
1

FantastIC4: A Hardware-Software Co-Design
Approach for Efficiently Running 4bit-Compact

Multilayer Perceptrons
Simon Wiedemann†, Suhas Shivapakash†, Student Member, IEEE, Pablo Wiedemann†, Daniel Becking, Wojciech

Samek, Member, IEEE, Friedel Gerfers, Member, IEEE, and Thomas Wiegand, Fellow, IEEE

Abstract—With the growing demand for deploying Deep Learn-
ing models to the “edge”, it is paramount to develop techniques
that allow to execute state-of-the-art models within very tight
and limited resource constraints. In this work we propose a
software-hardware optimization paradigm for obtaining a highly
efficient execution engine of deep neural networks (DNNs) that
are based on fully-connected layers. Our approach is centred
around compression as a means for reducing the area as well
as power requirements of, concretely, multilayer perceptrons
(MLPs) with high predictive performances. Firstly, we design
a novel hardware architecture named FantastIC4, which (1)
supports the efficient on-chip execution of multiple compact
representations of fully-connected layers and (2) minimizes the
required number of multipliers for inference down to only 4 (thus
the name). Moreover, in order to make the models amenable for
efficient execution on FantastIC4, we introduce a novel entropy-
constrained training method that renders them to be robust to
4bit quantization and highly compressible in size simultaneously.
The experimental results show that we can achieve throughputs
of 2.45 TOPS with a total power consumption of 3.6W on a
Virtual Ultrascale FPGA XCVU440 device implementation, and
achieve a total power efficiency of 20.17 TOPS/W on a 22nm
process ASIC version. When compared to the other state of art
accelerators designed for the Google Speech Command (GSC)
dataset, FantastIC4 is better by 51× in terms of throughput and
145× in terms of area efficiency (GOPS/W).

Keywords—Deep learning, neural network compression, efficient
representation, efficient processing of DNNs, DNN accelerator.

I. INTRODUCTION

In recent years, the topic of “edge” computing has gained
significant attention due to the benefits that come along with
processing data directly at its source of collection [1]. For
instance, by running machine learning algorithms directly at
the edge-device (e.g., wearables), latency issues can be greatly
mitigated and/or increased privacy can be guaranteed since no

†Equal contribution.
Suhas Shivapakash and Friedel Gerfers are with chair of Mixed Signal Cir-

cuit Design, Department of Computer Engineering and Microelectronics, Tech-
nical University of Berlin, Berlin, Germany, e-mail: suhas.shivaprakash@tu-
berlin.de

Simon Wiedemann, Pablo Wiedemann, Daniel Becking, Wojciech Samek
are with Machine Learning Group, Fraunhofer Heinrich Hertz Institute, Berlin,
Germany, e-mail: wojciech.samek@hhi.fraunhofer.de

Thomas Wiegand is with chair of Media Technology, Technical University
of Berlin and Fraunhofer Heinrich Hertz Institute, Berlin, Germany, e-mail:
thomas.wiegand@hhi.fraunhofer.de

data must be send to third-party cloud providers. Naturally,
this has triggered the interest in deploying deep learning
models to such embedded devices due to their high predictive
performance. However, traditional deep learning models are
usually very resource hungry since they entail a large number
of parameters. In particular, processing a high number of
parameters usually requires expensive hardware components
such as large memory units and, if high throughput and low
latency is desired, a high number of multipliers for parallel
processing. This comes at the expense of spending lots of
resources in power consumption and chip-area, thus greatly
limiting their application in use-cases with tight area and power
consumption budgets such as in the IoT or wearables.

This motivates the research of methods that can highly
compress the DNNs weight parameters since, by doing so,
we do not only minimize the respective data movement and
therefore its power consumption, but also the required chip-
area during execution. However, the efficient processing of
compressed representations of data comes with a series of
challenges, inter alia bit-alignment problems, reduction of
locality, increased serialization, etc. Moreover, state-of-the-
art compression techniques require complex decoding prior
to performing arithmetic operations, which can compensate
for the savings attained from compression specially when the
hardware is not tailored to such type of decoding algorithms.
This motivates a hardware-software co-design paradigm where,
on the one hand, novel training techniques that make DNNs
highly compressible are proposed and, on the other hand, novel
hardware architectures are designed supporting the efficient,
on-chip execution of compressed representations.

In this work we propose a software-hardware optimization
paradigm which allows to efficiently execute highly compact
representations of DNNs based on fully-connected (FC) layers.
We specifically focus on fully-connected layers since they
are usually the largest in terms of size in a typical DNN
model, and their execution is fundamentally more memory-
bounded than other types of layers (e.g. convolutaional layers).
Moreover, a wide set of popular DNN architectures are entirely
composed by FC layers, such as LSTMs and Transformers,
highly relevant for time-series and natural language processing
tasks. Moreover, multilayer perceptrons (MLPs) are already
the status quo in use cases with very tight resource constraints,
since many studies identified MLPs to be one of the best algo-
rithms to solve tasks in the IoT domain using wearable devices



2

[2]. We apply several optimization techniques from both, the
hardware and software fronts, all tailored to increase the area
efficiency and lower the power consumption of inference. Our
goal is ultimately to make state-of-the-art MLP models more
amenable for, e.g., the aforementioned applications.

Our contributions can be summarized as follows:

• Firstly, we design a specialized hardware accelerator,
named FantastIC4, which implements a first-
accumulate-then-multiply computational paradigm
(ACM) in order to minimize the required number of
multipliers for inference down to only 4 (thus the
name of the architecture). By implementing ACM
we significantly reduce the computational resource
utilization compared to the usual multiply-accumulate
(MAC) paradigm, naturally due to performing less
multiplication in total, but also due to better data
movement of the activations for MLP models (activation
stationary) as well as reduction in required area and
power consumption for computations.

• FantastIC4 also supports the efficient, on-chip execution
of multiple compressed representations of the weight pa-
rameters of FC layers. This boosts the compression rate
of the layers, consequently improving the off- and on-
chip data movement, thus saving in power consumption
as well as area requirements since lower-sized memory
units can be implemented.

• In order to make the models amenable for the efficient
execution on FantastIC4, we propose a novel training
algorithm that makes the models robust to 4bit quan-
tization while simultaneously encouraging low entropy
statistics of the weights. Explicitly enforcing low entropy
statistics reduces the size-requirements of the parameters
and encourages sparsity simultaneously, which we ex-
ploit by converting the parameters to compressed sparse
formats.

• Our experimental results show that we can save 80%
energy by compression and avoiding unwanted data
movement between the DDR3 DRAM and the on-chip
SRAM and 75% of power by handling the 4-bit precision
and sparsity in the processing elements (PEs).

• We evaluate the FantastIC4 on FC layers of popular
DNN models, as well as on custom multilayer per-
ceptrons (MLPs) trained on hand-gesture and speech
recognition tasks. We compare our accelerator to other
State of Art (SoA) FPGA and ASIC accelerators, and
see an improvement by 51× in terms of throughput and
by 145 in terms of area efficiency (GOPS/mm2).

In section II we describe the other state of art techniques
both on the hardware and software platform. section III we
describe the need for using 4-bit quantization and how we
handle the sparsity. The complete hardware architecture with
PE design and other floating point operations is described in
section V. In section IV we explain the training of the 4-bit-
compact DNNs. The experimental methodology is explained
in section VI, followed by conclusion in section VII.

II. RELATED WORK

In recent years there has been a plethora of work published
on the topic of efficient processing of DNNs, ranging from
topics of neural architecture search, pruning or sparsification,
quantization, compression and designing specialized hardware
achitectures. [3], [4] give an excellent overview on the land-
scape of different approaches and techniques studied in this
topic.

A. Techniques for reducing the information content of the
DNNs parameters

The previous compression technique [5] pioneered a particu-
lar paradigm that is based on chaining sparsification, quantiza-
tion and lossless compression methods in order to significantly
reduce the redundancies entailed in DNNs weight parameters.
[5] was able to compress (at that time) state-of-the-art DNN
models by up to 49×. However, several follow up works have
been able to achieve improvements on all three fronts.

Lossless compression. [6] showed that by coupling quan-
tization with a powerful universal entropy coder, the com-
pression gains can be boosted to 63× on the same models.
Although the proposed method achieves impressive compres-
sion gains, the resulting representation of the DNNs weights
requires decoding in order to perform inference. In contrast,
similar to the Compressed Sparse Row (CSR) matrix format
employed in [5], [7] derives a representation that compresses
the weights and enables inference in the compressed repre-
sentation without requiring decoding. [7] showed that their
proposed Compressed Entropy Row (CER) matrix format is
up to 2× more compact and efficient than the CSR format
when applied to DNNs.

Quantization. In recent years researchers have been able to
push more and more the limits of quantization. In particular,
there is a growing corpora of work showing that extreme
quantization of the weights down to 4-bits is possible, while
minimally affecting the prediction accuracy of the network
[8]–[14]. 4bit quantization offers directly 8× compression
gains and similar improvements in computational efficiency.
Stronger quantization techniques such as ternary and binary
networks have also been proposed [15], [16]. Although they
offer highly efficient implementations on a hardware level, they
usually come at the expense of significant degradation of the
accuracy of the network.

