FantastIC4: A Hardware-Software Co-Design
Approach for Efficiently Running 4bit-Compact
Multilayer Perceptrons

Simon Wiedemann®, Suhas ShivapakashT, Student Member, IEEE, Pablo Wiedemann', Daniel Becking, Wojciech
Samek, Member, IEEE, Friedel Gerfers, Member, IEEE, and Thomas Wiegand, Fellow, IEEE

Abstract—With the growing demand for deploying Deep Learn-
ing models to the “edge”, it is paramount to develop techniques
that allow to execute state-of-the-art models within very tight
and limited resource constraints. In this work we propose a
software-hardware optimization paradigm for obtaining a highly
efficient execution engine of deep neural networks (DNNs) that
are based on fully-connected layers. Our approach is centred
around compression as a means for reducing the area as well
as power requirements of, concretely, multilayer perceptrons
(MLPs) with high predictive performances. Firstly, we design
a novel hardware architecture named FantastIC4, which (1)
supports the efficient on-chip execution of multiple compact
representations of fully-connected layers and (2) minimizes the
required number of multipliers for inference down to only 4 (thus
the name). Moreover, in order to make the models amenable for
efficient execution on FantastIC4, we introduce a novel entropy-
constrained training method that renders them to be robust to
4bit quantization and highly compressible in size simultaneously.
The experimental results show that we can achieve throughputs
of 2.45 TOPS with a total power consumption of 3.6W on a
Virtual Ultrascale FPGA XCVU440 device implementation, and
achieve a total power efficiency of 20.17 TOPS/W on a 22nm
process ASIC version. When compared to the other state of art
accelerators designed for the Google Speech Command (GSC)
dataset, FantastIC4 is better by 51 in terms of throughput and
145x in terms of area efficiency (GOPS/W).

Keywords—Deep learning, neural network compression, efficient
representation, efficient processing of DNNs, DNN accelerator.

I. INTRODUCTION

In recent years, the topic of “edge” computing has gained
significant attention due to the benefits that come along with
processing data directly at its source of collection [1]. For
instance, by running machine learning algorithms directly at
the edge-device (e.g., wearables), latency issues can be greatly
mitigated and/or increased privacy can be guaranteed since no

TEqual contribution.

Suhas Shivapakash and Friedel Gerfers are with chair of Mixed Signal Cir-
cuit Design, Department of Computer Engineering and Microelectronics, Tech-
nical University of Berlin, Berlin, Germany, e-mail: suhas.shivaprakash@tu-
berlin.de

Simon Wiedemann, Pablo Wiedemann, Daniel Becking, Wojciech Samek
are with Machine Learning Group, Fraunhofer Heinrich Hertz Institute, Berlin,
Germany, e-mail: wojciech.samek @hhi.fraunhofer.de

Thomas Wiegand is with chair of Media Technology, Technical University
of Berlin and Fraunhofer Heinrich Hertz Institute, Berlin, Germany, e-mail:
thomas.wiegand @hhi.fraunhofer.de

data must be send to third-party cloud providers. Naturally,
this has triggered the interest in deploying deep learning
models to such embedded devices due to their high predictive
performance. However, traditional deep learning models are
usually very resource hungry since they entail a large number
of parameters. In particular, processing a high number of
parameters usually requires expensive hardware components
such as large memory units and, if high throughput and low
latency is desired, a high number of multipliers for parallel
processing. This comes at the expense of spending lots of
resources in power consumption and chip-area, thus greatly
limiting their application in use-cases with tight area and power
consumption budgets such as in the IoT or wearables.

This motivates the research of methods that can highly
compress the DNNs weight parameters since, by doing so,
we do not only minimize the respective data movement and
therefore its power consumption, but also the required chip-
area during execution. However, the efficient processing of
compressed representations of data comes with a series of
challenges, inter alia bit-alignment problems, reduction of
locality, increased serialization, etc. Moreover, state-of-the-
art compression techniques require complex decoding prior
to performing arithmetic operations, which can compensate
for the savings attained from compression specially when the
hardware is not tailored to such type of decoding algorithms.
This motivates a hardware-software co-design paradigm where,
on the one hand, novel training techniques that make DNNs
highly compressible are proposed and, on the other hand, novel
hardware architectures are designed supporting the efficient,
on-chip execution of compressed representations.

In this work we propose a software-hardware optimization
paradigm which allows to efficiently execute highly compact
representations of DNNs based on fully-connected (FC) layers.
We specifically focus on fully-connected layers since they
are usually the largest in terms of size in a typical DNN
model, and their execution is fundamentally more memory-
bounded than other types of layers (e.g. convolutaional layers).
Moreover, a wide set of popular DNN architectures are entirely
composed by FC layers, such as LSTMs and Transformers,
highly relevant for time-series and natural language processing
tasks. Moreover, multilayer perceptrons (MLPs) are already
the status quo in use cases with very tight resource constraints,
since many studies identified MLPs to be one of the best algo-
rithms to solve tasks in the IoT domain using wearable devices

[2]. We apply several optimization techniques from both, the
hardware and software fronts, all tailored to increase the area
efficiency and lower the power consumption of inference. Our
goal is ultimately to make state-of-the-art MLP models more
amenable for, e.g., the aforementioned applications.

Our contributions can be summarized as follows:

Firstly, we design a specialized hardware accelerator,
named FantastIC4, which implements a first-
accumulate-then-multiply ~ computational ~ paradigm
(ACM) in order to minimize the required number of
multipliers for inference down to only 4 (thus the
name of the architecture). By implementing ACM
we significantly reduce the computational resource
utilization compared to the usual multiply-accumulate
(MAC) paradigm, naturally due to performing less
multiplication in total, but also due to better data
movement of the activations for MLP models (activation
stationary) as well as reduction in required area and
power consumption for computations.

FantastIC4 also supports the efficient, on-chip execution
of multiple compressed representations of the weight pa-
rameters of FC layers. This boosts the compression rate
of the layers, consequently improving the off- and on-
chip data movement, thus saving in power consumption
as well as area requirements since lower-sized memory
units can be implemented.

