Universal Codes, V2V Codes, and Shannon-Fano-Elias Codes

Last Lecture: Entropy Measures

Entropy Measures

- Scalar/marginal entropy:
- Conditional entropy:
- *N*-th order block entropy:

$$H(S_n) = E\{-\log_2 p(S_n)\}$$
$$H(S_n | S_{n-1}) = E\{-\log_2 p(S_n | S_{n-1})\}$$
$$H_N(S) = H(S_n, \dots, S_{n+N-1}) = E\{-\log_2 p(S_n, \dots, S_{n+N-1})\}$$

Important Relations for Entropy Measures

- Conditioning never increases entropy:
- Increasing block size never increases lower bound:

$$\begin{array}{l} H(S_n \,|\, S_{n-1}, S_{n-2}) \ \leq \ H(S_n \,|\, S_{n-1}) \ \leq \ H(S_n) \\ \\ \frac{1}{N} \,H_N({\bm S}) \ \leq \ \frac{1}{N-1} \,H_{N-1}({\bm S}) \ \leq \ H(S_n) \end{array}$$

Entropy Rate and Relations for Stationary Sources

Entropy rate $\bar{H}(S)$ with $\bar{H}(S) \leq H(S_n)$ (equality iff S is iid) $\bar{H}(S) = \lim_{N \to \infty} \frac{1}{N} H_N(S)$ $\bar{H}(S) \leq H(S_n | S_{n-1})$ (equality iff S is Markov)

Last Lecture: Huffman Codes

Types of Variable-Length Codes

- Scalar codes: Assign one codeword to each possible symbol
- Blocks codes: Assign one codeword to each possible block of N successive symbols
- Conditional codes: Multiple scalar codeword tables: Table for current symbol s_n is selected based on the value of a condition $c_n = f(s_{n-1}, \cdots)$

Huffman Algorithm

- Generates one optimal prefix code (minimum redundancy) for any given finite pmf
- Can be used for all types of variable-length codes: scalar, conditional, block codes, etc.

Bounds on Average Codeword Length (note: lower bound applies to all codes of a type)

- Scalar Huffman codes:
- Block Huffman codes of size *N*:
- Conditional Huffman codes:
- All lossless codes:

 $\begin{array}{ll} H(S_n) \leq \bar{\ell} < H(S_n) + 1 \\ \frac{1}{N} H_N(\boldsymbol{S}) \leq \bar{\ell} < \frac{1}{N} H_N(\boldsymbol{S}) + \frac{1}{N} \\ H(S_n \mid C) \leq \bar{\ell} < H(S_n \mid C) + 1 \quad \text{with} \quad C = f(S_{n-1}, S_{n-2}, \cdots) \\ \overline{H}(\boldsymbol{S}) \leq \bar{\ell} \end{array}$

→ Structured code for non-negative inters *n*

-

n	codewords
0	1
1	01
2	001
3	0001
4	0000 1
5	0000 01
6	0000 001
7	0000 0001
8	0000 0000 1
9	0000 0000 01
10	0000 0000 001
11	0000 0000 0001
12	0000 0000 0000 1
13	0000 0000 0000 01
14	0000 0000 0000 001
15	0000 0000 0000 0001

- → Structured code for non-negative inters n
- → Very simple encoding and decoding

n	codewords
0	1
1	01
2	001
3	0001
4	0000 1
5	0000 01
6	0000 001
7	0000 0001
8	0000 0000 1
9	0000 0000 01
10	0000 0000 001
11	0000 0000 0001
12	0000 0000 0000 1
13	0000 0000 0000 01
14	0000 0000 0000 001
15	0000 0000 0000 0001

```
// encoding
void encUnary( int n )
{
  while( n-- )
  {
    bitstream.put( 0 );
  }
  bitstream.put( 1 );
};
```

```
// decoding
int decUnary()
{
    int n = 0;
    while( !bitstream.get() )
    {
        n++;
    }
    return n;
};
```

- → Structured code for non-negative inters n
- → Very simple encoding and decoding
- → Optimal for geometric pmf $p(n) = p(1-p)^n$ with p = 0.5

n	codewords
0	1
1	01
2	001
3	0001
4	0000 1
5	0000 01
6	0000 001
7	0000 0001
8	0000 0000 1
9	0000 0000 01
10	0000 0000 001
11	0000 0000 0001
12	0000 0000 0000 1
13	0000 0000 0000 01
14	0000 0000 0000 001
15	0000 0000 0000 0001

```
// encoding
void encUnary( int n )
{
  while( n-- )
  {
    bitstream.put( 0 );
  }
  bitstream.put( 1 );
};
```

```
// decoding
int decUnary()
{
    int n = 0;
    while( !bitstream.get() )
    {
        n++;
    }
    return n;
};
```

- → Structured code for non-negative inters n
- → Very simple encoding and decoding
- → Optimal for geometric pmf $p(n) = p(1-p)^n$ with p = 0.5

n	codewords
0	1
1	01
2	001
3	0001
4	0000 1
5	0000 01
6	0000 001
7	0000 0001
8	0000 0000 1
9	0000 0000 01
10	0000 0000 001
11	0000 0000 0001
12	0000 0000 0000 1
13	0000 0000 0000 01
14	0000 0000 0000 001
15	0000 0000 0000 0001

```
// encoding
void encUnary( int n )
{
  while( n-- )
  {
    bitstream.put( 0 );
  }
  bitstream.put( 1 );
};
```

```
// decoding
int decUnary()
{
    int n = 0;
    while( !bitstream.get() )
    {
        n++;
    }
    return n;
};
```

→ often used as part of other codes

→ Family of codes parameterized by Rice parameter $R \ge 0$

- → Family of codes parameterized by Rice parameter $R \ge 0$
- \rightarrow Represents non-negative integers *n* using a prefix and a suffix part

 $\begin{array}{ll} \operatorname{prefix} = (n \gg R) & \to \text{ unary code} \\ \operatorname{suffix} = n - (\operatorname{prefix} \ll R) & \to \text{ fixed-length code with } R \text{ bits} \end{array}$

- → Family of codes parameterized by Rice parameter $R \ge 0$
- \rightarrow Represents non-negative integers *n* using a prefix and a suffix part

prefix = $(n \gg R)$ \rightarrow unary code

suffix = $n - (\text{prefix} \ll R) \rightarrow \text{fixed-length code with } R \text{ bits}$

n	R = 0 (unary)	R = 1	R = 2	R = 3
0	1	10	100	1000
1	01	11	101	1001
2	001	010	110	1010
3	0001	011	111	1011
4	0000 1	0010	0100	1 100
5	0000 01	0011	0101	1 101
6	0000 001	0001 0	0110	1 110
7	0000 0001	0001 1	0111	1111
8	0000 0000 1	0000 01 <mark>0</mark>	0010 0	01 00 0
9	0000 0000 01	0000 011	0010 1	0100 1
10	0000 0000 001	0000 001 <mark>0</mark>	0011 0	0101 0
11	0000 0000 0001	0000 0011	0011 1	0101 1
12	$0000 \ 0000 \ 0000 \ 1$	0000 0001 <mark>0</mark>	0001 00	0110 0
13	0000 0000 0000 01	0000 0001 1	0001 01	0110 1
14	0000 0000 0000 001	0000 0000 1 <mark>0</mark>	0001 10	01 11 0
15	0000 0000 0000 0001	0000 0000 11	0001 11	0111 1
• • •		•••	•••	•••

