Pruning by Explaining: A Novel Criterion for Deep Neural Network Pruning

Seul-Ki Yeom^{a,i}, Philipp Seegerer^{a,h}, Sebastian Lapuschkin^c, Alexander Binder^{d,e}, Simon Wiedemann^c, Klaus-Robert Müller^{a,f,g,b,*}, Wojciech Samek^{c,b,*}

^aMachine Learning Group, Technische Universität Berlin, 10587 Berlin, Germany ^bBIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany ^cDepartment of Artificial Intelligence, Fraunhofer Heinrich Hertz Institute, 10587 Berlin, Germany ^dISTD Pillar, Singapore University of Technology and Design, Singapore 487372, Singapore ^eDepartment of Informatics, University of Oslo, 0373 Oslo, Norway ^fDepartment of Artificial Intelligence, Korea University, Seoul 136-713, Korea ^gMax Planck Institut für Informatik, 66123 Saarbrücken, Germany ^hAignostics GmbH, 10557 Berlin, Germany ⁱNota AI GmbH, 10117 Berlin, Germany

Abstract

The success of convolutional neural networks (CNNs) in various applications is accompanied by a significant increase in computation and parameter storage costs. Recent efforts to reduce these overheads involve pruning and compressing the weights of various layers while at the same time aiming to not sacrifice performance. In this paper, we propose a novel criterion for CNN pruning inspired by neural network interpretability: The most relevant units, i.e. weights or filters, are automatically found using their relevance scores obtained from concepts of explainable AI (XAI). By exploring this idea, we connect the lines of interpretability and model compression research. We show that our proposed method can efficiently prune CNN models in transfer-learning setups in which networks pre-trained on large corpora are adapted to specialized tasks. The method is evaluated on a broad range of computer vision datasets. Notably, our novel criterion is not only competitive or better compared to state-ofthe-art pruning criteria when successive retraining is performed, but clearly outperforms these previous criteria in the resource-constrained application scenario in which the data of the task

^{*}Corresponding Authors

Email addresses: yeom@tu-berlin.de (Seul-Ki Yeom), philipp.seegerer@tu-berlin.de (Philipp Seegerer), sebastian.lapuschkin@hhi.fraunhofer.de (Sebastian Lapuschkin), alexabin@uio.no (Alexander Binder), simon.wiedemann@hhi.fraunhofer.de (Simon Wiedemann),

klaus-robert.mueller@tu-berlin.de (Klaus-Robert Müller), wojciech.samek@hhi.fraunhofer.de (Wojciech Samek)

to be transferred to is very scarce and one chooses to refrain from fine-tuning. Our method is able to compress the model iteratively while maintaining or even improving accuracy. At the same time, it has a computational cost in the order of gradient computation and is comparatively simple to apply without the need for tuning hyperparameters for pruning. *Keywords:* Pruning, Layer-wise Relevance Propagation (LRP), Convolutional Neural Network (CNN), Interpretation of Models, Explainable AI (XAI)

1 1. Introduction

Deep CNNs have become an indispensable tool for a wide range of applications [1], such as 2 image classification, speech recognition, natural language processing, chemistry, neuroscience, 3 medicine and even are applied for playing games such as Go, poker or Super Smash Bros. They 4 have achieved high predictive performance, at times even outperforming humans. Furthermore, 5 in specialized domains where limited training data is available, e.g., due to the cost and 6 difficulty of data generation (medical imaging from fMRI, EEG, PET etc.), transfer learning 7 can improve the CNN performance by extracting the knowledge from the source tasks and 8 applying it to a target task which has limited training data. 9

However, the high predictive performance of CNNs often comes at the expense of high 10 storage and computational costs, which are related to the energy expenditure of the fine-11 tuned network. These deep architectures are composed of millions of parameters to be trained, 12 leading to overparameterization (i.e. having more parameters than training samples) of the 13 model [2]. The run-times are typically dominated by the evaluation of convolutional layers, 14 while dense layers are cheap but memory-heavy [3]. For instance, the VGG-16 model has 15 approximately 138 million parameters, taking up more than 500MB in storage space, and 16 needs 15.5 billion floating-point operations (FLOPs) to classify a single image. ResNet50 has 17 approx. 23 million parameters and needs 4.1 billion FLOPs. Note that overparametrization is 18 helpful for an efficient and successful training of neural networks, however, once the trained 19 and well generalizing network structure is established, pruning can help to reduce redundancy 20 while still maintaining good performance [4]. 21

Reducing a model's storage requirements and computational cost becomes critical for a broader applicability, e.g., in embedded systems, autonomous agents, mobile devices, or edge devices [5]. Neural network pruning has a decades long history with interest from both academia and industry [6] aiming to eliminate the subset of network units (i.e. weights or filters) which is the least important w.r.t. the network's intended task. For network pruning, it is crucial to decide how to identify the "irrelevant" subset of the parameters meant for deletion. To address this issue, previous researches have proposed specific criteria based on Taylor expansion, weight, gradient, and others, to reduce complexity and computation costs in the network. Related works are introduced in Section 2.

From a practical point of view, the full capacity (in terms of weights and filters) of an overparameterized model may not be required, e.g., when (1) parts of the model lie dormant after training (i.e., are permanently "switched off"), (2) a user is not interested in the model's full array of possible outputs, which is a common scenario in transfer learning (e.g. the user only has use for 2 out of 10 available network outputs), or (3) a user lacks data and resources for fine-tuning and running the overparameterized model.

In these scenarios the redundant parts of the model will still occupy space in memory, and information will be propagated through those parts, consuming energy and increasing runtime. Thus, criteria able to stably and significantly reduce the computational complexity of deep neural networks across applications are relevant for practitioners.

In this paper, we propose a novel pruning framework based on Layer-wise Relevance 41 Propagation (LRP) [7]. LRP was originally developed as an explanation method to assign 42 importance scores, so called *relevance*, to the different input dimensions of a neural network 43 that reflect the contribution of an input dimension to the models decision, and has been 44 applied to different fields of computer vision (e.g., [8, 9, 10]). The relevance is backpropagated 45 from the output to the input and hereby assigned to each unit of the deep model. Since 46 relevance scores are computed for every layer and neuron from the model output to the input, 47 these relevance scores essentially reflect the importance of every single unit of a model and its 48 contribution to the information flow through the network — a natural candidate to be used 49 as pruning criterion. The LRP criterion can be motivated theoretically through the concept 50 of Deep Taylor Decomposition (DTD) (c.f. [11, 12, 13]). Moreover, LRP is scalable and 51 easy to apply, and has been implemented in software frameworks such as iNNvestigate [14]. 52 Furthermore, it has linear computational cost in terms of network inference cost, similar to 53

54 backpropagation.

⁵⁵ We systematically evaluate the compression efficacy of the LRP criterion compared to ⁵⁶ common pruning criteria for two different scenarios.

Scenario 1: We prune pre-trained CNNs followed by subsequent fine-tuning. This is the
usual setting in CNN pruning and requires a sufficient amount of data and computational
power.

Scenario 2: In this scenario a pretrained model needs to be transferred to a related problem as well, but the data available for the new task is too scarce for a proper fine-tuning and/or the time consumption, computational power or energy consumption is constrained. Such transfer learning with restrictions is common in mobile or embedded applications.

Our experimental results on various benchmark datasets and four different popular CNN 64 architectures show that the LRP criterion for pruning is more scalable and efficient, and leads 65 to better performance than existing criteria regardless of data types and model architectures 66 if retraining is performed (Scenario 1). Especially, if retraining is prohibited due to external 67 constraints after pruning, the LRP criterion clearly outperforms previous criteria on all 68 datasets (Scenario 2). Finally, we would like to note that our proposed pruning framework is 69 not limited to LRP and image data, but can be also used with other explanation techniques 70 and data types. 71

The rest of this paper is organized as follows: Section 2 summarizes related works for network compression and introduces the typical criteria for network pruning. Section 3 describes the framework and details of our approach. The experimental results are illustrated and discussed in Section 4, while our approach is discussed in relation to previous studies in Section 5. Section 6 gives conclusions and an outlook to future work.

77 2. Related Work

We start the discussion of related research in the field of network compression with network quantization methods which have been proposed for storage space compression by decreasing the number of possible and unique values for the parameters [15, 16]. Tensor decomposition approaches decompose network matrices into several smaller ones to estimate the informative ⁸² parameters of the deep CNNs with low-rank approximation/factorization [17].

More recently, [18] also propose a framework of architecture distillation based on layer-wise replacement, called LightweightNet for memory and time saving. Algorithms for designing efficient models focus more on acceleration instead of compression by optimizing convolution operations or architectures directly (e.g. [19]).

Network pruning approaches remove redundant or irrelevant units — i.e. nodes, filters, or 87 layers — from the model which are not critical for performance [6, 20]. Network pruning is 88 robust to various settings and gives reasonable compression rates while not (or minimally) 89 hurting the model accuracy. Also it can support both training from scratch and transfer 90 learning from pre-trained models. Early works have shown that network pruning is effective 91 in reducing network complexity and simultaneously addressing over-fitting problems. Current 92 network pruning techniques make weights or channels sparse by removing non-informative 93 connections and require an appropriate criterion for identifying which units of the model 94 are not relevant for solving a problem. Thus, it is crucial to decide how to quantify the 95 relevance of the parameters (i.e. weights or channels) in the current state of the learning 96 process for deletion without sacrificing predictive performance. In previous studies, pruning 97 criteria have been proposed based on the magnitude of their 1) weights, 2) gradients, 3) 98 Taylor expansion/derivative, and 4) other criteria, as described in the following section. gg

Taylor expansion: Early approaches towards neural network pruning — optimal brain damage [4] and optimal brain surgeon [21] — leveraged a second-order Taylor expansion based on the Hessian matrix of the loss function to select parameters for deletion. However, computing the inverse of Hessian is computationally expensive. The work of [22, 23] used a first-order Taylor expansion as a criterion to approximate the change of loss in the objective function as an effect of pruning away network units. We contrast our novel criterion to the computationally more comparable first-order Taylor expansion from [22].