In order to make the models amenable for the efficient
execution on FantastIC4, we propose a novel training
algorithm that makes the models robust to 4bit quan-
tization while simultaneously encouraging low entropy
statistics of the weights. Explicitly enforcing low entropy
statistics reduces the size-requirements of the parameters
and encourages sparsity simultaneously, which we ex-
ploit by converting the parameters to compressed sparse
formats.

Our experimental results show that we can save 80%
energy by compression and avoiding unwanted data
movement between the DDR3 DRAM and the on-chip
SRAM and 75% of power by handling the 4-bit precision
and sparsity in the processing elements (PEs).

We evaluate the FantastiC4 on FC layers of popular
DNN models, as well as on custom multilayer per-
ceptrons (MLPs) trained on hand-gesture and speech
recognition tasks. We compare our accelerator to other
State of Art (SoA) FPGA and ASIC accelerators, and
see an improvement by 51 in terms of throughput and
by 145 in terms of area efficiency (GOPS/mm?).

In section II we describe the other state of art techniques
both on the hardware and software platform. section III we
describe the need for using 4-bit quantization and how we
handle the sparsity. The complete hardware architecture with
PE design and other floating point operations is described in
section V. In section IV we explain the training of the 4-bit-
compact DNNs. The experimental methodology is explained
in section VI, followed by conclusion in section VII.

II. RELATED WORK

In recent years there has been a plethora of work published
on the topic of efficient processing of DNNs, ranging from
topics of neural architecture search, pruning or sparsification,
quantization, compression and designing specialized hardware
achitectures. [3], [4] give an excellent overview on the land-
scape of different approaches and techniques studied in this
topic.

A. Techniques for reducing the information content of the
DNNs parameters

The previous compression technique [5] pioneered a particu-
lar paradigm that is based on chaining sparsification, quantiza-
tion and lossless compression methods in order to significantly
reduce the redundancies entailed in DNNs weight parameters.
[5] was able to compress (at that time) state-of-the-art DNN
models by up to 49 . However, several follow up works have
been able to achieve improvements on all three fronts.

Lossless compression. [6] showed that by coupling quan-
tization with a powerful universal entropy coder, the com-
pression gains can be boosted to 63 on the same models.
Although the proposed method achieves impressive compres-
sion gains, the resulting representation of the DNNs weights
requires decoding in order to perform inference. In contrast,
similar to the Compressed Sparse Row (CSR) matrix format
employed in [5], [7] derives a representation that compresses
the weights and enables inference in the compressed repre-
sentation without requiring decoding. [7] showed that their
proposed Compressed Entropy Row (CER) matrix format is
up to 2 more compact and efficient than the CSR format
when applied to DNNs.

Quantization. In recent years researchers have been able to
push more and more the limits of quantization. In particular,
there is a growing corpora of work showing that extreme
quantization of the weights down to 4-bits is possible, while
minimally affecting the prediction accuracy of the network
[8]-[14]. 4bit quantization offers directly 8 compression
gains and similar improvements in computational efficiency.
Stronger quantization techniques such as ternary and binary
networks have also been proposed [15], [16]. Although they
offer highly efficient implementations on a hardware level, they
usually come at the expense of significant degradation of the
accuracy of the network.

Simultaneous optimization of sparsity, quantization and
compression. Some recent work have attempted to derive a
unified framework for sparsifying, quantizaing and compress-
ing DNNs parameters. In particular, some have proposed novel
regularizers that constrain the entropy of the weight parameters
during training, thus explicitly minimizing the information
content of the weights [16], [17]. Concretely, in these works
the first-order entropy is considered, that is, the entropy value
as measured by the empirical probability mass distribution of
the parameters. This regularization technique is theoretically
well motivated, directly measures the possible size reduction
of the model and encourages sparsity and quantization of the
weights to low bit-widths simultaneously. These works were
able to attain state-of-the-art compression results, e.g., [16] was

able to train highly sparse and ternary DNNs, becoming one
of the top 5 finalists in the NeurIPS19 Micronet Challenge'.

B. Hardware accelerators

There are large number of hardware accelerators from both
the academia and industry that are concentrating on high
performance as well as energy efficiency. Some of the topics
that have been studied and analyzed are:

Data Flow Movement. Data flow movement is one of
the key aspects in designing the hardware accelerators for
any Al applications. Effective movement of the weights and
activations help in reducing a large amount of energy and the
power requirement. The work in [18] provides an effective
row stationary method and competent reusing of weights,
input feature maps (Ifmaps) and partial sums (Psums) resuse.
The Psums truncation from each of the preceding layers and
performing inference on the truncated Psums and weights was
shown in [19]. Bit Fusion [20] dynamically shared the weights
across the different layers of a DNN model. The FantastIC4
concentrates on reducing the data movement by 4-bit precision
and using FIFOs as a data buffer. bit mask encoding to fetch
the data from the FIFOs based on the sparsity. In addition,
FantastIC4 also supports effective handling of layer weights
by fetching the bit mask encoded non-zero values in a FIFO
manner. Lastly, The floating point operations are pipelined to
ensure the dynamic power is saved without compromising on
the accuracy.

Sparse Data Compression. The compression with sparsity
and pruning was shown in [5] to fit the DNN models in
the on-chip SRAM. Based on the pruning and sparsity, the
hardware accelerator is implemented in [21] and it is 19
more energy efficient than the uncompressed versions. The
compression was further extended to convolutional layers in
[22]. The weights and activations was compressed using CSC
format [23]. The scalpel accelerator [24] showed that the
weight pruning achieves a total speedup of 1.9 . In contrast to
FantastIC4, all mentioned accelerators support only one partic-
ular compressed format which can greatly limit the attainable
compression gains and consequently the power savings from
off-chip to on-chip data movement.

