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Abstract

The success of convolutional neural networks (CNNs) in various applications is accompanied

by a significant increase in computation and parameter storage costs. Recent efforts to reduce

these overheads involve pruning and compressing the weights of various layers while at the

same time aiming to not sacrifice performance. In this paper, we propose a novel criterion

for CNN pruning inspired by neural network interpretability: The most relevant units, i.e.

weights or filters, are automatically found using their relevance scores obtained from concepts

of explainable AI (XAI). By exploring this idea, we connect the lines of interpretability

and model compression research. We show that our proposed method can efficiently prune

CNN models in transfer-learning setups in which networks pre-trained on large corpora are

adapted to specialized tasks. The method is evaluated on a broad range of computer vision

datasets. Notably, our novel criterion is not only competitive or better compared to state-of-

the-art pruning criteria when successive retraining is performed, but clearly outperforms these

previous criteria in the resource-constrained application scenario in which the data of the task
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to be transferred to is very scarce and one chooses to refrain from fine-tuning. Our method

is able to compress the model iteratively while maintaining or even improving accuracy.

At the same time, it has a computational cost in the order of gradient computation and is

comparatively simple to apply without the need for tuning hyperparameters for pruning.

Keywords: Pruning, Layer-wise Relevance Propagation (LRP), Convolutional Neural

Network (CNN), Interpretation of Models, Explainable AI (XAI)

1. Introduction1

Deep CNNs have become an indispensable tool for a wide range of applications [1], such as2

image classification, speech recognition, natural language processing, chemistry, neuroscience,3

medicine and even are applied for playing games such as Go, poker or Super Smash Bros. They4

have achieved high predictive performance, at times even outperforming humans. Furthermore,5

in specialized domains where limited training data is available, e.g., due to the cost and6

difficulty of data generation (medical imaging from fMRI, EEG, PET etc.), transfer learning7

can improve the CNN performance by extracting the knowledge from the source tasks and8

applying it to a target task which has limited training data.9

However, the high predictive performance of CNNs often comes at the expense of high10

storage and computational costs, which are related to the energy expenditure of the fine-11

tuned network. These deep architectures are composed of millions of parameters to be trained,12

leading to overparameterization (i.e. having more parameters than training samples) of the13

model [2]. The run-times are typically dominated by the evaluation of convolutional layers,14

while dense layers are cheap but memory-heavy [3]. For instance, the VGG-16 model has15

approximately 138 million parameters, taking up more than 500MB in storage space, and16

needs 15.5 billion floating-point operations (FLOPs) to classify a single image. ResNet50 has17

approx. 23 million parameters and needs 4.1 billion FLOPs. Note that overparametrization is18

helpful for an efficient and successful training of neural networks, however, once the trained19

and well generalizing network structure is established, pruning can help to reduce redundancy20

while still maintaining good performance [4].21

Reducing a model’s storage requirements and computational cost becomes critical for22

a broader applicability, e.g., in embedded systems, autonomous agents, mobile devices, or23
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edge devices [5]. Neural network pruning has a decades long history with interest from both24

academia and industry [6] aiming to eliminate the subset of network units (i.e. weights or25

filters) which is the least important w.r.t. the network’s intended task. For network pruning,26

it is crucial to decide how to identify the “irrelevant” subset of the parameters meant for27

deletion. To address this issue, previous researches have proposed specific criteria based on28

Taylor expansion, weight, gradient, and others, to reduce complexity and computation costs29

in the network. Related works are introduced in Section 2.30

From a practical point of view, the full capacity (in terms of weights and filters) of an31

overparameterized model may not be required, e.g., when (1) parts of the model lie dormant32

after training (i.e., are permanently ”switched off”), (2) a user is not interested in the model’s33

full array of possible outputs, which is a common scenario in transfer learning (e.g. the user34

only has use for 2 out of 10 available network outputs), or (3) a user lacks data and resources35

for fine-tuning and running the overparameterized model.36

In these scenarios the redundant parts of the model will still occupy space in memory,37

and information will be propagated through those parts, consuming energy and increasing38

runtime. Thus, criteria able to stably and significantly reduce the computational complexity39

of deep neural networks across applications are relevant for practitioners.40

In this paper, we propose a novel pruning framework based on Layer-wise Relevance41

Propagation (LRP) [7]. LRP was originally developed as an explanation method to assign42

importance scores, so called relevance, to the different input dimensions of a neural network43

that reflect the contribution of an input dimension to the models decision, and has been44

applied to different fields of computer vision (e.g., [8, 9, 10]). The relevance is backpropagated45

from the output to the input and hereby assigned to each unit of the deep model. Since46

relevance scores are computed for every layer and neuron from the model output to the input,47

these relevance scores essentially reflect the importance of every single unit of a model and its48

contribution to the information flow through the network — a natural candidate to be used49

as pruning criterion. The LRP criterion can be motivated theoretically through the concept50

of Deep Taylor Decomposition (DTD) (c.f. [11, 12, 13]). Moreover, LRP is scalable and51

easy to apply, and has been implemented in software frameworks such as iNNvestigate [14].52

Furthermore, it has linear computational cost in terms of network inference cost, similar to53
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backpropagation.54

We systematically evaluate the compression efficacy of the LRP criterion compared to55

common pruning criteria for two different scenarios.56

Scenario 1: We prune pre-trained CNNs followed by subsequent fine-tuning. This is the57

usual setting in CNN pruning and requires a sufficient amount of data and computational58

power.59

Scenario 2: In this scenario a pretrained model needs to be transferred to a related problem60

as well, but the data available for the new task is too scarce for a proper fine-tuning and/or61

the time consumption, computational power or energy consumption is constrained. Such62

transfer learning with restrictions is common in mobile or embedded applications.63

Our experimental results on various benchmark datasets and four different popular CNN64

architectures show that the LRP criterion for pruning is more scalable and efficient, and leads65

to better performance than existing criteria regardless of data types and model architectures66

if retraining is performed (Scenario 1). Especially, if retraining is prohibited due to external67

constraints after pruning, the LRP criterion clearly outperforms previous criteria on all68

datasets (Scenario 2). Finally, we would like to note that our proposed pruning framework is69

not limited to LRP and image data, but can be also used with other explanation techniques70

and data types.71

The rest of this paper is organized as follows: Section 2 summarizes related works for72

network compression and introduces the typical criteria for network pruning. Section 373

describes the framework and details of our approach. The experimental results are illustrated74

and discussed in Section 4, while our approach is discussed in relation to previous studies in75

Section 5. Section 6 gives conclusions and an outlook to future work.76

2. Related Work77

We start the discussion of related research in the field of network compression with network78

quantization methods which have been proposed for storage space compression by decreasing79

the number of possible and unique values for the parameters [15, 16]. Tensor decomposition80

approaches decompose network matrices into several smaller ones to estimate the informative81
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parameters of the deep CNNs with low-rank approximation/factorization [17].82