Gradient: Liu and Wu [24] proposed a hierarchical global pruning strategy by calculating the mean gradient of feature maps in each layer. They adopt a hierarchical global pruning strategy between the layers with similar sensitivity. Sun et al. [25] proposes a sparsified back-propagation approach for neural network training using the magnitude of the gradient to find essential and non-essential features in Multi-Layer Perceptron (MLP) and Long Short-Term Memory Network (LSTM) models, which can be used for pruning. We implement
the gradient-based pruning criterion after [25].

Weight: A recent trend is to prune redundant, non-informative weights in pre-trained 114 CNN models, based on the magnitude of the weights themselves. Han et al. [26] and Han et al. 115 [27] proposed the pruning of weights for which the magnitude is below a certain threshold, and 116 to subsequently fine-tune with a l_p -norm regularization. This pruning strategy has been used 117 on fully-connected layers and introduced sparse connections with BLAS libraries, supporting 118 specialized hardware to achieve its acceleration. In the same context, Structured Sparsity 119 Learning (SSL) added group sparsity regularization to penalize unimportant parameters by 120 removing some weights [28]. Li et al. [29], against which we compare in our experiments, 121 proposed a one-shot channel pruning method using the l_p norm of weights for filter selection, 122 provided that those channels with smaller weights always produce weaker activations. 123

Other criteria: [30] proposed the Neuron Importance Score Propagation (NISP) algo-124 rithm to propagate the importance scores of final responses before the softmax, classification 125 layer in the network. The method is based on — in contrast to our proposed metric — a 126 per-layer pruning process which does not consider global importance in the network. Luo 127 et al. [31] proposed ThiNet, a data-driven statistical channel pruning technique based on 128 the statistics computed from the next layer. Further hybrid approaches can be found in, 129 e.g. [32], which suggests a fusion approach to combine with weight-based channel pruning 130 and network quantization. More recently, Dai et al. [33] proposed an evolutionary paradigm 131 for weight-based pruning and gradient-based growing to reduce the network heuristically. 132

133 3. LRP-Based Network Pruning

A feedforward CNN consists of neurons established in a sequence of multiple layers, where each neuron receives the input data from one or more previous layers and propagates its output to every neuron in the succeeding layers, using a potentially non-linear mapping. Network pruning aims to sparsify these units by eliminating weights or filters that are non-informative (according to a certain criterion). We specifically focus our experiments on transfer learning, where the parameters of a network pre-trained on a *source* domain is subsequently fine-tuned on a *target* domain, i.e., the final data or prediction task. Here, the general pruning procedure ¹⁴¹ is outlined in Algorithm 1.

Algorithm 1 Neural Network Pruning
1: Input: pre-trained model net, reference data \mathbf{x}_r , training data \mathbf{x}_t
2: pruning threshold t , pruning criterion c , pruning ratio r
3: while t not reached do
4: // Step 1: assess network substructure importance
5: for all layer in net do
6: for all units in layer do
7: \triangleright compute importance of unit w.r.t. c (and \mathbf{x}_r)
8: end for
9: if required for c then
10: \triangleright globally regularize importance per unit
11: end if
12: end for
13: // Step 2: identify and remove least important units in groups of r
14: \triangleright remove <i>r</i> units from net where importance is minimal
15: \triangleright remove orphaned connections of each removed unit
16: if desired then
17: $//$ Step 2.1: optional fine-tuning to recover performance
18: \triangleright fine-tune net on \mathbf{x}_t
19: end if
20: end while
21: // return the pruned network upon hitting threshold t (e.g. model performance or size
22: return net

Even though most approaches use an identical process, choosing a suitable pruning criterion to quantify the importance of model parameters for deletion while minimizing performance drop (Step 1) is of critical importance, governing the success of the approach.

¹⁴⁵ 3.1. Layer-wise Relevance Propagation

In this paper, we propose a novel criterion for pruning neural network units: the *relevance* 146 quantity computed with LRP [7]. LRP decomposes a classification decision into proportionate 147 contributions of each network unit to the overall classification score, called "relevances". 148 When computed for the input dimensions of a CNN and visualized as a heatmap, these 149 relevances highlight parts of the input that are important for the classification decision. 150 LRP thus originally served as a tool for interpreting non-linear learning machines and has 151 been applied as such in various fields, amongst others for general image recognition, medical 152 imaging and natural language processing, cf. [34]. The direct linkage of the relevances to 153 the classifier output, as well as the conservativity constraint imposed on the propagation of 154 relevance between layers, makes LRP not only attractive for model explaining, but can also 155 naturally serve as pruning criterion (see Section 4.1). 156

The main characteristic of LRP is a backward pass through the network during which 157 the network output is redistributed to all units of the network in a layer-by-layer fashion. 158 This backward pass is structurally similar to gradient backpropagation and has therefore 159 a similar runtime. The redistribution is based on a *conservation principle* such that the 160 relevances can immediately be interpreted as the contribution that a unit makes to the 161 network output, hence establishing a direct connection to the network output and thus its 162 predictive performance. Therefore, as a pruning criterion, the method is efficient and easily 163 scalable to generic network structures. Independent of the type of neural network layer — that 164 is pooling, fully-connected, convolutional layers — LRP allows to quantify the importance of 165 units throughout the network, given a global prediction context. 166

167 3.2. LRP-based Pruning

The procedure of LRP-based pruning is summarized in Figure 1. In the first phase, a standard forward pass is performed by the network and the activations at each layer are collected. In the second phase, the score $f(\mathbf{x})$ obtained at the output of the network is propagated backwards through the network according to LRP propagation rules [7]. In the third phase, the current model is pruned by eliminating the irrelevant (w.r.t. the "relevance" quantity R obtained via LRP) units and is (optionally) further fine-tuned.

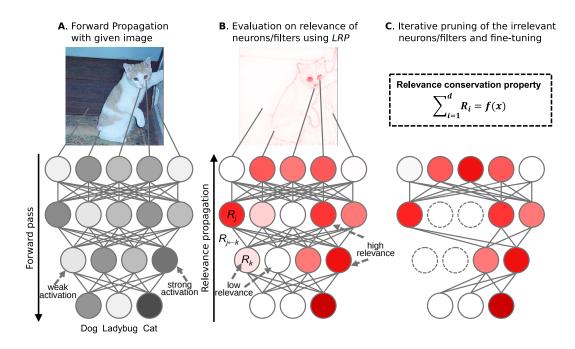


Figure 1: Illustration of LRP-based sequential process for pruning. **A.** Forward propagation of a given image (i.e. cat) through a pre-trained model. **B.** Evaluation on relevance for weights/filters using LRP, **C.** Iterative pruning by eliminating the least relevant units (depicted by circles) and fine-tuning if necessary. The units can be individual neurons, filters, or other arbitrary grouping of parameters, depending on the model architecture.

LRP is based on a layer-wise conservation principle that allows the propagated quantity (e.g. relevance for a predicted class) to be preserved between neurons of two adjacent layers. Let $R_i^{(l)}$ be the relevance of neuron i at layer l and $R_j^{(l+1)}$ be the relevance of neuron j at the next layer l + 1. Stricter definitions of conservation that involve only subsets of neurons can further impose that relevance is locally redistributed in the lower layers and we define $R_{i \leftarrow j}^{(l)}$ as the share of $R_j^{(l+1)}$ that is redistributed to neuron i in the lower layer. The conservation property always satisfies

$$\sum_{i} R_{i \leftarrow j}^{(l)} = R_j^{(l+1)} \quad , \tag{1}$$

where the sum runs over all neurons i of the (during inference) preceeding layer l. When using relevance as a pruning criterion, this property helps to preserve its quantity layer-by-layer, regardless of hidden layer size and the number of iteratively pruned neurons for each layer. At each layer l, we can extract node i's global importance as its attributed relevance $R_i^{(l)}$. In this paper, we specifically adopt relevance quantities computed with the LRP- $\alpha_1\beta_0$ -rule

as pruning criterion. The LRP- $\alpha\beta$ -rule was developed with feedforward-DNNs with ReLU 186 activations in mind and assumes positive (pre-softmax) logit activations $f_{\text{logit}}(\mathbf{x}) > 0$ for 187 decomposition. The rule has been shown to work well in practice in such a setting [35]. This 188 particular variant of LRP is tightly rooted in DTD [11], and other than the criteria based on 189 network derivatives we compare against [25, 22], always produces continuous explanations, 190 even if backpropagation is performed through the discontinuous (and commonly used) ReLU 191 nonlinearity [12]. When used as a criterion for pruning, its assessment of network unit 192 importance will change less abruptly with (small) changes in the choice of reference samples, 193 compared to gradient-based criteria. 194

The propagation rule performs two separate relevance propagation steps per layer: one exclusively considering activatory parts of the forward propagated quantities (i.e. all $a_i^{(l)}w_{ij} > 0$) and another only processing the inhibitory parts ($a_i^{(l)}w_{ij} < 0$) which are subsequently merged in a sum with components weighted by α and β (s.t. $\alpha + \beta = 1$) respectively.

¹⁹⁹ By selecting $\alpha = 1$, the propagation rule simplifies to

$$R_i^{(l)} = \sum_j \frac{\left(a_i^{(l)} w_{ij}\right)^+}{\sum_{i'} \left(a_{i'}^{(l)} w_{i'j}\right)^+} R_j^{(l+1)} , \qquad (2)$$

where $R_i^{(l)}$ denotes relevance attributed to the i^{th} neuron at layer l, as an aggregation of downward-propagated relevance messages $R_{i \leftarrow j}^{(l,l+1)}$. The terms $(\cdot)^+$ indicate the positive part of the forward propagated pre-activation from layer l, to layer (l + 1). The i' is a running index over all input activations a. Note that a choice of $\alpha = 1$ only decomposes w.r.t. the parts of the inference signal supporting the model decision for the class of interest.

