
PTB-XL, a large publicly available
Electrocardiography Dataset

Patrick Wagner1,2,3†, Nils Strodthoff2†, Ralf-Dieter Bousseljot1, Dieter Kreiseler1,
Fatima I. Lunze4, Wojciech Samek2, Tobias Schaeffter1,3,5∗

April 6, 2020

1. Physikalisch-Technische Bundesanstalt, Berlin
2. Fraunhofer Heinrich Hertz Institute, Berlin
3. Technical University Berlin
4. German Heart Center Berlin, Charité - Universitätsmedizin
5. King’s College London
† Both authors contributed equally.
*corresponding author: tobias.schaeffter@ptb.de

Abstract

Electrocardiography (ECG) is a key non-invasive diagnostic tool for cardio-
vascular diseases which is increasingly supported by algorithms based on machine
learning. Major obstacles for the development of automatic ECG interpretation
algorithms are both the lack of public datasets and well-defined benchmarking
procedures to allow comparisons of different algorithms. To address these is-
sues, we put forward PTB-XL, the to-date largest freely accessible clinical 12-
lead ECG-waveform dataset comprising 21837 records from 18885 patients of 10
seconds length. The ECG-waveform data was annotated by up to two cardiolo-
gists as a multi-label dataset, where diagnostic labels were further aggregated into
super and subclasses. The dataset covers a broad range of diagnostic classes in-
cluding, in particular, a large fraction of healthy records. The combination with
additional metadata on demographics, additional diagnostic statements, diagnosis
likelihoods, manually annotated signal properties as well as suggested folds for
splitting training and test sets turns the dataset into a rich resource for the develop-
ment and the evaluation of automatic ECG interpretation algorithms.
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Background & Summary
Cardiovascular diseases are the leading cause of mortality worldwide, which is in high-
income countries only surpassed by cancer [1]. Electrocardiography (ECG) provides
a key non-invasive diagnostic tool for assessing the cardiac clinical status of a patient.
Advanced decision support systems based on automatic ECG interpretation algorithms
promise significant assistance for the medical personnel due to the large number of
ECGs that are routinely taken. However, there are at least two major obstacles that
restrict the progress in this field beyond the demonstration of exceptional performance
of closed-source algorithms on custom datasets with restricted access [2, 3], (1) the
lack of large publicly available datasets for training and validation [4], and (2) the lack
of well-defined evaluation procedures for these algorithms. We aim to address both
issues and to close this gap in the research landscape by putting forward PTB-XL [5], a
clinical ECG dataset of unprecedented size along with proposed folds for the evaluation
of machine learning algorithms.

The raw signal data underlying the PTB-XL dataset was recorded by devices from
the Schiller AG between October 1989 and June 1996. The transfer of the raw data
into a structured database, its curation along with the development of corresponding
ECG analysis algorithms was a long term project at the Physikalisch Technische Bun-
desanstalt (PTB). These efforts resulted in a number of publications [6, 7, 8, 9, 10, 11],
but the access to the dataset remained restricted until now. The dataset comprises
21837 clinical 12-lead ECG records of 10 seconds length from 18885 patients. The
dataset is balanced with respect to sex (52% male and 48% female) and covers the
whole range of ages from 0 to 95 years (median 62 and interquantile range of 22). The
ECG records were annotated by up to two cardiologists with potentially multiple ECG
statements out of a set of 71 different statements conforming to the SCP-ECG stan-
dard [12]. The statements cover form, rhythm and diagnostic statements in a unified,
machine-readable form. For the diagnostic labels we provide a hierarchical organi-
zation in terms of 5 coarse superclasses and 24 subclasses for the diagnostic labels,
see Figure 1 for a graphical summary of the dataset , that allow for different levels of
granularity. Besides annotations in the form of ECG statements along with likelihood
information for diagnostic statements, additional metadata for example in the form of
manually annotated signal quality statements are available.

Apart from the outstanding nominal size of PTB-XL, the dataset is distinguished
by its diversity, both in terms of signal quality (with 77.01% of highest signal qual-
ity) but also in terms of a rich coverage of pathologies, many different co-occurring
diseases but also a large proportion of healthy control samples that is rarely found in
clinical datasets. It is in particular this diversity, which makes PTB-XL a rich source
for the training and evaluation of algorithms in a real-world setting, where machine
learning (ML) algorithms have to work reliably regardless of the recording conditions
or potentially poor quality data.

To highlight the uniqueness of the PTB-XL dataset, we compare different com-
monly used ECG datasets in Table 1 based on sample statistics (number of ECG signals,
number of recorded leads, number of patients, average recording length in seconds)
and their respective annotations ((D)iagnostic, (F)orm, (R)hytm, (C)linical, (B)eat an-
notation and the respective number of classes). Most open datasets are provided by
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Figure 1: Graphical summary of the PTB-XL dataset in terms of diagnostic superclasses
and subclasses, see Table 5 for a definition of the used acronyms.

PhysioNet [13], but typically cover only a few hundred patients. Most notably, this
includes the PTB Diagnostic ECG Database [6], which was collected during the course
of the same long-term project at the PTB, which, however, shares no records with the
PTB-XL dataset. The PTB Diagnostic ECG Database includes only 549 records from
a single site and provides only a single label per record as opposed to multi-label,
machine-readable annotations covering a much broader range of pathologies in PTB-
XL. The only exceptions in terms of freely accessible datasets with larger samples sizes
are the AF classification dataset [14] and the Chinese ICBEB Challenge 2018 dataset
[15], which contain, however, either just single-lead ECGs or cover only a very limited
set of ECG statements. There are several larger datasets that are either commercial
or where the access is restricted by certain conditions (top five rows in Table 1). This
includes commercial datasets such as CSE [16], which has traditionally been used to
benchmark ECG interpretation algorithms.