- → Family of codes parameterized by Rice parameter $R \ge 0$
- \rightarrow Represents non-negative integers *n* using a prefix and a suffix part

prefix = $(n \gg R)$ \rightarrow unary code suffix = $n - (\text{prefix} \ll R)$ \rightarrow fixed-length code with *R* bits

n	R=0 (unary)	R = 1	R = 2	<i>R</i> = 3
0	1	10	100	1000
1	01	11	101	1001
2	001	010	1 10	1 010
3	0001	011	111	1011
4	0000 1	0010	0100	1 100
5	0000 01	0011	0101	1 101
6	0000 001	0001 0	0110	1 110
7	0000 0001	0001 1	0111	1 111
8	0000 0000 1	0000 01 <mark>0</mark>	0010 0	01 00 0
9	0000 0000 01	0000 011	0010 1	0100 1
10	0000 0000 001	0000 001 <mark>0</mark>	0011 0	01 01 0
11	0000 0000 0001	0000 0011	0011 1	0101 1
12	0000 0000 0000 1	0000 0001 <mark>0</mark>	0001 00	0110 0
13	0000 0000 0000 01	0000 0001 1	0001 01	0110 1
14	0000 0000 0000 001	0000 0000 1 <mark>0</mark>	0001 10	0111 0
15	0000 0000 0000 0001	0000 0000 11	0001 11	0111 1
• • •				

```
// encoding
void encRice( int n, int r )
{
    int pre = n >> r;
    int suf = n - ( pre << r );
    encUnary( pre );
    encFixed( suf, r ); // r bits
};
```

```
// decoding
int decRice( int r )
{
    int pre = decUnary();
    int suf = decFixed( r );
    int n = ( pre << r ) + suf;
    return n;
};
```

- → Family of codes parameterized by Rice parameter $R \ge 0$
- \rightarrow Represents non-negative integers *n* using a prefix and a suffix part

prefix = $(n \gg R)$ \rightarrow unary code suffix = $n - (\text{prefix} \ll R)$ \rightarrow fixed-length code with *R* bits

n	R = 0 (unary)	R = 1	<i>R</i> = 2	<i>R</i> = 3
0	1	10	100	1000
1	01	11	101	1001
2	001	010	110	1 010
3	0001	011	111	1 011
4	0000 1	0010	0100	1 100
5	0000 01	0011	0101	1 101
6	0000 001	0001 0	0110	1 110
7	0000 0001	0001 1	0111	1 111
8	0000 0000 1	0000 01 <mark>0</mark>	0010 0	01 00 0
9	0000 0000 01	0000 011	0010 1	0100 1
10	0000 0000 001	0000 001 <mark>0</mark>	0011 0	0101 0
11	0000 0000 0001	0000 0011	0011 1	0101 1
12	$0000 \ 0000 \ 0000 \ 1$	0000 0001 <mark>0</mark>	0001 00	01 10 0
13	0000 0000 0000 01	0000 0001 1	0001 01	01 10 1
14	0000 0000 0000 001	0000 0000 1 <mark>0</mark>	0001 10	01 11 0
15	0000 0000 0000 0001	0000 0000 11	0001 11	0111 1
•••	•••			

```
// encoding
void encRice( int n, int r )
{
    int pre = n >> r;
    int suf = n - ( pre << r );
    encUnary( pre );
    encFixed( suf, r ); // r bits
};
```

```
// decoding
int decRice( int r )
{
    int pre = decUnary();
    int suf = decFixed( r );
    int n = ( pre << r ) + suf;
    return n;
};
```

→ used in:

- FLAC, Apple Lossless
- JPEG-LS, HEVC, VVC

→ Another family of parameterized codes (order $K \ge 0$)

- → Another family of parameterized codes (order $K \ge 0$)
- ➡ Exponentially growing "classes"

→ Another family of parameterized codes (order $K \ge 0$)

➡ Exponentially growing "classes"

n	K = 0	$\mathcal{K}=1$	K = 2	<i>K</i> = 3
0	1	10	100	1000
1	010	11	101	1001
2	011	0100	110	1010
3	0010 0	0101	111	1011
4	0010 1	0110	0100 0	1 100
5	0011 0	0111	0100 1	1 101
6	0011 1	0010 00	0101 0	1 110
7	0001 000	0010 01	0101 1	1 111
8	0001 001	0010 10	0110 0	0100 00
9	0001 010	0010 11	0110 1	0100 01
10	0001 011	0011 00	0111 0	0100 10
11	0001 100	0011 01	0111 1	01 00 11
12	0001 101	0011 10	0010 000	01 01 00
13	0001 110	0011 11	0010 001	0101 01
14	0001 111	0001 0000	0010 010	01 01 10
15	0001 0000	0001 0001	0010 011	01 01 11

- → Another family of parameterized codes (order $K \ge 0$)
- ➡ Exponentially growing "classes"

n	K = 0	$\mathcal{K}=1$	K = 2	<i>K</i> = 3
0	1	10	100	1000
1	010	11	101	1001
2	011	0100	110	1010
3	0010 0	0101	111	1011
4	0010 1	0110	0100 0	1100
5	0011 0	0111	0100 1	1101
6	0011 1	0010 00	0101 0	1 110
7	0001 000	0010 01	0101 1	1 111
8	0001 001	0010 10	0110 0	0100 00
9	0001 010	0010 11	0110 1	01 00 01
10	0001 011	0011 00	0111 0	0100 10
11	0001 100	0011 01	0111 1	0100 11
12	0001 101	0011 10	0010 000	01 01 00
13	0001 110	0011 11	0010 001	0101 01
14	0001 111	0001 0000	0010 010	0101 10
15	0001 0000	0001 0001	0010 011	0101 11

```
// encoding
void encExpGolomb( int n, int k )
{
    // good implementation for first line
    // hould be based on finding the
    // most significant bit in an integer
    int p = floor( log2(n+(1<<k)) ) - k;
    int m = (1 << (k+p)) - (1<<k);
    encUnary( p );
    encFixed( n-m, k+p ); // k+p bits
};
```

```
// decoding
int decExpGolomb( int k )
{
    int p = decUnary();
    int s = decFixed( k+p );
    int m = (1 << (k+p)) - (1<<k);
    return m+s;
};
```