Equation (2) is *locally conservative*, i.e. no quantity of relevance gets lost or injected during 205 the distribution of R_j where each term of the sum corresponds to a relevance message $R_{j\leftarrow k}$. 206 For this reason, LRP has the following technical advantages over other pruning techniques such 207 as gradient-based or activation-based methods: (1) Localized relevance conservation implicitly 208 ensures layer-wise regularized global redistribution of importances from each network unit. 209 (2) By summing relevance within each (convolutional) filter channel, the LRP-based criterion 210 is directly applicable as a measure of total relevance per node/filter, without requiring a 211 post-hoc layer-wise renormalization, e.g., via l_p norm. (3) The use of relevance scores is not 212 restricted to a global application of pruning but can be easily applied to locally and (neuron- or 213

filter-)group-wise constrained pruning without regularization. Different strategies for selecting (sub-)parts of the model might still be considered, e.g., applying different weightings/priorities for pruning different parts of the model: Should the aim of pruning be the reduction of FLOPs required during inference, one would prefer to focus on primarily pruning units of the convolutional layers. In case the aim is a reduction of the memory requirement, pruning should focus on the fully-connected layers instead.

In the context of Algorithm 1, Step 1 of the LRP-based assessment of neuron and 220 filter importance is performed as a single LRP backward pass through the model, with an 221 aggregation of relevance *per filter channel* as described above, for convolutional layers, and 222 does not require additional normalization or regularization. We would like to point out that 223 instead of backpropagating the model output $f_c(x)$ for the true class c of any given sample x 224 (as it is commonly done when LRP is used for *explaining* a prediction [7, 8]), we initialize the 225 algorithm with $R_c^{(L)} = 1$ at the output layer L. We thus gain robustness against the model's 226 (in)confidence in its predictions on the previously unseen reference samples x and ensure 227 an equal weighting of the influence of all reference samples in the identification of relevant 228 neural pathways. 229

230 4. Experiments

We start by an attempt to intuitively illuminate the properties of different pruning criteria, 231 namely, weight magnitude, Taylor, gradient and LRP, via a series of toy datasets. We then 232 show the effectiveness of the LRP criterion for pruning on widely-used image recognition 233 benchmark datasets — i.e. the Scene 15 [36], Event 8 [37], Cats & Dogs [38], Oxford Flower 234 102 [39], CIFAR-10¹, and ILSVRC 2012 [40] datasets — and four pre-trained feed-forward 235 deep neural network architectures, AlexNet and VGG-16 with only a single sequence of 236 layers, and ResNet-18 and ResNet-50 [41], which both contain multiple parallel branches of 237 layers and skip connections. 238

The first scenario focuses specifically on pruning of pre-trained CNNs with subsequent fine-tuning, as it is common in pruning research [22]. We compare our method with several

¹https://www.cs.toronto.edu/~kriz/cifar.html

state-of-the-art criteria to demonstrate the effectiveness of LRP as a pruning criterion in CNNs. In the second scenario, we tested whether the proposed pruning criterion also works well if only a very limited number of samples is available for pruning the model. This is relevant in case of devices with limited computational power, energy and storage such as mobile devices or embedded applications.

246 4.1. Pruning Toy Models

First, we systematically compare the properties and effectiveness of the different pruning criteria on several toy datasets in order to foster an intuition about the properties of all approaches, in a controllable and computationally inexpensive setting. To this end we evaluate all four criteria on different toy data distributions qualitatively and quantitatively. We generated three k-class toy datasets ("moon" (k = 2), "circle" (k = 2) and "multi" (k = 4)), using respective generator functions^{2,3}.

Each generated 2D dataset consists of 1000 training samples per class. We constructed and trained the models as a sequence of three consecutive ReLU-activated dense layers with 1000 hidden neurons each. After the first linear layer, we have added a DropOut layer with a dropout probability of 50%. The model receives inputs from \mathbb{R}^2 and has — depending on the toy problem set — $k \in \{2, 4\}$ output neurons:

We then sample a number of new datapoints (unseen during training) for the computation of the pruning criteria. During pruning, we removed a fixed number of 1000 of the 3000 *hidden neurons* that have the least relevance for prediction according to each criterion. This is equivalent to removing 1000 learned (yet insignificant, according to the criterion) filters from the model. After pruning, we observed the changes in the decision boundaries and re-evaluated for classification accuracy using the original training samples and re-sampled datapoints across criteria. This experiment is performed with $n \in [1, 2, 5, 10, 20, 50, 100, 200]$

²https://scikit-learn.org/stable/datasets

³https://github.com/seulkiyeom/LRP_Pruning_toy_example

reference samples for testing and the computation of pruning criteria. Each setting is repeated 50 times, using the same set of random seeds (depending on the repetition index) for each nacross all pruning criteria to uphold comparability.

Figure 2 shows the data distributions of the generated toy datasets, an exemplary set 270 of n = 5 samples generated for criteria computation, as well as the qualitative impact to 271 the models' decision boundary when removing a fixed set of 1000 neurons as selected via 272 the compared criteria. Figure 3 investigates how the pruning criteria preserve the models' 273 problem solving capabilities as a function of the number of samples selected for computing the 274 criteria. Figure 4 then quantitatively summarizes the results for specific numbers of unseen 275 samples $(n \in [1, 5, 20, 100])$ for computing the criteria. Here we report the model accuracy 276 on the training set in order to relate the preservation of the decision function as learned 277 from data between unpruned (2nd column) to pruned models and pruning criteria (remaining 278 columns). 279

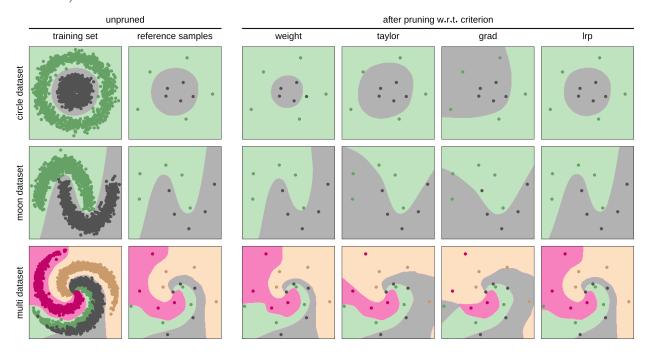


Figure 2: Qualitative comparison of the impact of the pruning criteria on the decision function on three toy datasets. *1st column*: scatter plot of the training data and decision boundary of the trained model, *2nd column*: data samples randomly selected for computing the pruning criteria, *3rd to 6th columns*: changed decision boundaries after the application of pruning w.r.t. different criteria.

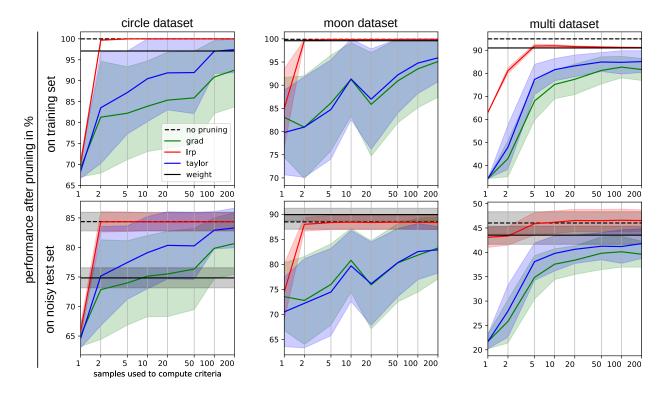


Figure 3: Pruning performance (accuracy) comparison of criteria depending on the number of reference samples per class used for criterion computation. *1st row:* Model evaluation on the training data. *2nd row:* Model evaluation on an unseen test dataset with added Gaussian noise ($\mathcal{N}(0, 0.3)$), which have not been used for the computation of pruning criteria. Columns: Results over different datasets. Solid lines show the average post-pruning performance of the models pruned w.r.t. to the evaluated criteria weight (black), Taylor (blue), grad(ient) (green) and LRP (red) over 50 repetitions of the experiment. The dashed black line indicates the model's evaluation performance without pruning. Shaded areas around the lines show the standard deviation over the repetition of experiments. Further results for noise levels $\mathcal{N}(0, 0.1)$ and $\mathcal{N}(0, 0.01)$ are available on github³.

The results in Figure 4 show that, among all criteria based on reference sample for the computation of relevance, the LRP-based measure consistently outperforms all other criteria in all reference set sizes and datasets. Only in the case of n = 1 reference sample per class, the weight criterion preserves the model the best. Note that using the weight magnitude as a measure of network unit importance is a static approach, independent from the choice of reference samples. Given n = 5 points of reference per class, the LRP-based criterion already outperforms also the weight magnitude as a criterion for pruning unimportant neural

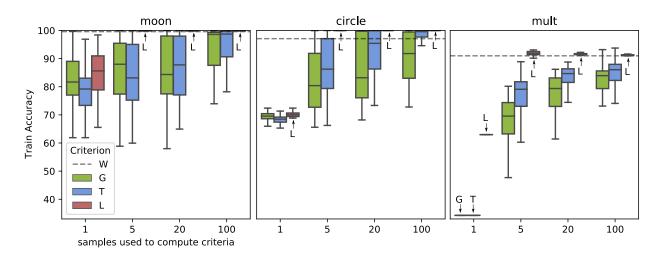


Figure 4: Comparison of training accuracy after one-shot pruning one third of all filters w.r.t one of the four metrics on toy datasets, with $n \in [1, 5, 20, 100]$ reference samples used for criteria computation for Weight, Gradient, Taylor and LRP. The experiment is repeated 50 times. Note that the Weight criterion is not influenced by the number of reference samples n. Compare to Supplementary Table 1.

network structures, while successfully preserving the *functional core* of the predictor. Figure 2 demonstrates how the toy models' decision boundaries change under influence of pruning with all four criteria. We can observe that the weight criterion and LRP preserve the models' learned decision boundary well. Both the Taylor and gradient measures degrade the model significantly. Compared to weight- and LRP-based criteria, models pruned by gradient-based criteria misclassify a large part of samples.