Methods
This section covers following aspects: In Data Acquisition, we describe in detail the
data acquisition process and in Preprocessing we discuss the applied preprocessing
steps in order to facilitate a widespread use for training and evaluating machine learning
algorithms.
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Table 1: Summary of selected ECG datasets (without claim of completeness).
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CSE [16] 1220 15 1220 30 D 7
AHA [17] 154 2 154 1800 DFRB 8
Stanford [2] 64121 1 29163 30 R 14
CCDD [18] 179130 12 179130 30 D 378
THEW [19](Chest Pain LR) 1172 12 1154 86400 CB 5
Mayo CV [3] 649931 12 180922 10 R 2
ICBEB Challenge 2018 [15] 6877 12 6877 30 DFR 8

no
n-

re
st

ri
ct

ed

MIT-BIH Noise Stress Test [20] 15 1 15 22500 B 1
MIT-BIH Arrhythmia [21] 48 2 47 1800 B 1
Malignant Ventricular Arrhythmia [22] 22 2 22 1800 R 3
Ventricular Tachyarrhythmia [23] 35 1 35 480 B 3
European ST-T Database [24] 90 2 79 7200 F 2
AF Classification Challenge 2017 [14] 8528 1 8528 32.5 R 4
PTB Diagnostic ECG [6] 549 15 294 60 D 9
PTB-XL (this work) 21837 12 18885 10 DFR 71

Data Acquisition
The raw data acquisition was carried out as follows:

1. The waveform data was automatically trimmed to 10 seconds segments and
stored in a proprietary compressed format. For all signals, we provide the stan-
dard set of 12 leads (I,II,III,aVL,aVR,aVF,V1-V6) with reference elec-
trodes on the right arm. The original sampling frequency was 400 Hz.

2. The corresponding metadata was entered into a database by a nurse.
3. Each record was annotated as follows:

(a) An initial ECG report string was generated by either:
i. 67.13% manual interpretation by a human cardiologist

ii. 31.2% automatic interpretation by ECG-device
A. 4.45% validation by a human cardiologist
B. 26.75% incomplete information on human validation

iii. 1.67% no initial ECG report.
In Quality Assessment for Annotation Data (ECG Statements), we provide
a more extensive discussion on this step.

(b) The report string was converted into a standardized set of SCP-ECG state-
ments including likelihood information for diagnostic statements.

(c) The heart’s axis and the infarction stadium (if applicable) was extracted
from the report.

(d) A potential second validation (for first evaluation in case of a missing ini-
tial report string) was carried out by a second independent cardiologist,
who was able to make changes to the ECG statements and the likelihood
information directly. In most cases, the deviating opinion was also reported
in a second report string.

4. Finally, all records underwent another manual annotation process by a technical
expert focusing mainly on qualitative signal characteristics.
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Preprocessing
The waveform files were converted from the original proprietary format into a binary
format with 16 bit precision at a resolution of 1 µV/LSB. The signals underwent mi-
nor processing to remove spikes from switch-on and switch-off processes of the de-
vices, which were found at the beginning and the end of some recordings, and were
upsampled to 500 Hz by resampling. For the user’s convenience, we also release a
downsampled version of the waveform data at a sampling frequency of 100 Hz.

With the acquisition of the original database from Schiller AG, the full usage rights
were transferred to the PTB. The Institutional Ethics Committee approved the publi-
cation of the anonymous data in an open-access database (PTB-2020-1). ECGs and
patients are identified by unique identifiers. Instead of date of birth we report the age
of the patient in years at the time of data collection as calculated using the ECG date.
For patients with ECGs taken at an age of 90 or older, age is set to 300 years to comply
with Health Insurance Portability and Accountability Act (HIPAA) standards. All ECG
dates were shifted by a random offset for each patient while preserving time differ-
ences between multiple recordings. The names of validating cardiologists and nurses
and recording site (hospital etc.) of the recording were pseudonymized and replaced by
unique identifiers. The original data contained implausible height values for some pa-
tients. We decided to remove the height values for patients where the body-mass-index
calculated from height and weight was larger than 40.

The ECG data was annotated using a codebook (SCP-ECG v0.4 (Annex B)) of ECG
statements that preceded the current SCP-ECG standard [12]. All annotations were
converted into SCP-ECG statements by accounting for the minor modifications that
occurred between the release of the codebook and the publication of the final standard.

Data Records
The data is composed of the ECG signal waveform data and additional metadata that
comprises, most importantly, ECG statements in accordance with the SCP-ECG stan-
dard [12]. This section describes the components of the released data repository in
detail and is organized as follows: In Waveform Data, we describe how the ECG sig-
nal waveform data is stored. Metadata describes the heart of PTB-XL including all
information attached to each record.