- → Another family of parameterized codes (order $K \ge 0$)
- ➡ Exponentially growing "classes"

n	K = 0	$\mathcal{K}=1$	K = 2	<i>K</i> = 3
0	1	10	100	1000
1	010	11	101	1 001
2	011	0100	110	1 010
3	0010 0	0101	111	1 011
4	0010 1	0110	0100 0	1 100
5	0011 0	0111	0100 1	1 101
6	0011 1	0010 00	0101 0	1 110
7	0001 000	0010 01	0101 1	1 111
8	0001 001	0010 10	0110 0	0100 00
9	0001 010	0010 11	0110 1	0100 01
10	0001 011	0011 00	0111 0	01 00 10
11	0001 100	0011 01	0111 1	0100 11
12	0001 101	0011 10	0010 000	0101 00
13	0001 110	0011 11	0010 001	0101 01
14	0001 111	0001 0000	0010 010	0101 10
15	0001 0000	0001 0001	0010 011	0101 11
• • •	•••			

```
// encoding
void encExpGolomb( int n, int k )
{
    // good implementation for first line
    // should be based on finding the
    // most significant bit in an integer
    int p = floor( log2(n+(1<<k)) ) - k;
    int m = (1 << (k+p)) - (1<<k);
    encUnary( p );
    encFixed( n-m, k+p ); // k+p bits
};
```

```
// decoding
int decExpGolomb( int k )
{
    int p = decUnary();
    int s = decFixed( k+p );
    int m = (1 << (k+p)) - (1<<k);
    return m+s;
};
```

- → Exp-Golomb order 0 used in:
 - H.264 | AVC
 - H.265 | HEVC, VVC

- Assign variable-length codewords to symbol sequences of variable-length (V2V)
- How to select symbol sequences?

- Assign variable-length codewords to symbol sequences of variable-length (V2V)
- How to select symbol sequences?

Exa	imples:	Bina	y symbol alphabet $\mathcal{A} = \{a, b\}$	
	code	e A		
	aaaa	0		
	aaab	10		
	aab	110		
	bba	1110		
	ba	1111		
-				

- Assign variable-length codewords to symbol sequences of variable-length (V2V)
- How to select symbol sequences?
 - \rightarrow All messages must be representable by symbol sequences

Exa	mples:	Bina	y symbol alphabet $\mathcal{A} = \{a, b\}$	
_	code	Α		
	aaaa	0		
	aaab	10		
	aab	110		
	bba	1110		
	ba	1111		
-	abbbb.	?		

- Assign variable-length codewords to symbol sequences of variable-length (V2V)
- How to select symbol sequences?
 - \rightarrow All messages must be representable by symbol sequences

Exa	mples	: Bina	ry symbol a	lphabet	
	code A		C	code B	
	aaaa	0	aaa	000	
	aaab	10	аа	01	
	aab	110	а	1	
	bba	1110	b	0010	
	ba	1111	bb	0011	
	abbbb	?			

- Assign variable-length codewords to symbol sequences of variable-length (V2V)
- How to select symbol sequences?
 - → All messages must be representable by symbol sequences
 - → Desirable: Redundancy-free set of symbol sequences

Exa	amples	: Bina	ry symbo	ol alp	ohabet
	code A			code B	
	aaaa	0	i	aaa	000
	aaab	10		aa	01
	aab	110		а	1
	bba	1110		b	0010
	ba	1111	I	bb	0011
	abbbb	?	1	redur	ndant!

- Assign variable-length codewords to symbol sequences of variable-length (V2V)
- How to select symbol sequences?
 - → All messages must be representable by symbol sequences
 - → Desirable: Redundancy-free set of symbol sequences

Exa	mples	: Bina	ry symb	ol alp	ohabet	$\mathcal{A} = \{a,$	<i>b</i> }	
	code A		code B			code C		
	aaaa	0		aaa	000		aaaa	0
	aaab	10		aa	01		aaab	10
	aab	110		а	1		aab	110
	bba	1110		b	0010		ab	1110
	ba	1111		bb	0011		b	1111
	abbbb	?		redu	ndant!			

- Assign variable-length codewords to symbol sequences of variable-length (V2V)
- How to select symbol sequences?
 - → All messages must be representable by symbol sequences
 - → Desirable: Redundancy-free set of symbol sequences

Exa	mples	: Binar	y symb	ol alp	ohabet	$\mathcal{A} = \{a,$	<i>b</i> }	
	code A		_	code B			code C	
	aaaa	0		aaa	000		aaaa	0
	aaab	10		aa	01		aaab	10
	aab	110		а	1		aab	110
	bba	1110		b	0010		ab	1110
	ba	1111		bb	0011		b	1111
	abbbb ?		-	redu	ndant!		suitab	le

- Assign variable-length codewords to symbol sequences of variable-length (V2V)
- How to select symbol sequences?
 - → All messages must be representable by symbol sequences
 - → Desirable: Redundancy-free set of symbol sequences

Exa	amples	Bina	ry symbol a	lphabet	$\mathcal{A} = \{a,$	<i>b</i> }				
	code A		C	ode B	_	code C		code D		
	aaaa	0	aaa	000		aaaa	0		aa	00
	aaab	10	аа	01		aaab	10		ab	0100
	aab	110	а	1		aab	110		ba	0101
	bba	1110	b	0010		ab	1110		bba	011
	ba	1111	bb	0011		b	1111		bbb	1
	abbbb	?	red	undant!		suitab	le			

- Assign variable-length codewords to symbol sequences of variable-length (V2V)
- How to select symbol sequences?
 - → All messages must be representable by symbol sequences
 - → Desirable: Redundancy-free set of symbol sequences

Examples: Binary symbol alphabet $\mathcal{A} = \{a, b\}$									
	code A		CO	de B		code C		code D	
	aaaa	0	aaa	000	-	aaaa	0	aa	00
	aaab	10	аа	01		aaab	10	ab	0100
	aab	110	а	1		aab	110	ba	0101
	bba	1110	b	0010		ab	1110	bba	011
	ba	1111	bb	0011		b	1111	bbb	1
	abbbb	?	redu	ndant!	-	suitab	le	 suital	ole

Suitable Set of Variable-Length Symbol Sequences

Suitable Sets of Symbol Sequences ?

• Consider *m*-ary alphabet $\mathcal{A} = \{a_1, a_2, \cdots, a_m\}$

Suitable Set of Variable-Length Symbol Sequences

Suitable Sets of Symbol Sequences ?

- Consider *m*-ary alphabet $\mathcal{A} = \{a_1, a_2, \cdots, a_m\}$
- → All sets of symbol sequences that are representable by a full *m*-ary tree

Suitable Set of Variable-Length Symbol Sequences

Suitable Sets of Symbol Sequences ?

- Consider *m*-ary alphabet $\mathcal{A} = \{a_1, a_2, \cdots, a_m\}$
- → All sets of symbol sequences that are representable by a full *m*-ary tree

Suitable Set of Variable-Length Symbol Sequences

Suitable Sets of Symbol Sequences ?

- Consider *m*-ary alphabet $\mathcal{A} = \{a_1, a_2, \cdots, a_m\}$
- → All sets of symbol sequences that are representable by a full *m*-ary tree
 - → All messages are representable by a concatenation of the individual symbol sequences

Note: Fill symbol sequence at end of message (as for block codes)

Suitable Set of Variable-Length Symbol Sequences

Suitable Sets of Symbol Sequences ?

- Consider *m*-ary alphabet $\mathcal{A} = \{a_1, a_2, \cdots, a_m\}$
- → All sets of symbol sequences that are representable by a full *m*-ary tree
 - All messages are representable by a concatenation of the individual symbol sequences

Note: Fill symbol sequence at end of message (as for block codes)

➡ Redundancy-free set of symbol sequences

Suitable Set of Variable-Length Symbol Sequences

Suitable Sets of Symbol Sequences ?