More recently, [18] also propose a framework of architecture distillation based on layer-wise83

replacement, called LightweightNet for memory and time saving. Algorithms for designing84

efficient models focus more on acceleration instead of compression by optimizing convolution85

operations or architectures directly (e.g. [19]).86

Network pruning approaches remove redundant or irrelevant units — i.e. nodes, filters, or87

layers — from the model which are not critical for performance [6, 20]. Network pruning is88

robust to various settings and gives reasonable compression rates while not (or minimally)89

hurting the model accuracy. Also it can support both training from scratch and transfer90

learning from pre-trained models. Early works have shown that network pruning is effective91

in reducing network complexity and simultaneously addressing over-fitting problems. Current92

network pruning techniques make weights or channels sparse by removing non-informative93

connections and require an appropriate criterion for identifying which units of the model94

are not relevant for solving a problem. Thus, it is crucial to decide how to quantify the95

relevance of the parameters (i.e. weights or channels) in the current state of the learning96

process for deletion without sacrificing predictive performance. In previous studies, pruning97

criteria have been proposed based on the magnitude of their 1) weights, 2) gradients, 3)98

Taylor expansion/derivative, and 4) other criteria, as described in the following section.99

Taylor expansion: Early approaches towards neural network pruning — optimal brain100

damage [4] and optimal brain surgeon [21] — leveraged a second-order Taylor expansion101

based on the Hessian matrix of the loss function to select parameters for deletion. However,102

computing the inverse of Hessian is computationally expensive. The work of [22, 23] used a103

first-order Taylor expansion as a criterion to approximate the change of loss in the objective104

function as an effect of pruning away network units. We contrast our novel criterion to the105

computationally more comparable first-order Taylor expansion from [22].106

Gradient: Liu and Wu [24] proposed a hierarchical global pruning strategy by calculating107

the mean gradient of feature maps in each layer. They adopt a hierarchical global pruning108

strategy between the layers with similar sensitivity. Sun et al. [25] proposes a sparsified109

back-propagation approach for neural network training using the magnitude of the gradient110

to find essential and non-essential features in Multi-Layer Perceptron (MLP) and Long111
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Short-Term Memory Network (LSTM) models, which can be used for pruning. We implement112

the gradient-based pruning criterion after [25].113

Weight: A recent trend is to prune redundant, non-informative weights in pre-trained114

CNN models, based on the magnitude of the weights themselves. Han et al. [26] and Han et al.115

[27] proposed the pruning of weights for which the magnitude is below a certain threshold, and116

to subsequently fine-tune with a lp-norm regularization. This pruning strategy has been used117

on fully-connected layers and introduced sparse connections with BLAS libraries, supporting118

specialized hardware to achieve its acceleration. In the same context, Structured Sparsity119

Learning (SSL) added group sparsity regularization to penalize unimportant parameters by120

removing some weights [28]. Li et al. [29], against which we compare in our experiments,121

proposed a one-shot channel pruning method using the lp norm of weights for filter selection,122

provided that those channels with smaller weights always produce weaker activations.123

Other criteria: [30] proposed the Neuron Importance Score Propagation (NISP) algo-124

rithm to propagate the importance scores of final responses before the softmax, classification125

layer in the network. The method is based on — in contrast to our proposed metric — a126

per-layer pruning process which does not consider global importance in the network. Luo127

et al. [31] proposed ThiNet, a data-driven statistical channel pruning technique based on128

the statistics computed from the next layer. Further hybrid approaches can be found in,129

e.g. [32], which suggests a fusion approach to combine with weight-based channel pruning130

and network quantization. More recently, Dai et al. [33] proposed an evolutionary paradigm131

for weight-based pruning and gradient-based growing to reduce the network heuristically.132

3. LRP-Based Network Pruning133

A feedforward CNN consists of neurons established in a sequence of multiple layers, where134

each neuron receives the input data from one or more previous layers and propagates its output135

to every neuron in the succeeding layers, using a potentially non-linear mapping. Network136

pruning aims to sparsify these units by eliminating weights or filters that are non-informative137

(according to a certain criterion). We specifically focus our experiments on transfer learning,138

where the parameters of a network pre-trained on a source domain is subsequently fine-tuned139

on a target domain, i.e., the final data or prediction task. Here, the general pruning procedure140
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is outlined in Algorithm 1.141

Algorithm 1 Neural Network Pruning

1: Input: pre-trained model net, reference data xr, training data xt

2: pruning threshold t, pruning criterion c, pruning ratio r

3: while t not reached do

4: // Step 1: assess network substructure importance

5: for all layer in net do

6: for all units in layer do

7: B compute importance of unit w.r.t. c (and xr)

8: end for

9: if required for c then

10: B globally regularize importance per unit

11: end if

12: end for

13: // Step 2: identify and remove least important units in groups of r

14: B remove r units from net where importance is minimal

15: B remove orphaned connections of each removed unit

16: if desired then

17: // Step 2.1: optional fine-tuning to recover performance

18: B fine-tune net on xt

19: end if

20: end while

21: // return the pruned network upon hitting threshold t (e.g. model performance or size)

22: return net

Even though most approaches use an identical process, choosing a suitable pruning142

criterion to quantify the importance of model parameters for deletion while minimizing143

performance drop (Step 1) is of critical importance, governing the success of the approach.144
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3.1. Layer-wise Relevance Propagation145

In this paper, we propose a novel criterion for pruning neural network units: the relevance146

quantity computed with LRP [7]. LRP decomposes a classification decision into proportionate147

contributions of each network unit to the overall classification score, called “relevances”.148

When computed for the input dimensions of a CNN and visualized as a heatmap, these149

relevances highlight parts of the input that are important for the classification decision.150

LRP thus originally served as a tool for interpreting non-linear learning machines and has151

been applied as such in various fields, amongst others for general image recognition, medical152

imaging and natural language processing, cf. [34]. The direct linkage of the relevances to153

the classifier output, as well as the conservativity constraint imposed on the propagation of154

relevance between layers, makes LRP not only attractive for model explaining, but can also155

naturally serve as pruning criterion (see Section 4.1).156

The main characteristic of LRP is a backward pass through the network during which157

the network output is redistributed to all units of the network in a layer-by-layer fashion.158

This backward pass is structurally similar to gradient backpropagation and has therefore159

a similar runtime. The redistribution is based on a conservation principle such that the160

relevances can immediately be interpreted as the contribution that a unit makes to the161

network output, hence establishing a direct connection to the network output and thus its162

predictive performance. Therefore, as a pruning criterion, the method is efficient and easily163

scalable to generic network structures. Independent of the type of neural network layer — that164

is pooling, fully-connected, convolutional layers — LRP allows to quantify the importance of165

units throughout the network, given a global prediction context.166

3.2. LRP-based Pruning167

The procedure of LRP-based pruning is summarized in Figure 1. In the first phase, a168

standard forward pass is performed by the network and the activations at each layer are169

collected. In the second phase, the score f(x) obtained at the output of the network is170

propagated backwards through the network according to LRP propagation rules [7]. In the171

third phase, the current model is pruned by eliminating the irrelevant (w.r.t. the “relevance”172

quantity R obtained via LRP) units and is (optionally) further fine-tuned.173
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Figure 1: Illustration of LRP-based sequential process for pruning. A. Forward propagation of a given image

(i.e. cat) through a pre-trained model. B. Evaluation on relevance for weights/filters using LRP, C. Iterative

pruning by eliminating the least relevant units (depicted by circles) and fine-tuning if necessary. The units can

be individual neurons, filters, or other arbitrary grouping of parameters, depending on the model architecture.

