
DeepCABAC: Context-adaptive binary arithmetic coding for deep neural
network compression

Simon Wiedemann * 1 Heiner Kirchhoffer * 1 Stefan Matlage * 1 Paul Haase * 1 Arturo Marban 1

Talmaj Marinc 1 David Neumann 1 Ahmed Osman 1 Detlev Marpe 1 Heiko Schwarz 1 Thomas Wiegand 1

Wojciech Samek 1

Abstract
We present DeepCABAC, a novel context-
adaptive binary arithmetic coder for compressing
deep neural networks. It quantizes each weight pa-
rameter by minimizing a weighted rate-distortion
function, which implicitly takes the impact of
quantization on to the accuracy of the network
into account. Subsequently, it compresses the
quantized values into a bitstream representation
with minimal redundancies. We show that Deep-
CABAC is able to reach very high compression
ratios across a wide set of different network ar-
chitectures and datasets. For instance, we are
able to compress by x63.6 the VGG16 ImageNet
model with no loss of accuracy, thus being able to
represent the entire network with merely 8.7MB.

1. Introduction
Inspite of their state-of-the-art performance across a wide
spectrum of problems (LeCun et al., 2015), deep neural net-
works have the well-known caveat that most often they have
high memory complexity. This does not only imply high
storage capacities as a requirement, but also high energy re-
sources and slower runtimes for execution (Horowitz, 2014;
Sze et al., 2017; Wang et al., 2019). This greatly limits their
adoption in industrial applications or their deployment into
resource constrained devices. Moreover, this also difficults
their transmission into communication channels with lim-
ited capacity, which becomes an obstacle for distributed
training scenarios such as in federated learning (McMahan
et al., 2016; Sattler et al., 2018; 2019).

As a reaction, a plethora of work has been published on

*Equal contribution 1Department of Video Coding
& Analytics, Fraunhofer Heinrich-Hertz Institut, Berlin,
Germany. Correspondence to: Wojciech Samek <woj-
ciech.samek@hhi.fraunhofer.de>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019. Copyright
2019 by the author(s).

the topic of deep neural network compression (Cheng et al.,
2017; Cheng et al., 2018). From all different proposed
methods, sparsification followed by weight quantization and
entropy coding arguably belong to the set of most popu-
lar approaches, since very high compression ratios can be
achieved under such paradigm (Han et al., 2015a; Louizos
et al., 2017; Wiedemann et al., 2018a;b). Whereas much of
research has focused on the sparsification part, a substan-
tially less amount have focused on improving the later two
steps. In fact, most of the proposed (post-sparsity) com-
pression algorithms come with at least one of the following
caveats: 1) they decouple the quantization procedure from
the subsequent lossless compression algorithm, 2) ignore
correlations between the parameters and 3) apply a lossless
compression algorithm that produce a bitstream with more
redundancies than principally needed (e.g. scalar Huffman
coding). Moreover, some of the proposed compression al-
gorithms do also not take the impact of quantization on to
the accuracy of the network into account.

In this work we present DeepCABAC, a compression al-
gorithm that overcomes all of the above limitations. It
is based on applying a context-adaptive binary arithmetic
coder (CABAC) on to the quantized parameters, which is
the state-of-the-art for lossless compression. It also couples
the quantization procedure with CABAC by minimizing a
rate-distortion cost function where the rate explicitly mea-
sures the bit-size of the network parameters as determined
by CABAC. Moreover, it implicitly takes the impact of
quantization on to the networks accuracy into account by
weighting the distortion with a term that measures the “ro-
bustness” of the networks parameter. In our experiments we
show that we can significantly boost the compression perfor-
mance of a wide set of pre-sparsified network architectures,
consequently achieving new state-of-the-art results for the
VGG16 model.

2. CABAC
Context-adaptive binary arithmetic coding (CABAC) is
a form of lossless coding which was originally designed
for the video compression standard H.264/AVC (Marpe

DeepCABAC: Context-adaptive binary arithmetic coding for deep neural network compression

et al., 2003), but it is also an integral part of its successor
H.265/HEVC. CABAC does not only offer high flexibility
of adaptation, but also a highly efficient implementation,
thus attaining higher compression performance as well as
throughputs compared to other entropy coding methods
(Marpe & Wiegand, 2003). In short, it applies three power-
ful coding techniques: 1) Firstly, it binarizes the data to be
encoded. That is, it predefines a series of binary decisions
(also called bins) under which each data element (or sym-
bol) will be uniquely identified. 2) Then, it assigns a binary
probability model to each bin (also named context model)
which is updated on-the-fly by the local statistics of the data.
This enables CABAC with a high degree of adaptation to
different data distributions. 3) Finally, it employs an arith-
metic coder in order to optimally and efficiently code each
bin, based on the respective context model. To recall, arith-
metic coding is a form of entropy coding which encodes
entire strings of symbols into a single integer value. It is
well-known to outperform other coding techniques such as
the Huffman code (Huffman, 1952) with regards to both,
compactness of the data representation and coding efficiency
(Witten et al., 1987).