- Consider *m*-ary alphabet $\mathcal{A} = \{a_1, a_2, \cdots, a_m\}$
- → All sets of symbol sequences that are representable by a full *m*-ary tree
 - All messages are representable by a concatenation of the individual symbol sequences

Note: Fill symbol sequence at end of message (as for block codes)

- ➡ Redundancy-free set of symbol sequences
- ➡ Instantaneous encodable codes

Suitable Set of Variable-Length Symbol Sequences

Suitable Sets of Symbol Sequences ?

- Consider *m*-ary alphabet $\mathcal{A} = \{a_1, a_2, \cdots, a_m\}$
- → All sets of symbol sequences that are representable by a full *m*-ary tree
 - All messages are representable by a concatenation of the individual symbol sequences

Note: Fill symbol sequence at end of message (as for block codes)

- ➡ Redundancy-free set of symbol sequences
- ➡ Instantaneous encodable codes

Special Cases

- Scalar code: Full *m*-ary tree of depth 1
- Block code of size N: Perfect *m*-ary tree of depth N

Prefix Codes for Symbol Sequences: V2V Codes as Double Tree

iid source $(m = 3)$				
symbol	probability			
а	0.80			
b	0.15			
с	0.05			

Prefix Codes for Symbol Sequences: V2V Codes as Double Tree

iid source $(m = 3)$				
symbol	probability			
а	0.80			
b	0.15			
с	0.05			

entropy rate:	$\bar{H}(S) = 0.88418$	(equal to $H(S)$)
scalar Huffman:	$\bar{\ell} = 1.2$	(3 codewords)
2-symbol blocks:	$\bar{\ell} = 0.93375$	(9 codewords)

Prefix Codes for Symbol Sequences: V2V Codes as Double Tree

iid source $(m = 3)$				
symbol	probability			
а	0.80			
b	0.15			
с	0.05			

entropy rate:	$\bar{H}(\bm{S}) = 0.88418$	(equal to $H(S)$)
scalar Huffman:	$\bar{\ell} = 1.2$	(3 codewords)
2-symbol blocks:	$\bar{\ell} = 0.93375$	(9 codewords)

iid source $(m = 3)$	
symbol	probability
а	0.80
b	0.15
с	0.05

entropy rate:	$\bar{H}(S) = 0.88418$	(equal to $H(S)$)
scalar Huffman:	$\bar{\ell} = 1.2$	(3 codewords)
2-symbol blocks:	$\bar{\ell} = 0.93375$	(9 codewords)

iid source $(m = 3)$	
symbol	probability
а	0.80
b	0.15
с	0.05

entropy rate:	$\bar{H}(\bm{S}) = 0.88418$	(equal to $H(S)$)
scalar Huffman:	$\bar{\ell} = 1.2$	(3 codewords)
2-symbol blocks:	$\bar{\ell} = 0.93375$	(9 codewords)

iid source $(m = 3)$	
symbol	probability
а	0.80
b	0.15
с	0.05

entropy rate:	$\bar{H}(\mathbf{S}) = 0.88418$	(equal to $H(S)$)
scalar Huffman:	$\bar{\ell} = 1.2$	(3 codewords)
2-symbol blocks:	$\bar{\ell} = 0.93375$	(9 codewords)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Universal Codes, V2V Codes, and Shannon-Fano-Elias Codes

iid source $(m = 3)$	
symbol	probability
а	0.80
b	0.15
с	0.05

entropy rate:	$\bar{H}(\bm{S}) = 0.88418$	(equal to $H(S)$)
scalar Huffman:	$\bar{\ell} = 1.2$	(3 codewords)
2-symbol blocks:	$\bar{\ell} = 0.93375$	(9 codewords)
V2V code:	$\bar{\ell} = 0.88934$	(7 codewords)
	$\varrho = 0.00516$	(0.58 %)

What we know

What we know

Structure of V2V code: $\rightarrow N$: number of symbols sequences (leaf nodes)

What we know

- \rightarrow N : number of symbols sequences (leaf nodes)
- \rightarrow n_k : number of symbols in *k*-th symbol sequence

What we know

- \rightarrow N : number of symbols sequences (leaf nodes)
- \rightarrow n_k : number of symbols in *k*-th symbol sequence
- $\rightarrow \ell_k$: length of codeword for *k*-th symbol sequence

What we know

- \rightarrow N : number of symbols sequences (leaf nodes)
- \rightarrow n_k : number of symbols in *k*-th symbol sequence
- → l_k : length of codeword for *k*-th symbol sequence
- Statistical properties of source:

What we know

Structure of V2V code:

Statistical properties of source:

- \rightarrow N : number of symbols sequences (leaf nodes)
- \rightarrow n_k : number of symbols in *k*-th symbol sequence
- → l_k : length of codeword for *k*-th symbol sequence
- \rightarrow p_k : probability of k-th symbol sequence

What we know

Structure of V2V code:

Statistical properties of source:

- \rightarrow N : number of symbols sequences (leaf nodes)
- \rightarrow n_k : number of symbols in *k*-th symbol sequence
- → l_k : length of codeword for *k*-th symbol sequence
- \rightarrow p_k : probability of k-th symbol sequence

Average Codeword Length of V2V Codes $\bar{\ell} =$

What we know

Structure of V2V code:

Statistical properties of source:

- \rightarrow N : number of symbols sequences (leaf nodes)
- \rightarrow n_k : number of symbols in *k*-th symbol sequence
- → l_k : length of codeword for *k*-th symbol sequence
- \rightarrow p_k : probability of k-th symbol sequence

Average Codeword Length of V2V Codes

 $\bar{\ell} = \frac{\text{average codeword length per sequence}}{1}$

What we know

Structure of V2V code:

Statistical properties of source:

- \rightarrow N : number of symbols sequences (leaf nodes)
- \rightarrow n_k : number of symbols in *k*-th symbol sequence
- → l_k : length of codeword for *k*-th symbol sequence
- \rightarrow p_k : probability of k-th symbol sequence

Average Codeword Length of V2V Codes

average number of symbols per sequence

What we know

Structure of V2V code:

Statistical properties of source:

- \rightarrow N : number of symbols sequences (leaf nodes)
- \rightarrow n_k : number of symbols in *k*-th symbol sequence
- → l_k : length of codeword for *k*-th symbol sequence
- \rightarrow p_k : probability of k-th symbol sequence

Average Codeword Length of V2V Codes $\bar{\ell} = \frac{average \ codeword \ length \ per \ sequence}{average \ number \ of \ symbols \ per \ sequence} = ----$

What we know

- \rightarrow N : number of symbols sequences (leaf nodes)
- \rightarrow n_k : number of symbols in k-th symbol sequence
- $\rightarrow \ell_k$: length of codeword for k-th symbol sequence
- Statistical properties of source: $\rightarrow p_k$: probability of k-th symbol sequence

What we know

- \rightarrow N : number of symbols sequences (leaf nodes)
- \rightarrow n_k : number of symbols in k-th symbol sequence
- $\rightarrow \ell_k$: length of codeword for k-th symbol sequence
- Statistical properties of source: $\rightarrow p_k$: probability of k-th symbol sequence

How can we determine the pmf $p(\mathbf{a}_k)$ for the selected symbol sequences $\mathbf{a}_k = (a_{k1}, a_{k2}, \cdots, a_{kn_k})$?

