper with a discussion in Section V.

II. BIOLOGICAL BACKGROUND & DATA

A. Neutrophils

A commonly applied hypothesis states that structure de-
termines the functional behaviour [15] [16] [17]. This also
holds for neutrophils (also known as polymorphonuclear
cells), which are the most abundant type white blood cells
in humans. Patients with congenital neutrophil deficiencies
suffer from severe infections that are often fatal [18], since
they form an essential part of the innate immune system
that migrate through tissue towards sites of infection. In
2004 [16], a new mechanism called Neutrophil Extracellular
Traps (NETs) that enables neutrophils to kill bacteria by
building extracellular traps consisting mostly of granular
proteins was described. Neutrophils are characterized by
their multi-lobed nuclei, typically exhibiting three or four
lobes that are connected by thin DNA-containing filaments
[15]. It is not known whether nuclear lobulation is required
for NET formation. Neutrophils with hypolobulated nuclei
(more than four) are associated with Pelger-Huet anomaly,
which is caused by mutations in the gene encodings of the
lamin B receptor [19]. Neutrophils with hypolobulated nuclei
have deficiencies in various cellular functions like migrating
through small openings. These observations strengthen the
proposal that the morphology of the neutrophil’s nucleus
plays a role in neutrophilic cellular function [15], [16].
The analysis and categorization of neutrophil cell nuclei
shapes obtained with confocal laser fluorescence microscopy
offers the possibility of obtaining new insights into the
morphological space.

B. Data Aquisition & Preprocessing

In order to investigate cell nuclear morphologies, we
gathered a blood sample from a random healthy subject and
isolated neutrophils using density gradients similar to [20].
Then we stained the cells using Draq5 as fluorescent DNA
dye and used a Leica TCS SP8 confocal microscope for cell
imaging. Since raw data from the microscope comes as large
scanned area with several dozen cells in it, preprocessing is
an important step in the analysis pipeline (see Figure 1).
In this paper we used thresholding, erosion and dilation
techniques to automatically locate and extracte individual
cells [21]. This process returned 1525 samples in total, where
in order to avoid artifacts we discarded samples that were
too close to the image border. While raw data has spatial
resolution of 90 nanometers per voxel yielding a 1283 image
grid per cell (about 115 micrometer cube which should be
sufficient for unstimulated neutrophils), for the following
experiments data was down-scaled to 180 nanometer per
voxel yielding a 643 image grid followed by deconvolving
each image with a microscope specific empirically measured
point spread function using the iterative Richardson-Lucy-
Deconvolution [22] [23] for three iterations. Since the marker
protein Draq5 does not stick homogeneously to the nucleus,
images are binarized such that only shape features are taken
into account. Since the shapes are more a flat disk than a
round sphere, aligning the shape of interest to their principal
components ensures that most variance is captured in the
horizontal plane. This allows for convenient visualization by
selecting the middle slice or summation along z-axis of the
stack.

III. ROTATION INVARIANT 3D SHAPE
DESCRIPTOR AND ANALYSIS PIPELINE

This section introduces the main components of our anal-
ysis pipeline, namely the rotation invariant 3D shape de-
scriptor (Section III-A), the dimensionality reduction method
(Section III-B) and the clustering algorithm (Section III-C).

A. Shape Feature Extraction

Fourier transformation is a well known and commonly
used technique in signal processing for pattern analysis [24],
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Fig. 2: Visualization of the proposed method as described in Section III for a randomly rotated subset of 3D-MNIST, where
each slice represents a 3D image as the summation along z-stack.

where the output represents the image in the frequency do-
main, while the input image is the spatial domain equivalent.
Acquiring shape features using Fourier directly are neither
rotation invariant nor compact [9], [24]. Therefore [24]
proposed a modified discrete polar Fourier transformation or
Generic Fourier Transform (GFT) by first transforming the
image in a regular two-dimensional rectangular polar image
(similar to [25]). In this paper we extend this idea to 3D
images by considering the spherical transformation.

Given a 3D image x in Cartesian coordinates, the spherical
transformation S(x) with S : RX×Y×Z → RΓ×Φ×Θ is done
by mapping regular spaced spherical coordinates to coordi-
nates in Cartesian input image with radial resolution of Γ and
polar and azimuthal resolution of Φ and Θ. This mapping
is used to find the corresponding pixels in the input image.
The value at spherical pixel coordinates are determined by
linear spline interpolation of the corresponding Cartesian
pixels. The resulting regular spherical grid can then be treated
as regular image for a multidimensional discrete Fourier
Transformation (DFT). In general the multidimensional DFT
F(x) converts an image into a same-sized complex-valued
image in frequency domain. In case of DFT with 3D images
in spherical coordinates F(S(x)), the physical meanings of
resulting coefficients are clear, i.e. the γth radial frequency
for 0 ≥ γ ≥ Γ and θth polar and the φth azimuthal angular
frequency respectively for 0 ≥ θ ≥ Θ and 0 ≥ φ ≥ Φ.
The determination of the number of γ, φ and θ for shape
description is physically achievable, because shape features
are usually captured by few lower frequencies. Furthermore,
a rotation around the origin along each axis of a 3D image x
of θ = (θx, θy, θz) denoted as R(x, θ), translates into a shift
in spherical coordinates. This is why in case of spherical
representation rotational invariance naturally emerges due to
the shift theorem of DFT by considering the magnitude of
each complex coefficient, i.e.:

|F(S(x))| = |F(S(R(x, θ)))|

For the rest of this paper |F(S(x))| is denoted as |GFT(x)|
i.e. the Generic Fourier Transformation (GFT) of an 3D
image.