Waveform Data
For the user’s convenience, we provide waveform data in the WaveForm DataBase
(WFDB) format as proposed by PhysioNet (https://physionet.org/about/
software/) that has developed into an de-facto standard for the distribution of phys-
iological signal data. In particular, there exist WFDB-parsers for a large number of
frequently used programming languages such as C, Python, MATLAB and Java. In
addition, the WFDB library also provides conversion routines to other frequently used
data formats such as the European Data Format (edf). We stress that the original 16
bit binary data obtained after the conversion from the proprietary file format used by
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the ECG devices remained unchanged during this process. The WFDB-format only al-
lows for a structured way of accessing the data that includes all required signal-specific
metadata, such as channel names or conversion to physical units. In the WFDB-format
every ECG is represented by a tuple of two files, a dat-file containing the binary raw
data and a corresponding header file with same name and hea-extension. We provide
both the original data sampled at 500 Hz as well as a downsampled version at 100 Hz
that are stored in respective output folders records100 and records500.

Metadata
The WFDB-format does not provide a standardized way of storing signal-specific
metadata. For easy accessibility, we provide the metadata for all ECG records as a
table in comma-separated value (csv) format in ptbxl_database.csv containing
28 columns, which can be easily accessed by using existing libraries in all common
programming languages. Table 2 gives an overview of the columns provided in this
table.

There are in total 21837 signals from 18885 patients. Figure 2 gives an graphical
overview of the temporally ordered dataset in terms of populated fields, where black
pixels indicating populated fields and white pixels indicating missing values. Please
note how the data acquisition process changed over time, i.e. in the beginning of this
study physiological data such as height and weight were gathered more often (mostly
diagnostic reports written in English). Also note that towards the end of the study, the
fraction of automated reports increases.

A detailed breakdown in terms of number of ECGs per patient is given in Table 3.
In particular, there are 2127 patients for which multiple ECGs available that could be
used for longitudinal studies. The rest of this section is organized according to the
sections headings in Table 2.

Identifiers

Each ECG record is identified by a unique ID (ecg_id) and the corresponding patient
is encoded by a patient ID (ecg_id). The path to the corresponding waveform data is
stored in filename_lr (100 Hz) and filename_hr (500 Hz).

General Metadata

This section covers demographic data and general recording metadata contained in
PTB-XL. Demographic data includes age, sex (52% male and 48% female), height
(values set for 31.98 % of records) and weight (values set for 43.18 % of records).
The age denotes the patient’s age at the time of the ECG recording. The distributions
of age, height, and weight across the whole dataset are shown in Figure 3. The
median age is 62 with interquantile range (IQR) of 22 with minimum age of 0 and
maximum age of 95 . The median height and weight are 166 and 70 with IQRs of 14
and 20 respectively.

The general recording metadata comprises nurse, site, device and record-
ing_date. Both nurse and site are published in pseudonymized form, where
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Table 2: Columns provided in the metadata table ptbxl_database.csv. Each
ECG is identified by a unique ID (ecg_id) and comes with a number of ECG state-
ments (scp_codes) that can be used to train a multi-label classifier that can be eval-
uated based on the proposed fold assignments (strat_fold).

Section Variable Data Type Description

Identifiers

ecg_id integer unique ECG identifier
patient_id integer unique patient identifier
filename_lr string path to waveform data (100Hz)
filename_hr string path to waveform data (500Hz)

General Metadata

age integer age at recording in years (see Figure 3 left)
sex categorical sex (male 0, female 1)
height integer height in centimeters (see Figure 3 right)
weight integer weight in kilograms (see Figure 3 middle)
nurse categorical involved nurse (pseudonymized)
site categorical recording site (pseudonymized)
device categorical recording device
recording_date datetime ECG recording date and time

ECG Statements

report string ECG report from diagnosing cardiologist
scp_codes dictionary SCP ECG statements (see Table 6 Table 7 Table 8)
heart_axis categorical heart’s electrical axis (see Table 10)
infarction_stadium1 categorical infarction stadium (see Table 11)
infarction_stadium2 categorical second infarction stadium (see Table 11)
validated_by categorical validating cardiologist (pseudonymized)
second_opinion boolean flag for second (deviating) opinion
initial_autogenerated_report boolean initial autogenerated report by ECG device
validated_by_human boolean validated by human

Signal Metadata

baseline_drift string baseline drift or jump present
static_noise string electric hum/ static noise present
burst_noise string burst noise
electrodes_problems string electrodes problems
extra_beats string extra beats
pacemaker string pacemaker

Cross-validation Folds strat_fold integer suggested stratified folds

Figure 2: Overview of populated columns in ptbxl_database.csv. Each entry
corresponds to a row in the table in temporal order from top to bottom. Black pixels
indicate existing values, missing values remain white.
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Table 3: Overview of number of records per patient.

# Records 1 2 3 4 5 6 7 8 9 10

# Patients 16758 1604 348 103 43 16 5 4 3 1
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Figure 3: Demographic overview of patients in PTB-XL.

in total there are 12 unique nurses across 51 sites, i.e. the location where the ECG
was recorded, and recorded using 11 different types of devices. The field record-
ing_date is encoded as YYYY-MM-DD hh:mm:ss.