The first row of Figure 3 shows that all (data dependent) measures benefit from increasing 293 the number of reference points. LRP is able to find and preserve the functionally important 294 network components with only very little data, while at the same time being considerably less 295 sensitive to the choice of reference points than other metrics, visible in the measures' standard 296 deviations. Both the gradient and Taylor-based measures do not reach the performance of 297 LRP-based pruning, even with 200 reference samples for each class. The performance of 298 pruning with the weight magnitude based measure is constant, as it does only depend on 299 the learned weights itself. The bottom row of Figure 3 shows the test performance of the 300 pruned models as a function of the number of samples used for criteria computation. Here, 301 we tested on 500 samples per class, drawn from the datasets' respective distributions, and 302

perturbed with additional gaussian noise $(\mathcal{N}(0,0.3))$ added after data generation. Due to 303 the large amounts of noise added to the data, we see the prediction performance of the 304 pruned and unpruned models to decrease in all settings. Here we can observe that two out 305 of three times the LRP-pruned models outperforming all other criteria. Only once, on the 306 "moon" dataset, pruning based on the weight criterion yields a higher performance than the 307 LRP-pruned model. Most remarkably though, only the models pruned with the LRP-based 308 criterion exhibit prediction performance and behavior — measured in mean and standard 309 deviation of accuracies measured over all 50 random seeds per n reference samples on the 310 deliberatly heavily noisy data — highly similar to the original and unpruned model, from 311 only n = 5 reference samples per class on, on all datasets. This yields another strong indicator 312 that LRP is, among the compared criteria, most capable at preserving the relevant core of the 313 learned network function, and to dismiss unimportant parts of the model during pruning. 314

The strong results of LRP, and the partial similarity between the results on the training 315 datasets between LRP and weight raises the question where and how both metrics (and 316 Taylor and gradient) deviate, as it can be expected that both metrics at least select highly 317 overlapping sets of network units for pruning and preservation. We therefore investigate in 318 all three toy settings — across the different number of reference samples and random seeds — 319 the (dis)similarities and (in)consistencies in neuron selection and ranking by measuring the 320 set similarities $(S_1 \cap S_2) / \min(|S_1|, |S_2|)$ of the k neurons selected for pruning (ranked first) 321 and preservation (ranked *last*) between and within criteria. Since the weight criterion is not 322 influenced by the choice of reference samples for computation, it is expected that the resulting 323 neuron order is perfectly consistent with itself in all settings (cf. Table 2). What is unexpected 324 however, given the results in Figure 3 and Figure 4 indicating similar model behavior after 325 pruning to be expected between LRP- and weight-based criteria, at least on the training data, 326 is the *minimal* set overlap between LRP and weight, given the higher set similarities between 327 LRP and the gradient and Taylor criteria, as shown in Table 1. Overall, the set overlap 328 between the neurons ranked in the extremes of the orderings show that LRP-derived pruning 329 strategies have very little in common with the ones originating from the other criteria. This 330 observation can also be made on more complex networks at hand of Figure 7, as shown and 331 discussed later in this Section. 332

Table 1: Similarity analysis of neuron selection between LRP and the other criteria, computed over 50 different random seeds. Higher values indicate higher similarity in neuron selection of the first/last k neurons for pruning compared to LRP. Note that below table reports results only for n = 10 reference samples for criteria computation (Weight, Taylor, Gradient and LRP) and k = 250 and k = 1000. Similar observations have been made for $n \in [1, 2, 5, 20, 50, 100, 200]$ and $k \in [125, 500]$ and can be found on github³.

Dataset	taset first-250		first-250 last-25		-250			first-1000				last-1000				
moon circle mult	W 0.002 0.033 0.098	$\begin{array}{c} T \\ 0.006 \\ 0.096 \\ 0.220 \end{array}$	0.096	L 1.000 1.000 1.000	0.086	0.389	0.405	1.000	0.424	$\begin{array}{c} {\rm T} \\ 0.639 \\ 0.670 \\ 0.217 \end{array}$	0.627	1.000	$\begin{array}{c c} W \\ 0.409 \\ 0.409 \\ 0.367 \end{array}$	0.623	0.580	L 1.000 1.000 1.000

Table 2 reports the self-similarity in neuron selection in the extremes of the ranking across 333 random seeds (and thus sets of reference samples), for all criteria and toy settings. While 334 LRP yields a high consistency in neuron selection for *both* the pruning (*first-k*) and the 335 preservation (last-k) of neural network units, both gradient and moreso Taylor exhibit lower 336 self-similarities. The lower consistency of both latter criteria in the model components ranked 337 last (i.e. preserved in the model the longest during pruning) yields an explanation for the large 338 variation in results observed earlier: although gradient and Taylor are highly consistent in the 339 removal of neurons rated as irrelevant, their volatility in the preservation of neurons which 340 constitute the *functional core* of the network after pruning yields dissimilarities in the resulting 341 predictor function. The high consistency reported for LRP in terms of neuron sets selected 342 for pruning and preservation, given the relatively low Spearman correlation coefficient points 343 out only minor local perturbations of the pruning order due to the selection of reference 344 samples. We find a direct correspondence between the here reported (in)consistency of 345 pruning behavior for the three data-dependent criteria, and the in [12] observed "explanation 346 continuity" observed for LRP (and *discontinuity* for gradient and Taylor) in neural networks 347 containing the commonly used ReLU activation function, which provides an explanation for 348 the high pruning consistency obtained with LRP, and the extreme volatility for gradient and 349 Taylor. A supplementary analysis of the neuron selection consistency of LRP over different 350 counts of reference samples n, demonstrating the requirement of only very few reference 351 samples per class in order to obtain stable pruning results, can be found in Supplementary 352 Results 1. 353

Table 2: A consistency comparison of neuron selection and ranking for network pruning with criteria (<u>W</u>eight, <u>T</u>aylor, <u>G</u>radient and <u>L</u>RP), averaged over all 1225 unique random seed combinations. Higher values indicate higher consistency in selecting the same sets of neurons and generating neuron rankings for different sets of reference samples. We report results for n = 10 reference samples and k = 250. Observations for $n \in [1, 2, 5, 20, 50, 100, 200]$ and $k \in [125, 500, 1000]$ are available on github³.

Dataset	first-250					last-250			Spearman Correlation					
moon circle mult	W 1.000 1.000 1.000	0.861	0.861	$\begin{array}{c} {\rm L} \\ 0.946 \\ 0.840 \\ 0.786 \end{array}$	$1.000 \\ 1.000$	0.483	$\begin{array}{c} 0.685\\ 0.635\end{array}$	0.936	$1.000 \\ 1.000$	$\stackrel{-}{0.072}_{0.074}$	0.098	0.137		

Taken together, the results of Tables 1 to 2 and Supplementary Tables 1 and 2 elucidate that 354 LRP constitutes — compared to the other methods — an *orthogonal* pruning criterion which 355 is very consistent in its selection of (un)important neural network units, while remaining 356 adaptive to the selection of reference samples for criterion computation. Especially the 357 similarity in post-pruning model performance to the *static* weight criterion indicates that 358 both metrics are able to find valid, yet completely different pruning solutions. However, since 359 LRP can still benefit from the influence of reference samples, we will show in Section 4.2.2 360 that our proposed criterion is able to outperform not only weight, but all other criteria in 361 Scenario 2, where pruning is is used instead of fine-tuning as a means of domain adaptation. 362 This will be discussed in the following sections. 363

³⁶⁴ 4.2. Pruning Deep Image Classifiers for Large-scale Benchmark Data

We now evaluate the performance of all pruning criteria on the CNNs, VGG-16, AlexNet 365 as well as ResNet-18 and ResNet-50, — popular models in compression research [42] — all of 366 which are pre-trained on ILSVRC 2012 (ImageNet). VGG-16 consists of 13 convolutional layers 367 with 4224 filters and 3 fully-connected layers and AlexNet contains 5 convolutional layers 368 with 1552 filters and 3 fully-connected layers. In dense layers, there exist 4,096+4,096+k369 neurons (i.e. filters), respectively, where k is the number of output classes. In terms of 370 complexity of the model, the pre-trained VGG-16 and AlexNet on ImageNet originally consist 371 of 138.36/60.97 million of parameters and 154.7/7.27 Giga Multiply-Accumulate Operations 372 per Second (GMACS) (as a measure of FLOPs), respectively. ResNet-18 and ResNet-50 373 consist of 20/53 convolutional layers with 4,800/26,560 filters. In terms of complexity of the 374

model, the pre-trained ResNet-18 and ResNet-50 on ImageNet originally consist of 11.18/23.51
million of parameters and 1.82/4.12 GMACS (as a measure of FLOPs), respectively.