B. Dimensionality Reduction with PCA

Measuring similarities using Euclidean metric in high
dimensional spaces is difficult due to the curse of dimen-

sionality and especially in the presence of noise. Reducing
dimensionality prior to clustering is beneficial in order to
avoid these limitations [6]. The most common technique is
Principal Component Analysis (PCA), which aims to mini-
mize squared residual loss while keeping as few dimensions
as possible, and probably more important also results in de-
noised data [6]. In Figure 2 the first five leading eigenvectors
are shown on top of the resulting 2D embedding. We used
the (last large) eigengap criterion (difference between two
successive eigenvalues) for selecting an appropriate number
of principal components. In the case of data in frequency
domain, whitening or sphering prior to fitting a cluster model
yield much better and more robust results, since this scaling
ensures zero mean and co-variance equal to the identity.
Since we used scatter criteria to select a clustering model,
whitening also enhances applicability of within and between
scatter criteria for clusters.

C. Clustering with Gaussian Mixture Model

Recall our motivation that searching for models with
discrete latent variables (i.e., clusters) might help to identify
morphological prototypes. Since the transition from one to
another type of nucleus, if any, does not happen instan-
taneously, a probabilistic Gaussian Mixture model (GMM)
seems to be a natural choice. In general a GMM is a
linear superposition of Gaussian components, providing a
rich classes of density models commonly optimized with
the expectation maximization algorithm [6]. Furthermore we
constraint the co-variance of each component such that all off
diagonal elements are zero. This constraint in combination
with whitened features yielded robust results when scatter
criteria was used for model selection. In many practical
applications the number of clusters is not known in advance.
A commonly used technique leads to several maximum
likelihood estimates for a ranging number of clusters, where
the optimal number of cluster is chosen according to multiple
available criteria. Although model likelihood of training data
increases with increasing number of clusters, the likelihood
for test data should saturate. A selection criterion, which was
used in this paper and is known to perform well when the
local densities are spherical, is the Calinski-Harabasz-Index
[26].



Fig. 3: Random examples from the synthetic 3D-MNIST
where each sample is rotated randomly.

TABLE I: Results of experiment described in Section IV-A.

full PCA Whiten PCA
Original 3D-MNIST

raw 0.72± 0.23 0.90± 0.16 0.82± 0.29
ART 0.59± 0.08 0.89± 0.02 0.89± 0.02
GFT 0.57± 0.13 0.84± 0.08 0.79± 0.13
|ART| 0.27± 0.04 0.72± 0.09 0.79± 0.04
|GFT| 0.38± 0.15 0.81± 0.06 0.90± 0.06
|ART| 0.35± 0.14 0.68± 0.16 0.74± 0.16
|GFT| 0.62± 0.11 0.80± 0.03 0.84± 0.10

Rotated 3D-MNIST
raw 0.37± 0.10 0.45± 0.12 0.52± 0.11
ART 0.43± 0.08 0.60± 0.08 0.47± 0.16
GFT 0.30± 0.10 0.54± 0.02 0.54± 0.03
|ART| 0.27± 0.07 0.71± 0.09 0.79± 0.04
|GFT| 0.34± 0.16 0.81± 0.05 0.90± 0.07
|ART| 0.37± 0.18 0.72± 0.16 0.77± 0.12
|GFT| 0.66± 0.08 0.81± 0.03 0.86± 0.10

IV. EXPERIMENTS & RESULTS

Before applying the proposed method to the unlabelled
nuclei data, we evaluate its performance on a labelled
dataset. For that we create a synthetic 3D-MNIST dataset
by expanding pixel values of original MNIST1 in positive
and negative z-direction with a decay such that the resulting
shape is something between a flat disk and a sphere (which
is also the case for neutrophil cell nuclei). Figure 3 shows
some examples of this dataset.

A. Evaluation on synthetic 3D-MNIST

To highlight and evaluate the key component of our
proposed approach, we conducted the following experiment,
where each pair of features and dimensionality reduction
technique is applied to both original dataset (Original 3D-
MNIST) and the same dataset consisting of random rota-
tions (Rotated 3D-MNIST) prior to applying GMM. GMM
was the same for all pipelines (five components with best
likelihood fit out of 20 initializations). Each experiment is
conducted on a subset of synthetic 3D-MNIST consisting
of five classes (0,1,2,3,4). In order to compensate for small
but high dimensional data, a repeated random subsampling
validation with 30 splits is performed such that training data
consisted of thousand samples in each split.

1http://yann.lecun.com/exdb/mnist/
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Fig. 4: Results of number of clusters analysis as described
in Section IV-B.