FPGA based Accelerators. A number of FPGA accelera-
tors have proposed solutions for optimized accelerator designs
both in the industry and academia. The energy efficient FPGA
accelerator [25] performed inference on CNN with binary
weights. The processor achieves a throughput of 2100 GOPs
with a latency of 4.6ms and power of 28W. The hardware-
software co-design library to efficiently accelerate the entire
CNN and FCN on FPGAs was shown in [26]. The floating
point arithmetic CNN accelerator [27] introduced an opti-
mized quantization scheme based on rounding and shifting-
operations, they reported an overall throughput of 760.83
GOPs. The other accelerators worked on sparse matrix vector
multiplications mainly for the multilayer perceptrons [28],
[29]. Even though these accelerators have a good performance,

Uhttps://micronet-challenge.github.io

they still lack either in throughput, power or latency require-
ments. The FantastiC4 FPGA version, utilizes efficient com-
putation approach to achieve high throughput, with minimal
power, latency and resource requirements.

III. RATIONALE BEHIND FANTASTIC4’S DESIGN

In this work we propose to apply several optimization
techniques that, in combination, are tailored to reduce both,
area and energy requirements for performing inference. The
main idea is to apply techniques that minimize the memory
requirements as well as the number of multiplications needed
to perform inference, since both are the major source of area
utilization and power consumption.

A. Why do we focus on 4bit quantization?

As mentioned in the related work Section II, it is well
known that quantization is a powerful technique for lowering
the memory as well as computational resources for inference
[3], [4]. The increasing demand for deployment of DNNs on
edge devices with very tight hardware constraints (e.g. micro-
controllers) has pushed researchers to investigate methods for
extreme quantization, resulting in weights with merely 4bits
or lower. This directly translates to 8 compression of the
model, which is beneficial for mininmizing the costs involved
in off- and on-chip data movement of the weights. In particular,
FC layers have shown to be highly redundant and robust to
extreme quantizations down to 4bit [5], [21], which again is
the main focus of our work.

1) (Contribution 1) Increasing the computational efficiency:
However, most often the inference modules of extremely
quantized layers are implemented following the usual multiply-
accumulate (MAC) computational paradigm as shown in
Fig. 1. We argue that in the regime of extreme low precision
this computational paradigm is not the most efficient. Instead,
we propose to first accumulate the activations at each bit-level
and subsequently multiply the results, thus an accumulate-
multiply (ACM) computational paradigm. More concretely, we
follow the equation

X X
VA = 1iBi A= 1iB; A)]
MAC i=0 i .
ACM

where we denote as W the weight parameters of, e.g., a fully-
connected layer, A the input activations, the operator denoting
the dot product and Bj a binary mask corresponding to the base
;. Thus, as shown in equation (1), we represent the weight
parameters W as a linear combination of four binary masks Bj
with respective coefficients ;. This representation generalizes
any type of 4bit-representation that is applied to the weights.
For instance, if 1; = 2' then the elements of W are simply
represented in the uint4 format.

As one can see from the right-hand side of equation (1), we
can first accumulate the activation values that are positioned
as indicated by the bitmasks Bj, and then multiply the output
by the base value (or base centroid) ;. This significantly
reduces the required number of multiplications. Concretely,

Element-wise
multiplication

—— [e

Sum elements

—]

jucan
22 11 13

Scalar product

Sum elements as

Multiply with
stated by bits

base values

lﬂﬂoﬂ+1lﬁk4l\%m
S -+~ [» B~
i}-
Bit-wise decomposition ENENENEN - = [r2] x[os] (o]

according to base values \

[-1.43, -0.77, 0.13, 2.53] _ . -
Fig. 1: Sketch example on the different computational paradigms when performing the dot product algorithm. Given two
input vectors, the multiply-accumulate (MAC) calculates the respective scalar product by firstly multiplying the elements and
subsequently adding them. In contrast, the accumulate-multiply (ACM) firstly sums the elements of one of the vectors (in this
diagram the right-hand-side vector) according to the bit-decomposition of the other, then multiplies the respective basis values

and finally reduces the output. In the above sketch the base values were [-1.43, -0.77, 0.13, 2.53], and we color-coded according
to [blue, green, red, pink] respectively. Thus, the original element values result by performing the linear combination in the

EIDE

22 11‘0‘13‘

vertical direction, for instance, 2:2=1 (1:43)+1

in our setup only 4 multiplications are required per output
element, which is almost negligible for large dimensions of
the input activations. Thus, the inference procedure is now
dominated by the complexity of performing additions. We refer
to the appendix for a more comprehensive explanation of how
the ACM computational flow works, and how it compares to
the traditional MAC paradigm.

2) (Contribution 2) Increasing the capacity of the model:
Moreover, the usual MAC computational paradigm requires
to also quantize the activations of the model down to 4bits
(or lower) in order to exploit the benefits from extreme
quantization. Since activations are often more sensitive to
perturbations than the weights as shown in Fig. 2, this most
often results in significant degradation of the NN prediction
performance. Moreover, special parameters such as bias and
batch-normalization tend to also be more sensitive than the
weight parameters. This motivates the support of mixed-
precision layers where input and output activations, as well
as bias and batch-norm parameters can be represented with
higher precision than the weights in order to compensate for
the accuracy degradation. FantastIC4s design supports higher
precision activation values, since this can be easily integrated
within the ACM computational flow. In addition, we support
full-precision representation of the batch-norm parameters as
well as the bias coefficients, since their memory and compute
cost are relatively low as compared to the operations involved
in the weight parameters.

In addition, in our work we do not constrain the linear
coefficients values !; to be of powers of 2, as it is most
common in the MAC approach, but allow !; 2 R. This
increases the expressive power of W, and with it the capacity
of the model, allowing it to better learn more complex tasks
(section VI).

(0:77)+0 (0:13)+0 (2:53).

Weights vs. activations quantization EfficientNet-BO

80
70 A
60 -
_. 50
X
3 40
e
3
1o
& 30
20 A
101 —e— weights
—e— activations
0 —-= baseline
3 4 5 6 7 8 9 10 11 12 13

Bitwidth

Fig. 2: Difference in sensitivity between the activations and
weight parameters of the EfficientNet-BO model. Activations
are more sensitive to quantization since the prediction per-
formance of the model drops significantly faster (at higher
precision values).