LRP is based on a layer-wise conservation principle that allows the propagated quantity174

(e.g. relevance for a predicted class) to be preserved between neurons of two adjacent layers.175

Let R
(l)
i be the relevance of neuron i at layer l and R

(l+1)
j be the relevance of neuron j at the176

next layer l + 1. Stricter definitions of conservation that involve only subsets of neurons can177

further impose that relevance is locally redistributed in the lower layers and we define R
(l)
i←j178

as the share of R
(l+1)
j that is redistributed to neuron i in the lower layer. The conservation179

property always satisfies180 ∑
i

R
(l)
i←j = R

(l+1)
j , (1)

where the sum runs over all neurons i of the (during inference) preceeding layer l. When using181

relevance as a pruning criterion, this property helps to preserve its quantity layer-by-layer,182

regardless of hidden layer size and the number of iteratively pruned neurons for each layer.183

At each layer l, we can extract node i’s global importance as its attributed relevance R
(l)
i .184

In this paper, we specifically adopt relevance quantities computed with the LRP-α1β0-rule185
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as pruning criterion. The LRP-αβ-rule was developed with feedforward-DNNs with ReLU186

activations in mind and assumes positive (pre-softmax) logit activations flogit(x) > 0 for187

decomposition. The rule has been shown to work well in practice in such a setting [35]. This188

particular variant of LRP is tightly rooted in DTD [11], and other than the criteria based on189

network derivatives we compare against [25, 22], always produces contiunous explanations,190

even if backpropagation is performed through the discontinuous (and commonly used) ReLU191

nonlinearity [12]. When used as a criterion for pruning, its assessment of network unit192

importance will change less abruptly with (small) changes in the choice of reference samples,193

compared to gradient-based criteria.194

The propagation rule performs two separate relevance propagation steps per layer: one ex-195

clusively considering activatory parts of the forward propagated quantities (i.e. all a
(l)
i wij > 0)196

and another only processing the inhibitory parts (a
(l)
i wij < 0) which are subsequently merged197

in a sum with components weighted by α and β (s.t. α + β = 1) respectively.198

By selecting α = 1, the propagation rule simplifies to199

R
(l)
i =

∑
j

(
a
(l)
i wij

)+
∑

i′ (ai′ (l)wi′j)
+R

(l+1)
j , (2)

where R
(l)
i denotes relevance attributed to the ith neuron at layer l, as an aggregation of200

downward-propagated relevance messages R
(l,l+1)
i←j . The terms (·)+ indicate the positive part201

of the forward propagated pre-activation from layer l, to layer (l + 1). The i′ is a running202

index over all input activations a. Note that a choice of α = 1 only decomposes w.r.t. the203

parts of the inference signal supporting the model decision for the class of interest.204

Equation (2) is locally conservative, i.e. no quantity of relevance gets lost or injected during205

the distribution of Rj where each term of the sum corresponds to a relevance message Rj←k.206

For this reason, LRP has the following technical advantages over other pruning techniques such207

as gradient-based or activation-based methods: (1) Localized relevance conservation implicitly208

ensures layer-wise regularized global redistribution of importances from each network unit.209

(2) By summing relevance within each (convolutional) filter channel, the LRP-based criterion210

is directly applicable as a measure of total relevance per node/filter, without requiring a211

post-hoc layer-wise renormalization, e.g., via lp norm. (3) The use of relevance scores is not212

restricted to a global application of pruning but can be easily applied to locally and (neuron- or213
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filter-)group-wise constrained pruning without regularization. Different strategies for selecting214

(sub-)parts of the model might still be considered, e.g., applying different weightings/priorities215

for pruning different parts of the model: Should the aim of pruning be the reduction of216

FLOPs required during inference, one would prefer to focus on primarily pruning units of217

the convolutional layers. In case the aim is a reduction of the memory requirement, pruning218

should focus on the fully-connected layers instead.219

In the context of Algorithm 1, Step 1 of the LRP-based assessment of neuron and220

filter importance is performed as a single LRP backward pass through the model, with an221

aggregation of relevance per filter channel as described above, for convolutional layers, and222

does not require additional normalization or regularization. We would like to point out that223

instead of backpropagating the model output fc(x) for the true class c of any given sample x224

(as it is commonly done when LRP is used for explaining a prediction [7, 8]), we initialize the225

algorithm with R
(L)
c = 1 at the output layer L. We thus gain robustness against the model’s226

(in)confidence in its predictions on the previously unseen reference samples x and ensure227

an equal weighting of the influence of all reference samples in the identification of relevant228

neural pathways.229

4. Experiments230

We start by an attempt to intuitively illuminate the properties of different pruning criteria,231

namely, weight magnitude, Taylor, gradient and LRP, via a series of toy datasets. We then232

show the effectiveness of the LRP criterion for pruning on widely-used image recognition233

benchmark datasets — i.e. the Scene 15 [36], Event 8 [37], Cats & Dogs [38], Oxford Flower234

102 [39], CIFAR-101, and ILSVRC 2012 [40] datasets — and four pre-trained feed-forward235

deep neural network architectures, AlexNet and VGG-16 with only a single sequence of236

layers, and ResNet-18 and ResNet-50 [41], which both contain multiple parallel branches of237

layers and skip connections.238

The first scenario focuses specifically on pruning of pre-trained CNNs with subsequent239

fine-tuning, as it is common in pruning research [22]. We compare our method with several240

1https://www.cs.toronto.edu/~kriz/cifar.html
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state-of-the-art criteria to demonstrate the effectiveness of LRP as a pruning criterion in241

CNNs. In the second scenario, we tested whether the proposed pruning criterion also works242

well if only a very limited number of samples is available for pruning the model. This is243

relevant in case of devices with limited computational power, energy and storage such as244

mobile devices or embedded applications.245

4.1. Pruning Toy Models246

First, we systematically compare the properties and effectiveness of the different pruning247

criteria on several toy datasets in order to foster an intuition about the properties of all248

approaches, in a controllable and computationally inexpensive setting. To this end we249

evaluate all four criteria on different toy data distributions qualitatively and quantitatively.250

We generated three k-class toy datasets (“moon” (k = 2), “circle” (k = 2) and “multi”251

(k = 4)), using respective generator functions2,3.252

Each generated 2D dataset consists of 1000 training samples per class. We constructed253

and trained the models as a sequence of three consecutive ReLU-activated dense layers with254

1000 hidden neurons each. After the first linear layer, we have added a DropOut layer with a255

dropout probability of 50%. The model receives inputs from R2 and has — depending on the256

toy problem set — k ∈ {2, 4} output neurons:257

Dense(1000) -> ReLU -> DropOut(0.5) -> Dense(1000) ->258

-> ReLU -> Dense(1000) -> ReLU -> Dense(k)259

We then sample a number of new datapoints (unseen during training) for the computation260

of the pruning criteria. During pruning, we removed a fixed number of 1000 of the 3000261

hidden neurons that have the least relevance for prediction according to each criterion. This262

is equivalent to removing 1000 learned (yet insignificant, according to the criterion) filters263

from the model. After pruning, we observed the changes in the decision boundaries and264

re-evaluated for classification accuracy using the original training samples and re-sampled265

datapoints across criteria. This experiment is performed with n ∈ [1, 2,5, 10, 20, 50, 100, 200]266

2https://scikit-learn.org/stable/datasets
3https://github.com/seulkiyeom/LRP_Pruning_toy_example
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reference samples for testing and the computation of pruning criteria. Each setting is repeated267