ECG Statements

This section introduces the ECG statements as the core component of PTB-XL. It is or-
ganized as follows: First, we introduce the most important fields, namely report and
scp_codes. Afterwards, heart_axis, infarction_stadium1 and infarc-
tion_stadium2 are discussed. Finally, we introduce the fields validated_by,
second_opinion, initial_autogenerated_report and validated_-
by_human that are important for the technical validation of the annotation data.

report and scp_codes: The original ECG report is given as string in the report-
column and is written in 70.89% German, 27.9% English, and 1.21% Swedish. The
ECG report string was converted into structured sets of SCP-ECG statements as de-
scribed in Methods. All information related to the used annotation scheme is stored
in a dedicated table scp_statements.csv that was enriched with additional side-
information, see Conversion to other Annotation Standards in Usage Notes for further

40 154 12

Diagnostic
Form Rhythm

Figure 4: Venn Diagram illustrating the assignment of the given SCP ECG statements
to the three categories diagnostic, form and rhythm.
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details.
There are 71 unique SCP-ECG statements used in the dataset. We categorize them

by assigning each statement to one or more of the following categories: diagnostic,
form and rhythm statements. There are 44 different diagnostic statements, 19 different
form statements describing the form of the ECG signal, where 4 statements for diag-
nostic and form coincide, 12 different non-overlapping rhythm statements describing
the cardiac rhythm (Figure 4 gives an overview as a Venn-diagram of the proposed
categories and their overlap). In addition, for all diagnostic statements, a likelihood
information was extracted based on certain keywords in the ECG report, see Table 12
for details which is based on [7]. The likelihood ranges from 0 to 100 conveying the
certainty the cardiologist (if the diagnosing cardiologist is very certain about a state-
ment). For form and rhythm statements or in cases where no likelihood information
was available, the corresponding likelihood was set to zero. The likelihood information
is potentially interesting to account for the non-binary nature of diagnosis statements
in real-world data. The SCP statements are presented as a unsorted dictionary (i.e.
particular ordering of the statements within the dictionary does not follow any prior-
ity) of SCP-ECG statements in the scp_codes-column, where the key relates to the
statement itself and the value relates to the likelihood.

Finally, for diagnostic statements we provide a hierarchy of superclasses and sub-
classes that can be used to train classification algorithms on a set of broader categories
instead of the original fine-grained diagnostic labels, see Table 5 for a definition of the
acronyms and Figure 1 for graphical overview of the whole dataset. Tables summariz-
ing the distribution of diagnostic, form and rhythm statements can be found in Table 6,
Table 7 and Table 8 respectively, where the first column indicates the acronym associ-
ated with the statement (Table 5 for description of acronyms), the second column re-
flects the number of records (ordered ascending) and the third column gives a short de-
scription for each statement. In addition for Table 6 we provide two additional columns
indicating the proposed super- and subclass. If we aggregate the diagnostic statements
according to superclasses and subclasses using the mapping as described above and in
Table 5, the distribution of diagnostic superclass statements assumes the form shown
in the uppermost panel in Figure 7. Particular mentioning deserves the large number
of healthy patients that are typically underrepresented in most ECG datasets that are,
however, crucial for the development of ECG classification algorithms. Figure 7 shows
the distribution of subclasses for a given diagnostic superclass.

In summary, we provide six sets of annotations with different levels of granular-
ity, namely raw (all statements together), diagnostic, diagnostic superclass, diagnostic
subclass statements, form and rhythm statements. Depending on granularity, a differ-
ent number of statements per ECG record is available. A detailed breakdown in terms
of number of statements in each level per ECG signal is given in Table 9. For example,
there are 410 samples for which no diagnostic statement is given, which are mainly
pacemaker ECGs.

heart_axis, infarction_stadium1 and infarction_stadium2: The
column heart_axis was automatically extracted from the ECG report and is set for
61.05 % of the records. It represents the heart’s electrical axis in the Cabrera system.
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Table 10 shows the distribution, the acronyms and the respective descriptions for entries
in the column heart_axis.

In case of myocardial infarction, potentially multiple entries for infarction stadium
(infarction_stadium and infarction_stadium2) were extracted from the
report string. Table 11 shows the respective distributions in addition to a short descrip-
tion, see [7] for further details. In particular, we distinguish also intermediate stages
“stadium I-II” and “stadium II-III” in addition to the conventionally used infarction
stages I, II, and III.

validated_by and second_opinion: The validated_by-column provides
the identifier of the cardiologist who performed the initial annotation. The column
second_opinion is set to true for records, where a second opinion is available and
the corresponding report string is appended to report with a preceding „Edit:”. The
column initial_autogenerated_report is set to true for all records, where
the report string ended with „unbestätigter Bericht’” indicating that the initial report
string was generated by an ECG device, as described in Data Acquisition. Unfortu-
nately, there is no precise record of the ECGs that underwent the second validation.
For this reason, we store a conservative estimate if the record was validated by a hu-
man cardiologist in the column validated_by_human. It is set to true for all
records, where validated_by is set, or initial_autogenerated_report
is false, or second_opinion is true, see Quality Assessment for Annotation Data
(ECG Statements) in Technical Validation for more details.

Signal Metadata

As additional metadata that might potentially be of future use, the signal quality was
quantified by a different person with long technical expertise in ECG devices and sig-
nals, who went through the whole dataset and annotated the records with respect to
signal characteristics such as noise (static_noise and burst_noise), baseline
drifts baseline_drift and other artifacts such as electrodes_problems.
In addition to these technical signal characteristics, we provide extra_beats for
counting extra systoles which is set for 8.95 % of records and pacemaker for signal
patterns indicating an active pacemaker (for 1.34 % of records).

Possible findings in each of the different categories are reported as string with-
out a regular syntax. Overall, these reports represent a very rich source of additional
information. The most basic use of these fields is to filter for data of a particularly
high quality by excluding all records with non-empty values in the columns mentioned
above. We refer to Quality Assessment for Waveform Data in Technical Validation for
a summary of the signal quality in terms of the provided annotations.