B. Why do we focus on low entropy?

As thoroughly discussed in [7], lowering the entropy of the
weights comes with a series of benefits in terms of memory as
well as computational complexity. We stress that by entropy
we mean the first-order entropy, that is, as measured by
the empirical probabiljty mass distribution of the parameters.
Concretely, H = i Pilog, Pi, where Pj measures the

empirical probability mass distribution of the i-th cluster
center. In the following we explain how in this work we
leverage on the low-entropy statistics of the weights.

1) (Contribution 3) Saving arithmetic operations: Low en-
tropy statistics encourage sparsity [7]. As thoroughly explained
in previous work [18], [21], [22], sparsity allows to save
computations by skipping zero-valued operations. In particular,
FantastIC4 does not perform additions of activations when
zero-valued weights are present, thus saving on arithmetic
operations and consequently dynamic energy consumption.

Moreover, low entropy statistics do also encourage low
number of unique non-zero values, thus a high probability
of encountering the same non-zero value. This property can
be exploited when loading non-zero values, by reducing the
dynamic power required when loading the same value.

2) (Contribution 4) Multiple lossless compression: There
are several ways to compress sparse weights. One is by
converting the weights in the Compressed Sparse Row (CSR)
format [5], which is based on applying run-length coding
for saving the signaling of the positions of non-zero values.
Another one is by applying a simple form of Huffman coding,
which consists of storing a bitmask indicating the positions of
the non-zero values followed by an array of non-zero values
organized in, e.g., row-major order. In the high sparsity regime
(>90% of zeros), the CSR format attains higher compression
gains, whereas for smaller sparsity ratios (25% - 90% of zeros)
the Huffman code compresses more the weights. Since the
sparsity ratio of different layers can vary significantly, Fantas-
tIC4 supports the processing of both sparse representations on-
chip. This allows for more flexible compression opportunities,
consequently boosting the compression gains of the model and
saving on off- to on-chip transmission costs.

IV. TRAINING 4BIT-COMPACT DNNS

As described in the previous Sections III, our proposed
optimization paradigm is based on the fact that the weight
parameters exhibit low-entropy statistics and can be repre-
sented with 4bits. However, if we naively lower the entropy
and strongly quantize a pretrained model then, most often, we
would incur a significant drop in accuracy (see experimental
section VI). Therefore, in this work we propose a novel
training algorithm that makes DNN models robust to such type
of transformations.

A. Entropy-constrained training of DNNs

Our method is strongly based on EC2T, a method proposed
in [16] that trains sparse and ternary DNNs to state-of-the-
art accuracies. We generalize their approach so that DNNs
with 4bit weights and low entropy statistics are attained
instead. Concretely, our training algorithm is composed by the
following steps:

1) Quantize the weight parameters (but keep a copy of
the full-precision weights) by applying the entropy-
constrained Lloyd (ECL) algorithm [30].

2) Apply the straight-through estimator (STE) [31] and
forward + backward pass the quantized version of the
model.

3) Update the full-precision weights and the centroids with
the computed gradients.

Fig. 3 sketches the training method.

B. Definition of the centroids

As described in equation (1) (section III), we represent the
weight parameters W of the DNN as a linear combination of 4
binary masks B; with respective coefficients 1. This allows us
to define 16 different cluster center values (or centroids), with
four of them being the coefficients !; and the rest a particular
linear combination of them. In order to increase the capacity of
the models, we assign to each weight parameter W his unique
set of four centroids

C. Entropy-Constrained Lloyd algorithm (ECL)

The ECL algorithm is a clustering algorithm that also
takes the entropy of the weight distributions into account. We
strgss that throughout this work we define entropy as H =

i Pilog, Pi, where P; measures the empirical probability
mass distribution of the i-th cluster center. To recall, the H
states the minimum average amount of bits required to store
the output samples of the distribution [32]. Thus, ECL tries
not to only minimize the distance between the centroids and
the parameter values, but also the information content of the
clusters. Again, this regularization term is theoretically well
motivated, directly measures the possible size reduction of the
model and encourages sparsity + quantization of the weights
to low bit-widths.

However, we slightly modify the algorithm so that the
cluster centers are not updated by the ECL method. Instead,
we fine-tune the cluster centers with the information received
from the gradients (more in subsection IV-E).

D. Making DNNs robust to post-training quantization

As we stated earlier, if we naively apply the ECL algorithm
to a pretrained network, then the accuracy drop may be
significant. Therefore, we apply the STE method [31] in order
to make them robust to extreme quantization. In the case of
NNs this simply means to apply further training iterations
where we update the the full-precision parameters with regards
to the gradients computed by the quantized parameters. By
doing so we adapt the full-precision weight parameters to
the prediction error incurred by the quantization, thus forcing
them to move to minima where they are robust to ECL-based
quantization.

E. Fine-tuning centroids

Our particular contribution is reflected in the definition
of the 16 clusters and their respective gradient propagation
(i.e. fine-tuning). To recall, we represent each (quantized)
weight parameter as a linear combination of 4 biggry masks
B; with respective coefficients 1, thus W = i3:0 1.B;.
Therefore, we only update the four basis centroids !; at each
training iteration, since 12 out of the 16 centroids are linear
combinations of these. Hence, we calculate the gradients i!

Fig. 3: 4bit-entropy-constrained training method for compressing DNNs, based on the straight through estimator (STE). Firstly, the
full-precision parameters are quantized using the entropy-constrained Lloyd (ECL) algorithm, whereas the quantization points ar
constrained to be linear combinations of 4 bitmasks with 4 basis centroids. Then, the gradients are calculated w.r.t. the quantize
DNN model. The full-precision parameters are respectively updated, whereas the gradients of each basis centroid are comput
by grouping and reducing their respective shared gradient values.

of each centroid ; as follows: Let W be the gradient tensor
of the weight parametew, then

i ' j i (2)

with B; being the binary mask respective to the coef cient
I';, andj being the dimension that iterates over all parameter
elements.

After computing the gradient of each centroid, we update
them by applying the ADAM optimizer.