50 times, using the same set of random seeds (depending on the repetition index) for each n268

across all pruning criteria to uphold comparability.269

Figure 2 shows the data distributions of the generated toy datasets, an exemplary set270

of n = 5 samples generated for criteria computation, as well as the qualitative impact to271

the models’ decision boundary when removing a fixed set of 1000 neurons as selected via272

the compared criteria. Figure 3 investigates how the pruning criteria preserve the models’273

problem solving capabilities as a function of the number of samples selected for computing the274

criteria. Figure 4 then quantitatively summarizes the results for specific numbers of unseen275

samples (n ∈ [1, 5, 20, 100]) for computing the criteria. Here we report the model accuracy276

on the training set in order to relate the preservation of the decision function as learned277

from data between unpruned (2nd column) to pruned models and pruning criteria (remaining278

columns).279

Figure 2: Qualitative comparison of the impact of the pruning criteria on the decision function on three toy

datasets. 1st column: scatter plot of the training data and decision boundary of the trained model, 2nd

column: data samples randomly selected for computing the pruning criteria, 3rd to 6th columns: changed

decision boundaries after the application of pruning w.r.t. different criteria.
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Figure 3: Pruning performance (accuracy) comparison of criteria depending on the number of reference

samples per class used for criterion computation. 1st row: Model evaluation on the training data. 2nd row:

Model evaluation on an unseen test dataset with added Gaussian noise (N (0, 0.3)), which have not been used

for the computation of pruning criteria. Columns: Results over different datasets. Solid lines show the average

post-pruning performance of the models pruned w.r.t. to the evaluated criteria weight (black), Taylor (blue),

grad(ient) (green) and LRP (red) over 50 repetitions of the experiment. The dashed black line indicates the

model’s evaluation performance without pruning. Shaded areas around the lines show the standard deviation

over the repetition of experiments. Further results for noise levels N (0, 0.1) and N (0, 0.01) are available on

github3.

The results in Figure 4 show that, among all criteria based on reference sample for the280

computation of relevance, the LRP-based measure consistently outperforms all other criteria281

in all reference set sizes and datasets. Only in the case of n = 1 reference sample per class,282

the weight criterion preserves the model the best. Note that using the weight magnitude283

as a measure of network unit importance is a static approach, independent from the choice284

of reference samples. Given n = 5 points of reference per class, the LRP-based criterion285

already outperforms also the weight magnitude as a criterion for pruning unimportant neural286
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Figure 4: Comparison of training accuracy after one-shot pruning one third of all filters w.r.t one of the four

metrics on toy datasets, with n ∈ [1, 5, 20, 100] reference samples used for criteria computation for Weight,

Gradient, Taylor and LRP. The experiment is repeated 50 times. Note that the Weight criterion is not

influenced by the number of reference samples n. Compare to Supplementary Table 1.

network structures, while successfully preserving the functional core of the predictor. Figure 2287

demonstrates how the toy models’ decision boundaries change under influence of pruning288

with all four criteria. We can observe that the weight criterion and LRP preserve the models’289

learned decision boundary well. Both the Taylor and gradient measures degrade the model290

significantly. Compared to weight- and LRP-based criteria, models pruned by gradient-based291

criteria misclassify a large part of samples.292

The first row of Figure 3 shows that all (data dependent) measures benefit from increasing293

the number of reference points. LRP is able to find and preserve the functionally important294

network components with only very little data, while at the same time being considerably less295

sensitive to the choice of reference points than other metrics, visible in the measures’ standard296

deviations. Both the gradient and Taylor-based measures do not reach the performance of297

LRP-based pruning, even with 200 reference samples for each class. The performance of298

pruning with the weight magnitude based measure is constant, as it does only depend on299

the learned weights itself. The bottom row of Figure 3 shows the test performance of the300

pruned models as a function of the number of samples used for criteria computation. Here,301

we tested on 500 samples per class, drawn from the datasets’ respective distributions, and302
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perturbed with additional gaussian noise (N (0, 0.3)) added after data generation. Due to303

the large amounts of noise added to the data, we see the prediction performance of the304

pruned and unpruned models to decrease in all settings. Here we can observe that two out305

of three times the LRP-pruned models outperforming all other criteria. Only once, on the306

“moon” dataset, pruning based on the weight criterion yields a higher performance than the307

LRP-pruned model. Most remarkably though, only the models pruned with the LRP-based308

criterion exhibit prediction performance and behavior — measured in mean and standard309

deviation of accuracies measured over all 50 random seeds per n reference samples on the310

deliberatly heavily noisy data — highly similar to the original and unpruned model, from311

only n = 5 reference samples per class on, on all datasets. This yields another strong indicator312

that LRP is, among the compared criteria, most capable at preserving the relevant core of the313

learned network function, and to dismiss unimportant parts of the model during pruning.314

The strong results of LRP, and the partial similarity between the results on the training315

datasets between LRP and weight raises the question where and how both metrics (and316

Taylor and gradient) deviate, as it can be expected that both metrics at least select highly317

overlapping sets of network units for pruning and preservation. We therefore investigate in318

all three toy settings — across the different number of reference samples and random seeds —319

the (dis)similarities and (in)consistencies in neuron selection and ranking by measuring the320

set similarities (S1 ∩ S2)/min(|S1|, |S2|) of the k neurons selected for pruning (ranked first)321

and preservation (ranked last) between and within criteria. Since the weight criterion is not322

influenced by the choice of reference samples for computation, it is expected that the resulting323

neuron order is perfectly consistent with itself in all settings (cf. Table 2). What is unexpected324

however, given the results in Figure 3 and Figure 4 indicating similar model behavior after325

pruning to be expected between LRP- and weight-based criteria, at least on the training data,326

is the minimal set overlap between LRP and weight, given the higher set similarities between327

LRP and the gradient and Taylor criteria, as shown in Table 1. Overall, the set overlap328

between the neurons ranked in the extremes of the orderings show that LRP-derived pruning329

strategies have very little in common with the ones originating from the other criteria. This330

observation can also be made on more complex networks at hand of Figure 7, as shown and331

discussed later in this Section.332
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Table 1: Similarity analysis of neuron selection between LRP and the other criteria, computed over 50 different

random seeds. Higher values indicate higher similarity in neuron selection of the first/last k neurons for

pruning compared to LRP. Note that below table reports results only for n = 10 reference samples for criteria

computation (Weight, Taylor, Gradient and LRP) and k = 250 and k = 1000. Similar observations have been

made for n ∈ [1, 2,5, 20, 50, 100, 200] and k ∈ [125, 500] and can be found on github3.