Due to the above reasons, we chose CABAC as our lossless
compression method and adapted it for the task of neural
network compression.

2.1. Binarization on deep neural networks

Inspired by a prior analysis on the empirical weight distri-
bution of different neural network architectures, we adopted
the following bianrization procedure. Given a quantized
weight tensor in its matrix form1, DeepCABAC scans the
weight elements in row-major order2 and encodes each quan-
tized weight element value by: 1) firstly determining if the
weight element is a significant element or not. That is, each
weight element is assigned with a bit which determines if the
element is 0 or not. This bit is then encoded using a binary
arithmetic coder, according to its respective context model.
The context model is initially set to 0.5 (thus, 50% probabil-
ity that a weight element is 0 or not), but will automatically
be adapted to the local statistics of the weight parameters
as DeepCABAC encodes more elements. 2) Then, if the
element is not 0, the sign bit is analogously encoded, ac-
cording to its respective context model. 3) Subsequently, a
series of bits are analogously encoded, which determine if
the element is greater than 1, 2, ..., n ∈ N. The number n
becomes a hyperparameter for the encoder. 4) Finally, the
reminder is encoded using a fixed-length binary code.

The decoding process is performed analogously. An ex-

1For fully-connected layers this is trivial. For convolutional lay-
ers we converted them into their respective matrix form according
to (Chetlur et al., 2014).

2From left to right, up to down.

Figure 1. DeepCABAC binarization of neural networks. It encodes
each weight element by performing the following steps: 1) encodes
a bit named sigflag which determines if the weight is a significant
element or not (in other words, if its 0 or not). 2) If its not 0,
then the sign bit, signflag, is encoded. 3) Subsequently, a series
of bits are encoded, which indicate if the weight value is greater
equal than 1, 2, ..., n ∈ N (the so called AbsGr(n)Flag). 4) Finally,
the reminder is encoded. The grey bits (also named regular bins)
represent bits that are encoded using an arithmetic coder according
to a context model. The other bits, the so called bypass bins, are
encoded in fixed-point form. The decoder is analogous.

ample scheme of the binarization procedure is depicted in
figure 1.

3. Weighted rate-distortion function
Before we apply CABAC, we have to firstly quantize the
weight parameters of the network. We do this by minimizing
a generalised form of a rate-distortion function. Namely, we
quantize each weight parameter wi to the quantization point
qk∗ that minimizes the cost function

wi → qk∗ = min
k
ηi(wi − qk)2 + λRik (1)

where Rik is the bit-size of the quantization point qk as
determined by DeepCABAC, and λ is the lagrangian multi-
plier that specifies the desired trade-offs between the bit-size
and distortion incurred by the quantization. Notice, how
the bit-size Rik now also depends on the index i of the
weight to be encoded. This is due to the context-adaptive
models which update their probabilities as new elements are
being encoded, thus being different for each weight wi and
consequently the bit-size of each quantization point qk.

Moreover, (1) introduces a weight-specific parameter ηi
which takes into account the relative impact that the dis-
tortion of a particular weight inccurs on to the accuracy
of the network. In this work we take a bayesian approach
in order to estimate this parameter. Namely, we assume a
gaussian prior for each weight parameter and apply scal-
able bayesian techniques in order to estimate their sufficient
statistics (Kingma et al., 2015; Molchanov et al., 2017;
Louizos et al., 2017). As a result, we attain a mean and
standard deviation value for each weight parameter of the

DeepCABAC: Context-adaptive binary arithmetic coding for deep neural network compression

Table 1. Compression ratios achieved when combining Deep-
CABAC with a sparsification method. In parenthesis are the results
from previous work, where 1(Han et al., 2015a) and 2(Louizos
et al., 2017).