Furthermore, since the LRP scores are not implementation-invariant and depend on the 377 LRP rules used for the batch normalization (BN) layers, we convert a trained ResNet into a 378 canonized version, which yields the same predictions up to numerical errors. The canonization 379 fuses a sequence of a convolution and a BN layer into a convolution layer with updated 380 weights⁴ and resets the BN layer to be the identity function. This removes the BN layer 381 effectively by rewriting a sequence of two affine mappings into one updated affine mapping [43]. 382 The second change replaced calls to torch.nn.functional methods and the summation in 383 the residual connection by classes derived from torch.nn.Module which then were wrapped 384 by calls to torch.autograd.function to enable custom backward computations suitable for 385 LRP rule computations. 386

Experiments are performed within the *PyTorch* and *torchvision* frameworks under Intel(R)Xeon(R) CPU E5-2660 2.20GHz and NVIDIA Tesla P100 with 12GB for GPU processing. We evaluated the criteria on six public datasets (Scene 15 [36], Event 8, Cats and Dogs [38], Oxford Flower 102 [39], CIFAR-10, and ILSVRC 2012 [40]). For more detail on the datasets and the preprocessing, see Supplementary Methods 1. Our complete experimental setup covering these datasets is publicly available at https://github.com/seulkiyeom/LRP_pruning.

In order to prepare the models for evaluation, we first fine-tuned the models for 200 epochs 393 with constant learning rate 0.001 and batch size of 20. We used the Stochastic Gradient 394 Descent (SGD) optimizer with momentum of 0.9. In addition, we also apply dropout to the 395 fully-connected layers with probability of 0.5. Fine-tuning and pruning are performed on the 396 training set, while results are evaluated on each test dataset. Throughout the experiments, 397 we iteratively prune 5% of all the filters in the network by eliminating units including their 398 input and output connections. In Scenario 1, we subsequently fine-tune and re-evaluate the 399 model to account for dependency across parameters and regain performance, as it is common. 400

⁴See bnafterconv_overwrite_intoconv(conv,bn) in the file lrp_general6.py in https://github.com/ AlexBinder/LRP_Pytorch_Resnets_Densenet

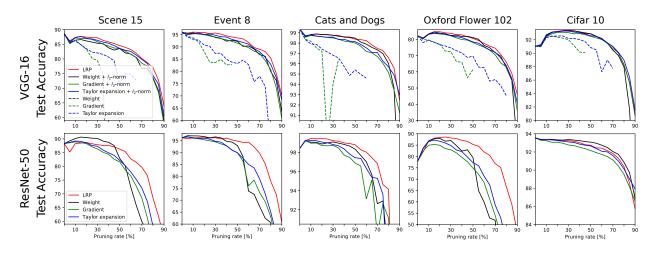


Figure 5: Comparison of test accuracy in different criteria as pruning rate increases on VGG-16 (top) and ResNet-50 (bottom) with five datasets. Pruning *with* fine-tuning. Prematurely terminated lines in above row of panels indicate that during pruning, the respective criterion removed filters vital to the network structure by disconnecting the model input from the output.

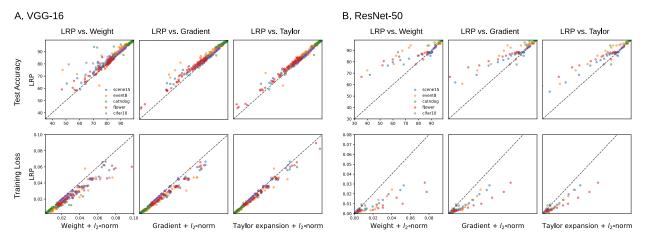


Figure 6: Performance comparison of the proposed method (i.e. LRP) and other criteria on VGG-16 and ResNet-50 with five datasets. Each point in the scatter plot corresponds to the performance at a specific pruning rate of two criteria, where the vertical axis shows the performance of our LRP criterion and the horizontal axis the performance of a single other criterion (compare to Figure 5 that displays the same data for more than two criteria). The black dashed line shows the set of points where models pruned by one of the compared criteria would exhibit identical performance to LRP. For accuracy, higher values are better. For loss, lower values are better.

Table 3: A performance comparison between criteria (Weight, Taylor, Gradient with ℓ_2 -norm each and LRP) and the Unpruned model for VGG-16 (top) and ResNet-50 (bottom) on five different image benchmark datasets. Criteria are evaluated at fixed pruning rates per model and dataset, identified as $\langle dataset \rangle @\langle percent_pruned_filters \rangle \%$. We report test accuracy (in %), (training) loss (×10⁻²), number of remaining parameters (×10⁷) and FLOPs (in GMAC) per forward pass. For all measures except accuracy, lower outcomes are better.

VGG-16		Scen	e 15 @	55%			Even	t 8 @ !	55%		Cats & Dogs @ 60%				
Loss Accuracy Params FLOPs	$\begin{array}{c c} U \\ 2.09 \\ 88.59 \\ 119.61 \\ 15.50 \end{array}$	W 2.27 82.07 56.17 8.03	T 1.76 83.00 53.10 4.66	G 1.90 82.72 53.01 4.81	L 1.62 83.99 49.67 6.94	$\begin{array}{c} U \\ 0.85 \\ 95.95 \\ 119.58 \\ 15.50 \end{array}$	W 1.35 90.19 56.78 8.10	$\begin{array}{c} T \\ 1.01 \\ 91.79 \\ 48.48 \\ 5.21 \end{array}$	G 1.18 90.55 50.25 5.05	L 0.83 93.29 47.35 7.57	$\begin{array}{c} U \\ 0.19 \\ 99.36 \\ 119.55 \\ 15.50 \end{array}$	W 0.50 97.90 47.47 7.02	$\begin{array}{c} T \\ 0.51 \\ 97.54 \\ 51.19 \\ 3.86 \end{array}$	G 0.57 97.19 57.27 3.68	L 0.44 98.24 43.75 6.49
	Oxford Flower 102 @ 70%					l	CIFA	R-10 @							
Loss Accuracy Params FLOPs	$\begin{array}{c c} U\\ 3.69\\ 82.26\\ 119.96\\ 15.50\end{array}$	W 3.83 71.84 39.34 5.48	T 3.27 72.11 41.37 2.38	G 3.54 70.53 42.68 2.45	L 2.96 74.59 37.54 4.50	$\begin{array}{c} U \\ 1.57 \\ 91.04 \\ 119.59 \\ 15.50 \end{array}$	W 1.83 93.36 74.55 11.70	T 1.76 93.29 97.30 8.14	G 1.80 93.05 97.33 8.24	L 1.71 93.42 89.20 9.93					
	ResNet-50 Scene 15 @ 55%														
ResNet-50		Scen	e 15 @	55%			Even	it 8 @ {	55%			Cats &	Dogs	@ 60%	
ResNet-50 Loss Accuracy Params FLOPs	$\begin{array}{ c c c } & U \\ & 0.81 \\ & 88.28 \\ & 23.54 \\ & 4.12 \end{array}$	Scen W 1.32 80.17 14.65 3.22	e 15 @ T 1.08 80.26 12.12 2.45	55% G 1.32 78.71 11.84 2.42	L 0.50 85.38 13.73 3.01	U 0.33 96.17 23.52 4.12	Even W 1.07 88.27 13.53 3.16	t 8 @ 5 T 0.63 87.55 11.85 2.48	55% G 0.85 86.38 11.93 2.47	L 0.28 94.22 14.05 3.10	U 0.01 98.42 23.51 4.12	Cats & W 0.05 97.02 12.11 3.04	T 0.06 96.33 10.40 2.40	@ 60% G 0.21 93.13 10.52 2.27	L 0.02 98.03 12.48 2.89
Loss Accuracy Params	$\begin{array}{c c} U \\ 0.81 \\ 88.28 \\ 23.54 \\ 4.12 \end{array}$	W 1.32 80.17 14.65 3.22	$\begin{array}{c} T \\ 1.08 \\ 80.26 \\ 12.12 \\ 2.45 \end{array}$	G 1.32 78.71 11.84	0.50 85.38 13.73 3.01	$0.33 \\ 96.17 \\ 23.52$	W 1.07 88.27 13.53 3.16	T 0.63 87.55 11.85	G 0.85 86.38 11.93 2.47	0.28 94.22 14.05	U 0.01 98.42 23.51	W 0.05 97.02 12.11	T 0.06 96.33 10.40	G 0.21 93.13 10.52	L 0.02 98.03 12.48

401 4.2.1. Scenario 1: Pruning with Fine-tuning

On the first scenario, we retrain the model after each iteration of pruning in order to 402 regain lost performance. We then evaluate the performance of the different pruning criteria 403 after each pruning-retraining-step. That is, we quantify the importance of each filter by 404 the magnitude of the respective criterion and iteratively prune 5% of all filters (w.r.t. the 405 original number of filters in the model) rated least important in each pruning step. Then, we 406 compute and record the training loss, test accuracy, number of remaining parameters and 407 total estimated FLOPs. We assume that the least important filters should have only little 408 influence on the prediction and thus incur the lowest performance drop if they are removed 409 from the network. 410

Figure 5 (and Supplementary Figure 2) depict test accuracies with increasing pruning rate in VGG-16 and ResNet-50 (and AlexNet and ResNet-18, respectively) after fine-tuning



Figure 7: An observation of per-layer pruning performed w.r.t the different evaluated criteria on VGG-16 and two datasets. Each colored line corresponds to a specific (global) ratio of filters pruned from the network (black (top) : 0%, red : 15%, green: 30%, blue: 45%, violet: 75% and black (bottom) 90%). The dots on each line identify the ratio of pruning applied to specific convolutional layers, given a global ratio of pruning, depending on the pruning criterion.

for each dataset and each criterion. It is observed that LRP achieves higher test accuracies 413 compared to other criteria in a large majority of cases (see Figure 6 and Supplementary 414 Figure 1). These results demonstrate that the performance of LRP-based pruning is stable 415 and independent of the chosen dataset. Apart from performance, regularization by layer is 416 a critical constraint which obstructs the expansion of some of the criteria toward several 417 pruning strategies such as local pruning, global pruning, etc. Except for the LRP criterion, 418 all criteria perform substantially worse without l_p regularization compared to those with 419 l_p regularization and result in unexpected interruptions during the pruning process due 420 to the biased redistribution of importance in the network (cf. top rows of Figure 5 and 421 Supplementary Figure 2). 422

Table 3 shows the predictive performance of the different criteria in terms of training loss, test accuracy, number of remaining parameters and FLOPs, for the VGG-16 and ResNet-50 models. Similar results for AlexNet and ResNet-18 can be found in Supplementary Table 2. Except for CIFAR-10, the highest compression rate (i.e. lowest number of parameters) could be achieved by the proposed LRP-based criterion (row "Params") for VGG-16, but not for ResNet-50. However, in terms of FLOPs, the proposed criterion only outperformed the weight criterion, but not the Taylor and Gradient criteria (row "FLOPs"). This is due to the fact that a reduction in number of FLOPs depends on the location where pruning is applied within the network: Figure 7 shows that the LRP and weight criteria focus the pruning on upper layers closer to the model output, whereas the Taylor and Gradient criteria focus more on the lower layers.