Cross-validation Folds

For comparability of machine learning algorithms trained on PTB-XL, we provide fold
assignments (strat_fold) for all ECG records that can be used to implement rec-
ommended train-test splits. The incentive to use stratified sampling is to reduce bias
and variance of score estimations, see [25]. In addition, it leads to a test set distribution
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for holdout evaluation that mimics the training set distribution as closely as possible
to disentangle aspects of covariate shift/dataset shift from the evaluation procedure.
We extend existing multilabel stratification methods from the literature to achieve a
balanced label while additionally providing two distinguished folds with a particularly
high label quality. During this process, each record is assigned to one of ten folds,
where the tenth fold is intended to be used for holdout set evaluation and the penul-
timate ninth fold is supposed to be used as validation set, see Prediction Tasks and
proposed Evaluation Schemes for ML Algorithms in Usage Notes for a more detailed
description. The fold assignment always respects the underlying patient assignments.
This avoids data leakage arising from having ECG signals from the same patient in
different folds. In detail, the fold assignment proceeds as follows:

The proposed procedure extends existing stratified sampling methods from the lit-
erature [26] by accounting for sampling based on patients and by optionally incor-
porating quality constraints for certain folds. To achieve not only a balanced label
distribution but also a balanced age and gender distribution, we do not only incorporate
all ECG statements but also gender and age (in five bins each covering 20 years). All
ECG statements, gender and age for a given patient are appended into a single list with
potentially non-unique entries to ensure sampling based on patients. Then the labels
are distributed label-by-label as proposed [26], starting with the least populated label
within the remaining records. Patients with ECG records that are annotated with this
label are subsequently distributed onto the folds. If there is a unique fold that is in most
need of the given label, all ECGs of the patient that is currently under consideration are
assigned to this fold. In case of a tie, the assignment proceeds by trying to balance the
overall sizes of the candidate folds.

During this process, we keep track of the quality of the ECG annotations. A patient
is considered clean if for all corresponding ECGs validated_by_human is set to
true. When assigning ECGs from a patient that does not carry this flag, we exclude the
ninth and tenth fold from the set of folds the samples can be assigned to. As the dataset
and in particular the ratio of clean vs. non-clean patients is large enough, the sampling
procedure still leads to a label distribution in the clean folds that still approximates the
overall distribution of labels and genders in the dataset very well, see Figure 5.

We believe that this procedure is of general interest for multi-label datasets with
multiple records per patient and, in particular in the current context, for exploring the
impact of different stratification methods. For the fold assignments in strat_fold,
we based the stratification on all available ECG statements but it might also conceivable
to consider just subsets of labels, such as all diagnostic statements. To allow a simple
exploration of these issues, we provide a Python implementation of the stratification
method in the supplementary material.

Technical Validation

Quality Assessment for Waveform Data
Since we present the waveform data in its original (binary) form without any modifica-
tions (apart from saving it in WFDB-format), we expect a lot of variability with respect
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Figure 5: Distribution of ECG statements, gender and age across ten folds with strati-
fied folds. The ninth and tenth fold are folds with a particularly high label quality that
are supposed to be used as validation and test sets.

to recording noise and several artifacts. For this purpose we summarize the results of
the technical validation of the signal data by an technical expert briefly. The signal
quality was quantified by a person with technical expertise according to the following
categories:
• baseline_drift for global drifts in 7.36 % of the signal.
• static_noise for noisy signals and burst_noise for noise peaks, set for
14.94 % and 2.81 % of records retrospectively.

• electrodes_problems for individual problems with electrodes (0.14 % of
records).

In total 77.01% of the signal data are of highest quality in the sense of missing
annotation in the signal quality metadata. At this point we would like to stress again
that the different quality levels reflect the range of different quality levels of ECG data
in real-world data and have to be seen as one of the particular strengths of the dataset.
This dataset contains a realistic distribution of data quality in clinical practice and is an
invaluable source for properly assessing the performance of ML algorithms in the sense
of the robustness against changes in the environmental conditions or against various
imperfections in the input data.

Quality Assessment for Annotation Data (ECG Statements)
As already mentioned in ECG Statements, it has not been possible to retrospectively
reconstruct the labeling process in all cases. In some cases the validating cardiologist
(validated_by-column) was left empty even though an automatically created ini-
tial ECG report (autogenerated_initial_report) was validated by a human
cardiologist. In addition, there is no precise record of those ECGs that went through
the second human validation step. Before submission, we randomly selected a subset
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of recordings from our proposed test set via stratisfied sampling (as described in Cross-
validation Folds) and had them reviewed by another independent cardiologist (Author
FIL). These examinations confirmed the annotations.

Due to missing information about this process, we can only conservatively esti-
mate that set of ECGs that were potentially only automatically annotated. Therefore,
we set validated_by_human to false for the set of automatically annotated ECGs
(initial_autogenerated_report=True) with empty validated_by-column
and second_opinion=False. The precise fractions are as follows:
• 73.7% validated_by_human=True

– 56.9% validated_by is given
– 16.18% initial_autogenerated_report=False
– 0.62% second_opinion is given

• 26.3% validated_by_human=False
This is to the best of our knowledge a very conservative estimate as a large frac-

tion of the dataset went through the second validation step, but from our perspective
the most transparent way of dealing with this missing metadata issue. Moreover, the
second validation was not performed independently but as an validation of the first
annotation. Unfortunately, there is no precise record of which diagnostic statements
were changed during the final validation step. Therefore, even though most records
were evaluated by two cardiologists (albeit not independently), one can only reason-
ably claim a single human validation.