Simultaneous optimization of sparsity, quantization and
compression. Some recent work have attempted to derive a
unified framework for sparsifying, quantizaing and compress-
ing DNNs parameters. In particular, some have proposed novel
regularizers that constrain the entropy of the weight parameters
during training, thus explicitly minimizing the information
content of the weights [16], [17]. Concretely, in these works
the first-order entropy is considered, that is, the entropy value
as measured by the empirical probability mass distribution of
the parameters. This regularization technique is theoretically
well motivated, directly measures the possible size reduction
of the model and encourages sparsity and quantization of the
weights to low bit-widths simultaneously. These works were
able to attain state-of-the-art compression results, e.g., [16] was



3

able to train highly sparse and ternary DNNs, becoming one
of the top 5 finalists in the NeurIPS19 Micronet Challenge1.

B. Hardware accelerators

There are large number of hardware accelerators from both
the academia and industry that are concentrating on high
performance as well as energy efficiency. Some of the topics
that have been studied and analyzed are:

Data Flow Movement. Data flow movement is one of
the key aspects in designing the hardware accelerators for
any AI applications. Effective movement of the weights and
activations help in reducing a large amount of energy and the
power requirement. The work in [18] provides an effective
row stationary method and competent reusing of weights,
input feature maps (Ifmaps) and partial sums (Psums) resuse.
The Psums truncation from each of the preceding layers and
performing inference on the truncated Psums and weights was
shown in [19]. Bit Fusion [20] dynamically shared the weights
across the different layers of a DNN model. The FantastIC4
concentrates on reducing the data movement by 4-bit precision
and using FIFOs as a data buffer. bit mask encoding to fetch
the data from the FIFOs based on the sparsity. In addition,
FantastIC4 also supports effective handling of layer weights
by fetching the bit mask encoded non-zero values in a FIFO
manner. Lastly, The floating point operations are pipelined to
ensure the dynamic power is saved without compromising on
the accuracy.

Sparse Data Compression. The compression with sparsity
and pruning was shown in [5] to fit the DNN models in
the on-chip SRAM. Based on the pruning and sparsity, the
hardware accelerator is implemented in [21] and it is 19×
more energy efficient than the uncompressed versions. The
compression was further extended to convolutional layers in
[22]. The weights and activations was compressed using CSC
format [23]. The scalpel accelerator [24] showed that the
weight pruning achieves a total speedup of 1.9×. In contrast to
FantastIC4, all mentioned accelerators support only one partic-
ular compressed format which can greatly limit the attainable
compression gains and consequently the power savings from
off-chip to on-chip data movement.

FPGA based Accelerators. A number of FPGA accelera-
tors have proposed solutions for optimized accelerator designs
both in the industry and academia. The energy efficient FPGA
accelerator [25] performed inference on CNN with binary
weights. The processor achieves a throughput of 2100 GOPs
with a latency of 4.6ms and power of 28W. The hardware-
software co-design library to efficiently accelerate the entire
CNN and FCN on FPGAs was shown in [26]. The floating
point arithmetic CNN accelerator [27] introduced an opti-
mized quantization scheme based on rounding and shifting-
operations, they reported an overall throughput of 760.83
GOPs. The other accelerators worked on sparse matrix vector
multiplications mainly for the multilayer perceptrons [28],
[29]. Even though these accelerators have a good performance,

1https://micronet-challenge.github.io

they still lack either in throughput, power or latency require-
ments. The FantastIC4 FPGA version, utilizes efficient com-
putation approach to achieve high throughput, with minimal
power, latency and resource requirements.

III. RATIONALE BEHIND FANTASTIC4’S DESIGN

In this work we propose to apply several optimization
techniques that, in combination, are tailored to reduce both,
area and energy requirements for performing inference. The
main idea is to apply techniques that minimize the memory
requirements as well as the number of multiplications needed
to perform inference, since both are the major source of area
utilization and power consumption.

A. Why do we focus on 4bit quantization?
As mentioned in the related work Section II, it is well

known that quantization is a powerful technique for lowering
the memory as well as computational resources for inference
[3], [4]. The increasing demand for deployment of DNNs on
edge devices with very tight hardware constraints (e.g. micro-
controllers) has pushed researchers to investigate methods for
extreme quantization, resulting in weights with merely 4bits
or lower. This directly translates to 8× compression of the
model, which is beneficial for mininmizing the costs involved
in off- and on-chip data movement of the weights. In particular,
FC layers have shown to be highly redundant and robust to
extreme quantizations down to 4bit [5], [21], which again is
the main focus of our work.

1) (Contribution 1) Increasing the computational efficiency:
However, most often the inference modules of extremely
quantized layers are implemented following the usual multiply-
accumulate (MAC) computational paradigm as shown in
Fig. 1. We argue that in the regime of extreme low precision
this computational paradigm is not the most efficient. Instead,
we propose to first accumulate the activations at each bit-level
and subsequently multiply the results, thus an accumulate-
multiply (ACM) computational paradigm. More concretely, we
follow the equation

W ·A︸ ︷︷ ︸
MAC

=

(
3∑
i=0

ωiBi

)
·A =

3∑
i=0

ωi(Bi ·A)︸ ︷︷ ︸
ACM

(1)

where we denote as W the weight parameters of, e.g., a fully-
connected layer, A the input activations, · the operator denoting
the dot product and Bi a binary mask corresponding to the base
ωi. Thus, as shown in equation (1), we represent the weight
parameters W as a linear combination of four binary masks Bi
with respective coefficients ωi. This representation generalizes
any type of 4bit-representation that is applied to the weights.
For instance, if ωi = 2i then the elements of W are simply
represented in the uint4 format.

As one can see from the right-hand side of equation (1), we
can first accumulate the activation values that are positioned
as indicated by the bitmasks Bi, and then multiply the output
by the base value (or base centroid) ωi. This significantly
reduces the required number of multiplications. Concretely,



4

-2.2 1.1 0 -1.3

0.7

-0.2

-1.3

1.2

Scalar product

MAC:

ACM:

0.7 -0.2 -1.3 1.2

x -1.54 -0.22 0 -1.56 -3.32

1 1 0 1

1 0 0 0

0 0 0 1

0 1 0 0

-2.2 1.1 0 -1.3

Sum elements
Element-wise 

multiplication

0.7 -0.2 -1.3 1.2 -1.43

-0.77

0.13

2.53

1.7

0.7

1.2

-0.2

x

x

x

x

-2.43

-0.54

0.16

-0.51

-3.32

Sum elements as 

stated by bits

Bit-wise decomposition

according to base values

[-1.43, -0.77, 0.13, 2.53]

+

+

+

+

+

Multiply with 

base values

Reduce

+
+
+
+

-2.2 1.1 0 -1.3

Fig. 1: Sketch example on the different computational paradigms when performing the dot product algorithm. Given two
input vectors, the multiply-accumulate (MAC) calculates the respective scalar product by firstly multiplying the elements and
subsequently adding them. In contrast, the accumulate-multiply (ACM) firstly sums the elements of one of the vectors (in this
diagram the right-hand-side vector) according to the bit-decomposition of the other, then multiplies the respective basis values
and finally reduces the output. In the above sketch the base values were [-1.43, -0.77, 0.13, 2.53], and we color-coded according
to [blue, green, red, pink] respectively. Thus, the original element values result by performing the linear combination in the
vertical direction, for instance, −2.2 = 1× (−1.43) + 1× (−0.77) + 0× (0.13) + 0× (2.53).

in our setup only 4 multiplications are required per output
element, which is almost negligible for large dimensions of
the input activations. Thus, the inference procedure is now
dominated by the complexity of performing additions. We refer
to the appendix for a more comprehensive explanation of how
the ACM computational flow works, and how it compares to
the traditional MAC paradigm.

2) (Contribution 2) Increasing the capacity of the model:
Moreover, the usual MAC computational paradigm requires
to also quantize the activations of the model down to 4bits
(or lower) in order to exploit the benefits from extreme
quantization. Since activations are often more sensitive to
perturbations than the weights as shown in Fig. 2, this most
often results in significant degradation of the NN prediction
performance. Moreover, special parameters such as bias and
batch-normalization tend to also be more sensitive than the
weight parameters. This motivates the support of mixed-
precision layers where input and output activations, as well
as bias and batch-norm parameters can be represented with
higher precision than the weights in order to compensate for
the accuracy degradation. FantastIC4s design supports higher
precision activation values, since this can be easily integrated
within the ACM computational flow. In addition, we support
full-precision representation of the batch-norm parameters as
well as the bias coefficients, since their memory and compute
cost are relatively low as compared to the operations involved
in the weight parameters.

In addition, in our work we do not constrain the linear
coefficients values ωi to be of powers of 2, as it is most
common in the MAC approach, but allow ωi ∈ R. This
increases the expressive power of W , and with it the capacity
of the model, allowing it to better learn more complex tasks
(section VI).

3 4 5 6 7 8 9 10 11 12 13
Bitwidth

0

10

20

30

40

50

60

70

80
Ac

cu
ra

cy
 [%

]
Weights vs. activations quantization EfficientNet-B0

weights
activations
baseline

Fig. 2: Difference in sensitivity between the activations and
weight parameters of the EfficientNet-B0 model. Activations
are more sensitive to quantization since the prediction per-
formance of the model drops significantly faster (at higher
precision values).