Besides our proposed shape feature |GFT|, we also consid-
ered the Angular Radial Transformation (ART) [27] feature,
which is a region-based image descriptor in MPEG-7 [28], of
order Mθ=Mφ=N=6 as baseline. As an additional baseline
we considered the raw image domain features without any
further preprocessing, which is denoted as raw in the left
column of Table I. In addition to rotational invariance due to
the magnitude of both GFT and ART, we also evaluated the
performance of normalized magnitudes for scale invariance,
denoted as |GFT| and |ART| and also raw complex features
GFT and ART where real and imaginary parts are conca-
tentated. To demonstrate the importance of dimensionality
reduction, each experiment is applied with three scenarios.
As a baseline the first pipeline applies GMM directly on
the input features without any dimensionality reduction in
between (denoted as full in the upper row of Table I). The
second and third applies PCA with 6 leading components,
where in addition the third applies whitening PCA prior to
applying GMM.

Table I shows the results of this experiment reported as
accuracies with respective standard deviations, where the as-
signment between ground truth label and cluster assignment
is solved with the Kuhn-Munkres algorithm [29]. In the case
of the original MNIST all methods yield considerable results,
except for GMM in frequency domain without dimensional-
ity reduction. Note that invariance to scaling by normalizing
is not beneficial for clustering 3D-MNIST. In case of rotated
3D-MNIST only using the magnitude of proposed shape
features give considerable results, where whitening PCA for
|GFT| on rotated 3D-MNIST yield best results, similar to
PCA on raw original 3D-MNIST.

These results demonstrate that the proposed method is
capable of obtaining meaningful embeddings and cluster
models with respect to the 3D shapes invariant to the rotation.

B. Experiment with 3D neutrophil cell nuclei

Recall our collected dataset from Section II-B consisting
of 1525 preprocessed samples. Again, the magnitudes of
proposed GFT features are extracted prior to whitening
with PCA, where the number of components was set to 6
components. Cluster analysis is conducted as described in
Section III-C for k = 2, . . . , 16, where again we applied ran-
dom subsampling cross-validation with 30 splits with equal
train and test size to investigate likelihoods on unseen data.



(a) 15 most likely samples for each of the six clusters.
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Fig. 5: Analysis of the neutrophil cell nuclei dataset with the
proposed method.

Please note how the test likelihood in Figure 4a saturates
after six clusters, which also coincides with the sharp peak
of Calinski-Harabaz-Index at six clusters in Figure 4b. The
vertical lines in each plot indicating the standard deviation
for each number of clusters cross-validation respectively.
This observation suggests that there are six clusters of shapes,
which is of main interest for biological application, since
it reveals the hidden structure of shape space of neutrophil
cell nuclei. The feature embedding and clustering model can
be used to facilitate interpretation by delivering convincing
visualizations.

Figure 5a shows the 15 most likely (prototypical) samples
for each of the six clusters as the summation along the z-
stack. One can observe how the corresponding shapes in
fact are similar within and dissimilar across clusters. E.g.
cluster 6 contains quite dense nuclei which are probably no
neutrophils but rather lymphocytes or monocytes, cluster 5
contains two-lobbed nuclei which could also be eosinophils.
Cluster 2, 3 and 4 contain nuclei with a emphasized lob-
ulation. These observations can facilitate further studies,
which e.g. may determine whether the different members
of each cluster have different cellular functions. For better
visualization Figure 5b shows two dimensional t-Distributed
Stochastic Neighbor Embedding (t-SNE) [30] of the pro-
posed shapes features, where the clusters and samples of
Figure 5a are color-coded and plotted onto the embedding.

Fig. 6: PCA embedding showing effect of violation of i.i.d.
assumption as described in section IV-B.

To further investigate the dependencies between method
of data acquisition and the resulting cell nuclei shape space,
we collected a dataset from the same blood sample, but
one part imaged directly and the other part four hours after
acquisition. In Figure 6 the resulting embedding on the first
two principal components is shown, where one can easily
observe a systematic shift to the lower left corner as the
time between acquisition and imaging increases, i.e. the
nuclei shapes become more dense or clumpy. The proposed
rotation invariant representation for the first time enables the
biological expert to perform this type of analyses.

V. CONCLUSION

In this paper we proposed a novel rotation-invariant clus-
tering method for 3D data based on GFT features, PCA-
based dimensionality reduction and the GMM algorithm.
Quantitative evaluation on a synthetic 3D-MNIST dataset
demonstrated the applicability of this method. Based on the
results on 3D neutrophil cell nuclei data, we can conclude
that there are distinct morphological conformations justifying
a clustering model with six clusters. Furthermore, our method
enables further similar investigations with regard to the
nuclear morphology of certain cell types, e.g. images of
serum starved and proliferating fibroblast cells [3].

In future work we will apply explanation methods [31],
[32] to better understand the specific features of each cluster.
Furthermore we will consider more powerful techniques for
dimensionality reduction such as Kernel PCA [33], Spectral
Embedding [34], or Stationary Subspace Analysis [35].
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