To make best use of the available data, we decided to incorporate the information
which ECGs certainly underwent human validation into the sampling process. To this
end, we construct the fold assignment process in such a way that the tenth fold only
contains only ECGs that certainly underwent a human validation. This allows to use
the tenth fold as a reliable test set with best available label quality for a simple hold-
out validation. This is described in detail in Prediction Tasks and proposed Evaluation
Schemes for ML Algorithms in Usage Notes.

Usage Notes
In this section, we provide instructions on how to use PTB-XL to train and validate
automatic ECG interpretation algorithms. To this end, we first explain how to convert to
other standards than SCP in Conversion to other Annotation Standards, afterwards we
explain in Prediction Tasks and proposed Evaluation Schemes for ML Algorithms how
the proposed cross-validation folds are supposed to be used for a reliable benchmarking
of machine learning algorithms on this dataset and outline possible prediction tasks on
the dataset. Finally, in Example Code we provide a basic code example in Python that
illustrates how to load waveform data and metadata for further processing and provide
directions for further analysis.

Conversion to other Annotation Standards
As already mentioned in ECG Statements, besides our proposed SCP standard, we also
provide the possibility of transition to other standards such as the scheme put forward
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Table 4: SCP-ECG statement summary. Description of annotation scheme stored in
scp_statements.csv.

Column Description

acronym SCP statement
description short statement description
diagnostic flag if statement is diagnostic
form flag if statement is related to form
rhythm flag if statement is related to rhythm
diagnostic_class superclass for diagnostic statements
diagnostic_subclass subclass for diagnostic statements
Statement Category official SCP statement category
SCP-ECG Statement Description official SCP statement description
AHA code unique ID in the AHA standard
aECG REFID IEEE 11073-10102 Annotated ECG (aECG) standard
CDISC Code Controlled Terminology
DICOM Code DICOM Tags

by the American Heart Association[27]. For this purpose and the user’s convenience
our repository also provides SCP_labelmap.csvwith further information, see ECG
Statements for details on the used SCP-ECG statements.

Table 4 gives a detailed description of the table scp_statements.csv. The
first column serves as index with SCP statement acronym, the second, eighth and
ninth column (description, Statement Category, SCP-ECG Statement Description) de-
scribes the respective acronym. The third, fourth and fifth column (diagnostic, form
and rhythm) indicate to which broad category each index belongs to. The sixth and
seventh column (diagnostic_class and diagnostic_subclass) describes our proposed hi-
erarchical organization of diagnostic statements, see ECG Statements for additional
information on the latter two properties.

The latter three columns of Table 4 provide cross-references to other popular ECG
annotation systems as provided on the SCP-ECG homepage (http://webimatics.
univ-lyon1.fr/scp-ecg/), namely: AHA aECG REFID, CDISC and DICOM.
In Example Code, we provide example Python code for using scp_statements.csv
appropriately.

Prediction Tasks and proposed Evaluation Schemes for ML Algo-
rithms
The PTB-XLdataset represents a very rich resource for the training and the evaluation
of ECG analysis algorithms. Whereas a comprehensive discussion of possible predic-
tion tasks that can be investigated based on the dataset is clearly beyond the format of
this data descriptor, we still find it worthwhile sketching possible direction. The most
obvious tasks are prediction tasks that try to infer different subsets of ECG statements
from the ECG record. These tasks can typically be framed as multi-label classifica-
tion problems. Although a thorough description of proposed evaluation metrics would
go beyond of the scope of this manuscript, we highly recommend macro-averaged
and threshold-free metrics, such as the macro-averaged area under the receiver oper-
ating curve (AUROC). Micro-averaged metrics would overrepresent highly populated
classes, whose distribution just reflects the data collection process rather than the statis-
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tical distribution in the population. The large number of more than 2000 patients with
multiple ECGs potentially allows to develop prediction models for future cardiac con-
ditions or their progression from previously collected ECGs. Beyond ECG statement
prediction, the dataset allows for age/gender inference from the raw ECG record and
to develop ECG quality assessment algorithms based on the signal quality annotation.
Finally, the provided likelihoods for diagnostic statements allow for studies on possible
relations between prediction uncertainty compared to human uncertainty assessments.

For comparability of machine learning algorithms trained on PTB-XL, we provide
recommended train-test splits in the form of assignments of the record to one of ten
cross-validation folds. We propose to use the tenth fold, which is ensured to contain
only ECGs that have certainly be validated by at least one human cardiologist and are
therefore presumably of highest label quality, to separate a test set that is only used for
the final performance evaluation of a proposed algorithm. The remaining nine folds
can be used as training and validation set and split at one’s own discretion potentially
utilizing the recommended fold assignments. As the ninth and the tenth fold satisfy the
same quality criteria, we recommend to use the ninth fold as validation set.

Example Code
In figure 6 we provide a basic code example in Python for loading both waveform and
metadata, aggregating the diagnostic labels based on the proposed diagnostic super-
classes and split data into train and test set using the provided crossvalidation folds. The
two main resulting objects are the raw signal data (as a numpy array of shape 1000×12
for the case of 100 Hz data) loaded with wfdb as a numpy array as described in
Waveform Data and the annotation data from ptbxl_database.csv as a pandas
dataframe with 26 columns as described in Metadata. In addition, we illustrate, how
to apply the the provided mapping of individual diagnostic statements to diagnostic
superclass mapping as introduced in ECG Statements and described in Conversion to
other Annotation Standards which consists of loading scp_statements.csv, se-
lecting for diagnostic and creating multi-label lists by applying diagnostic_-
superclass given the index. Finally, we apply the suggested split into train and test
as described in Prediction Tasks and proposed Evaluation Schemes for ML Algorithms.