B. Why do we focus on low entropy?

As thoroughly discussed in [7], lowering the entropy of the
weights comes with a series of benefits in terms of memory as
well as computational complexity. We stress that by entropy
we mean the first-order entropy, that is, as measured by
the empirical probability mass distribution of the parameters.
Concretely, H = −

∑
i Pi log2 Pi, where Pi measures the



5

empirical probability mass distribution of the i-th cluster
center. In the following we explain how in this work we
leverage on the low-entropy statistics of the weights.

1) (Contribution 3) Saving arithmetic operations: Low en-
tropy statistics encourage sparsity [7]. As thoroughly explained
in previous work [18], [21], [22], sparsity allows to save
computations by skipping zero-valued operations. In particular,
FantastIC4 does not perform additions of activations when
zero-valued weights are present, thus saving on arithmetic
operations and consequently dynamic energy consumption.

Moreover, low entropy statistics do also encourage low
number of unique non-zero values, thus a high probability
of encountering the same non-zero value. This property can
be exploited when loading non-zero values, by reducing the
dynamic power required when loading the same value.

2) (Contribution 4) Multiple lossless compression: There
are several ways to compress sparse weights. One is by
converting the weights in the Compressed Sparse Row (CSR)
format [5], which is based on applying run-length coding
for saving the signaling of the positions of non-zero values.
Another one is by applying a simple form of Huffman coding,
which consists of storing a bitmask indicating the positions of
the non-zero values followed by an array of non-zero values
organized in, e.g., row-major order. In the high sparsity regime
(>90% of zeros), the CSR format attains higher compression
gains, whereas for smaller sparsity ratios (25% - 90% of zeros)
the Huffman code compresses more the weights. Since the
sparsity ratio of different layers can vary significantly, Fantas-
tIC4 supports the processing of both sparse representations on-
chip. This allows for more flexible compression opportunities,
consequently boosting the compression gains of the model and
saving on off- to on-chip transmission costs.

IV. TRAINING 4BIT-COMPACT DNNS

As described in the previous Sections III, our proposed
optimization paradigm is based on the fact that the weight
parameters exhibit low-entropy statistics and can be repre-
sented with 4bits. However, if we naively lower the entropy
and strongly quantize a pretrained model then, most often, we
would incur a significant drop in accuracy (see experimental
section VI). Therefore, in this work we propose a novel
training algorithm that makes DNN models robust to such type
of transformations.

A. Entropy-constrained training of DNNs
Our method is strongly based on EC2T, a method proposed

in [16] that trains sparse and ternary DNNs to state-of-the-
art accuracies. We generalize their approach so that DNNs
with 4bit weights and low entropy statistics are attained
instead. Concretely, our training algorithm is composed by the
following steps:

1) Quantize the weight parameters (but keep a copy of
the full-precision weights) by applying the entropy-
constrained Lloyd (ECL) algorithm [30].

2) Apply the straight-through estimator (STE) [31] and
forward + backward pass the quantized version of the
model.

3) Update the full-precision weights and the centroids with
the computed gradients.

Fig. 3 sketches the training method.

B. Definition of the centroids
As described in equation (1) (section III), we represent the

weight parameters W of the DNN as a linear combination of 4
binary masks Bi with respective coefficients ωi. This allows us
to define 16 different cluster center values (or centroids), with
four of them being the coefficients ωi and the rest a particular
linear combination of them. In order to increase the capacity of
the models, we assign to each weight parameter W his unique
set of four centroids Ω.

C. Entropy-Constrained Lloyd algorithm (ECL)
The ECL algorithm is a clustering algorithm that also

takes the entropy of the weight distributions into account. We
stress that throughout this work we define entropy as H =
−
∑
i Pi log2 Pi, where Pi measures the empirical probability

mass distribution of the i-th cluster center. To recall, the H
states the minimum average amount of bits required to store
the output samples of the distribution [32]. Thus, ECL tries
not to only minimize the distance between the centroids and
the parameter values, but also the information content of the
clusters. Again, this regularization term is theoretically well
motivated, directly measures the possible size reduction of the
model and encourages sparsity + quantization of the weights
to low bit-widths.

However, we slightly modify the algorithm so that the
cluster centers are not updated by the ECL method. Instead,
we fine-tune the cluster centers with the information received
from the gradients (more in subsection IV-E).

D. Making DNNs robust to post-training quantization
As we stated earlier, if we naively apply the ECL algorithm

to a pretrained network, then the accuracy drop may be
significant. Therefore, we apply the STE method [31] in order
to make them robust to extreme quantization. In the case of
NNs this simply means to apply further training iterations
where we update the the full-precision parameters with regards
to the gradients computed by the quantized parameters. By
doing so we adapt the full-precision weight parameters to
the prediction error incurred by the quantization, thus forcing
them to move to minima where they are robust to ECL-based
quantization.

E. Fine-tuning centroids
Our particular contribution is reflected in the definition

of the 16 clusters and their respective gradient propagation
(i.e. fine-tuning). To recall, we represent each (quantized)
weight parameter as a linear combination of 4 binary masks
Bi with respective coefficients ωi, thus W =

∑3
i=0 ωiBi.

Therefore, we only update the four basis centroids ωi at each
training iteration, since 12 out of the 16 centroids are linear
combinations of these. Hence, we calculate the gradients δωi



6

-0.1 -2.3 -1.3 0.1

0.4 1.7 -0.6 1.1

1.4 -0.2 -2.1 0.3

0.2 2.2 -1.6 0.9

0 1 0 0
0 1 0 0
0 0 1 0
0 1 0 0

0 1 1 0
0 0 0 1
1 0 1 0
0 0 1 1

0 0 0 0
0 1 0 1
1 0 0 0
0 1 0 1

0 0 1 0
0 1 0 0
0 0 0 0
0 1 1 0

0 -2.2 -1.3 0

0 1.9 0 1.1

1.1 0 -2.2 0

0 1.9 -1.3 1.1

x
-1.43

x
-0.77

x
0.13

x
2.53

-0.11 0.21 0.13 0.34

0.21 -0.26 0.02 -0.01

0.67 0.55 -0.43 -0.57

0.07 0.09 -0.77 0.33

+

ECL

Clustering Gradients

Update

-0.26 -0.01 0.67 0.09 0.33

0.13 -0.26 0.09 -0.77

0.21 -0.26 -0.43 0.09

0.21 0.13 -0.01 0.67 -0.77 0.33

Group

0.16 -0.20 -0.10 0.09

Reduce
Full precision

Parameters

Quantized

Parameters

Full precision

Gradients 

Centroid

Gradients 

Binary

Masks 

Linear combination

Basis 

centroids Update

Fig. 3: 4bit-entropy-constrained training method for compressing DNNs, based on the straight through estimator (STE). Firstly, the
full-precision parameters are quantized using the entropy-constrained Lloyd (ECL) algorithm, whereas the quantization points are
constrained to be linear combinations of 4 bitmasks with 4 basis centroids. Then, the gradients are calculated w.r.t. the quantized
DNN model. The full-precision parameters are respectively updated, whereas the gradients of each basis centroid are computed
by grouping and reducing their respective shared gradient values.

of each centroid ωi as follows: Let δW be the gradient tensor
of the weight parameter W , then

δωi =
∑
j=0

δWj Bi (2)

with Bi being the binary mask respective to the coefficient
ωi, and j being the dimension that iterates over all parameter
elements.

After computing the gradient of each centroid, we update
them by applying the ADAM optimizer.

V. FANTASTIC4: SPECIALIZED HARDWARE ACCELERATOR
FOR RUNNING 4BIT-COMPACT DNNS

The Fig. 4 shows the overview of the FantastIC4 system.
The whole system is a heterogeneous combination of a CPU
and an FPGA architecture. The entire system comprises of
mainly three parts: the software program on the CPU, the
external DDR3 memory and the hardware architecture on the
FPGA chip. The software part mainly consists of the CPU that
transfers the input data as well as the DNN model (only one
time) to the FPGA. Since all the data is usually very large
and can therefore not entirely be stored on an on-chip BRAM,
some of it is stored in an off-chip DRAM. The data is then
accessed through a memory controller which is built across
a memory interface generator (MIG) IP. On the FPGA chip,
we have the FantastIC4 control unit, memory controller, I/O
Buffers and the FantastIC4 accelerator. The memory controller
facilitates the movement of the input data from off-chip DRAM
to the accelerator and stores back the computation results into
the DRAM. The control unit regulates the behaviour of other
modules on the FPGA, it handles the data movement and

DNN Model 
(4-Bit Quantize + Input Data)

DDR3
MEM

Memory Controller

FantastIC4 
Accelerator

Input/Output 
Buffers

FantastIC4 
Control Unit

Fig. 4: FantastIC4 System.

the computation inside the accelerator. The I/O buffers stores
the input data for processing and stores back the PSum data
from the accelerator for the subsequent layer inference. The
FantastIC4 accelerator is the heart of the entire system which
reads the data from the DRAM, performs the computation and
stores back the results into the DRAM memory.