Models Dataset Org.acc.
(top1)
[%]

Org.
size

Spars.
|w 6=0|
|w|

[%]

Comp.
ratio
[%]

Acc.
(top1)
[%]

VGG16 ImageNet 69.43 553.43
MB

9.85
(7.51)

1.57
(2.051)

69.43
(68.831)

ResNet50 ImageNet 76.13 102.23
MB

25.40
(29.01)

5.95
(5.951)

74.12
(76.151)

Mobile-
Net-v1

ImageNet 70.69 16.93
MB

50.73 12.7 66.18

Small-
VGG16

CIFAR10 91.35 59.9
MB

7.57
(5.52)

1.6
(0.862)

91.00
(90.82)

LeNet5 MNIST 99.22 1722
KB

1.90
(8.01)
(0.62)

0.72
(2.551)
(0.132)

99.16
(99.261)
(99.002)

LeNet-
300-100

MNIST 98.29 1066
KB

9.05
(8.01)
(2.22)

1.82
(2.491)
(0.882)

98.08
(98.421)
(98.202)

FCAE CIFAR10 30.14
PSNR

304.72
KB

55.69 16.15 30.09
PSNR

network, where the former can be interpreted as its (new)
value and the later as a measure of its “robustness”. Thus,
when quantizing each wi, we set ηi = 1/σ2

i in (1), with σi
being the respective standard deviation. This is also theoret-
ically motivated, since (Achille et al., 2017) established a
connection between the variances and the diagonal elements
of the fisher information matrix.

In order to minimize (1), we also need to define a set of
quantization points qk. We chose them to be equidistant to
each other with a particular distance ∆ ∈ R, namely,

qk = ∆Ik, ∆ =
2|wmax|

2|wmax|
σmin

+ S
, S, Ik ∈ Z (2)

where σmin is the smallest standard deviation and wmax the
parameter with highest magnitude value. S is then a hyper-
parameter, which controls the “coarseness” of the quantiza-
tion points. By selecting ∆ in such a manner we ensure that
the quantisation points lie within the range of the standard
deviation of each weight parameter, in particular for values
S ≥ 0. Moreover, by constraining them to be equidistant to
each other we encourage fixed-point representations, which
can be exploited in order to perform inference with lower
complexity (QNN; TFl).

4. Experiments
We applied DeepCABAC on the set of models described in
the evaluation framework (MPEG Requirements, 2019a) of
the MPEG call on neural network representations (MPEG

2https://github.com/slychief/ismir2018_
tutorial/tree/master/metadata

Requirements, 2019b). This includes the VGG16, ResNet50
and MobileNet-v1 models and a fully-convolutional autoen-
coder pretrained on a task of end-to-end image compression
(which we named FCAE). In addition, we also applied Deep-
CABAC on the LeNet-300-100 and LeNet5 models and on a
smaller version of VGG163 model (which we named Small-
VGG16).

We aplied the variational sparsification method introduced in
(Molchanov et al., 2017) on to the LeNet-300-100, LeNet5,
Small-VGG16, FCAE and MobileNet-v1 models. How-
ever, due to the high training complexity that this method
requires, we adopted a slightly different approach for the
VGG16 and ResNet50. Namely, we firstly sparsified them
by applying the iterative algorithm (Han et al., 2015b), and
subsequently applied method (Molchanov et al., 2017) but
only for estimating the variances of the distributions (thus,
fixing the mean values during training). After sparsification,
we applied DeepCABAC on to the weight parameters of
each layer separately, excluding biases and normalization
parameters. Since the compression result can be sensitive
to the parameter S in (2), we probed the compression per-
formance for all S ∈ {0, 1, ..., 256} and selected the best
performing model.

The resulting sparsities as well as the compression ratios
are displayed in table 1. Notice that for most networks we
are not able to reproduce the sparsity ratios reported in the
literature. In addition, we did not perform any fine-tuning
after compression, thus having a particularly challenging
setup for achieving good post-sparsity compression ratios.
Nevertheless, in-spite of these two disadvantages, Deep-
CABAC is able to significantly compress further the models,
boosting the compression by 74% (± 8%) on average and
consequently achieving compression results comparable to
the current state-of-the-art. Moreover, we are able to com-
press by x63.6 (1.57%) the VGG16 model without loss of
accuracy, thus reaching a new state-of-the-art benchmark.

5. Conclusion
We show that one can boost significantly the compression
gains if one applies state-of-the-art coding techniques on
to pre-sparsified deep neural networks. In particular, our
proposed coding scheme, DeepCABAC, is able to increase
the compression rates of pre-sparsified networks by 74% on
average, attaining as such compression ratios comparable
(or sometimes higher) to the current state-of-the-art. In
future work we will benchmark DeepCABAC also on non-
sparsified networks, as well as apply it in the context of
distributed learning scenarios where memory complexity is
critical (e.g. in federated learning).

3http://torch.ch/blog/2015/07/30/cifar.
html

DeepCABAC: Context-adaptive binary arithmetic coding for deep neural network compression

References
QNNPACK open source library for optimized mobile

deep learning. https://github.com/pytorch/
QNNPACK. Accessed: 28.02.2019.