V. FANTASTIC4: SPECIALIZED HARDWARE ACCELERATOR
FOR RUNNING4BIT-COMPACTDNNS

The Fig. 4 shows the overview of the FantastiC4 system.
The whole system is a heterogeneous combination of a CPU ; .
and an FPGA architecture. The entire system comprises of Fig. 4: FantastiC4 System.
mainly three parts: the software program on the CPU, the
external DDR3 memory and the hardware architecture on the
FPGA chip. The software part mainly consists of the CPU thathe computation inside the accelerator. The 1/O buffers stores
transfers the input data as well as the DNN model (only onehe input data for processing and stores back the PSum data
time) to the FPGA. Since all the data is usually very largefrom the accelerator for the subsequent layer inference. The
and can therefore not entirely be stored on an on-chip BRAMFantastiC4 accelerator is the heart of the entire system which
some of it is stored in an off-chip DRAM. The data is then reads the data from the DRAM, performs the computation and
accessed through a memory controller which is built acrosstores back the results into the DRAM memory.
a memory interface generator (MIG) IP. On the FPGA chip,
we have the FantastiC4 control unit, memory controller, 1/O
Buffers and the FantastiC4 accelerator. The memory controllef: Memory Controller and Input/Output Buffers
facilitates the movement of the input data from off-chip DRAM The DDR3 memory is accessed by the FantastiC4 accelera-
to the accelerator and stores back the computation results intor through a MIG interface operating at a clock frequency
the DRAM. The control unit regulates the behaviour of otherof 200MHz. We employ the AXI communication protocol
modules on the FPGA, it handles the data movement antbr the data movement between the FPGA chip and the off-

TABLE [: Control States of the FantastlC4 Control Unit

Data Acts,Wt,Bias

Movement) alpha and CSR Gl DRI)))))))
. Add tree/ . FLT Flt Float
Computation - - BM Conv | Wt ID MAC Fix-Flt Mull Add Mull Float-Int
State Start Statel State2 State3 State4 State5 | State6 | State7 | State8 State9
Time(ns) 0 5000 10 10 10 30 50 50 40 20

Fig. 5: FantastlC4 Architecture.

chip DRAM. The microblaze CPU and other AXI control computation time is less because all the states are working
IPs are used to communicate through the MIG interface witlconcurrently and each state is independent on the other states
the DDR3. The memory controller receives the instructionexcept on the rst iteration.

from the FantastIC4 control unit through the AXI master to

read and write the data from/to the memory. The 1/O buffers)

provides the dual buffering for the data movement in a pingC. FantastiC4 Architecture

pong manner. The top-level hierarchy of the FantastlC4 architecture is
shown in Fig. 5. The architecture operates on a single clock
. frequency domain of 150MHz (FPGA Based Implementation)
B. FantastiC4 Control unit and 800MHz (ASIC Based Implementation). FantastiC4 is
Our proposed accelerator has two levels of control hierarchycomposed of CSR to bit mask logic to perform CSR to bit
The Table | shows the control states for our accelerator. Thenask conversion, FIFO modules to store the weight IDs for
rst level of hierarchy i.e. the Start and the Statel controls256 adder trees, weight ID generator fetches the data from
the data movement between the DRAM, memory controllethe FIFO modules based on the outcome of CSR to bit mask
and the accelerator on the FPGA chip. Here the activationgonversion. An adder tree performs the accumulation of the
weights, biases, alpha values for oating point operationsactivations based on the weights IDs from the ID generator.
FIFO data and 256-bits CSR Pointer data are moved intdhe MAC array performs four multiplication and three addition
their respective memory/registers for computation. In this levebperations. The xed point to oating point converter converts
all the data movement operations are performed sequentiallg, 16bit xed point MAC output into a 32-bit single precision
the total time taken to complete these two states are apeat output. This 32-bit oating point MAC output will be
proximately around 5000ns for MLP models. Here the totalmultiplied by a 32-bit alphal values; where alphal values are
time taken is mainly dependent on the DNN model which isan array of single precision oating point data, the output of the
under inference. In the next level of hierarchy we performmultiplierl will be added with the bias. The output of the adder
the computations, State2-State9 shows the different stages wfll undergo a non-linear activation operation called ReLU, to
processing performed on the accelerator. The different ordeqgerform the computatiori (x) = max(0;x). Final oating
of computation performed are: CSR to bitmask conversionpoint multiplication is performed with another 32-bit single
weight ID generation, accumulation and multiply operation andprecision alpha2 value, the 32-bit result from the multiplication
nally the single precision oating point operation. The total will be rounded back to 16bit integer value to generate the nal
time taken to perform the computation is around 220ns. Thé&Sum.

Fig. 6: CSR to bitmask Conversion Logic.

. . Fig. 7: Adder Schematic.
CSR to bitmask Logic. By default, FantastlC4 loads the po-