How can we determine the pmf $p(\mathbf{a}_k)$ for the selected symbol sequences $\mathbf{a}_k = (a_{k1}, a_{k2}, \cdots, a_{kn_k})$?

IID Sources

No dependencies on previous symbols

How can we determine the pmf $p(\mathbf{a}_k)$ for the selected symbol sequences $\mathbf{a}_k = (a_{k1}, a_{k2}, \cdots, a_{kn_k})$?

IID Sources

• No dependencies on previous symbols $\rightarrow p(\mathbf{a}_k) = p(\mathbf{a}_{k1}) \cdot p(\mathbf{a}_{k2}) \cdot \ldots \cdot p(\mathbf{a}_{kn_k})$

How can we determine the pmf $p(\mathbf{a}_k)$ for the selected symbol sequences $\mathbf{a}_k = (a_{k1}, a_{k2}, \cdots, a_{kn_k})$?

IID Sources

■ No dependencies on previous symbols \rightarrow $p(a_k) = p(a_{k1}) \cdot p(a_{k2}) \cdot \ldots \cdot p(a_{kn_k})$

General Stationary Sources

Probability that a symbol sequence starts with any particular letter depends on preceding symbols

How can we determine the pmf $p(\mathbf{a}_k)$ for the selected symbol sequences $\mathbf{a}_k = (a_{k1}, a_{k2}, \cdots, a_{kn_k})$?

IID Sources

■ No dependencies on previous symbols \rightarrow $p(a_k) = p(a_{k1}) \cdot p(a_{k2}) \cdot \ldots \cdot p(a_{kn_k})$

General Stationary Sources

- Probability that a symbol sequence starts with any particular letter depends on preceding symbols
- → Probabilities $p(a_k)$ of symbol sequences a_k can be determined by solving linear equation system
- Further details can be found in [Wiegand, Schwarz: "Source Coding"]

How can we determine the pmf $p(\mathbf{a}_k)$ for the selected symbol sequences $\mathbf{a}_k = (a_{k1}, a_{k2}, \cdots, a_{kn_k})$?

IID Sources

• No dependencies on previous symbols \Rightarrow $p(a_k) = p(a_{k1}) \cdot p(a_{k2}) \cdot \ldots \cdot p(a_{kn_k})$

General Stationary Sources

- Probability that a symbol sequence starts with any particular letter depends on preceding symbols
- → Probabilities $p(a_k)$ of symbol sequences a_k can be determined by solving linear equation system
- Further details can be found in [Wiegand, Schwarz: "Source Coding"]

In Practice: Estimate Pmf based on Training Set

• Use (large) training set of typical messages for the considered source

How can we determine the pmf $p(\mathbf{a}_k)$ for the selected symbol sequences $\mathbf{a}_k = (a_{k1}, a_{k2}, \cdots, a_{kn_k})$?

IID Sources

• No dependencies on previous symbols \Rightarrow $p(a_k) = p(a_{k1}) \cdot p(a_{k2}) \cdot \ldots \cdot p(a_{kn_k})$

General Stationary Sources

- Probability that a symbol sequence starts with any particular letter depends on preceding symbols
- → Probabilities $p(a_k)$ of symbol sequences a_k can be determined by solving linear equation system
- Further details can be found in [Wiegand, Schwarz: "Source Coding"]

In Practice: Estimate Pmf based on Training Set

- Use (large) training set of typical messages for the considered source
- \rightarrow Count occurences $N(a_k)$ of variable-length symbol sequences a_k in the messages of the training set

How can we determine the pmf $p(\mathbf{a}_k)$ for the selected symbol sequences $\mathbf{a}_k = (a_{k1}, a_{k2}, \cdots, a_{kn_k})$?

IID Sources

■ No dependencies on previous symbols \rightarrow $p(a_k) = p(a_{k1}) \cdot p(a_{k2}) \cdot \ldots \cdot p(a_{kn_k})$

General Stationary Sources

- Probability that a symbol sequence starts with any particular letter depends on preceding symbols
- → Probabilities $p(a_k)$ of symbol sequences a_k can be determined by solving linear equation system
- Further details can be found in [Wiegand, Schwarz: "Source Coding"]

In Practice: Estimate Pmf based on Training Set

- Use (large) training set of typical messages for the considered source
- → Count occurences $N(a_k)$ of variable-length symbol sequences a_k in the messages of the training set
- → Estimate probability $p(a_k)$ according to

$$p(\boldsymbol{a}_k) = \frac{N(\boldsymbol{a}_k)}{\sum_k N(\boldsymbol{a}_k)}$$

What is given?

• Set of N variable-length symbol sequences a_k with n_k symbols

(full *m*-ary tree with *N* leafs)

What is given?

- Set of N variable-length symbol sequences a_k with n_k symbols (full *m*-ary tree with N leafs)
- Associated probabilities masses $p_k = P(S_{next} = a_k)$ (calculated or experimentally determined)

What is given?

- Set of N variable-length symbol sequences a_k with n_k symbols (full *m*-ary tree with N leafs)
- Associated probabilities masses $p_k = P(S_{next} = a_k)$ (calculated or experimentally determined)

Optimal V2V Codes

• Assign codewords of length ℓ_k to symbol sequences a_k

What is given?

- Set of N variable-length symbol sequences a_k with n_k symbols (full *m*-ary tree with N leafs)
- Associated probabilities masses $p_k = P(S_{next} = a_k)$ (calculated or experimentally determined)

- Assign codewords of length ℓ_k to symbol sequences a_k
- Goal: Minimize average codeword length per symbol

What is given?

- Set of N variable-length symbol sequences a_k with n_k symbols (full *m*-ary tree with N leafs)
- Associated probabilities masses $p_k = P(S_{next} = a_k)$ (calculated or experimentally determined)

- Assign codewords of length ℓ_k to symbol sequences a_k
- Goal: Minimize average codeword length per symbol

$$\bar{\ell} = \frac{\bar{\ell}_{\rm seq}}{\bar{n}} =$$

What is given?

- Set of N variable-length symbol sequences a_k with n_k symbols (full *m*-ary tree with N leafs)
- Associated probabilities masses $p_k = P(\boldsymbol{S}_{next} = \boldsymbol{a}_k)$ (calculated or experimentally determined)

- Assign codewords of length ℓ_k to symbol sequences a_k
- Goal: Minimize average codeword length per symbol

$$\bar{\ell} = \frac{\bar{\ell}_{\text{seq}}}{\bar{n}} = \frac{\sum_{k=1}^{N} p_k \,\ell_k}{\bar{n}}$$

What is given?