Throughout the pruning process usually a gradual decrease in performance can be 434 observed. However, with the Event 8, Oxford Flower 102 and CIFAR-10 datasets, pruning 435 leads to an initial performance increase, until a pruning rate of approx. 30% is reached. This 436 behavior has been reported before in the literature and might stem from improvements of 437 the model structure through elimination of filters related to classes in the source dataset 438 (i.e., ILSVRC 2012) that are not present in the target dataset anymore [44]. Supplementary 439 Table 3 and Supplementary Figure 2 similarly show that LRP achieves the highest test 440 accuracy in AlexNet and ResNet-18 for nearly all pruning ratios with almost every dataset. 441 Figure 7 shows the number of the remaining convolutional filters for each iteration. We 442 observe that, on the one hand, as pruning rate increases, the convolutional filters in earlier 443 layers that are associated with very generic features, such as edge and blob detectors, tend to 444 generally be preserved as opposed to those in latter layers which are associated with abstract, 445 task-specific features. On the other hand, the LRP- and weight-criterion first keep the filters 446 in early layers in the beginning, but later aggressively prune filters near the input which 447 now have lost functionality as input to later layers, compared to the gradient-based criteria 448 such as gradient and Taylor-based approaches. Although gradient-based criteria also adopt 449 the greedy layer-by-layer approach, we can see that gradient-based criteria pruned the less 450 important filters almost uniformly across all the layers due to re-normalization of the criterion 451 in each iteration. However, this result contrasts with previous gradient-based works [22, 25] 452 that have shown that units deemed unimportant in earlier layers, contribute significantly 453 compared to units deemed important in latter layers. In contrast to this, LRP can efficiently 454 preserve units in the early layers — as long as they serve a purpose — despite of iterative 455 global pruning. 456

457 4.2.2. Scenario 2: Pruning without Fine-tuning

In this section, we evaluate whether pruning works well if only a (very) limited number 458 of samples is available for quantifying the pruning criteria. To the best of our knowledge, 459 there are no previous studies that show the performance of pruning approaches when acting 460 w.r.t. very small amounts of data. With large amounts of data available (and even though 461 we can expect reasonable performance after pruning), an iterative pruning and fine-tuning 462 procedure of the network can amount to a very time consuming and computationally heavy 463 process. From a practical point of view, this issue becomes a significant problem, e.g. with 464 limited computational resources (mobile devices or in general; consumer-level hardware) and 465 reference data (e.g., private photo collections), where capable and effective one-shot pruning 466 approaches are desired and only little leeway (or none at all) for fine-tuning strategies after 467 pruning is available. 468

To investigate whether pruning is possible also in these scenarios, we performed experiments 469 with a relatively small number of data on the 1) Cats & Dogs and 2) subsets from the 470 ILSVRC 2012 classes. On the Cats & Dogs dataset, we only used 10 samples each from the 471 "cat" and "dog" classes to prune the (on ImageNet) pre-trained AlexNet, VGG-16, ResNet-18 472 and ResNet-50 networks with the goal of domain/dataset adaption. The binary classification 473 (i.e. "cat" vs. "dog") is a subtask within the ImageNet taxonomy and corresponding output 474 neurons can be identified by its WordNet⁵ associations. This experiment implements the task 475 of domain adaptation. 476

In a second experiment on the ILSVRC 2012 dataset, we randomly chose k = 3 classes 477 for the task of model specialization, selected only n = 10 images per class from the training 478 set and used them to compare the different pruning criteria. For each criterion, we used the 479 same selection of classes and samples. In both experimental settings, we do not fine-tune the 480 models after each pruning iteration, in contrast to Scenario 1 in Section 4.2.1. The obtained 481 post-pruning model performance is averaged over 20 random selections of classes (ImageNet) 482 and samples (Cats & Dogs) to account for randomness. Please note that before pruning, we 483 first restructured the models' fully connected output layers to only preserve the task-relevant 484

⁵http://www.image-net.org/archive/wordnet.is_a.txt

 $_{485}$ k network outputs by eliminating the 1000 - k redundant output neurons.

Furthermore, as our target datasets are relatively small and only have an extremely reduced set of target classes, the pruned models could still be very heavy w.r.t. memory requirements if the pruning process would be limited to the convolutional layers, as in Section 4.2.1. More specifically, while convolutional layers dominantly constitute the source of computation cost (FLOPs), fully connected layers are proven to be more redundant [29]. In this respect, we applied pruning procedures in both fully connected layers and convolutional layers in combination for VGG-16.

For pruning, we iterate a sequence of first pruning filters from the convolutional layers, followed by a step of pruning neurons from the model's fully connected layers. Note that both evaluated ResNet architectures mainly consist of convolutional- and pooling layers, and conclude in a single dense layer, of which the set of input neurons are only affected via their inputs by pruning the below convolutional stack. We therefore restrict the iterative pruning filters from the sequence of dense layers of the feed-forward architecture of the VGG-16.

The model performance after the application of each criterion for classifying a small 499 number of classes (k = 3) from the ILSVRC 2012 dataset is indicated in Figure 8 for VGG 16 500 and Figure 9 for ResNets (please note again that ResNets do not have fully-connected 501 layers). During pruning at fully-connected layers, no significant difference across different 502 pruning ratios can be observed. Without further fine-tuning, pruning weights/filters at 503 the fully connected layers can retain performance efficiently. However, there is a certain 504 difference between LRP and other criteria with increasing pruning ratio of convolutional 505 layers for VGG-16/ResNet-18/ResNet-50, respectively: (LRP vs. Taylor with l_2 -norm; up to 506 of 9.6/61.8/51.8%, LRP vs. gradient with l_2 -norm; up to 28.0/63.6/54.5%, LRP vs. weight 507 with l_2 -norm; up to 27.1/48.3/30.2 %). Moreover, pruning convolutional layers needs to be 508 carefully managed compared to pruning fully connected layers. We can observe that LRP 509 is applicable for pruning any layer type (i.e. fully connected, convolutional, pooling, etc.) 510 efficiently. Additionally, as mentioned in Section 3.1, our method can be applied to general 511 network architectures because it can automatically measure the importance of weights or 512 filters in a global (network-wise) context without further normalization. 513

Figure 10 shows the test accuracy as a function of the pruning ratio, in context a domain

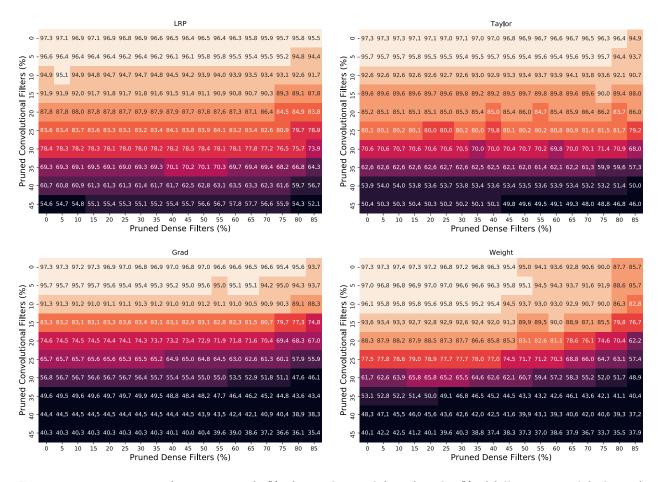


Figure 8: Test accuracy after pruning of n% of convolutional (rows) and m% of fully connected (columns) filters on VGG-16 *without* fine-tuning for a random subset of the classes from ILSVRC 2012 (k = 3) based on different criteria (averaged over 20 repetitions). Each color represents a range of 5% in test accuracy. The brighter the color the better the performance after a given degree of pruning .

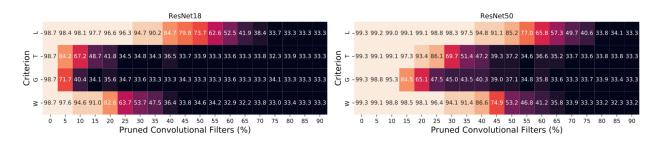


Figure 9: Test accuracy after pruning of n% of convolutional filters on ResNet18 and ResNet50 without fine-tuning for a random subset of the classes from ILSVRC 2012 (k = 3) based on the criteria Weight, Taylor, <u>G</u>radient with ℓ_2 -norm and <u>LRP</u> (averaged over 20 repetitions). Compare to Figure 8 .

adaption task from ImageNet towards the Cats & Dogs dataset for all models. As the pruning 515 ratio increases, we can see that even without fine-tuning, using LRP as pruning criterion can 516 keep the test accuracy not only stable, but close to 100%, given the extreme scarcity of data 517 in this experiment. In contrast, the performance decreases significantly when using the other 518 criteria requiring an application of the l_2 -norm. Initially, the performance is even slightly 519 increasing when pruning with LRP. During iterative pruning, unexpected changes in accuracy 520 with LRP (for 2 out of 20 repetitions of the experiment) have been shown around 50 - 55%521 pruning ratio, but accuracy is regained quickly again. However, only the VGG-16 model 522 seems to be affected, and none other for this task. For both ResNet models, this phenomenon 523 occurs for the other criteria instead. A series of in-depth investigations of this momentary 524 decrease in performance did not lead to any insights and will be subject of future work⁶. 525

By pruning over 99% of convolutional filters in the networks using our proposed method, we can have 1) greatly reduced computational cost, 2) faster forward and backward processing (e.g. for the purpose of further training, inference or the computation of attribution maps), and 3) a lighter model even in the small sample case, all while adapting off-the-shelf pre-trained ImageNet models towards a dog-vs.-cat classification task.