After the raw data has been loaded, there are different possible directions for futher
analysis. First of all, there are dedicated packages such as BioSPPy (https://
github.com/PIA-Group/BioSPPy) that allow to extract ECG-specific features
such as R-peaks. Such derived features or the raw signals themselves can then be an-
alyzed using classical machine learning algorithms as provided for example by scikit-
learn (https://scikit-learn.org) or popular deep learning frameworks such
as TensorFlow (https://www.tensorflow.org) or PyTorch (https://pytorch.
org).

Code Availability
The code for dataset preparation is not intended to be released as it does not entail any
potential for reusability. We provide the stratified sampling routine as a single python
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import pandas as pd
import numpy as np
import wfdb
import ast

def load_raw_data(df, sampling_rate, path):
if sampling_rate == 100:

data = [wfdb.rdsamp(path+f) for f in df.filename_lr]
else:

data = [wfdb.rdsamp(path+f) for f in df.filename_hr]
data = np.array([signal for signal, meta in data])
return data

path = ’path/to/ptbxl/’
sampling_rate=100

# load and convert annotation data
Y = pd.read_csv(path+’ptbxl_database.csv’, index_col=’ecg_id’)
Y.scp_codes = Y.scp_codes.apply(lambda x: ast.literal_eval(x))

# Load raw signal data
X = load_raw_data(Y, sampling_rate, path)

# Load scp_statements.csv for diagnostic aggregation
agg_df = pd.read_csv(path+’scp_statements.csv’, index_col=0)
agg_df = agg_df[agg_df.diagnostic == 1]

def aggregate_diagnostic(y_dic):
tmp = []
for key in y_dic.keys():

if key in agg_df.index:
tmp.append(agg_df.loc[key].diagnostic_class)

return list(set(tmp))

# Apply diagnostic superclass
Y[’diagnostic_superclass’] = Y.scp_codes.apply(aggregate_diagnostic)

# Split data into train and test
test_fold = 10
# Train
X_train = X[np.where(Y.strat_fold != test_fold)]
y_train = Y[(Y.strat_fold != test_fold)].diagnostic_superclass
# Test
X_test = X[np.where(Y.strat_fold == test_fold)]
y_test = Y[Y.strat_fold == test_fold].diagnostic_superclass

Figure 6: Example Python code for loading data and labels also using the suggested
folds and aggregation of diagnostic labels.
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module stratify.py as part of the supplementary material to allow users to create
stratification folds based on user-defined preferences. For the user’s convenience, the
example code provided in the usage notes is also included as example_code.py in
the supplementary material.
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Table 5: SCP-ECG acronym descriptions for super- and subclasses.

Acronym SCP statement Description

Su
pe

rc
la

ss
es NORM Normal ECG

CD Conduction Disturbance
MI Myocardial Infarction
HYP Hypertrophy
STTC ST/T change

NORM NORM Normal ECG

Su
bc

la
ss

es

C
D

LAFB/LPFB left anterior/left posterior fascicular block
IRBBB incomplete right bundle branch block
ILBBB incomplete left bundle branch block
CLBBB complete left bundle branch block
CRBBB complete right bundle branch block
_AVB AV block
IVCB non-specific intraventricular conduction disturbance (block)
WPW Wolff-Parkinson-White syndrome

H
Y

P

LVH left ventricular hypertrophy
RHV right ventricular hypertrophy
LAO/LAE left atrial overload/enlargement
RAO/RAE right atrial overload/enlargement
SEHYP septal hypertrophy

M
I

AMI anterior myocardial infarction
IMI inferior myocardial infarction
LMI lateral myocardial infarction
PMI posterior myocardial infarction

ST
T

C

ISCA ischemic in anterior leads
ISCI ischemic in inferior leads
ISC_ non-specific ischemic
STTC ST-T changes
NST_ non-specific ST changes
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Table 6: Diagnostic Statement Overview, where the acronyms of super- and subclass
are introduced in Table 5.

# Records Description Superclass Subclass

LAFB 1626 left anterior fascicular block CD LAFB/LPFB
IRBBB 1118 incomplete right bundle branch block CD IRBBB
1AVB 797 first degree AV block CD _AVB
IVCD 789 non-specific intraventricular conduction disturbance (block) CD IVCD
CRBBB 542 complete right bundle branch block CD CRBBB
CLBBB 536 complete left bundle branch block CD CLBBB
LPFB 177 left posterior fascicular block CD LAFB/LPFB
WPW 80 Wolff-Parkinson-White syndrome CD WPW
ILBBB 77 incomplete left bundle branch block CD ILBBB
3AVB 16 third degree AV block CD _AVB
2AVB 14 second degree AV block CD _AVB

LVH 2137 left ventricular hypertrophy HYP LVH
LAO/LAE 427 left atrial overload/enlargement HYP LAO/LAE
RVH 126 right ventricular hypertrophy HYP RVH
RAO/RAE 99 right atrial overload/enlargement HYP RAO/RAE
SEHYP 30 septal hypertrophy HYP SEHYP