- Set of N variable-length symbol sequences a_k with n_k symbols (full *m*-ary tree with N leafs)
- Associated probabilities masses $p_k = P(\boldsymbol{S}_{next} = \boldsymbol{a}_k)$ (calculated or experimentally determined)

- Assign codewords of length ℓ_k to symbol sequences a_k
- Goal: Minimize average codeword length per symbol

$$\bar{\ell} = \frac{\bar{\ell}_{\text{seq}}}{\bar{n}} = \frac{\sum_{k=1}^{N} p_k \,\ell_k}{\sum_{k=1}^{N} p_k \,n_k}$$

What is given?

- Set of N variable-length symbol sequences a_k with n_k symbols (full *m*-ary tree with N leafs)
- Associated probabilities masses $p_k = P(S_{next} = a_k)$ (calculated or experimentally determined)

- Assign codewords of length ℓ_k to symbol sequences a_k
- Goal: Minimize average codeword length per symbol

$$\bar{\ell} = \frac{\bar{\ell}_{\text{seq}}}{\bar{n}} = \frac{\sum_{k=1}^{N} p_k \, \ell_k}{\sum_{k=1}^{N} p_k \, n_k} \quad \leftarrow \text{ fixed value for given set } \{\boldsymbol{a}_k\} \text{ and given pmf } \{\boldsymbol{p}_k\}$$

What is given?

- Set of N variable-length symbol sequences a_k with n_k symbols (full *m*-ary tree with N leafs)
- Associated probabilities masses $p_k = P(S_{next} = a_k)$ (calculated or experimentally determined)

Optimal V2V Codes

- Assign codewords of length ℓ_k to symbol sequences a_k
- Goal: Minimize average codeword length per symbol

 $\bar{\ell} = \frac{\bar{\ell}_{seq}}{\bar{n}} = \frac{\sum_{k=1}^{N} p_k \,\ell_k}{\sum_{k=1}^{N} p_k \,n_k} \quad \leftarrow \text{ optimization problem: best prefix code for given pmf } \{p_k\}$ $\bar{\ell} = \frac{\bar{\ell}_{seq}}{\bar{n}} = \frac{\sum_{k=1}^{N} p_k \,\ell_k}{\sum_{k=1}^{N} p_k \,n_k} \quad \leftarrow \text{ fixed value for given set } \{a_k\} \text{ and given pmf } \{p_k\}$

What is given?

- Set of N variable-length symbol sequences a_k with n_k symbols (full *m*-ary tree with N leafs)
- Associated probabilities masses $p_k = P(S_{next} = a_k)$ (calculated or experimentally determined)

Optimal V2V Codes

- Assign codewords of length ℓ_k to symbol sequences a_k
- Goal: Minimize average codeword length per symbol

 $\bar{\ell} = \frac{\bar{\ell}_{seq}}{\bar{n}} = \frac{\sum_{k=1}^{N} p_k \,\ell_k}{\sum_{k=1}^{N} p_k \,n_k} \quad \leftarrow \text{ optimization problem: best prefix code for given pmf } \{p_k\}$ $\bar{\ell} = \frac{\bar{\ell}_{seq}}{\bar{n}} = \frac{\sum_{k=1}^{N} p_k \,\ell_k}{\sum_{k=1}^{N} p_k \,n_k} \quad \leftarrow \text{ fixed value for given set } \{a_k\} \text{ and given pmf } \{p_k\}$

→ Optimal code can be obtained by Huffman algorithm for pmf $\{p_k\}$

What is given?

- Set of N variable-length symbol sequences a_k with n_k symbols (full *m*-ary tree with N leafs)
- Associated probabilities masses $p_k = P(S_{next} = a_k)$ (calculated or experimentally determined)

Optimal V2V Codes

- Assign codewords of length ℓ_k to symbol sequences a_k
- Goal: Minimize average codeword length per symbol

 $\bar{\ell} = \frac{\bar{\ell}_{\text{seq}}}{\bar{n}} = \frac{\sum_{k=1}^{N} p_k \ell_k}{\sum_{k=1}^{N} p_k n_k} \quad \leftarrow \text{ optimization problem: best prefix code for given pmf } \{p_k\}$ $\bar{\ell} = \frac{\bar{\ell}_{\text{seq}}}{\bar{n}} = \frac{\sum_{k=1}^{N} p_k \ell_k}{\sum_{k=1}^{N} p_k n_k} \quad \leftarrow \text{ fixed value for given set } \{a_k\} \text{ and given pmf } \{p_k\}$

→ Optimal code can be obtained by Huffman algorithm for pmf $\{p_k\}$

Resulting average codeword length per symbol is bounded by

$$\left(\frac{-\sum_{k=1}^{N} p_k \log_2 p_k}{\sum_{k=1}^{N} p_k n_k}\right) \leq \bar{\ell} < \left(\frac{-\sum_{k=1}^{N} p_k \log_2 p_k}{\sum_{k=1}^{N} p_k n_k}\right) + \left(\frac{1}{\sum_{k=1}^{N} p_k n_k}\right)$$

Example: Coding of Black and White Document Scans (300 dpi)

Code design:
block	Huffman code
\boldsymbol{a}_k	
000	
001	
010	
011	
100	
101	
110	
111	

block Huffman code
\boldsymbol{a}_k
000
001
010
011
100
101
110
111

a _k	
000000	
0000001	
000001	
00001	
0001	
001	
01	
1	

- **Code design**: Select set of symbol sequences a_k (full *m*-ary tree)
 - Experimentally determine pmf $p_k = p(a_k)$ using actual document scans

block Huffman code	V2V code (Huffman design)
a _k	a_k
000 001 010 011 100 101 110	0000000 000001 00001 00001 0001 001 01
	-

- **Code design**: Select set of symbol sequences a_k (full *m*-ary tree)
 - Experimentally determine pmf $p_k = p(a_k)$ using actual document scans

block	Huffman code	
\boldsymbol{a}_k	Pk	
000	0.8833	
001	0.0161	
010	0.0006	
011	0.0159	
100	0.0160	
101	0.0005	
110	0.0160	
111	0.0516	

a _k		
0000000		
0000001		
000001		
00001		
0001		
001		
01		
1		

- **Code design**: Select set of symbol sequences a_k (full *m*-ary tree)
 - Experimentally determine pmf $p_k = p(a_k)$ using actual document scans

block	Huffman code	
\boldsymbol{a}_k	p_k	
000	0.8833	
001	0.0161	
010	0.0006	
011	0.0159	
100	0.0160	
101	0.0005	
110	0.0160	
111	0.0516	

/2V code (Huffman design)		
a _k	p_k	
0000000	0.7074	
0000001	0.0141	
000001	0.0132	
00001	0.0116	
0001	0.0121	
001	0.0128	
01	0.0131	
1	0.2157	

- Experimentally determine pmf $p_k = p(a_k)$ using actual document scans
- Apply Huffman algorithm for determining codewords

block	Huffman code	
\boldsymbol{a}_k	Pk	
000	0.8833	
001	0.0161	
010	0.0006	
011	0.0159	
100	0.0160	
101	0.0005	
110	0.0160	
111	0.0516	