A. Memory Controller and Input/Output Buffers
The DDR3 memory is accessed by the FantastIC4 accelera-

tor through a MIG interface operating at a clock frequency
of 200MHz. We employ the AXI communication protocol
for the data movement between the FPGA chip and the off-



7

TABLE I: Control States of the FantastIC4 Control Unit

Data
Movement - Acts,Wt,Bias

alpha and CSR CSR Data - - - - - - -

Computation - - BM Conv Wt ID Add tree/
MAC Fix-Flt FLT

Mul1
Flt

Add
Float
Mul1 Float-Int

State Start State1 State2 State3 State4 State5 State6 State7 State8 State9
Time(ns) 0 5000 10 10 10 30 50 50 40 20

Compressed 

Non-Zero 

Positions 

Memory (8KB)

CSR Logic to 

Bit Mask

2 x 1 

Mux

FIFO

0

FIFO

1

FIFO

255

FIFO Module

ID 0 ID 1 ID 255

Weight ID Generator

Adder Tree

Fixed-Float 

Converter

32-Bit Floating 

Point 

Multiplier1

MAC Array

32-Bit Floating 

Point Adder

ReLU

32-Bit Floating 

Point 

Multiplier2

16-Bit Fixed 

Point Rounder

W1

W2

W3

W4

Alpha1

Alpha

2

Bias

PSum

1

256

4
32

32

32

16

Activations

CSR

Ptr

Select

Bits

FIFO Data

16

Fig. 5: FantastIC4 Architecture.

chip DRAM. The microblaze CPU and other AXI control
IPs are used to communicate through the MIG interface with
the DDR3. The memory controller receives the instruction
from the FantastIC4 control unit through the AXI master to
read and write the data from/to the memory. The I/O buffers
provides the dual buffering for the data movement in a ping-
pong manner.

B. FantastIC4 Control unit

Our proposed accelerator has two levels of control hierarchy.
The Table I shows the control states for our accelerator. The
first level of hierarchy i.e. the Start and the State1 controls
the data movement between the DRAM, memory controller
and the accelerator on the FPGA chip. Here the activations,
weights, biases, alpha values for floating point operations,
FIFO data and 256-bits CSR Pointer data are moved into
their respective memory/registers for computation. In this level
all the data movement operations are performed sequentially,
the total time taken to complete these two states are ap-
proximately around 5000ns for MLP models. Here the total
time taken is mainly dependent on the DNN model which is
under inference. In the next level of hierarchy we perform
the computations, State2-State9 shows the different stages of
processing performed on the accelerator. The different orders
of computation performed are: CSR to bitmask conversion,
weight ID generation, accumulation and multiply operation and
finally the single precision floating point operation. The total
time taken to perform the computation is around 220ns. The

computation time is less because all the states are working
concurrently and each state is independent on the other states
except on the first iteration.

C. FantastIC4 Architecture

The top-level hierarchy of the FantastIC4 architecture is
shown in Fig. 5. The architecture operates on a single clock
frequency domain of 150MHz (FPGA Based Implementation)
and 800MHz (ASIC Based Implementation). FantastIC4 is
composed of CSR to bit mask logic to perform CSR to bit
mask conversion, FIFO modules to store the weight IDs for
256 adder trees, weight ID generator fetches the data from
the FIFO modules based on the outcome of CSR to bit mask
conversion. An adder tree performs the accumulation of the
activations based on the weights IDs from the ID generator.
The MAC array performs four multiplication and three addition
operations. The fixed point to floating point converter converts
a 16bit fixed point MAC output into a 32-bit single precision
float output. This 32-bit floating point MAC output will be
multiplied by a 32-bit alpha1 values; where alpha1 values are
an array of single precision floating point data, the output of the
multiplier1 will be added with the bias. The output of the adder
will undergo a non-linear activation operation called ReLU, to
perform the computation f(x) = max(0, x). Final floating
point multiplication is performed with another 32-bit single
precision alpha2 value, the 32-bit result from the multiplication
will be rounded back to 16bit integer value to generate the final
PSum.



8

256 Bits

0 1 1 1 1 

Split 256 bits into 32 chunks of 8-bit 

wide addresses

1 1 1 1 0 0 0 1 0 0 1 1 0 0 1 1

0 31

255 241 51 0

11 00

Fig. 6: CSR to bitmask Conversion Logic.

CSR to bitmask Logic. By default, FantastIC4 loads the po-
sitions of the non-zero elements of a row of the sparse weight
matrix according to the compressed Huffman representation,
which consists of a simple binary mask of width 256. The
bitmask controls the weight ID movement into the adder tree.
However, when a layers non-zero positions are compressed
following the CSR format, a logic must be implemented that
converts them back to a bitmask representation, which is the
purpose of the CSR to bitmask Logic. The conversion logic
is shown in Fig. 6, the compressed non-zero position data
pointers comprising of 256 bits will be splitted into a chunks
of 32 which is of 8bit wide. Based on the 8bit value, each bit
of the encoded bitmask will be set to ‘1’. For ex: As shown
in Fig. 6, the 0th chunk had a value of 241 and 31st chunk had
a value of 51. So the corresponding 241st bit and 51st bit will
be set to 1 and the remaining bits will be set to 0 to generate
a 256bits encoded bitmask data. Both the CSR pointer data
and bitmask data will be selected from a 2 × 1 Mux through
a “Select Bits” to generate the final encoded data for weight
ID generation.

FIFO Module and Weight ID Generator. The FIFO
module has 256 individual FIFOs which has a width of 4 and
depth of 256, each storing the non-zero weight elements of
a particular column of the weight matrix of the layer. These
FIFO modules are stored in array of registers. The weight ID
generator has a simple selection logic, where each individual
IDs of 4bits are fetched from the FIFOs based on the encoded
bitmask data. If the encoded bitmask is ‘1’, then an ID will be
fetched from the FIFOs or else the pointer points to the same
location of the fetched data. The weight ID generator has a
cluster of 256 ID modules, which store the 4bit IDs from the
FIFO if the 256 individual bits from the bitmask is ‘1’ or else
it stores a 4bit zero data.

Adder Tree and MAC Array. An adder tree comprises
of an array of 256 adders arranged in a logarithmic fashion.
The adder tree is grouped into two stages: Adder Stage1 and
Adder Stage2. Adder Stage1 has 128 adders arranged in a
single group. Each adder in the stage1 has three levels of
hierarchy with a control parameter in each hierarchy. The
Fig. 7 shows the adder schematic in the Stage1. The adders
are fed with the two-different activations and two-different IDs

> 0 > 0 > 0 > 0

ID2 ID1 ID0

Act1 16

1616 16

Act_SW

16

ID3

8 8 8 8

> 0 > 0 > 0 > 0

ID2 ID1 ID0

Act2 16

1616 16

Act_SW

16

ID3

8 8 8 8

Sign Sign Sign Sign

Out1 Out2 Out3 Out4

Level

1

Level

2

Level

3
16 16 16 16

Fig. 7: Adder Schematic.

from the weight ID generator. All the activations in the adder
tree are static and it is used for all cycles of computations.
The static activations in the adder tree saves significant power
consumption. By having a static activations inside the adder
rather than accessing it from the memory saves up to 15% of
power consumption. In the level1 hierarchy, the 4bit weight
IDs control the movement of the activations inside the adder.
Each bit from the weight IDs forms a channel, that regulate the
flow of activation to the level2. If the ID is 1, then the 16bit
activation is fed or else a zero value is fed to level2. There will
be a total of eight groups of activation data coming out of the
level1 hierarchy. In level2 hierarchy, the activation switches
between the upper and lower half of 8bits. This technique
is employed to fit the larger networks into the hardware and
improvise the prediction in the hardware. In this hierarchy, if
the activation switch is low, a lower half of the bits are selected
or else the upper half is selected. In the level3 hierarchy, the
actual computation is performed. The sign mode determines,
whether the activations need to be added or subtracted. Finally
the four different computations are performed among the eight
groups, to generate the four output data of 16bits from each
adder. The Adder Stage2 has 128 adders arranged in a multiple
group. The first group in adder stage2 has 64 adders, second
group has 32 adders and similarly other groups are scaled
down logarithmically. The adders in adder stage2 performs
only the computation, unlike the adders in stage1. Based on
the sign-bit in the output data from the stage1, either addition
or subtraction is performed.

The MAC array performs four multiplications and three
additions respectively. The four outputs each of 16bits from
the adder tree will be multiplied with the 16bit basis weights
to generate a 32-bit product, which we will be accumulated to
generate the final 32-bit MAC output.

Floating Point Operations. The floating point operation
mainly comprises of fixed to floating point conversion, floating
point multiplications, floating point addition and final 32-bit
floating point to 16bit integer conversion. In the fixed to
floating point conversion, a 32-bit fixed point MAC data is



9

Algorithm 1 Fixed Point to Floating Point Conversion

mac out: 32-bit fixed point MAC output
convert out: Single precision floating point number
procedure FIXEDTOFLOAT(mac out, convert out)

lod← Leading one detector
convert out sign← Sign bit of floating point
convert out exponent← Exponent of floating point
convert out mantissa← Mantissa of floating point
for k ← 30 downto 0 do

if (mac out[k] == 1) then
lod = k;

end if
end for
convert out sign = mac out[31];
convert out exponent = lod + 127;
convert out mantissa = mac out << (23 - lod);
Combine sign,exponent and mantissa to generate con-

vert out
return convert out

end procedure

converted into equivalent single precision floating point data
as shown in Algorithm. 1, a leading one will be detected from
the MAC output and corresponding conversion operation is
performed.