Dataset first-250 last-250 first-1000 last-1000

W T G L W T G L W T G L W T G L
moon 0.002 0.006 0.006 1.000 0.083 0.361 0.369 1.000 0.381 0.639 0.626 1.000 0.409 0.648 0.530 1.000
circle 0.033 0.096 0.096 1.000 0.086 0.389 0.405 1.000 0.424 0.670 0.627 1.000 0.409 0.623 0.580 1.000
mult 0.098 0.220 0.215 1.000 0.232 0.312 0.299 1.000 0.246 0.217 0.243 1.000 0.367 0.528 0.545 1.000

Table 2 reports the self-similarity in neuron selection in the extremes of the ranking across333

random seeds (and thus sets of reference samples), for all criteria and toy settings. While334

LRP yields a high consistency in neuron selection for both the pruning (first-k) and the335

preservation (last-k) of neural network units, both gradient and moreso Taylor exhibit lower336

self-similarities. The lower consistency of both latter criteria in the model components ranked337

last (i.e. preserved in the model the longest during pruning) yields an explanation for the large338

variation in results observed earlier: although gradient and Taylor are highly consistent in the339

removal of neurons rated as irrelevant, their volatility in the preservation of neurons which340

constitute the functional core of the network after pruning yields dissimilarities in the resulting341

predictor function. The high consistency reported for LRP in terms of neuron sets selected342

for pruning and preservation, given the relatively low Spearman correlation coefficient points343

out only minor local perturbations of the pruning order due to the selection of reference344

samples. We find a direct correspondence between the here reported (in)consistency of345

pruning behavior for the three data-dependent criteria, and the in [12] observed “explanation346

continuity” observed for LRP (and discontinuity for gradient and Taylor) in neural networks347

containing the commonly used ReLU activation function, which provides an explanation for348

the high pruning consistency obtained with LRP, and the extreme volatility for gradient and349

Taylor. A supplementary analysis of the neuron selection consistency of LRP over different350

counts of reference samples n, demonstrating the requirement of only very few reference351

samples per class in order to obtain stable pruning results, can be found in Supplementary352

Results 1.353
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Table 2: A consistency comparison of neuron selection and ranking for network pruning with criteria

(Weight, Taylor, Gradient and LRP), averaged over all 1225 unique random seed combinations. Higher values

indicate higher consistency in selecting the same sets of neurons and generating neuron rankings for different

sets of reference samples. We report results for n = 10 reference samples and k = 250. Observations for

n ∈ [1, 2,5, 20, 50, 100, 200] and k ∈ [125, 500, 1000] are available on github3.

Dataset first-250 last-250 Spearman Correlation

W T G L W T G L W T G L
moon 1.000 0.920 0.918 0.946 1.000 0.508 0.685 0.926 1.000 0.072 0.146 0.152
circle 1.000 0.861 0.861 0.840 1.000 0.483 0.635 0.936 1.000 0.074 0.098 0.137
mult 1.000 0.827 0.829 0.786 1.000 0.463 0.755 0.941 1.000 0.080 0.131 0.155

Taken together, the results of Tables 1 to 2 and Supplementary Tables 1 and 2 elucidate that354

LRP constitutes — compared to the other methods — an orthogonal pruning criterion which355

is very consistent in its selection of (un)important neural network units, while remaining356

adaptive to the selection of reference samples for criterion computation. Especially the357

similarity in post-pruning model performance to the static weight criterion indicates that358

both metrics are able to find valid, yet completely different pruning solutions. However, since359

LRP can still benefit from the influence of reference samples, we will show in Section 4.2.2360

that our proposed criterion is able to outperform not only weight, but all other criteria in361

Scenario 2, where pruning is is used instead of fine-tuning as a means of domain adaptation.362

This will be discussed in the following sections.363

4.2. Pruning Deep Image Classifiers for Large-scale Benchmark Data364

We now evaluate the performance of all pruning criteria on the CNNs, VGG-16, AlexNet365

as well as ResNet-18 and ResNet-50, — popular models in compression research [42] — all of366

which are pre-trained on ILSVRC 2012 (ImageNet). VGG-16 consists of 13 convolutional layers367

with 4224 filters and 3 fully-connected layers and AlexNet contains 5 convolutional layers368

with 1552 filters and 3 fully-connected layers. In dense layers, there exist 4,096+4,096+k369

neurons (i.e. filters), respectively, where k is the number of output classes. In terms of370

complexity of the model, the pre-trained VGG-16 and AlexNet on ImageNet originally consist371

of 138.36/60.97 million of parameters and 154.7/7.27 Giga Multiply-Accumulate Operations372

per Second (GMACS) (as a measure of FLOPs), respectively. ResNet-18 and ResNet-50373

consist of 20/53 convolutional layers with 4,800/26,560 filters. In terms of complexity of the374
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model, the pre-trained ResNet-18 and ResNet-50 on ImageNet originally consist of 11.18/23.51375

million of parameters and 1.82/4.12 GMACS (as a measure of FLOPs), respectively.376

Furthermore, since the LRP scores are not implementation-invariant and depend on the377

LRP rules used for the batch normalization (BN) layers, we convert a trained ResNet into a378

canonized version, which yields the same predictions up to numerical errors. The canonization379

fuses a sequence of a convolution and a BN layer into a convolution layer with updated380

weights4 and resets the BN layer to be the identity function. This removes the BN layer381

effectively by rewriting a sequence of two affine mappings into one updated affine mapping [43].382

The second change replaced calls to torch.nn.functional methods and the summation in383

the residual connection by classes derived from torch.nn.Module which then were wrapped384

by calls to torch.autograd.function to enable custom backward computations suitable for385

LRP rule computations.386

Experiments are performed within the PyTorch and torchvision frameworks under Intel(R)387

Xeon(R) CPU E5-2660 2.20GHz and NVIDIA Tesla P100 with 12GB for GPU processing. We388

evaluated the criteria on six public datasets (Scene 15 [36], Event 8, Cats and Dogs [38], Oxford389

Flower 102 [39], CIFAR-10, and ILSVRC 2012 [40]). For more detail on the datasets and the390

preprocessing, see Supplementary Methods 1. Our complete experimental setup covering these391

datasets is publicly available at https://github.com/seulkiyeom/LRP pruning.392

In order to prepare the models for evaluation, we first fine-tuned the models for 200 epochs393

with constant learning rate 0.001 and batch size of 20. We used the Stochastic Gradient394

Descent (SGD) optimizer with momentum of 0.9. In addition, we also apply dropout to the395

fully-connected layers with probability of 0.5. Fine-tuning and pruning are performed on the396

training set, while results are evaluated on each test dataset. Throughout the experiments,397

we iteratively prune 5% of all the filters in the network by eliminating units including their398

input and output connections. In Scenario 1, we subsequently fine-tune and re-evaluate the399

model to account for dependency across parameters and regain performance, as it is common.400

4See bnafterconv overwrite intoconv(conv,bn) in the file lrp general6.py in https://github.com/

AlexBinder/LRP_Pytorch_Resnets_Densenet

19

https://github.com/seulkiyeom/LRP_pruning
https://github.com/AlexBinder/LRP_Pytorch_Resnets_Densenet
https://github.com/AlexBinder/LRP_Pytorch_Resnets_Densenet


R
e
sN

e
t-

5
0

Te
st

 A
cc

u
ra

cy
Te

st
 A

cc
u
ra

cy
V

G
G

-1
6

Scene 15 Cifar 10Cats and DogsEvent 8 Oxford Flower 102

Figure 5: Comparison of test accuracy in different criteria as pruning rate increases on VGG-16 (top) and

ResNet-50 (bottom) with five datasets. Pruning with fine-tuning. Prematurely terminated lines in above row

of panels indicate that during pruning, the respective criterion removed filters vital to the network structure

by disconnecting the model input from the output.

Figure 6: Performance comparison of the proposed method (i.e. LRP) and other criteria on VGG-16 and

ResNet-50 with five datasets. Each point in the scatter plot corresponds to the performance at a specific

pruning rate of two criteria, where the vertical axis shows the performance of our LRP criterion and the

horizontal axis the performance of a single other criterion (compare to Figure 5 that displays the same data

for more than two criteria). The black dashed line shows the set of points where models pruned by one of the

compared criteria would exhibit identical performance to LRP. For accuracy, higher values are better. For

loss, lower values are better.
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Table 3: A performance comparison between criteria (Weight, Taylor, Gradient with `2-norm each and

LRP) and the Unpruned model for VGG-16 (top) and ResNet-50 (bottom) on five different image

benchmark datasets. Criteria are evaluated at fixed pruning rates per model and dataset, identified as

〈dataset〉@〈percent pruned filters〉%. We report test accuracy (in %), (training) loss (×10−2), number of

remaining parameters (×107) and FLOPs (in GMAC) per forward pass. For all measures except accuracy,

lower outcomes are better.