TensorFlow Lite. https://www.tensorflow.org/
lite. Accessed: 28.02.2019.

Achille, A., Rovere, M., and Soatto, S. Critical learning pe-
riods in deep neural networks. arXiv:1711.08856, 2017.

Cheng, Y., Wang, D., Zhou, P., and Zhang, T. A survey
of model compression and acceleration for deep neural
networks. arXiv:1710.09282, 2017.

Cheng, Y., Wang, D., Zhou, P., and Zhang, T. Model com-
pression and acceleration for deep neural networks: The
principles, progress, and challenges. IEEE Signal Pro-
cessing Magazine, 35(1):126–136, Jan 2018.

Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J., Tran,
J., Catanzaro, B., and Shelhamer, E. cudnn: Efficient
primitives for deep learning. arXiv:1410.0759, 2014.

Han, S., Mao, H., and Dally, W. J. Deep compression:
Compressing deep neural network with pruning, trained
quantization and huffman coding. arXiv:1510.00149,
2015a.

Han, S., Pool, J., Tran, J., and Dally, W. J. Learning both
weights and connections for efficient neural networks.
In Advances in Neural Information Processing Systems
(NIPS), pp. 1135–1143, 2015b.

Horowitz, M. 1.1 computing’s energy problem (and what
we can do about it). In IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC),
pp. 10–14, Feb 2014.

Huffman, D. A. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–
1101, Sep. 1952.

Kingma, D. P., Salimans, T., and Welling, M. Variational
dropout and the local reparameterization trick. In Ad-
vances in Neural Information Processing Systems (NIPS),
pp. 2575–2583, 2015.

LeCun, Y., Bengio, Y., and Hinton, G. E. Deep learning.
Nature, 521:436–444, 2015.

Louizos, C., Ullrich, K., and Welling, M. Bayesian Com-
pression for Deep Learning. In Advances in Neural In-
formation Processing Systems (NIPS), pp. 3288–3298,
2017.

Marpe, D. and Wiegand, T. A highly efficient multiplication-
free binary arithmetic coder and its application in video
coding. In Proceedings 2003 International Conference
on Image Processing (Cat. No.03CH37429), volume 2,
pp. 263–266, Sep. 2003.

Marpe, D., Schwarz, H., and Wiegand, T. Context-based
adaptive binary arithmetic coding in the h.264/avc video
compression standard. IEEE Transactions on Circuits
and Systems for Video Technology, 13(7):620–636, July
2003.

McMahan, H. B., Moore, E., Ramage, D., and y Arcas,
B. A. Federated learning of deep networks using model
averaging. arXiv:1602.05629, 2016.

Molchanov, D., Ashukha, A., and Vetrov, D. Variational
dropout sparsifies deep neural networks. In International
Conference on Machine Learning (ICML), pp. 2498–
2507, 2017.

MPEG Requirements. Updated evaluation framework for
compressed representation of neural networks. N18162.
Technical report, Moving Picture Experts Group (MPEG),
Marrakech, MA, Jan. 2019a.

MPEG Requirements. Updated call for proposals on neural
network compression. N18129. Cfp, Moving Picture
Experts Group (MPEG), Marrakech, MA, Jan. 2019b.

Sattler, F., Wiedemann, S., Müller, K.-R., and Samek,
W. Sparse binary compression: Towards dis-
tributed deep learning with minimal communication.
arXiv:1805.08768, 2018.

Sattler, F., Wiedemann, S., Müller, K.-R., and Samek, W.
Robust and communication-efficient federated learning
from non-iid data. arXiv:1903.02891, 2019.

Sze, V., Chen, Y.-H., Yang, T.-J., and Emer, J. S. Efficient
processing of deep neural networks: A tutorial and survey.
arXiv:1703.09039, 2017.

Wang, E., Davis, J. J., Zhao, R., Ng, H.-C., Niu, X., Luk, W.,
Cheung, P. Y. K., and Constantinides, G. A. Deep neu-
ral network approximation for custom hardware: Where
we’ve been, where we’re going. arXiv:1901.06955, 2019.

Wiedemann, S., Marbán, A., Müller, K.-R., and Samek,
W. Entropy-constrained training of deep neural networks.
arXiv:1812.07520, 2018a.

Wiedemann, S., Müller, K.-R., and Samek, W. Compact and
computationally efficient representation of deep neural
networks. arXiv:1805.10692, 2018b.

Witten, I., H, I., , N., M, R., , C., and G, J. Arithmetic
coding for data compression. Communications of the
ACM, 30(6):520–540, Jun 1987.