The converted floating point data will undergo a single
precision floating point multiplication with Alpha1 values. The
Alpha1 values are stored in a SRAM of 1KB. With this scaling
factors FantastIC4 is able to accommodate for de-quantization
as well as batchnorm parameters. As shown in Fig. 8, both
the inputs will be normalized and split into it equivalent
sign, mantissa and exponent part. The 23bits mantissa will
be multiplied with each other to generate 48bit output, the
MSB of the multiplied output will be used to calculate the
final mantissa and the exponent part.The sign bits of both the
inputs will be XORed to generate the final sign bit. The final
sign, exponent and mantissa will be concatenated to generate
the final 32-bits multiplied output. Subsequently, the multiplied
floating point will be added with the bias data stored in another
1KB SRAM. This operation is similar to the multiplication
operation in terms of normalization of the data. Then, the
added data will undergo an nonlinear activation ReLU function
as f(x) = max(0, x), since it is the status quo non-linear
function for most MLP models. The ReLUed output will be
further multiplied with a single 32-bit Alpha2 value to generate
the final 32-bit multiplied output. These scaling factors take
further quantization parameters into account, important for the
correct calibration of the subsequent quantization step, which
consists of a final rounding of 32-bits to a 16bit integer.
The 16bit integer is the final PSum that will be used as an
activations for the inference of the next layer.

VI. EXPERIMENTS

A. Experimental setup
1) Datasets & Models: In the experiments section we dis-

tinguish between hardware-conform and non-conform models.

Normalization

In1 In232 32

In2_S In2_E In2_MIn1_S In1_E In1_M

Xor

+128 +127

2x1

2x1

Concatenator

1 8 23 1 8 23

48
[47] [46:24] [45:23]

23

8

1

32

Mult Out

Fig. 8: Floating Point Multiplier.

Conform models are those that are fully compatible with our
hardware architecture, thus the entire end-to-end inference
procedure can be performed on it. Consequently, conform
models include only FC layers with up to 512 input/output
features. Optionally, BatchNorm layers are allowed which can
result in accuracy gains.

To cover a variety of use-cases with the conform models,
we trained and deployed several models solving classification
tasks for audio, image, biomedical and sensor data. Concretely,
we considered the task of hand gesture recognition (HR)
based on the biomedical and sensor dataset, the google speech
commands (GSC) dataset for the task of audio classification,
and MNIST and CIFAR-10 datasets for small-scale image
classification task. We trained and implemented custom and
well-known MLPs for solving the above mentioned tasks. In
addition, in order to benchmark our quantization algorithm we
also used non-conform models, which we have not trained
ourselves but obtained from publicly available sources. Con-
cretely, ResNet-50 and -34 come from the torchvision model
zoo2, EfficientNet-B0 from 3 and ResNet-20 from 4. We trained
further these models by applying our entropy-constrained
method (section IV), and benchmarked their accuracies at
different regularization strengths. We refer to the appendix
for a more in depth description of the experimental setup, the
models and the datasets employed in the experimental section.

2) Datasets & Models:
Hand Gesture Recognition (HR). The authors in [33] col-
lected Inertial Measurement Unit (IMU) and electromyogram
(EMG) readings from 5 different subjects in 5 different ses-
sions in order to capture 12 defined hand gestures. Different
from [33], we deploy a small MLP to solve the classification
task. It clearly outperforms the proposed Hidden Markov
Model which achieves a mean accuracy of 74.3% for person-
independent hand gesture recognition. Our proposed 4-layer
deep MLP achieves a person-independent mean accuracy of
84.0%. Quantizing all network layers to 4 bit with the Fan-

2https://pytorch.org/docs/stable/torchvision/models.html
3https://github.com/lukemelas/EfficientNet-PyTorch, Apache License, Ver-

sion 2.0 - Copyright (c) 2019 Luke Melas-Kyriazi
4https://github.com/akamaster/pytorch resnet cifar10, Yerlan Idelbayev’s

ResNet implementation for CIFAR10/CIFAR100 in PyTorch



10

tastIC4 algorithm is possible with almost no drop in accuracy.
The model consists of an input layer, two hidden layers and
an output layer with 512, 256, 128 and 12 output features,
where a BatchNorm layer follows each fully connected layer.
The data corpus is publicly available 5.

Google Speech Commands (GSC). The Google Speech
Commands dataset consists of 105,829 utterances of 35 words
recorded from 2,618 speakers. The standard is to discriminate
ten words ”Yes”, ”No”, ”Up”, ”Down”, ”Left”, ”Right”, ”On”,
”Off”, ”Stop”, and ”Go”, and adding two additional labels, one
for “Unknown Words”, and another for “Silence” (no speech
detected) [34]. There are no overlapping speakers between the
train, test and validation sets. We deploy a MLP consisting
of an input layer, five hidden layers and an output layer
featuring 512, 512, 256, 256, 128, 128 and 12 output features,
respectively. Our model achieves a classification accuracy of
91.0% which outperforms the default CNN model (88.2%)
in the TensorFlow example code mentioned in [34]. The
FantastIC4 4 bit quantization has a regularizing effect on
the full-precision MLP and further improves the classification
accuracy to 91.35%, while introducing 60% sparsity. The
authors in [35] show that for the GSC dataset CNNs and
especially RNNs usually achieve better accuracies than MLPs.
Still, our proposed model yields a comparable accuracy to
their proposed CNN and outperforms their 8 bit quantized
MLP (88.91%). For another comparison, [36] quantized their
network composed by three convolution layers and two fully-
connected layers to 7 bit using 8 bit activations, and achieve
an accuracy of 90.82%.

Image Classification. For small-scale image classification
we utilized two neural networks, one MLP which would fit
into our proposed accelerator, LeNet-300-100, and one CNN
(ResNet-20). CIFAR-10 [37] is a dataset consisting of natural
images with a resolution of 32 × 32 pixels. It contains 10
classes. The train and test sets contain 50,000 and 10,000
images. MNIST [38] is drawn from 10 classes where each class
refers to a handwritten digit (0-9). The dataset contains 60,000
training images and 10,000 test images with a resolution of
28× 28 pixels. To benchmark our quantization algorithm with
ImageNet we deployed EfficientNet-B0, ResNet-50, and -34
networks. The ImageNet [39] dataset is a large-scale dataset
containing 1.2 million training images and 50,000 test images
of 1000 classes. The resolution of the image data is various and
in the range of several hundred pixels. We crop the ImageNet
data in all experiments to 224× 224 pixels.

3) Hardware simulation setup: The proposed FantastIC4
was implemented in System Verilog and corresponding behav-
ioral and gate level simulation was performed using Mentor
Graphics Simulator. The FPGA version of the FantastIC4 was
implemented using Xilinx Vivado tool. Here we synthesized,
place and routed the design on a Virtex Ultrascale FPGA on
the XCVU440 device.

For the ASIC version, we synthesized the architecture using
Synopsys Design Compiler (DC) under the GF 22nm FDSOI
SLVT technology. We placed and routed the design using
Synopsys IC compiler (ICC2). After the sign-off and RC

5https://www.uni-bremen.de/en/csl/research/motion-recognition.html

MNIST

CIFAR10

Sparsity ratio

Ac
cu

ra
cy

Fig. 9: Accuracy as a function of the sparsity ratio of different
DNN models. (Top) LeNet-300-100 model trained on the
MNIST dataset by the previous method EC2T [16], as com-
pared to FantastIC4s generalized form of entropy-constrained
training method. (Bottom) same as top, but for ResNet20
trained on the CIFAR10 dataset.

extraction using STARRC, we performed the timing closure
using Synopsys Prime-Time. We annotated the toggle rates
from the gate level simulation and dumped the toggling infor-
mation into Value Change Dump (VCD) file and estimated the
power using Prime-Time.

B. Benchmarking training of 4bit-compact DNNs
Arguably, the closest related training method to ours is

EC2T, which trains sparse and ternary networks under an
entropy-constrained regularizer [16]. However, our general-
ization allows to train DNNs with more expressive power
due to their ability to express 16 different cluster centers
instead of only 3. Moreover, thanks to the support of full-
precision scaling factors which can accommodate for batch-
norm parameters we expect our DNN models to be more
robust to strong quantization + sparsification, consequently
attaining better prediction performance vs compression trade-
offs. The Fig. 9 shows this phenomena. We can see that our
DNN models trained with our entropy-constrained approach
reach better Pareto-optimal fronts with regards to accuracy vs
sparsity, as compared to the EC2T method.

Furthermore, in Table II we show the prediction perfor-
mance of our models on the datasets described above and
summarize the results attained by other authors. We can see
that we consistently attain similar or higher prediction perfor-
mance than the previous work. Table II also shows the benefits
of applying a hybrid compression scheme as opposed to the
single compression format approach as proposed by previous
work. To recall, our compression scheme encodes each layer
by applying the CSR, the simple Huffman code (or bitmask
format), and the trivial 4bit dense representation, and chooses
the most compact representation between them. We see, that
we attain about 2.36 × boost in compression gains on average
as compared to the CSR-only approach proposed by [21], [23],
and ×1.77 higher compression rates than the trivial 4bit dense
format. These gains directly translate to reduction in memory,



11

off- to on-chip data movement and area requirements, which
stresses the importance of supporting multiple representations.