531 5. Discussion

Our experiments demonstrate that the novel LRP criterion consistently performed well 532 compared to other criteria across various datasets, model architectures and experimental 533 settings, and oftentimes outperformed the competing criteria. This is especially pronounced 534 in our Scenario 2 (cf. Section 4.2.2), where only little resources are available for criterion 535 computation, and no fine-tuning after pruning is allowed. Here, LRP considerably outper-536 formed the other metrics on toy data (cf. Section 4.1) and image processing benchmark 537 data (cf. Section 4.2.2). The strongly similar results between criteria observed in Scenario 1 538 (cf. Section 4.2.2) are also not surprising, as an additional file-tuning step after pruning may 539

⁶We consequently have to assume that this phenomenon marks the downloaded pre-trained VGG-16 model as an outlier in this respect. A future line of research will dedicate inquiries about the circumstances leading to intermediate loss and later recovery of model performance during pruning.

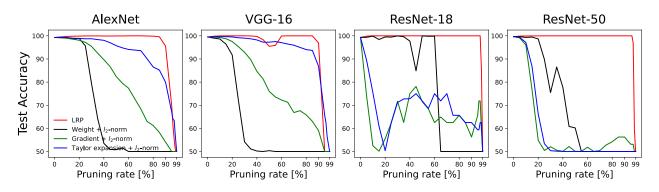


Figure 10: Performance comparison of pruning without fine-tuning for AlexNet, VGG-16, ResNet-18 and ResNet-50 based on only few (10) samples per class from the Cats & Dogs dataset, as a means for domain adaption. Additional results on further target domains can be found in the Supplement with Supplementary Figure 3.

⁵⁴⁰ allow the pruned neural network model to recover its original performance, as long as the ⁵⁴¹ model has the capacity to do so [22].

From the results of Table 3 and Supplementary Table 3 we can observe that with a fixed 542 pruning target of n% filters removed, LRP might not always result in the *cheapest* sub-network 543 after pruning in terms of parameter count and FLOPs per inference, however it consistently 544 is able to identify the network components for removal and preservation leading to the *best* 545 *performing* model after pruning. Latter results resonate also strongly in our experiments of 546 Scenario 2 on both image and toy data, where, without the additional fine-tuning step, the 547 LRP-pruned models vastly outperform their competitors. The results obtained in multiple 548 toy settings verify that only the LRP-based pruning criterion is able to preserve the original 549 structure of the prediction function (cf. Figures 2 and 3). 550

⁵⁵¹ Unlike the weight criterion, which is a static quantity once the network is not in training ⁵⁵² anymore, the criteria Taylor, gradient and LRP require reference samples for computation, ⁵⁵³ which in turn may affect the estimation of neuron importance. From the latter three criteria, ⁵⁵⁴ however, only LRP provides a *continuous measure* of network structure importance (cf. Sec 7.2 ⁵⁵⁵ in [12]) which does not suffer from abrupt changes in the estimated importance measures ⁵⁵⁶ with only marginal steps between reference samples. This quality of continuity is reflected ⁵⁵⁷ in the stability and quality of LRP results reported in Section 4.1, compared to the high volatility in neuron selection for pruning and model performance after pruning observable for the gradient and Taylor criteria. From this observation it can also be deduced that LRP requires relatively few data points to converge to a pruning solution that possesses a similar prediction behavior as the original model. Hence, we conclude that LRP is a robust pruning criterion that is broadly applicable in practice. Especially in a scenario where no finetuning is applied after pruning (see Sec. 4.2.2), the LRP criterion allows for pruning of a large part of the model without significant accuracy drops.

In terms of computational cost, LRP is comparable to the Taylor and Gradient criteria 565 because these criteria require both a forward and a backward pass for all reference samples. 566 The weight criterion is substantially cheaper to compute since it does not require to evaluate 567 any reference samples; however, its performance falls short in most of our experiments. 568 Additionally, our experiments demonstrate that LRP requires less reference samples than the 569 other criteria (cf. Figure 3 and Figure 4), thus the required computational cost is lower in 570 practical scenarios, and better performance can be expected if only low numbers of reference 571 samples are available (cf. Figure 10). 572

⁵⁷³ Unlike all other criteria, LRP does not require explicit regularization via ℓ_p -normalization, ⁵⁷⁴ as it is naturally normalized via its enforced *relevance conservation principle* during relevance ⁵⁷⁵ backpropagation, which leads to the preservation of important network substructures and ⁵⁷⁶ bottlenecks in a global model context. In line with the findings by [22], our results in Figure 5 ⁵⁷⁷ and Supplementary Figure 2 show that additional normalization after criterion computation ⁵⁷⁸ for weight, gradient and Taylor is not only vital to obtain good performance, but also to avoid ⁵⁷⁹ disconnected model segments — something which is prevented out-of-the-box with LRP.

However, our proposed criterion still provides several open questions that deserve a deeper 580 investigation in future work. First of all, LRP is not implementation invariant, i.e., the 581 structure and composition of the analyzed network might affect the computation of the LRP-582 criterion and "network canonization" — a functionally equivalent restructuring of the model 583 might be required for optimal results, as discussed early in Section 4 and [43]. Furthermore, 584 while our LRP-criterion does not require additional hyperparameters, e.g., for normalization, 585 the pruning result might still depend on the chosen LRP variant. In this paper, we chose the 586 $\alpha_1\beta_0$ -rule in all layers, because this particular parameterization identifies the network's neural 587

pathways positively contributing to the selected output neurons for which reference samples 588 are provided, is robust to the detrimental effects of shattened gradients affecting especially 580 very deep CNNs [11] (i.e., other than gradient-based methods, it does not suffer from potential 590 discontinuities in the backpropagated quantities), and has a mathematical well-motivated 591 foundation in DTD [11, 12]. However, other work from literature provide [14] or suggest [9, 8] 592 alternative parameterizations to optimize the method for explanatory purposes. It is an 593 interesting direction for future work to examine whether these findings also apply to LRP as 594 a pruning criterion. 595

596 6. Conclusion

Modern CNNs typically have a high capacity with millions of parameters as this allows to 597 obtain good optimization results in the training process. After training, however, high inference 598 costs remain, despite the fact that the number of effective parameters in the deep model 599 is actually significantly lower (see e.g. [45]). To alleviate this, pruning aims at compressing 600 and accelerating the given models without sacrificing much predictive performance. In this 601 paper, we have proposed a novel criterion for the iterative pruning of CNNs based on the 602 explanation method LRP, linking for the first time two so far disconnected lines of research. 603 LRP has a clearly defined meaning, namely the contribution of an individual network unit, 604 i.e. weight or filter, to the network output. Removing units according to low LRP scores thus 605 means discarding all aspects in the model that do not contribute relevance to its decision 606 making. Hence, as a criterion, the computed relevance scores can easily and cheaply give 607 efficient compression rates without further postprocessing, such as per-layer normalization. 608 Besides, technically LRP is scalable to general network structures and its computational cost 609 is similar to the one of a gradient backward pass. 610

In our experiments, the LRP criterion has shown favorable compression performance on a variety of datasets both with and without retraining after pruning. Especially when pruning without retraining, our results for small datasets suggest that the LRP criterion outperforms the state of the art and therefore, its application is especially recommended in transfer learning settings where only a small target dataset is available.

In addition to pruning, the same method can be used to visually interpret the model and explain individual decisions as intuitive relevance heatmaps. Therefore, in future work, we propose to use these heatmaps to elucidate and explain which image features are most strongly affected by pruning to additionally avoid that the pruning process leads to undesired Clever Hans phenomena [8].

621 Acknowledgements

This work was supported by the German Ministry for Education and Research (BMBF) 622 through BIFOLD (refs. 01IS18025A and 01IS18037A), MALT III (ref. 01IS17058), Patho234 623 (ref. 031L0207D) and TraMeExCo (ref. 01IS18056A), as well as the Grants 01GQ1115 624 and 01GQ0850; and by Deutsche Forschungsgesellschaft (DFG) under Grant Math+, EXC 625 2046/1, Project ID 390685689; by the Institute of Information & Communications Technology 626 Planning & Evaluation (IITP) grant funded by the Korea Government (No. 2019-0-00079, 627 Artificial Intelligence Graduate School Program, Korea University); and by STE-SUTD Cyber 628 Security Corporate Laboratory; the AcRF Tier2 grant MOE2016-T2-2-154; the TL project 629 Intent Inference; and the SUTD internal grant Fundamentals and Theory of AI Systems. The 630 authors would like to express their thanks to Christopher J Anders for insightful discussions. 631

632 References

- [1] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, G. Wang,
 J. Cai, T. Chen, Recent advances in convolutional neural networks, Pattern Recognition
 77 (2018) 354–377.
- [2] M. Denil, B. Shakibi, L. Dinh, M. Ranzato, N. de Freitas, Predicting parameters in
 deep learning, in: Advances in Neural Information Processing Systems (NIPS), 2013, pp.
 2148–2156.
- [3] V. Sze, Y. Chen, T. Yang, J. S. Emer, Efficient processing of deep neural networks: A
 tutorial and survey, Proceedings of the IEEE 105 (2017) 2295–2329.
- [4] Y. LeCun, J. S. Denker, S. A. Solla, Optimal brain damage, in: Advances in Neural
 Information Processing Systems (NIPS), 1989, pp. 598–605.