VGG-16 Scene 15 @ 55% Event 8 @ 55% Cats & Dogs @ 60%

U W T G L U W T G L U W T G L
Loss 2.09 2.27 1.76 1.90 1.62 0.85 1.35 1.01 1.18 0.83 0.19 0.50 0.51 0.57 0.44
Accuracy 88.59 82.07 83.00 82.72 83.99 95.95 90.19 91.79 90.55 93.29 99.36 97.90 97.54 97.19 98.24
Params 119.61 56.17 53.10 53.01 49.67 119.58 56.78 48.48 50.25 47.35 119.55 47.47 51.19 57.27 43.75
FLOPs 15.50 8.03 4.66 4.81 6.94 15.50 8.10 5.21 5.05 7.57 15.50 7.02 3.86 3.68 6.49

Oxford Flower 102 @ 70% CIFAR-10 @ 30%

U W T G L U W T G L
Loss 3.69 3.83 3.27 3.54 2.96 1.57 1.83 1.76 1.80 1.71
Accuracy 82.26 71.84 72.11 70.53 74.59 91.04 93.36 93.29 93.05 93.42
Params 119.96 39.34 41.37 42.68 37.54 119.59 74.55 97.30 97.33 89.20
FLOPs 15.50 5.48 2.38 2.45 4.50 15.50 11.70 8.14 8.24 9.93

ResNet-50 Scene 15 @ 55% Event 8 @ 55% Cats & Dogs @ 60%

U W T G L U W T G L U W T G L
Loss 0.81 1.32 1.08 1.32 0.50 0.33 1.07 0.63 0.85 0.28 0.01 0.05 0.06 0.21 0.02
Accuracy 88.28 80.17 80.26 78.71 85.38 96.17 88.27 87.55 86.38 94.22 98.42 97.02 96.33 93.13 98.03
Params 23.54 14.65 12.12 11.84 13.73 23.52 13.53 11.85 11.93 14.05 23.51 12.11 10.40 10.52 12.48
FLOPs 4.12 3.22 2.45 2.42 3.01 4.12 3.16 2.48 2.47 3.10 4.12 3.04 2.40 2.27 2.89

Oxford Flower 102 @ 70% CIFAR-10 @ 30%

U W T G L U W T G L
Loss 0.82 3.04 2.18 2.69 0.83 0.003 0.002 0.004 0.009 0.003
Accuracy 77.82 51.88 58.62 53.96 76.83 93.55 93.37 93.15 92.76 93.23
Params 23.72 9.24 8.82 8.48 9.32 23.52 19.29 18.10 17.96 18.11
FLOPs 4.12 2.55 1.78 1.81 2.38 1.30 1.14 1.06 1.05 1.16

4.2.1. Scenario 1: Pruning with Fine-tuning401

On the first scenario, we retrain the model after each iteration of pruning in order to402

regain lost performance. We then evaluate the performance of the different pruning criteria403

after each pruning-retraining-step. That is, we quantify the importance of each filter by404

the magnitude of the respective criterion and iteratively prune 5% of all filters (w.r.t. the405

original number of filters in the model) rated least important in each pruning step. Then, we406

compute and record the training loss, test accuracy, number of remaining parameters and407

total estimated FLOPs. We assume that the least important filters should have only little408

influence on the prediction and thus incur the lowest performance drop if they are removed409

from the network.410

Figure 5 (and Supplementary Figure 2) depict test accuracies with increasing pruning411

rate in VGG-16 and ResNet-50 (and AlexNet and ResNet-18, respectively) after fine-tuning412
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Figure 7: An observation of per-layer pruning performed w.r.t the different evaluated criteria on VGG-16

and two datasets. Each colored line corresponds to a specific (global) ratio of filters pruned from the network

(black (top) : 0%, red : 15%, green: 30%, blue: 45%, violet: 75% and black (bottom) 90%). The

dots on each line identify the ratio of pruning applied to specific convolutional layers, given a global ratio of

pruning, depending on the pruning criterion.

for each dataset and each criterion. It is observed that LRP achieves higher test accuracies413

compared to other criteria in a large majority of cases (see Figure 6 and Supplementary414

Figure 1). These results demonstrate that the performance of LRP-based pruning is stable415

and independent of the chosen dataset. Apart from performance, regularization by layer is416

a critical constraint which obstructs the expansion of some of the criteria toward several417

pruning strategies such as local pruning, global pruning, etc. Except for the LRP criterion,418

all criteria perform substantially worse without lp regularization compared to those with419

lp regularization and result in unexpected interruptions during the pruning process due420

to the biased redistribution of importance in the network (cf. top rows of Figure 5 and421

Supplementary Figure 2).422

Table 3 shows the predictive performance of the different criteria in terms of training loss,423

test accuracy, number of remaining parameters and FLOPs, for the VGG-16 and ResNet-50424

models. Similar results for AlexNet and ResNet-18 can be found in Supplementary Table 2.425

Except for CIFAR-10, the highest compression rate (i.e. lowest number of parameters) could426

be achieved by the proposed LRP-based criterion (row “Params”) for VGG-16, but not for427

ResNet-50. However, in terms of FLOPs, the proposed criterion only outperformed the weight428
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criterion, but not the Taylor and Gradient criteria (row“FLOPs”). This is due to the fact429

that a reduction in number of FLOPs depends on the location where pruning is applied430

within the network: Figure 7 shows that the LRP and weight criteria focus the pruning on431

upper layers closer to the model output, whereas the Taylor and Gradient criteria focus more432

on the lower layers.433

Throughout the pruning process usually a gradual decrease in performance can be434

observed. However, with the Event 8, Oxford Flower 102 and CIFAR-10 datasets, pruning435

leads to an initial performance increase, until a pruning rate of approx. 30% is reached. This436

behavior has been reported before in the literature and might stem from improvements of437

the model structure through elimination of filters related to classes in the source dataset438

(i.e., ILSVRC 2012) that are not present in the target dataset anymore [44]. Supplementary439

Table 3 and Supplementary Figure 2 similarly show that LRP achieves the highest test440

accuracy in AlexNet and ResNet-18 for nearly all pruning ratios with almost every dataset.441

Figure 7 shows the number of the remaining convolutional filters for each iteration. We442

observe that, on the one hand, as pruning rate increases, the convolutional filters in earlier443

layers that are associated with very generic features, such as edge and blob detectors, tend to444

generally be preserved as opposed to those in latter layers which are associated with abstract,445

task-specific features. On the other hand, the LRP- and weight-criterion first keep the filters446

in early layers in the beginning, but later aggressively prune filters near the input which447

now have lost functionality as input to later layers, compared to the gradient-based criteria448

such as gradient and Taylor-based approaches. Although gradient-based criteria also adopt449

the greedy layer-by-layer approach, we can see that gradient-based criteria pruned the less450

important filters almost uniformly across all the layers due to re-normalization of the criterion451

in each iteration. However, this result contrasts with previous gradient-based works [22, 25]452

that have shown that units deemed unimportant in earlier layers, contribute significantly453

compared to units deemed important in latter layers. In contrast to this, LRP can efficiently454

preserve units in the early layers — as long as they serve a purpose — despite of iterative455

global pruning.456
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4.2.2. Scenario 2: Pruning without Fine-tuning457