TABLE II: Comparison of the FantastIC4-quantization ap-
proach vs previous state-of-the-art 4-bit quantization tech-
niques. For each network we report two results, one show-
ing highest accuracies we attained and the other highest
compression ratios. Our models as well as best results are
highlighted in bold. All models belonging to the same row-
block have the same architecture, with exception of the Google
Speech Command and Hand Gesture Recognition datasets.
Unless otherwise specified, all approaches quantize all network
layers, including input- and output-layers, excluding batch
normalization- and bias-parameters.

Model Org. Acc. (%) Acc. Size (MB) CRc CSRd

ImageNet

EfficientNet-B0 76.43 75.01 21.15 7.62 3.31
EfficientNet-B0 76.43 74.08 21.15 8.25 3.91
LSQ+ [8] 76.10 73.80 21.15 7.48 2.59

ResNet-50 76.15 75.66 102.23 8.21 3.50
ResNet-50 76.15 75.29 102.23 9.97 4.50
PWLQ [9]† 76.13 75.62 102.23 7.86 2.64
KURE [10]† 76.30 75.60 102.23 7.88‡ 2.64‡

ResNet-34IO† 73.30 72.98 87.19 7.80 4.32
ResNet-34I† 73.30 72.86 87.19 9.30 4.37
QIL [11]† 73.70 73.70 87.19 6.82 2.65
DSQ [12]† 73.80 72.76 87.19 6.82 2.65

CIFAR-10

ResNet-20 91.67 91.60 1.08 8.43 3.92
ResNet-20 91.67 91.15 1.08 16.23 11.31
SLB [13]† 92.10 92.10 1.08 7.64 2.62
GWS [14]† 92.20 91.46 1.08 7.72‡ 2.62‡

MNIST

LeNet-300-100 98.70 98.63 1.07 13.31 7.62
LeNet-300-100 98.70 98.16 1.07 29.31 19.81

Google Speech Commands

MLP-GSC 91.00 91.19 2.57 10.88 5.55
MLP-GSC 91.00 90.41 2.57 13.59 7.99
HE [40] 86.40 86.40 0.2 - -

Hand Gesture Recognition

MLP-HR 88.50 88.33 1.30 8.51 3.96
MLP-HR 88.50 87.22 1.30 13.57 8.35
HMM [33] 74.30 74.30 - - -

a Compression ratio defined as the ratio of the full-precision model size to
the quantized model size, where FantastIC4 stores each layer in its optimal
format which is either CSR, bitmask format or the trivial 4bit dense format.
b Compression ratio defined as the ratio of the full-precision model size to

the quantized model size, where each layer is stored in CSR format.
† QIL and DSQ use full-precision (32-bit) for the first and last layer, PWLQ
and SLB use full-precision for the first layer and KURE and GWS provide

no information about first/last layer quantization. Our ResNet-34IO
benchmark has 32bit input- and output-layers and the ResNet-34I

benchmark a 32bit input layer.

C. Benchmarking hardware efficiency
1) Results on MLPs: We benchmarked FantastIC4 hardware

performance on the fully-connected layers of several popular

Adder 
Tree

(77%)

FIFO
(13%)

Mem
(5%)

Other
Modules

(5%)

Adder 
Tree

(77%)

Adder 
Tree

(73%)

FIFO
(22%)

Mem
(3%)

Other
Modules

(2%)

(a) Area Breakdown (b) Power Breakdown

Fig. 10: Area and Power Breakdown of FantastIC4 ASIC
Version.

models such as EfficientNet-B0, MobileNet-v3 & ResNet-
50. Furthermore, we benchmarked the end-to-end inference
efficiency of two of our custom and fully hardware-conform
multilayer perceptrons (MLPs), trained for the task of google
speech commands and hand-gesture recognition. Both MLP
models, which we named MLP-GSC & MLP-HR respectively,
reach state-of-the-art prediction performance on their tasks (see
Table II and the appendix for a more detailed description of
the experimental setup and results).

The Table III shows the resource utilization breakdown of
our FantastIC4 accelerator for different DNN models. The
proclaimed results are based on the post-implementation re-
sults from Xilinx Vivado 2018.2. The activations values are
quantized down to a 8bit precision, whereas the four basis
weights use a precision of 16bits. This configuration was
found to be accurate enough to perform the inference without
harming the prediction performance of the models. As shown
in Table III, we consume the lowest resources among all the
accelerators reported so far that perform on fully connected
layers. Here we engage both the fixed point and floating point
operations for faster processing and improved accuracy during
the inference. We consume a total of just 8 DSPs to perform the
computation which significantly reduces the dynamic power
consumption. Moreover, very few BRAMs are used in the
entire inference operation due to the extreme quantization and
compression, the LUTRAMs are explicitly used for storing
the weightIDs inside the FIFOs. As one can see, the floating
point operations utilize the lowest resources on the FPGA chip
due to the enhanced data flow modelling. The final resource
utilization summary is shown in Table IV.

We further evaluated the ASIC version of FantastIC4 on
a 22nm process node with a clock frequency of 800MHz.
The Table V reports the layout version, the total area of our
processor was found to be 1mm × 1.2mm.

2) Power Consumption, Latency and Throughput on the
FPGA: The FantastIC4 accelerator is highly energy efficient
due to the low weights storage and the static activations inside
the adder tree. The static activations inside the adder tree
reduces the total power consumption by 15×, as the reduced
data movement consumed around 64mW of dynamic power
when compared to the conventional SRAM access which had
960mW of power consumption. We measured power consump-
tion for different DNN models, throughout the inference the
static power was more predominant than the dynamic power
consumption, as static power on the XCVU440 FPGA was



12

TABLE III: FantastIC4 Resource Utilization Breakdown for Different DNN Models on a Virtex Ultrascale FPGA. Here BR stands
for BRAMs, FF for Flip Flops, LUT for Look Up Tables, DSP for Digital Signal Processing and LR stands for LUTRAMs

Modules MLP-HR EfficientNet-B0 MobileNet-V3 ResNet-50 MLP-GSC
LUT FF BR DSP LR LUT FF BR DSP LR LUT FF BR DSP LR LUT FF BR DSP LR LUT FF BR DSP LR

CSR to BM 5K 255 0 0 0 5K 255 0 0 0 5K 255 0 0 0 5K 255 0 0 0 5K 255 0 0 0
Wt ID Gen 0 512 0 0 0 0 512 0 0 0 0 512 0 0 0 0 512 0 0 0 0 512 0 0 0

MAC
Array 565 153 0 4 0 570 158 0 4 0 568 156 0 4 0 580 162 0 4 0 566 153 0 4 0

Fixed point
to Float point

Op
707 483 8 4 0 717 491 8 4 0 711 17 12 4 0 719 500 16 4 0 709 484 8 4 0

Adder tree 35K 4K 0 0 0 35K 4K 0 0 0 35K 4K 0 0 0 35K 4K 0 0 0 35K 4K 0 0 0
FIFO

Module 53K 6K 0 0 8K 103K 119K 0 0 160K 830K 95K 0 0 128K 1661K 190K 0 0 256K 53K 6K 0 0 8K

BM Memory 21 821 8 0 0 38 842 36 0 0 33 834 31 0 0 48 821 63 0 0 28 822 8 0 0
Total 95K 12K 16 8 8K 108K 125K 44 8 160K 872K 101K 43 8 128K 1703K 196K 79 8 256K 95K 12K 16 8 8K

TABLE IV: FantastIC4 Final Resource Utilization.

Resource LUT LUTRAM FF BRAMs DSP
Used 1703,187 128,000 196,909 79 8

Avaliable 2532,960 459,360 5065,920 2,520 2,880
Utlization 67.24% 27.86% 3.88% 3.13% 0.27%

TABLE V: Layout results of the ASIC version.

Technology GF 22nm FDSOI SLVT
Chip Size 1mm × 1.2mm
Core Area 800µm × 800µm

Core Voltage 0.88V
Memory Type SRAM (10KB)

Total Gate Count 961K
Frequency 800MHz
Precision Fixed 16bit

Power 454mW
Latency 1.31µs

Performance 9.158 TOPS
Performance/W 20.17 TOPS/W

Energy 595 nJ
DNN Models Inferenced MLP-HR and MLP-GSC

2.856W. The total power measured from the inference of MLP-
HR was 3.472W, EfficientNet-B0 was 10.14W, ResNet-50 was
12.34W, MobileNet-V3 was 8.46W and MLP-GSC was 3.6W.
The average latency measurement of each layer for MLP-HR
was 6.45µs, for EfficientNet-B0 was 8.6µs, MobileNet-V3 was
6.3µs, ResNet-50 was 10.2µs and MLP-GSC was 7.2µs. To
infer our entire custom DNN model, we had a latency of 72µs
for MLP-HR and 80µs for MLP-GSC. The overall throughput
measurement was 2.45TOPS, as the processing unit remains
constant irrespective of the DNN model under inference. On
average, the total off-chip to on-chip data movement was
saved by 10.55× as compared to the original (non-compressed)
representation of the parameters. Furthermore, due to our on-
chip support of hybrid compressed representations, we were
able to boost the savings by 2× as compared to the compressed
formats proposed by [21] and [23].