sitions of the non-zero elements of a row of the sparse weight
matrix according to the compressed Huffman representation,
which consists of a simple binary mask of width 256. Thefrom the weight ID generator. All the activations in the adder
bitmask controls the weight ID movement into the adder treetree are static and it is used for all cycles of computations.
However, when a layers non-zero positions are compresserhe static activations in the adder tree saves signi cant power
following the CSR format, a logic must be implemented thatconsumption. By having a static activations inside the adder
converts them back to a bitmask representation, which is thgather than accessing it from the memory saves up to 15% of
purpose of the CSR to bitmask Logic. The conversion logicopower consumption. In the levell hierarchy, the 4bit weight
is shown in Fig. 6, the compressed non-zero position datfDs control the movement of the activations inside the adder.
pointers comprising of 256 bits will be splitted into a chunks Each bit from the weight IDs forms a channel, that regulate the
of 32 which is of 8bit wide. Based on the 8bit value, each bit ow of activation to the level2. If the ID is 1, then the 16bit
of the encoded bitmask will be set to "1'. For ex: As shownactivation is fed or else a zero value is fed to level2. There will
in Fig. 6, the @' chunk had a value of 241 and3thunk had be a total of eight groups of activation data coming out of the
a value of 51. So the corresponding 24dit and 52" bit will |evell hierarchy. In level2 hierarchy, the activation switches
be set to 1 and the remaining bits will be set to 0 to generatgetween the upper and lower half of 8bits. This technique
a 256bits encoded bitmask data. Both the CSR pointer daig employed to t the larger networks into the hardware and
and bitmask data will be selected from a 21 Mux through improvise the prediction in the hardware. In this hierarchy, if
a “Select Bits” to generate the nal encoded data for weightthe activation switch is low, a lower half of the bits are selected
ID generation. or else the upper half is selected. In the level3 hierarchy, the
FIFO Module and Weight ID Generator. The FIFO actual computation is performed. The sign mode determines,
module has 256 individual FIFOs which has a width of 4 andwhether the activations need to be added or subtracted. Finally
depth of 256, each storing the non-zero weight elements ahe four different computations are performed among the eight
a particular column of the weight matrix of the layer. Thesegroups, to generate the four output data of 16bits from each
FIFO modules are stored in array of registers. The weight IDadder. The Adder Stage2 has 128 adders arranged in a multiple
generator has a simple selection logic, where each individuajroup. The rst group in adder stage2 has 64 adders, second
IDs of 4bits are fetched from the FIFOs based on the encodegroup has 32 adders and similarly other groups are scaled
bitmask data. If the encoded bitmask is "1, then an ID will bedown logarithmically. The adders in adder stage2 performs
fetched from the FIFOs or else the pointer points to the samenly the computation, unlike the adders in stagel. Based on
location of the fetched data. The weight ID generator has ghe sign-bit in the output data from the stagel, either addition
cluster of 256 ID modules, which store the 4bit IDs from theor subtraction is performed.
FIFO if the 256 individual bits from the bitmask is "1' or else ~ The MAC array performs four multiplications and three
it stores a 4bit zero data. additions respectively. The four outputs each of 16bits from
Adder Tree and MAC Array. An adder tree comprises the adder tree will be multiplied with the 16bit basis weights
of an array of 256 adders arranged in a logarithmic fashionto generate a 32-bit product, which we will be accumulated to
The adder tree is grouped into two stages: Adder Stagel argknerate the nal 32-bit MAC output.
Adder Stage2. Adder Stagel has 128 adders arranged in aFloating Point Operations. The oating point operation
single group. Each adder in the stagel has three levels ofainly comprises of xed to oating point conversion, oating
hierarchy with a control parameter in each hierarchy. Thepoint multiplications, oating point addition and nal 32-bit
Fig. 7 shows the adder schematic in the Stagel. The addemating point to 16bit integer conversion. In the xed to
are fed with the two-different activations and two-different IDs oating point conversion, a 32-bit xed point MAC data is

Algorithm 1 Fixed Point to Floating Point Conversion

mac_out: 32-bit xed point MAC output
convert_out: Single precision oating point number
procedure FIXEDTOFLOAT(mac_out, convert_out)
lod Leading one detector
convert_out_sign Sign bit of oating point
convert_out_exponent Exponent of oating point
convert_out_mantissa Mantissa of oating point
for k 30 downtoO do
if (mac_out[k] == 1) then

lod = k;
end if
end for . . : -
convert_out_sign = mac_out[31] Fig. 8: Floating Point Multiplier.

convert_out_exponent = lod + 127,
convert_out_mantissa = mac_out << (23 - lod);
Combine sign,exponent and mantissa to generate co
vert_out
return convert_out
end procedure

"Eonform models are those that are fully compatible with our
hardware architecture, thus the entire end-to-end inference
procedure can be performed on it. Consequently, conform
models include only FC layers with up to 512 input/output
features. Optionally, BatchNorm layers are allowed which can
.)) . _ _ result in accuracy gains.

converted into equalent smgle. precision oating point data 19 cover a variety of use-cases with the conform models,
as shown in Algorithm. 1, a leading one will be detected fromye trained and deployed several models solving classi cation
the MAC output and corresponding conversion operation igasks for audio, image, biomedical and sensor data. Concretely,
performed. _ _ _ _ we considered the task of hand gesture recognition (HR)

The converted oating point data will undergo a single paseqd on the biomedical and sensor dataset, the google speech

precision oating point multiplication with Alphal values. The sommands (GSC) dataset for the task of audio classi cation,
Alphal values are stored in a SRAM of 1KB. With this scaling 3nq MNIST and CIFAR-10 datasets for small-scale image

factors FantastIC4 is able to accommodate for de-quantizatiof ssi cation task. We trained and implemented custom and
as well as batchnorm parameters. As shown in Fig. 8, bote||-known MLPs for solving the above mentioned tasks. In
the inputs will be normalized and split into it equivalent aqgition, in order to benchmark our quantization algorithm we
sign, mantissa and exponent part. The 23bits mantissa Willjso ysed non-conform models, which we have not trained
be multiplied with each other to generate 48bit output, they,rselves but obtained from publicly available sources. Con-
MSB of the multiplied output will be used to calculate the cretely, ResNet-50 and -34 come from the torchvision model
nal mantissa and the exponent part.The sign bits of both thezoozy Ef cientNet-B0 from 2 and ResNet-20 frorf. We trained
inputs will be XORed to generate the nal sign bit. The nal fyrther these models by applying our entropy-constrained
sign, exponent and mantissa will be concatenated to generatgethod (section IV), and benchmarked their accuracies at
the nal 32-bits multiplied output. Subsequently, the multiplied gifferent regularization strengths. We refer to the appendix
oating point will be added with the bias data stored in anotherss; 5 more in depth description of the experimental setup, the
1KB SRAM. This operation is similar to the multiplication moqels and the datasets employed in the experimental section.
operation in terms of normalization of the data. Then, the 2) Datasets & Models:

added data will undergo an nonlinear activation ReLU functionyangd Gesture Recognition (HR).The authors in [33] col-
asf (x) = max(0;x), since it is the status quo non-linear |ected Inertial Measurement Unit (IMU) and electromyogram
function for most MLP models. The ReLUed output will be (g\G) readings from 5 different subjects in 5 different ses-
further multiplied with a single 32-bit Alpha2 value to generatejons in order to capture 12 de ned hand gestures. Different
the nal 32-b_|t n_1u|t|pI|ed output. These scallng factors take from [33], we deploy a small MLP to solve the classi cation
further quantization parameters into account, important for the;g |t clearly outperforms the proposed Hidden Markov
correct calibration of the subsequent quantization step, whicloqgel which achieves a mean accuracy of %4®r person-
consists of a nal rounding of 32-bits to a 16bit integer. jngependent hand gesture recognition. Our proposed 4-layer
The 16bit integer is the nal PSum that will be used as angeen MLP achieves a person-independent mean accuracy of
activations for the inference of the next layer. 84.0%. Quantizing all network layers to 4 bit with the Fan-