In this section, we evaluate whether pruning works well if only a (very) limited number458

of samples is available for quantifying the pruning criteria. To the best of our knowledge,459

there are no previous studies that show the performance of pruning approaches when acting460

w.r.t. very small amounts of data. With large amounts of data available (and even though461

we can expect reasonable performance after pruning), an iterative pruning and fine-tuning462

procedure of the network can amount to a very time consuming and computationally heavy463

process. From a practical point of view, this issue becomes a significant problem, e.g. with464

limited computational resources (mobile devices or in general; consumer-level hardware) and465

reference data (e.g., private photo collections), where capable and effective one-shot pruning466

approaches are desired and only little leeway (or none at all) for fine-tuning strategies after467

pruning is available.468

To investigate whether pruning is possible also in these scenarios, we performed experiments469

with a relatively small number of data on the 1) Cats & Dogs and 2) subsets from the470

ILSVRC 2012 classes. On the Cats & Dogs dataset, we only used 10 samples each from the471

“cat” and “dog” classes to prune the (on ImageNet) pre-trained AlexNet, VGG-16, ResNet-18472

and ResNet-50 networks with the goal of domain/dataset adaption. The binary classification473

(i.e. “cat” vs. “dog”) is a subtask within the ImageNet taxonomy and corresponding output474

neurons can be identified by its WordNet5 associations. This experiment implements the task475

of domain adaptation.476

In a second experiment on the ILSVRC 2012 dataset, we randomly chose k = 3 classes477

for the task of model specialization, selected only n = 10 images per class from the training478

set and used them to compare the different pruning criteria. For each criterion, we used the479

same selection of classes and samples. In both experimental settings, we do not fine-tune the480

models after each pruning iteration, in contrast to Scenario 1 in Section 4.2.1. The obtained481

post-pruning model performance is averaged over 20 random selections of classes (ImageNet)482

and samples (Cats & Dogs) to account for randomness. Please note that before pruning, we483

first restructured the models’ fully connected output layers to only preserve the task-relevant484

5http://www.image-net.org/archive/wordnet.is_a.txt
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k network outputs by eliminating the 1000− k redundant output neurons.485

Furthermore, as our target datasets are relatively small and only have an extremely486

reduced set of target classes, the pruned models could still be very heavy w.r.t. memory487

requirements if the pruning process would be limited to the convolutional layers, as in488

Section 4.2.1. More specifically, while convolutional layers dominantly constitute the source of489

computation cost (FLOPs), fully connected layers are proven to be more redundant [29]. In490

this respect, we applied pruning procedures in both fully connected layers and convolutional491

layers in combination for VGG-16.492

For pruning, we iterate a sequence of first pruning filters from the convolutional layers,493

followed by a step of pruning neurons from the model’s fully connected layers. Note that494

both evaluated ResNet architectures mainly consist of convolutional- and pooling layers, and495

conclude in a single dense layer, of which the set of input neurons are only affected via their496

inputs by pruning the below convolutional stack. We therefore restrict the iterative pruning497

filters from the sequence of dense layers of the feed-forward architecture of the VGG-16.498

The model performance after the application of each criterion for classifying a small499

number of classes (k = 3) from the ILSVRC 2012 dataset is indicated in Figure 8 for VGG 16500

and Figure 9 for ResNets (please note again that ResNets do not have fully-connected501

layers). During pruning at fully-connected layers, no significant difference across different502

pruning ratios can be observed. Without further fine-tuning, pruning weights/filters at503

the fully connected layers can retain performance efficiently. However, there is a certain504

difference between LRP and other criteria with increasing pruning ratio of convolutional505

layers for VGG-16/ResNet-18/ResNet-50, respectively: (LRP vs. Taylor with l2-norm; up to506

of 9.6/61.8/51.8%, LRP vs. gradient with l2-norm; up to 28.0/63.6/54.5 %, LRP vs. weight507

with l2-norm; up to 27.1/48.3/30.2 %). Moreover, pruning convolutional layers needs to be508

carefully managed compared to pruning fully connected layers. We can observe that LRP509

is applicable for pruning any layer type (i.e. fully connected, convolutional, pooling, etc.)510

efficiently. Additionally, as mentioned in Section 3.1, our method can be applied to general511

network architectures because it can automatically measure the importance of weights or512

filters in a global (network-wise) context without further normalization.513

Figure 10 shows the test accuracy as a function of the pruning ratio, in context a domain514
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Figure 8: Test accuracy after pruning of n% of convolutional (rows) and m% of fully connected (columns)

filters on VGG-16 without fine-tuning for a random subset of the classes from ILSVRC 2012 (k = 3) based on

different criteria (averaged over 20 repetitions). Each color represents a range of 5% in test accuracy. The

brighter the color the better the performance after a given degree of pruning .

Figure 9: Test accuracy after pruning of n% of convolutional filters on ResNet18 and ResNet50 without

fine-tuning for a random subset of the classes from ILSVRC 2012 (k = 3) based on the criteria Weight,

Taylor, Gradient with `2-norm and LRP (averaged over 20 repetitions). Compare to Figure 8 .
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adaption task from ImageNet towards the Cats & Dogs dataset for all models. As the pruning515

ratio increases, we can see that even without fine-tuning, using LRP as pruning criterion can516

keep the test accuracy not only stable, but close to 100%, given the extreme scarcity of data517

in this experiment. In contrast, the performance decreases significantly when using the other518

criteria requiring an application of the l2-norm. Initially, the performance is even slightly519

increasing when pruning with LRP. During iterative pruning, unexpected changes in accuracy520

with LRP (for 2 out of 20 repetitions of the experiment) have been shown around 50 - 55%521

pruning ratio, but accuracy is regained quickly again. However, only the VGG-16 model522

seems to be affected, and none other for this task. For both ResNet models, this phenomenon523

occurs for the other criteria instead. A series of in-depth investigations of this momentary524

decrease in performance did not lead to any insights and will be subject of future work6.525

By pruning over 99% of convolutional filters in the networks using our proposed method,526

we can have 1) greatly reduced computational cost, 2) faster forward and backward processing527

(e.g. for the purpose of further training, inference or the computation of attribution maps), and528

3) a lighter model even in the small sample case, all while adapting off-the-shelf pre-trained529

ImageNet models towards a dog-vs.-cat classification task.530

5. Discussion531

Our experiments demonstrate that the novel LRP criterion consistently performed well532

compared to other criteria across various datasets, model architectures and experimental533

settings, and oftentimes outperformed the competing criteria. This is especially pronounced534

in our Scenario 2 (cf. Section 4.2.2), where only little resources are available for criterion535

computation, and no fine-tuning after pruning is allowed. Here, LRP considerably outper-536

formed the other metrics on toy data (cf. Section 4.1) and image processing benchmark537

data (cf. Section 4.2.2). The strongly similar results between criteria observed in Scenario 1538

(cf. Section 4.2.2) are also not surprising, as an additional file-tuning step after pruning may539