2V code (Huffman design)	_
a _k	P_k	
0000000	0.7074	
0000001	0.0141	
000001	0.0132	
00001	0.0116	
0001	0.0121	
001	0.0128	
01	0.0131	
1	0.2157	

- **Code design**: Select set of symbol sequences a_k (full *m*-ary tree)
 - Experimentally determine pmf $p_k = p(a_k)$ using actual document scans
 - Apply Huffman algorithm for determining codewords

block h	Huffman co	de
\boldsymbol{a}_k	P k	codewords
000	0.8833	1
001	0.0161	0110
010	0.0006	011101
011	0.0159	01111
100	0.0160	0101
101	0.0005	011100
110	0.0160	0100
111	0.0516	00

V2V code (Huffman design)	
\boldsymbol{a}_k	p_k	
0000000	0.7074	
0000001	0.0141	
000001	0.0132	
00001	0.0116	
0001	0.0121	
001	0.0128	
01	0.0131	
1	0.2157	

- **Code design**: Select set of symbol sequences a_k (full *m*-ary tree)
 - Experimentally determine pmf $p_k = p(a_k)$ using actual document scans
 - Apply Huffman algorithm for determining codewords

block Huffman code		
\boldsymbol{a}_k	Pk	codewords
000	0.8833	1
001	0.0161	0110
010	0.0006	011101
011	0.0159	01111
100	0.0160	0101
101	0.0005	011100
110	0.0160	0100
111	0.0516	00

V2V code (Huffman design)		
a _k	P k	codewords
0000000	0.7074	1
0000001	0.0141	0001
000001	0.0132	0000
00001	0.0116	00100
0001	0.0121	00101
001	0.0128	00110
01	0.0131	00111
1	0.2157	01

Example: Coding of Black and White Document Scans (300 dpi)

- Experimentally determine pmf $p_k = p(a_k)$ using actual document scans
- Apply Huffman algorithm for determining codewords

block Huffman code		
\boldsymbol{a}_k	Pk	codewords
000	0.8833	1
001	0.0161	0110
010	0.0006	011101
011	0.0159	01111
100	0.0160	0101
101	0.0005	011100
110	0.0160	0100
111	0.0516	00
$ar{\ell}_{ m seq}=1.265$		

\boldsymbol{a}_k	P_k	codewords
0000000	0.7074	1
0000001	0.0141	0001
000001	0.0132	0000
00001	0.0116	00100
0001	0.0121	00101
001	0.0128	00110
01	0.0131	00111
1	0.2157	01

Example: Coding of Black and White Document Scans (300 dpi)

- Experimentally determine pmf $p_k = p(a_k)$ using actual document scans
- Apply Huffman algorithm for determining codewords

block	block Huffman code		
\boldsymbol{a}_k	P k	codewords	
000	0.8833	1	
001	0.0161	0110	
010	0.0006	011101	
011	0.0159	01111	
100	0.0160	0101	
101	0.0005	011100	
110	0.0160	0100	
111	0.0516	00	
$ar{\ell}_{ m seq}=1.265$			
n = 3			

a _k	P_k	codewords
0000000	0.7074	1
0000001	0.0141	0001
000001	0.0132	0000
00001	0.0116	00100
0001	0.0121	00101
001	0.0128	00110
01	0.0131	00111
1	0.2157	01

Example: Coding of Black and White Document Scans (300 dpi)

Code design: • Select set of symbol sequences a_k (full *m*-ary tree)

- Experimentally determine pmf $p_k = p(a_k)$ using actual document scans
- Apply Huffman algorithm for determining codewords

block Huffman code			
\boldsymbol{a}_k	Pk	codewords	
000	0.8833	1	
001	0.0161	0110	
010	0.0006	011101	
011	0.0159	01111	
100	0.0160	0101	
101	0.0005	011100	
110	0.0160	0100	
111	0.0516	00	
$ar{\ell}_{ ext{seq}}$ n	$\left. \begin{array}{c} \bar{\ell}_{\rm seq} = 1.265\\ n = 3 \end{array} \right\} \rightarrow \bar{\ell} = 0.42$		

.

a _k	P_k	codewords
0000000	0.7074	1
0000001	0.0141	0001
000001	0.0132	0000
00001	0.0116	00100
0001	0.0121	00101
001	0.0128	00110
01	0.0131	00111
1	0.2157	01

Example: Coding of Black and White Document Scans (300 dpi)

- Experimentally determine pmf $p_k = p(a_k)$ using actual document scans
- Apply Huffman algorithm for determining codewords

block Huffman code		
\boldsymbol{a}_k	P k	codewords
000	0.8833	1
001	0.0161	0110
010	0.0006	011101
011	0.0159	01111
100	0.0160	0101
101	0.0005	011100
110	0.0160	0100
111	0.0516	00
$\left. \begin{array}{c} \bar{\ell}_{\rm seq} = 1.265\\ n = 3 \end{array} \right\} \rightarrow \bar{\ell} = 0.42$		

1 0001 0000 00100
0001 0000 00100
0000 00100
0100
0101
00110
00111
)1

Example: Coding of Black and White Document Scans (300 dpi)

- Experimentally determine pmf $p_k = p(a_k)$ using actual document scans
- Apply Huffman algorithm for determining codewords

block Huffman code		
\boldsymbol{a}_k	P k	codewords
000	0.8833	1
001	0.0161	0110
010	0.0006	011101
011	0.0159	01111
100	0.0160	0101
101	0.0005	011100
110	0.0160	0100
111	0.0516	00
$\left. \begin{array}{c} \bar{\ell}_{\rm seq} = 1.265\\ n = 3 \end{array} \right\} \rightarrow \bar{\ell} = 0.42$		

V2V code (Huffman design)			
a _k	P_k	codewords	
0000000	0.7074	1	
0000001	0.0141	0001	
000001	0.0132	0000	
00001	0.0116	00100	
0001	0.0121	00101	
001	0.0128	00110	
01	0.0131	00111	
1	0.2157	01	
$\bar{\ell}_{ m seq} = 1.4$	$ar{\ell}_{ m seq}=1.496$		
n = 5.510			

Example: Coding of Black and White Document Scans (300 dpi)

- Experimentally determine pmf $p_k = p(a_k)$ using actual document scans
- Apply Huffman algorithm for determining codewords

block	block Huffman code				
\boldsymbol{a}_k	p_k	codewords			
000	0.8833	1			
001	0.0161	0110			
010	0.0006	011101			
011	0.0159	01111			
100	0.0160	0101			
101	0.0005	011100			
110	0.0160	0100			
111	0.0516	00			
$ar{\ell}_{ ext{seq}}$ n	$= 1.265 \\ = 3 $	→ $\bar{\ell} = 0.42$			

V2V code (Huffman design)				
\boldsymbol{a}_k	Pk	codewords		
0000000	0.7074	1		
0000001	0.0141	0001		
000001	0.0132	0000		
00001	0.0116	00100		
0001	0.0121	00101		
001	0.0128	00110		
01	0.0131	00111		
1	0.2157	01		
$ \frac{\bar{\ell}_{\text{seq}} = 1.496}{\bar{n} = 5.516} \} \rightarrow \bar{\ell} = 0.27 $				