VI. EXPERIMENTS 2https://pytorch.org/docs/stable/torchvision/models.html

A. Experimental setup Shttps://github.com/lukemelas/Ef cientNet-PyTorch, Apache License, Ver-
] . . . sion 2.0 - Copyright (c) 2019 Luke Melas-Kyriazi
1) Datasets & Models:In the experiments section we dis- 4nps://github.com/akamaster/pytorcasnetcifarl0, Yerlan Idelbayev's

tinguish between hardware-conform and non-conform modelSResNet implementation for CIFAR10/CIFAR100 in PyTorch

tastIC4 algorithm is possible with almost no drop in accuracy.
The model consists of an input layer, two hidden layers and
an output layer with 512, 256, 128 and 12 output features,
where a BatchNorm layer follows each fully connected layer.
The data corpus is publicly available .

Google Speech Commands (GSC). The Google Speech
Commands dataset consists of 105,829 utterances of 35 words
recorded from 2,618 speakers. The standard is to discriminate
ten words ’Yes”, "No”, ”Up”, "Down”, "Left”, "Right”, ’On”,
”Off”, ”Stop”, and ”Go”, and adding two additional labels, one
for “Unknown Words”, and another for “Silence” (no speech
detected) [34]. There are no overlapping speakers between the
train, test and validation sets. We deploy a MLP consisting
of an input layer, five hidden layers and an output layer
featuring 512, 512, 256, 256, 128, 128 and 12 output features,
respectively. Our model achieves a classification accuracy of
91.0% which outperforms the default CNN model (88.2%)
in the TensorFlow example code mentioned in [34]. The
FantastIC4 4 bit quantization has a regularizing effect on
the full-precision MLP and further improves the classification
accuracy to 91.35%, while introducing 60% sparsity. The
authors in [35] show that for the GSC dataset CNNs and
especially RNNs usually achieve better accuracies than MLPs.
Still, our proposed model yields a comparable accuracy to
their proposed CNN and outperforms their 8 bit quantized
MLP (88.91%). For another comparison, [36] quantized their
network composed by three convolution layers and two fully-
connected layers to 7 bit using 8 bit activations, and achieve
an accuracy of 90.82%.

Image Classification. For small-scale image classification
we utilized two neural networks, one MLP which would fit
into our proposed accelerator, LeNet-300-100, and one CNN
(ResNet-20). CIFAR-10 [37] is a dataset consisting of natural
images with a resolution of 32 32 pixels. It contains 10
classes. The train and test sets contain 50,000 and 10,000
images. MNIST [38] is drawn from 10 classes where each class
refers to a handwritten digit (0-9). The dataset contains 60,000
training images and 10,000 test images with a resolution of
28 28 pixels. To benchmark our quantization algorithm with
ImageNet we deployed EfficientNet-BO, ResNet-50, and -34
networks. The ImageNet [39] dataset is a large-scale dataset
containing 1.2 million training images and 50,000 test images
of 1000 classes. The resolution of the image data is various and
in the range of several hundred pixels. We crop the ImageNet
data in all experiments to 224 224 pixels.

3) Hardware simulation setup: The proposed FantastIC4
was implemented in System Verilog and corresponding behav-
ioral and gate level simulation was performed using Mentor
Graphics Simulator. The FPGA version of the FantastIC4 was
implemented using Xilinx Vivado tool. Here we synthesized,
place and routed the design on a Virtex Ultrascale FPGA on
the XCVU440 device.

For the ASIC version, we synthesized the architecture using
Synopsys Design Compiler (DC) under the GF 22nm FDSOI
SLVT technology. We placed and routed the design using
Synopsys IC compiler (ICC2). After the sign-off and RC

Shttps://www.uni-bremen.de/en/csl/research/motion-recognition.html

MNIST

e EC2T
. FantastIC4|
.

97 4 .

98 4 e . 2.

T T T T T T T T
50 55 60 65 70 75 80 85

CIFAR10

Accuracy

9004 ¢ ¢ oS . e

87.5 A .

85.0

ZB 3b 4b 5b 66 7b 50 50

Sparsity ratio
Fig. 9: Accuracy as a function of the sparsity ratio of different
DNN models. (Top) LeNet-300-100 model trained on the
MNIST dataset by the previous method EC2T [16], as com-
pared to FantastIC4s generalized form of entropy-constrained

training method. (Bottom) same as top, but for ResNet20
trained on the CIFAR10 dataset.

extraction using STARRC, we performed the timing closure
using Synopsys Prime-Time. We annotated the toggle rates
from the gate level simulation and dumped the toggling infor-
mation into Value Change Dump (VCD) file and estimated the
power using Prime-Time.

B. Benchmarking training of 4bit-compact DNNs

Arguably, the closest related training method to ours is
EC2T, which trains sparse and ternary networks under an
entropy-constrained regularizer [16]. However, our general-
ization allows to train DNNs with more expressive power
due to their ability to express 16 different cluster centers
instead of only 3. Moreover, thanks to the support of full-
precision scaling factors which can accommodate for batch-
norm parameters we expect our DNN models to be more
robust to strong quantization + sparsification, consequently
attaining better prediction performance vs compression trade-
offs. The Fig. 9 shows this phenomena. We can see that our
DNN models trained with our entropy-constrained approach
reach better Pareto-optimal fronts with regards to accuracy vs
sparsity, as compared to the EC2T method.