Similarly for the ASIC version as shown in Table V, we
could achieve a peak performance throughput of 13.1 TOPS
and the performance/watt of 28.87 TOPS/W. The total latency
to perform the inference was found to be 1.31µs for MLP-HR

TABLE VI: Performance Comparison with other State of Art
FPGA Accelerators.

Parameters Dinelli [41] Ours
Device XCVU65 XCVU440

Benchmark GSC GSC
Quantization Fixed-16 Fixed-16

Sparsity N/A 60%
Accuracy 90.23% 91%

Throughput (TOPS) N/A 2.45
Throughput/W (GOPS/W) N/A 198.54

Static Power (W) 0.626 2.856
Dynamic Power (W) 1.235 0.744

Total Power (W) 1.861 3.6
Latency (µs) 570 80
Energy (mJ) 1.06 0.288

Frequency (MHz) 78.4 150

model and 1.37µs for MLP-GSC model. Since we first perform
all the accumulation on the adder tree and then perform the
MAC operation, we significantly save the resources and power
required for computations by 2.7×. An array of 256 MAC
units with 16-bit width consumes an area of 346.58µm ×
346.58µm, whereas the same ACM unit will consume an area
of 216.54µm × 216.54µm. Similary, an array of 256 MAC
units consumes a power of 101.23mW and an array of 256
ACM units consumes a power of 40.46mW. So by our ACM
technique we save atotal area of around 39% and power of
around 40%. The area and the power breakdown for the ASIC
version is shown in the Fig. 10 Most of the area and power
consumption is dominated by the adder tree and the FIFOs as
it forms the core part of the architecture.

D. Comparison to previous work

Here, we compare the performance of other state of art
accelerator on FPGA that work on multi-layer perceptrons with
benchmark on google speech command dataset. The keyword
spotting (KWS) accelerator [41] was the closest FPGA accel-
erator that benchmarked on google speech commands, so for
fair comparison we are comparing with this accelerator. The
KWS accelerator [41] also quantized their DNN models and
implemented the entire architecture using on-chip memories
and benchmarked the results on different Xilinx and Intel
FPGA devices. Table VI shows the comparison results. Here



13

TABLE VII: Performance Comparison with other State of Art
ASIC Compression Based Accelerators.

Platform EIE [21] Eyeriss V2 [23] Thinker [44] Our’s
Technology (nm) 65 65 65 22
Frequency (MHz) 800 200 200 800

Precision Fixed-16 Fixed-16 Fixed-8/16 Fixed-16
Throughput (GOPS) 572 858.62 368.4 9158.65

Power (mW) 590 606 290 454
Power Efficiency (GOPS/W) 969.49 1416.87 1270.34 20173.23

Area (mm2) 40.8 N/A 19.6 1.2
Area Efficiency (GOPS/mm2) 14.02 N/A 18.79 7632.208

we are mainly benchmarking for sparsity, accuracy, throughput
and power consumption. We evaluated the performance of
our accelerator on our custom MLP-GSC, as our custom
built network had more sparsity and higher accuracy for
KWS application. Our FantastIC4 accelerator has an overall
throughput of 2.45 TOPS due to the parallel execution of
the adder tree and the MAC array and lower clock cycle
requirement for the floating point operations. We have 50×
lower dynamic power consumption when we compared to
[41] due to the static activations inside the adder tree, lesser
number of multiplications and piplelined approach with the
floating point operations. In terms of latency, we are 14×
faster to infer one complete network that works on KWS
application. In terms of energy-efficiency we are 27.16× better
when compared to the other accelerator.

For the ASIC version, arguably the closest related work to
FantastIC4 are EIE [21] & EyerissV2 [23], since both acceler-
ators also leverage on compressed representations of the DNNs
parameters. We stress that more recent accelerators exploiting
compressed representations exist such as [22], however, these
were optimized for convolutional layers whereas FantastIC4
optimizes the execution of fully-connected layers.

In the following we provide benchmarks across different
accelerators for each of those components as shown in Ta-
ble VII. In the throughput comparison FantastIC4 is better
than EIE by 16×, Eyeriss v2 by 15× and Thinker by 31×.
In terms of power efficiency FantastIC4 outperforms EIE by
20×, Eyeriss v2 by 14× and Thinker by 16×. For the area
efficiency calculation we could not compare our accelerator
with Eyeriss v2 because in Eyeriss v2 area is reported in terms
of total number of gates. So by comparing the total gates we
are smaller by 2.9×. However for other accelerators, we are
better than EIE by 544× and Thinker by 406×.

In Table VIII we are comparing our accelerators with
the other state of art ASIC KWS accelerators. Here we are
comparing FantastIC4 with EERA-ASR [42] and RNN based
speech recognition processor [43]. Both the processors work
with the same Google Speech Command dataset. We have a
better throughput by 51× and 14× when compared to other
works. Similarly we are more power efficient by 6× and 1.8×
respectively. In terms of area efficiency, we are efficient by
142× with respect to [42] and 145× with respect to [43].

TABLE VIII: Performance Comparison with other State of Art
ASIC KWS Accelerators.

Platform EERA-ASR [42] Guo [43] Our’s
Technology (nm) 28 65 22
Frequency (MHz) 400 75 800

Latency (us) N/A 127.3 1.31
Keywords Number 20 10 10

Dataset GSC
Accuracy 91.88% 90.20% 91%

Throughput (GOPS) 179.2 614.4 9158.65
Power (mW) 54 52.5 454

Power Efficiency (TOPS/W) 3.31 11.7 20.17
Area(mm2) 3.34 6.2 1.2

Area Efficiency (GOPS/mm2) 53.65 52.51 7632.208

Fig. 11: Power consumption of our MLP-HR model as a
function of its entropy distribution. (Blue) Dynamic power
consumption measured on an FPGA, (Red) measured on ASIC
simulation.

E. Ablation study: Execution efficiency of the models as a
function of their entropy

In section III of the main manuscript we argued that one
of our major contributions is the fact that FantastIC4s hard-
ware architecture is specially designed to exploit low-entropy
statistics of the weight parameters. Thus, we should expect
the execution efficiency of DNN models to increase as the
entropy of the weight parameters decreases. Figure 11 shows
exactly this trend. In this experiment, we measure the power-
efficiency of our MLP-HR model at different overall entropy
levels of the model. To perform this study, we ran our post-
layout simulation (ASIC) and post-implementation timing sim-
ulation (FPGA) to generate the corresponding Value Change
Dump (VCD) for ASIC and Switching Activity Interchange
Format (SAIF) for FPGA. Using these files we measured the
dynamic (Vector Based) power consumption on the Synopsys
PrimeTime and Vivado. Based on the measurement, the power
consumption decreases quasi linearly with the entropy of the
model. Again, this trend is due to the fact that FantastIC4
supports (1) the efficient processing of compressed representa-



14

tions of the weight parameters, (2) efficient computation of 4bit
non-zero values, and (3) efficient loading of repeated values
from the FIFOs; all being properties that become more and
more predominant as the entropy of the models parameters
decreases.

VII. CONCLUSION

In this paper, we proposed a software-hardware optimiza-
tion paradigm for maximally increasing the area and power
efficiency of MLP models with state-of-the-art predictive per-
formance. Firstly, we introduce a novel entropy-constrained
training method for making the models highly compressible
in size, which, in combination with FantastIC4s supports for
the efficient on-chip execution of multiple compact represen-
tations, boosts the data movement efficiency of the parameters
by up to 29× (on average 10.55× across different models) as
compared to the original models, and by 2× as compared to
previous compression approaches. In addition, our particular
training algorithm renders the models to be robust to 4bit
quantization while inducing sparsity, properties that FantastIC4
exploits in order to increase further the power efficiency by
2.7× and area efficiency by 2.6×. Finally, it implements an ac-
tivation stationary data movement paradigm, as such increasing
the on-chip data movement efficiency of the activation values
by 15×. FantastIC4 was implemented on a Virtual Ultrascale
FPGA XCVU440 device. The experimental results show that
we achieve a overall throughput of 2.45 TOPS with a total
power consumption of 3.6W. We achieved the lowest resource
utilization for an Multi Layer Perceptron (MLPs) inference by
consuming 67.24% of LUTs, 27.86% of LUTRAMs, 3.88%
of FFs, 3.13% of BRAMs and 0.27% of DSPs. This is the
first accelerator to achieve a very high throughput with a low
resource utilization and a low power consumption up to date on
an FPGA. We further benchmarked our FantastIC4 on a 22nm
process, the ASIC version achieved a total power efficiency of
20.17 TOPS/W and a latency of 1.31µs per layer inference of
the Google Speech Command (GSC) dataset. When compared
to the other state of the art GSC accelerators, FantastIC4 is
better by 51× in terms of throughput and 145× in terms of
area efficiency.

ACKNOWLEDGEMENTS

This work was supported by the Bundesministerium für
Bildung und Forschung through the BIFOLD - Berlin Institute
for the Foundations of Learning and Data (ref. 01IS18025A
and ref 01IS18037A).

REFERENCES

[1] X. Wang, Y. Han, V. C. M. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys and Tutorials, vol. 22, no. 2,
pp. 869–904, 2020.