6We consequently have to assume that this phenomenon marks the downloaded pre-trained VGG-16 model

as an outlier in this respect. A future line of research will dedicate inquiries about the circumstances leading

to intermediate loss and later recovery of model performance during pruning.
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Figure 10: Performance comparison of pruning without fine-tuning for AlexNet, VGG-16, ResNet-18 and

ResNet-50 based on only few (10) samples per class from the Cats & Dogs dataset, as a means for domain

adaption. Additional results on further target domains can be found in the Supplement with Supplementary

Figure 3.

allow the pruned neural network model to recover its original performance, as long as the540

model has the capacity to do so [22].541

From the results of Table 3 and Supplementary Table 3 we can observe that with a fixed542

pruning target of n% filters removed, LRP might not always result in the cheapest sub-network543

after pruning in terms of parameter count and FLOPs per inference, however it consistently544

is able to identify the network components for removal and preservation leading to the best545

performing model after pruning. Latter results resonate also strongly in our experiments of546

Scenario 2 on both image and toy data, where, without the additional fine-tuning step, the547

LRP-pruned models vastly outperform their competitors. The results obtained in multiple548

toy settings verify that only the LRP-based pruning criterion is able to preserve the original549

structure of the prediction function (cf. Figures 2 and 3).550

Unlike the weight criterion, which is a static quantity once the network is not in training551

anymore, the criteria Taylor, gradient and LRP require reference samples for computation,552

which in turn may affect the estimation of neuron importance. From the latter three criteria,553

however, only LRP provides a continuous measure of network structure importance (cf. Sec 7.2554

in [12]) which does not suffer from abrupt changes in the estimated importance measures555

with only marginal steps between reference samples. This quality of continuity is reflected556

in the stability and quality of LRP results reported in Section 4.1, compared to the high557
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volatility in neuron selection for pruning and model performance after pruning observable558

for the gradient and Taylor criteria. From this observation it can also be deduced that LRP559

requires relatively few data points to converge to a pruning solution that possesses a similar560

prediction behavior as the original model. Hence, we conclude that LRP is a robust pruning561

criterion that is broadly applicable in practice. Especially in a scenario where no finetuning562

is applied after pruning (see Sec. 4.2.2), the LRP criterion allows for pruning of a large part563

of the model without significant accuracy drops.564

In terms of computational cost, LRP is comparable to the Taylor and Gradient criteria565

because these criteria require both a forward and a backward pass for all reference samples.566

The weight criterion is substantially cheaper to compute since it does not require to evaluate567

any reference samples; however, its performance falls short in most of our experiments.568

Additionally, our experiments demonstrate that LRP requires less reference samples than the569

other criteria (cf. Figure 3 and Figure 4), thus the required computational cost is lower in570

practical scenarios, and better performance can be expected if only low numbers of reference571

samples are available (cf. Figure 10).572

Unlike all other criteria, LRP does not require explicit regularization via `p-normalization,573

as it is naturally normalized via its enforced relevance conservation principle during relevance574

backpropagation, which leads to the preservation of important network substructures and575

bottlenecks in a global model context. In line with the findings by [22], our results in Figure 5576

and Supplementary Figure 2 show that additional normalization after criterion computation577

for weight, gradient and Taylor is not only vital to obtain good performance, but also to avoid578

disconnected model segments — something which is prevented out-of-the-box with LRP.579

However, our proposed criterion still provides several open questions that deserve a deeper580

investigation in future work. First of all, LRP is not implementation invariant, i.e., the581

structure and composition of the analyzed network might affect the computation of the LRP-582

criterion and “network canonization” — a functionally equivalent restructuring of the model583

— might be required for optimal results, as discussed early in Section 4 and [43]. Furthermore,584

while our LRP-criterion does not require additional hyperparameters, e.g., for normalization,585

the pruning result might still depend on the chosen LRP variant. In this paper, we chose the586

α1β0-rule in all layers, because this particular parameterization identifies the network’s neural587
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pathways positively contributing to the selected output neurons for which reference samples588

are provided, is robust to the detrimental effects of shattered gradients affecting especially589

very deep CNNs [11] (i.e., other than gradient-based methods, it does not suffer from potential590

discontinuities in the backpropagated quantities), and has a mathematical well-motivated591

foundation in DTD [11, 12]. However, other work from literature provide [14] or suggest [9, 8]592

alternative parameterizations to optimize the method for explanatory purposes. It is an593

interesting direction for future work to examine whether these findings also apply to LRP as594

a pruning criterion.595

6. Conclusion596

Modern CNNs typically have a high capacity with millions of parameters as this allows to597

obtain good optimization results in the training process. After training, however, high inference598

costs remain, despite the fact that the number of effective parameters in the deep model599

is actually significantly lower (see e.g. [45]). To alleviate this, pruning aims at compressing600

and accelerating the given models without sacrificing much predictive performance. In this601

paper, we have proposed a novel criterion for the iterative pruning of CNNs based on the602

explanation method LRP, linking for the first time two so far disconnected lines of research.603

LRP has a clearly defined meaning, namely the contribution of an individual network unit,604

i.e. weight or filter, to the network output. Removing units according to low LRP scores thus605

means discarding all aspects in the model that do not contribute relevance to its decision606

making. Hence, as a criterion, the computed relevance scores can easily and cheaply give607

efficient compression rates without further postprocessing, such as per-layer normalization.608

Besides, technically LRP is scalable to general network structures and its computational cost609

is similar to the one of a gradient backward pass.610

In our experiments, the LRP criterion has shown favorable compression performance611

on a variety of datasets both with and without retraining after pruning. Especially when612

pruning without retraining, our results for small datasets suggest that the LRP criterion613

outperforms the state of the art and therefore, its application is especially recommended in614

transfer learning settings where only a small target dataset is available.615

In addition to pruning, the same method can be used to visually interpret the model616

and explain individual decisions as intuitive relevance heatmaps. Therefore, in future work,617
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we propose to use these heatmaps to elucidate and explain which image features are most618

strongly affected by pruning to additionally avoid that the pruning process leads to undesired619

Clever Hans phenomena [8].620
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[9] M. Hägele, P. Seegerer, S. Lapuschkin, M. Bockmayr, W. Samek, F. Klauschen, K.-R.654

Müller, A. Binder, Resolving challenges in deep learning-based analyses of histopatho-655

logical images using explanation methods, Scientific Reports 10 (2020) 6423.656

[10] P. Seegerer, A. Binder, R. Saitenmacher, M. Bockmayr, M. Alber, P. Jurmeister,657

F. Klauschen, K.-R. Müller, Interpretable deep neural network to predict estrogen658

receptor status from haematoxylin-eosin images, in: Artificial Intelligence and Ma-659

chine Learning for Digital Pathology: State-of-the-Art and Future Challenges, Springer660

International Publishing, Cham, 2020, pp. 16–37.661

[11] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, K.-R. Müller, Explaining nonlinear662

classification decisions with deep taylor decomposition, Pattern Recognition 65 (2017)663

211–222.664

[12] G. Montavon, W. Samek, K.-R. Müller, Methods for interpreting and understanding665

deep neural networks, Digital Signal Processing 73 (2018) 1–15.666

[13] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, K.-R. Müller, Toward inter-667

pretable machine learning: Transparent deep neural networks and beyond, arXiv preprint668

arXiv:2003.07631 (2020).669

32



[14] M. Alber, S. Lapuschkin, P. Seegerer, M. Hägele, K. T. Schütt, G. Montavon, W. Samek,670
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