- [5] Y. Tu, Y. Lin, Deep neural network compression technique towards efficient digital
 signal modulation recognition in edge device, IEEE Access 7 (2019) 58113–58119.
- [6] Y. Cheng, D. Wang, P. Zhou, T. Zhang, Model compression and acceleration for deep
 neural networks: The principles, progress, and challenges, IEEE Signal Processing
 Magazine 35 (2018) 126–136.
- [7] S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, W. Samek, On pixel-wise
 explanations for non-linear classifier decisions by layer-wise relevance propagation, PLoS
 ONE 10 (2015) e0130140.
- [8] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek, K.-R. Müller, Un masking Clever Hans predictors and assessing what machines really learn, Nature
 Communications 10 (2019) 1096.
- [9] M. Hägele, P. Seegerer, S. Lapuschkin, M. Bockmayr, W. Samek, F. Klauschen, K.-R.
 Müller, A. Binder, Resolving challenges in deep learning-based analyses of histopatho logical images using explanation methods, Scientific Reports 10 (2020) 6423.
- [10] P. Seegerer, A. Binder, R. Saitenmacher, M. Bockmayr, M. Alber, P. Jurmeister,
 F. Klauschen, K.-R. Müller, Interpretable deep neural network to predict estrogen
 receptor status from haematoxylin-eosin images, in: Artificial Intelligence and Machine Learning for Digital Pathology: State-of-the-Art and Future Challenges, Springer
 International Publishing, Cham, 2020, pp. 16–37.
- [11] G. Montavon, S. Lapuschkin, A. Binder, W. Samek, K.-R. Müller, Explaining nonlinear
 classification decisions with deep taylor decomposition, Pattern Recognition 65 (2017)
 211–222.
- [12] G. Montavon, W. Samek, K.-R. Müller, Methods for interpreting and understanding
 deep neural networks, Digital Signal Processing 73 (2018) 1–15.
- [13] W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, K.-R. Müller, Toward inter pretable machine learning: Transparent deep neural networks and beyond, arXiv preprint
 arXiv:2003.07631 (2020).

32

- [14] M. Alber, S. Lapuschkin, P. Seegerer, M. Hägele, K. T. Schütt, G. Montavon, W. Samek,
 K.-R. Müller, S. Dähne, P.-J. Kindermans, iNNvestigate neural networks!, Journal of
 Machine Learning Research 20 (2019) 93:1–93:8.
- ⁶⁷³ [15] S. Wiedemann, K.-R. Müller, W. Samek, Compact and computationally efficient representation of deep neural networks, IEEE Transactions on Neural Networks and Learning
 ⁶⁷⁵ Systems 31 (2020) 772–785.
- ⁶⁷⁶ [16] F. Tung, G. Mori, Deep neural network compression by in-parallel pruning-quantization,
 ⁶⁷⁷ IEEE Transactions on Pattern Analysis and Machine Intelligence 42 (2020) 568–579.
- ⁶⁷⁸ [17] K. Guo, X. Xie, X. Xu, X. Xing, Compressing by learning in a low-rank and sparse
 decomposition form, IEEE Access 7 (2019) 150823–150832.
- [18] T. Xu, P. Yang, X. Zhang, C. Liu, LightweightNet: Toward fast and lightweight
 convolutional neural networks via architecture distillation, Pattern Recognition 88 (2019)
 272–284.
- [19] X. Zhang, X. Zhou, M. Lin, J. Sun, Shufflenet: An extremely efficient convolutional
 neural network for mobile devices, in: IEEE Conference on Computer Vision and Pattern
 Recognition (CVPR), 2018, pp. 6848–6856.
- [20] P. Molchanov, A. Mallya, S. Tyree, I. Frosio, J. Kautz, Importance estimation for neural
 network pruning, in: IEEE Conference on Computer Vision and Pattern Recognition
 (CVPR), 2019, pp. 11264–11272.
- [21] B. Hassibi, D. G. Stork, Second order derivatives for network pruning: Optimal brain
 surgeon, in: Advances in Neural Information Processing Systems (NIPS), 1992, pp.
 164–171.
- [22] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolutional neural
 networks for resource efficient transfer learning, in: Proceedings of the International
 Conference on Learning Representations (ICLR), 2017.

- [23] C. Yu, J. Wang, Y. Chen, X. Qin, Transfer channel pruning for compressing deep domain
 adaptation models, International Journal of Machine Learning and Cybernetics 10 (2019)
 3129–3144.
- [24] C. Liu, H. Wu, Channel pruning based on mean gradient for accelerating convolutional
 neural networks, Signal Processing 156 (2019) 84–91.
- [25] X. Sun, X. Ren, S. Ma, H. Wang, meprop: Sparsified back propagation for accelerated deep learning with reduced overfitting, in: International Conference on Machine Learning (ICML), 2017, pp. 3299–3308.
- [26] S. Han, J. Pool, J. Tran, W. J. Dally, Learning both weights and connections for efficient
 neural network, in: Advances in Neural Information Processing Systems (NIPS), 2015,
 pp. 1135–1143.
- [27] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, W. J. Dally, EIE: efficient
 inference engine on compressed deep neural network, in: International Symposium on
 Computer Architecture (ISCA), 2016, pp. 243–254.
- ⁷⁰⁹ [28] W. Wen, C. Wu, Y. Wang, Y. Chen, H. Li, Learning structured sparsity in deep neural networks, in: Advances in Neural Information Processing Systems (NIPS), 2016, pp.
 ⁷¹¹ 2074–2082.
- [29] H. Li, A. Kadav, I. Durdanovic, H. Samet, H. P. Graf, Pruning filters for efficient convnets, in: International Conference on Learning Representations, (ICLR), 2017.
- [30] R. Yu, A. Li, C. Chen, J. Lai, V. I. Morariu, X. Han, M. Gao, C. Lin, L. S. Davis, NISP:
 pruning networks using neuron importance score propagation, in: IEEE Conference on
 Computer Vision and Pattern Recognition (CVPR), 2018, pp. 9194–9203.
- [31] J.-H. Luo, H. Zhang, H.-Y. Zhou, C.-W. Xie, J. Wu, W. Lin, ThiNet: Pruning CNN
 filters for a thinner net, IEEE Transactions on Pattern Analysis and Machine Intelligence
 41 (2019) 2525–2538.

- [32] J. Gan, W. Wang, K. Lu, Compressing the CNN architecture for in-air handwritten
 Chinese character recognition, Pattern Recognition Letters 129 (2020) 190 197.
- [33] X. Dai, H. Yin, N. K. Jha, Nest: A neural network synthesis tool based on a grow-andprune paradigm, IEEE Transactions on Computers 68 (2019) 1487–1497.
- ⁷²⁴ [34] W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, K.-R. Müller (Eds.), Explainable
 ⁷²⁵ AI: Interpreting, Explaining and Visualizing Deep Learning, volume 11700 of *Lecture*⁷²⁶ Notes in Computer Science, Springer, 2019.
- ⁷²⁷ [35] W. Samek, A. Binder, G. Montavon, S. Lapuschkin, K.-R. Müller, Evaluating the
 ⁷²⁸ visualization of what a deep neural network has learned, IEEE Transactions on Neural
 ⁷²⁹ Networks and Learning Systems 28 (2017) 2660–2673.
- [36] S. Lazebnik, C. Schmid, J. Ponce, Beyond bags of features: Spatial pyramid matching
 for recognizing natural scene categories, in: IEEE Conference on Computer Vision and
 Pattern Recognition (CVPR), 2006, pp. 2169–2178.
- [37] L. Li, F. Li, What, where and who? Classifying events by scene and object recognition,
 in: IEEE International Conference on Computer Vision (ICCV), 2007, pp. 1–8.
- [38] J. Elson, J. R. Douceur, J. Howell, J. Saul, Asirra: a CAPTCHA that exploits interestaligned manual image categorization, in: Proceedings of the 2007 ACM Conference on
 Computer and Communications Security (CCS), 2007, pp. 366–374.
- [39] M. Nilsback, A. Zisserman, Automated flower classification over a large number of classes, in: Sixth Indian Conference on Computer Vision, Graphics & Image Processing
 (ICVGIP), 2008, pp. 722–729.
- [40] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
 A. Khosla, M. S. Bernstein, A. C. Berg, F. Li, Imagenet large scale visual recognition
 challenge, International Journal of Computer Vision 115 (2015) 211–252.
- [41] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 2016
 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas,
 NV, USA, June 27-30, 2016, 2016, pp. 770–778.

- [42] H. Wang, Q. Zhang, Y. Wang, H. Hu, Structured probabilistic pruning for convolutional
 neural network acceleration, in: British Machine Vision Conference (BMVC), 2018, p.
 149.
- [43] M. Guillemot, C. Heusele, R. Korichi, S. Schnebert, L. Chen, Breaking batch normalization for better explainability of deep neural networks through layer-wise relevance
 propagation, CoRR abs/2002.11018 (2020).
- ⁷⁵³ [44] J. Liu, Y. Wang, Y. Qiao, Sparse deep transfer learning for convolutional neural network,
 ⁷⁵⁴ in: AAAI Conference on Artificial Intelligence, 2017, pp. 2245–2251.
- ⁷⁵⁵ [45] N. Murata, S. Yoshizawa, S. Amari, Network information criterion-determining the
- number of hidden units for an artificial neural network model, IEEE Transactions on
- ⁷⁵⁷ Neural Networks 5 (1994) 865–872.