Furthermore, in Table II we show the prediction perfor-
mance of our models on the datasets described above and
summarize the results attained by other authors. We can see
that we consistently attain similar or higher prediction perfor-
mance than the previous work. Table II also shows the benefits
of applying a hybrid compression scheme as opposed to the
single compression format approach as proposed by previous
work. To recall, our compression scheme encodes each layer
by applying the CSR, the simple Huffman code (or bitmask
format), and the trivial 4bit dense representation, and chooses
the most compact representation between them. We see, that
we attain about 2.36 boost in compression gains on average
as compared to the CSR-only approach proposed by [21], [23],
and 1.77 higher compression rates than the trivial 4bit dense
format. These gains directly translate to reduction in memory,

off- to on-chip data movement and area requirements, which
stresses the importance of supporting multiple representations.

TABLE II: Comparison of the FantastlC4-quantization ap-
proach vs previous state-of-the-art 4-bit quantization tech-
niques. For each network we report two results, one show-
ing highest accuracies we attained and the other highest
compression ratios. Our models as well as best results are
highlighted in bold. All models belonging to the same row-
block have the same architecture, with exception of the Google
Speech Command and Hand Gesture Recognition datasets.
Unless otherwise specified, all approaches quantize all network
layers, including input- and output-layers, excluding batch
normalization- and bias-parameters.

Model Org. Acc. (%) Acc. Size (MB) CR® CSR¢
ImageNet
EfficientNet-B0 76.43 75.01 21.15 7.62 3.31
EfficientNet-B0 76.43 74.08 21.15 8.25 391
LSQ+ [8] 76.10 73.80 21.15 7.48 2.59
ResNet-50 76.15 75.66 102.23 8.21 3.50
ResNet-50 76.15 75.29 102.23 9.97 4.50
PWLQ [9 76.13 75.62 102.23 7.86 2.64
KURE [10]Y 76.30 75.60 102.23 7.88% 2.64%
ResNet-34; oY 73.30 72.98 87.19 7.80 4.32
ResNet-34,Y 73.30 72.86 87.19 9.30 4.37
QIL [11Y 73.70 73.70 87.19 6.82 2.65
DSQ [12)Y 73.80 72.76 87.19 6.82 2.65
CIFAR-10
ResNet-20 91.67 91.60 1.08 8.43 3.92
ResNet-20 91.67 91.15 1.08 16.23 11.31
SLB [13]Y 92.10 92.10 1.08 7.64 2.62
GWS [14]Y 92.20 91.46 1.08 7.72% 2.62%
MNIST
LeNet-300-100 98.70 98.63 1.07 13.31 7.62
LeNet-300-100 98.70 98.16 1.07 29.31 19.81
Google Speech Commands
MLP-GSC 91.00 91.19 2.57 10.88 5.55
MLP-GSC 91.00 90.41 2.57 13.59 7.99
HE [40] 86.40 86.40 0.2 - -
Hand Gesture Recognition

MLP-HR 88.50 88.33 1.30 8.51 3.96
MLP-HR 88.50 87.22 1.30 13.57 8.35
HMM [33] 74.30 74.30 - - -

< Compression ratio defined as the ratio of the full-precision model size to
the quantized model size, where FantastIC4 stores each layer in its optimal
format which is either CSR, bitmask format or the trivial 4bit dense format.
b Compression ratio defined as the ratio of the full-precision model size to
the quantized model size, where each layer is stored in CSR format.

T QIL and DSQ use full-precision (32-bit) for the first and last layer, PWLQ
and SLB use full-precision for the first layer and KURE and GWS provide
no information about first/last layer quantization. Our ResNet-34jo
benchmark has 32bit input- and output-layers and the ResNet-34,
benchmark a 32bit input layer.

C. Benchmarking hardware efficiency

1) Results on MLPs: We benchmarked FantastIC4 hardware
performance on the fully-connected layers of several popular

Mem —— Other Mem Other
%! Il Modules Modules
(5%) (3%)
(5%) (2%)

FIFO |

(13%) | FIFO I
Y Adder 22%) > Adder
g Tree g Tree

(77%) (73%)

(a) Area Breakdown (b) Power Breakdown

Fig. 10: Area and Power Breakdown of FantastiC4 ASIC
Version.

models such as EfficientNet-BO, MobileNet-v3 & ResNet-
50. Furthermore, we benchmarked the end-to-end inference
efficiency of two of our custom and fully hardware-conform
multilayer perceptrons (MLPs), trained for the task of google
speech commands and hand-gesture recognition. Both MLP
models, which we named MLP-GSC & MLP-HR respectively,
reach state-of-the-art prediction performance on their tasks (see
Table II and the appendix for a more detailed description of
the experimental setup and results).

The Table III shows the resource utilization breakdown of
our FantastIC4 accelerator for different DNN models. The
proclaimed results are based on the post-implementation re-
sults from Xilinx Vivado 2018.2. The activations values are
quantized down to a 8bit precision, whereas the four basis
weights use a precision of 16bits. This configuration was
found to be accurate enough to perform the inference without
harming the prediction performance of the models. As shown
in Table III, we consume the lowest resources among all the
accelerators reported so far that perform on fully connected
layers. Here we engage both the fixed point and floating point
operations for faster processing and improved accuracy during
the inference. We consume a total of just 8 DSPs to perform the
computation which significantly reduces the dynamic power
consumption. Moreover, very few BRAMSs are used in the
entire inference operation due to the extreme quantization and
compression, the LUTRAMs are explicitly used for storing
the weightIDs inside the FIFOs. As one can see, the floating
point operations utilize the lowest resources on the FPGA chip
due to the enhanced data flow modelling. The final resource
utilization summary is shown in Table IV.

We further evaluated the ASIC version of FantastIC4 on
a 22nm process node with a clock frequency of 800MHz.
The Table V reports the layout version, the total area of our
processor was found to be Imm 1.2mm.

2) Power Consumption, Latency and Throughput on the
FPGA: The FantastIC4 accelerator is highly energy efficient
due to the low weights storage and the static activations inside
the adder tree. The static activations inside the adder tree
reduces the total power consumption by 15 , as the reduced
data movement consumed around 64mW of dynamic power
when compared to the conventional SRAM access which had
960mW of power consumption. We measured power consump-
tion for different DNN models, throughout the inference the
static power was more predominant than the dynamic power
consumption, as static power on the XCVU440 FPGA was