IMI 2685 inferior myocardial infarction MI IMI
ASMI 2363 anteroseptal myocardial infarction MI AMI
ILMI 479 inferolateral myocardial infarction MI IMI
AMI 354 anterior myocardial infarction MI AMI
ALMI 290 anterolateral myocardial infarction MI AMI
INJAS 215 subendocardial injury in anteroseptal leads MI AMI
LMI 201 lateral myocardial infarction MI LMI
INJAL 148 subendocardial injury in anterolateral leads MI AMI
IPLMI 51 inferoposterolateral myocardial infarction MI IMI
IPMI 33 inferoposterior myocardial infarction MI IMI
INJIN 18 subendocardial injury in inferior leads MI IMI
PMI 17 posterior myocardial infarction MI PMI
INJLA 17 subendocardial injury in lateral leads MI AMI
INJIL 15 subendocardial injury in inferolateral leads MI IMI

NORM 9528 normal ECG NORM NORM

NDT 1829 non-diagnostic T abnormalities STTC STTC
NST_ 770 non-specific ST changes STTC NST_
DIG 181 digitalis-effect STTC STTC
LNGQT 118 long QT-interval STTC STTC
ISC_ 1275 non-specific ischemic STTC ISC_
ISCAL 660 ischemic in anterolateral leads STTC ISCA
ISCIN 219 ischemic in inferior leads STTC ISCI
ISCIL 179 ischemic in inferolateral leads STTC ISCI
ISCAS 170 ischemic in anteroseptal leads STTC ISCA
ISCLA 142 ischemic in lateral leads STTC ISCA
ANEUR 104 ST-T changes compatible with ventricular aneurysm STTC STTC
EL 97 electrolytic disturbance or drug (former EDIS) STTC STTC
ISCAN 44 ischemic in anterior leads STTC ISCA
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Table 7: Form Statement Overview.

# Records Description

NDT 1829 non-diagnostic T abnormalities
NST_ 770 non-specific ST changes
DIG 181 digitalis-effect
LNGQT 118 long QT-interval

ABQRS 3327 abnormal QRS
PVC 1146 ventricular premature complex
STD_ 1009 non-specific ST depression
VCLVH 875 voltage criteria (QRS) for left ventricular hypertrophy
QWAVE 548 Q waves present
LOWT 438 low amplitude T-waves
NT_ 424 non-specific T-wave changes
PAC 398 atrial premature complex
LPR 340 prolonged PR interval
INVT 294 inverted T-waves
LVOLT 182 low QRS voltages in the frontal and horizontal leads
HVOLT 62 high QRS voltage
TAB_ 35 T-wave abnormality
STE_ 28 non-specific ST elevation
PRC(S) 10 premature complex(es)

Table 8: Rhythm Statement Overview.

# Records Description

SR 16782 sinus rhythm
AFIB 1514 atrial fibrillation
STACH 826 sinus tachycardia
SARRH 772 sinus arrhythmia
SBRAD 637 sinus bradycardia
PACE 296 normal functioning artificial pacemaker
SVARR 157 supraventricular arrhythmia
BIGU 82 bigeminal pattern (unknown origin, SV or Ventricular)
AFLT 73 atrial flutter
SVTAC 27 supraventricular tachycardia
PSVT 24 paroxysmal supraventricular tachycardia
TRIGU 20 trigeminal pattern (unknown origin, SV or Ventricular)
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Table 9: Overview of number of statements per ECG introduced in ECG Statements.

Level 0 1 2 3 4 5 6 7 8 9

Diagnostic 407 15019 4242 1515 529 121 4 0 0 0
Diagnostic Superclass 407 16272 4079 920 159 0 0 0 0 0
Diagnostic Subclass 407 15239 4171 1439 475 102 4 0 0 0
Form 12849 6693 1672 524 90 9 0 0 0 0
Rhythm 771 20923 142 1 0 0 0 0 0 0
All 0 705 11247 5114 2597 1254 597 253 63 7

Table 10: Distribution of heart_axis as introduced in ECG Statements.

Keywords # Records

UNK Unknown 8505
MID Normal axis 7687
LAD Left axis deviation 3764
ALAD Abnormal LAD, extreme left axis deviation 1382
RAD Right axis deviation 221
ARAD Abnormal RAD, extreme right axis deviation 122
AXL Horizontal axis 102
AXR Vertical axis 51
SAG Saggital type (S1-S2-S3 Pattern) 3

Table 11: Distribution of infarction stadium across the dataset as introduced
in ECG Statements. Counts are cumulated from infarction_stadium and
infarction_stadium2 which are only set to a value if at least one statement
belongs to the superclass of Myocardial Infarction (MI).

Keyword # Records

Stadium I acut, early 186
Stadium I-II acut/subacut, ablaufend 5
Stadium II recent, subacut, bereits abgelaufen 107
Stadium II-III subacut/chronisch 943
Stadium III old, abgelaufen, chronisch 1045
unknown uncertain, unknown, unbekannt 3443

Table 12: Likelihood statements for diagnostic statements inferred from keywords in
the ECG report as introduced in ECG Statements.

Keywords Weighting Factor
(Confidence)

nicht auszuschliessen, cannot rule out, cannot be excluded 15%
möglicherweise, consider, suggest, likely 35%
wahrscheinlich, possible, maybe, probably, ablaufend, Verdacht auf 50%
Sonst, Bild 80%
Consistent with, Diagnose, Zustand nach... 100%
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