[2] X. Wang, M. Magno, L. Cavigelli, and L. Benini, “FANN-on-MCU: An
Open-Source Toolkit for Energy-Efficient Neural Network Inference at
the Edge of the Internet of Things,” IEEE Internet of Things Journal,
pp. 1–1, 2020.

[3] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” Proceedings of the IEEE, vol.
105, no. 12, pp. 2295–2329, 2017.

[4] B. L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
Proceedings of the IEEE, vol. 108, no. 4, pp. 485–532, 2020.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman
coding,” in 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track
Proceedings, 2016.

[6] S. Wiedemann, H. Kirchhoffer, S. Matlage, P. Haase, A. Marban,
T. Marinc, D. Neumann, T. Nguyen, H. Schwarz, T. Wiegand, D. Marpe,
and W. Samek, “Deepcabac: A universal compression algorithm for
deep neural networks,” IEEE Journal of Selected Topics in Signal
Processing, vol. 14, no. 4, pp. 700–714, 2020.

[7] S. Wiedemann, K. Müller, and W. Samek, “Compact and computation-
ally efficient representation of deep neural networks,” IEEE Transac-
tions on Neural Networks and Learning Systems, vol. 31, no. 3, pp.
772–785, 2020.

[8] Y. Bhalgat, J. Lee, M. Nagel, T. Blankevoort, and N. Kwak, “Lsq+:
Improving low-bit quantization through learnable offsets and better ini-
tialization,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, June 2020.

[9] J. Fang, A. Shafiee, H. Abdel-Aziz, D. Thorsley, G. Georgiadis, and
J. Hassoun, “Post-training piecewise linear quantization for deep neural
networks,” in ECCV, 2020.

[10] M. Shkolnik, B. Chmiel, R. Banner, G. Shomron, Y. Nahshan, A. Bron-
stein, and U. Weiser, “Robust Quantization: One Model to Rule Them
All,” arXiv:2002.07686 [cs, stat], Jun. 2020, arXiv: 2002.07686.

[11] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang,
and C. Choi, “Learning to quantize deep networks by optimizing
quantization intervals with task loss,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), June
2019.

[12] R. Gong, X. Liu, S. Jiang, T. Li, P. Hu, J. Lin, F. Yu, and J. Yan, “Dif-
ferentiable soft quantization: Bridging full-precision and low-bit neural
networks,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), October 2019.

[13] Z. Yang, Y. Wang, K. Han, C. Xu, C. Xu, D. Tao, and C. Xu, “Searching
for Low-Bit Weights in Quantized Neural Networks,” arXiv:2009.08695
[cs], Sep. 2020, arXiv: 2009.08695.

[14] K. Zhong, T. Zhao, X. Ning, S. Zeng, K. Guo, Y. Wang, and H. Yang,
“Towards Lower Bit Multiplication for Convolutional Neural Network
Training,” arXiv:2006.02804 [cs, stat], Jun. 2020, arXiv: 2006.02804.

[15] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,”
arXiv preprint arXiv:1603.05279, 2016.

[16] A. Marban, D. Becking, S. Wiedemann, and W. Samek, “Learning
sparse ternary neural networks with entropy-constrained trained ternar-
ization (ec2t),” in The IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, June 2020, pp. 3105–3113.

[17] S. Wiedemann, A. Marban, K. Müller, and W. Samek, “Entropy-
constrained training of deep neural networks,” in 2019 International
Joint Conference on Neural Networks (IJCNN), 2019, pp. 1–8.

[18] Y. H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural
Networks,” IEEE Journal of Solid-State Circuits, vol. 52, no. 1, pp.
127–138, 2017.

[19] S. Shivapakash, H. Jain, O. Hellwich, and F. Gerfers, “A Power Efficient
Multi-Bit Accelerator for Memory Prohibitive Deep Neural Networks,”
in IEEE Circuits and System Conference, 2020, p. Accepted paper.

[20] H. Sharma, J. Park, N. Suda, L. Lai, B. Chau, V. Chandra, and H. Es-
maeilzadeh, “Bit fusion: Bit-Level dynamically composable architecture



15

for accelerating deep neural networks,” Proceedings - International
Symposium on Computer Architecture, pp. 764–775, 2018.

[21] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and
W. J. Dally, “EIE: Efficient Inference Engine on Compressed Deep
Neural Network,” Proceedings - 2016 43rd International Symposium
on Computer Architecture, ISCA 2016, vol. 16, pp. 243–254, 2016.

[22] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan,
B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally, “SCNN: An
Accelerator for Compressed-sparse Convolutional Neural Networks,”
2017.

[23] Y. Chen, T. Yang, J. Emer, and V. Sze, “Eyeriss v2: A flexible
accelerator for emerging deep neural networks on mobile devices,”
IEEE Journal on Emerging and Selected Topics in Circuits and Systems,
vol. 9, no. 2, pp. 292–308, 2019.

[24] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke,
“Scalpel: Customizing DNN pruning to the underlying hardware par-
allelism,” Proceedings - International Symposium on Computer Archi-
tecture, vol. Part F1286, pp. 548–560, 2017.

[25] Y. Duan, S. Li, R. Zhang, Q. Wang, J. Chen, and G. E. Sobelman,
“Energy-Efficient Architecture for FPGA-based Deep Convolutional
Neural Networks with Binary Weights,” International Conference on
Digital Signal Processing, DSP, vol. 2018-Novem, pp. 12–16, 2019.

[26] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine:
Toward uniformed representation and acceleration for deep convolu-
tional neural networks,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 38, no. 11, pp. 2072–2085,
2019.

[27] X. Lian, Z. Liu, Z. Song, J. Dai, W. Zhou, and X. Ji, “High-performance
fpga-based cnn accelerator with block-floating-point arithmetic,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 27,
no. 8, pp. 1874–1885, 2019.

[28] S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang,
“C-Lstm,” in FPGA 2018- Proceedings of the 2019 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays8- Pro-
ceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 2018, pp. 11–20.

[29] R. Shi, J. Liu, H. K. So, S. Wang, and Y. Liang, “E-LSTM: Efficient
inference of sparse lstm on embedded heterogeneous system,” Proceed-
ings - Design Automation Conference, no. 5, 2019.

[30] T. Wiegand and H. Schwarz, “Source coding: Part i of fundamentals
of source and video coding,” Foundations and Trends® in Signal
Processing, vol. 4, no. 1–2, pp. 1–222, 2011.

[31] Y. Bengio, N. Léonard, and A. C. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,”
CoRR, vol. abs/1308.3432, 2013.

[32] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, 1948.

[33] M. Georgi, C. Amma, and T. Schultz, “Recognizing Hand and Finger
Gestures with IMU based Motion and EMG based Muscle Activity
Sensing,” in International Conference on Bio-inspired Systems and
Signal Processing, 2015, pp. 99–108.

[34] P. Warden, “Speech Commands: A Dataset for Limited-Vocabulary
Speech Recognition,” arXiv:1804.03209 [cs], Apr. 2018, arXiv:
1804.03209.

[35] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello Edge: Keyword
Spotting on Microcontrollers,” arXiv:1711.07128 [cs, eess], Feb. 2018,
arXiv: 1711.07128.

[36] B. Liu, Z. Wang, W. Zhu, Y. Sun, Z. Shen, L. Huang, Y. Li, Y. Gong,
and W. Ge, “An Ultra-Low Power Always-On Keyword Spotting Ac-
celerator Using Quantized Convolutional Neural Network and Voltage-
Domain Analog Switching Network-Based Approximate Computing,”
IEEE Access, vol. 7, pp. 186 456–186 469, 2019.

[37] A. Krizhevsky, “Learning Multiple Layers of Features from Tiny
Images,” p. 60, Apr. 2009.

[38] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

[39] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[40] Y. Zhang, N. Suda, L. Lai, and V. Chandra, “Hello edge: Keyword
spotting on microcontrollers,” CoRR, vol. abs/1711.07128, 2017.

[41] G. Dinelli, G. Meoni, E. Rapuano, G. Benelli, and L. Fanucci, “An
FPGA-Based Hardware Accelerator for CNNs Using On-Chip Mem-
ories Only: Design and Benchmarking with Intel Movidius Neural
Compute Stick,” International Journal of Reconfigurable Computing,
vol. 2019, 2019.

[42] B. Liu, H. Qin, Y. Gong, W. Ge, M. Xia, and L. Shi, “EERA-ASR:
An Energy-Efficient Reconfigurable Architecture for Automatic Speech
Recognition with Hybrid DNN and Approximate Computing,” IEEE
Access, vol. 6, pp. 52 227–52 237, 2018.

[43] Ruiqi Guo et.al, “A 5.1pJ/Neuron 127.3us/Inference RNN-based Speech
Recognition Processor using 16 Computing-in-Memory SRAM Macros
in 65nm CMOS,” IEEE Symposium on VLSI Circuits Digest of Technical
Papers, p. 4, 2019.

[44] S. Yin, P. Ouyang, S. Tang, F. Tu, X. Li, L. Liu, and S. Wei, “A
1.06-to-5.09 tops/w reconfigurable hybrid-neural-network processor for
deep learning applications,” IEEE Symposium on VLSI Circuits, pp.
C26–C27.