Example: Coding of Black and White Document Scans (300 dpi)

Code design: • Select set of symbol sequences a_k (full *m*-ary tree)

- Experimentally determine pmf $p_k = p(a_k)$ using actual document scans
- Apply Huffman algorithm for determining codewords

block Huffman code				
\boldsymbol{a}_k	Pk	codewords		
000	0.8833	1		
001	0.0161	0110		
010	0.0006	011101		
011	0.0159	01111		
100	0.0160	0101		
101	0.0005	011100		
110	0.0160	0100		
111	0.0516	00		
$\left. \begin{array}{c} \bar{\ell}_{\rm seq} = 1.265\\ n = 3 \end{array} \right\} \rightarrow \bar{\ell} = 0.42$				

a _k	P k	codewords	
0000000	0.7074	1	
0000001	0.0141	0001	
000001	0.0132	0000	
00001	0.0116	00100	
0001	0.0121	00101	
001	0.0128	00110	
01	0.0131	00111	
1	0.2157	01	
$\bar{\ell}_{\rm seq} = 1.496$ $\rightarrow \bar{\ell} = 0.27$			
$\bar{n} = 5.516 \int \mathbf{P} = 0.27$			

→ V2V code is better than block Huffman code with same table size (36 % bit savings)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Universal Codes, V2V Codes, and Shannon-Fano-Elias Codes

Optimal Code for Maximum Number *N* **of Codewords?**

→ No known design algorithm

- → No known design algorithm
- \rightarrow Exhaustive search over all possible full *m*-ary trees with up to *N* leaf nodes

- → No known design algorithm
- \rightarrow Exhaustive search over all possible full *m*-ary trees with up to *N* leaf nodes
- ➡ Extremely complex

- → No known design algorithm
- \rightarrow Exhaustive search over all possible full *m*-ary trees with up to *N* leaf nodes
- ➡ Extremely complex

Ex	Example: Stationary Markov Source										
alphabet $4 - \{a, b, c\}$			optim	al codes:	$\bar{\ell}$ for sele	cted table	sizes N				
				N	scalar	cond.	block	V2V			
	x	$p(x \mid a)$	$p(x \mid b)$	$p(x \mid b)$		3	1.3556		1.3556	1.3556	
	а	0.90	0.15	0.25		9		1.1578	1.0094	1.0051	
	Ь	0.05	0.80	0.15		13				0.9412	
	c	0.05	0.05	0.60		17				0.9074	
		0.00	0.00	0.00		21				0.8891	
	_			27			0.9150	?			
	entropy rate $H = 0.7331$			81			0.8690	?			

V2V Codes in Practice

Only Structured V2V Codes

Set of symbol sequences follow a certain structure

V2V Codes in Practice

Only Structured V2V Codes

- Set of symbol sequences follow a certain structure
- ➡ Examples: run-length coding

binary run-length coding			
type 1	type 2		
$\begin{array}{c} 1\\ 0 1\\ 0 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	$\begin{array}{c}1&1&1&1&1\\1&1&1&1&0\\1&1&1&0\\1&1&0\\1&0&0&1\\0&0&1\\0&0&0&1\\0&0&0&1\\0&0&0&0&$		

V2V Codes in Practice

Only Structured V2V Codes			run-level coding
Set of symbol sequences follow a certa	1		
 Examples: • run-length coding run-level coding 			x (x: max. value) 0 1 0 : 0 x
binary run-length coding			
type 1 1	type 2 1 1 1 1 1		0 0 × 0 0 0 1 0 0 0 :
$\begin{array}{c} 0 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1 & 0 \\ 0 & 1 \\ 0 & 0 & 1 \end{array} $		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{split}$	$\begin{array}{c} 0 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \\ 0 \ 0 \ 0 \ 0 \ 0 \ 1 \end{array}$		$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 &$
$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$: 0 0 0 0 0 0 0 0 0

4	0	1	0
0	0	0	0
1	0	0	0
0	0	0	0

Coding of Block Quantization Indexes (absolute values)

4	0	1	0
0	0	0	0
1	0	0	0
0	0	0	0

Coding of Block Quantization Indexes (absolute values)

1 Convert block into sequence of indexes

Coding of Block Quantization Indexes (absolute values)

1 Convert block into sequence of indexes (zig-zag scan)

Coding of Block Quantization Indexes (absolute values)

1 Convert block into sequence of indexes (zig-zag scan)

Coding of Block Quantization Indexes (absolute values)

- **1** Convert block into sequence of indexes (zig-zag scan)
- 2 Convert sequence of indexes into (run, level) pairs and a special end-of-block (eob) symbol

Coding of Block Quantization Indexes (absolute values)

- **1** Convert block into sequence of indexes (zig-zag scan)
- 2 Convert sequence of indexes into (run, level) pairs and a special end-of-block (eob) symbol

run: number of zeros that precede next non-zero index level: value of next non-zero index

Coding of Block Quantization Indexes (absolute values)

- **1** Convert block into sequence of indexes (zig-zag scan)
- 2 Convert sequence of indexes into (run, level) pairs and a special end-of-block (eob) symbol
 - run: number of zeros that precede next non-zero index
 - **level**: value of next non-zero index
 - eob: all following indexes are equal to zero (end-of-block)

Coding of Block Quantization Indexes (absolute values)

1 Convert block into sequence of indexes (zig-zag scan)

2 Convert sequence of indexes into (run, level) pairs and a special end-of-block (eob) symbol

> run : number of zeros that precede next non-zero index level : value of next non-zero index

eob: all following indexes are equal to zero (end-of-block)

→ Example: sequence of indexes: 4 0 0 1 0 1 0 0 · · · 0 (run, level) pairs: (0,4) (2,1) (1,1) (eob)

Coding of Block Quantization Indexes (absolute values)

1 Convert block into sequence of indexes (zig-zag scan)

2 Convert sequence of indexes into (run, level) pairs and a special end-of-block (eob) symbol

> run : number of zeros that precede next non-zero index level : value of next non-zero index eob : all following indexes are equal to zero (end-of-block)

→ Example: sequence of indexes: $4 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0 \ \cdots \ 0$ (run, level) pairs: $(0, 4) \ (2, 1) \ (1, 1) \ (eob)$

3 Codewords are assigned to (run, level) pairs

V2V Codes / V2V Codes in Practice

Run-Level Coding (JPEG, MPEG-2 Video, ...)

Coding of Block Quantization Indexes (absolute values) 1 Convert block into sequence of indexes (zig-zag scan)

2 Convert sequence of indexes into (run, level) pairs and a special end-of-block (eob) symbol

> run : number of zeros that precede next non-zero index level : value of next non-zero index

eob: all following indexes are equal to zero (end-of-block)

→ Example: sequence of indexes: 4 0 0 1 0 1 0 0 ··· 0 (run, level) pairs: (0,4) (2, 1) (1, 1) (eob)

3 Codewords are assigned to (run, level) pairs

MPEG-2 Video: 112 typical symbol sequences + escape					
codeword	(run, level)	symbol sequence			
10	(eob)	0, 0, 0, 0, 0, 0, 0, 0, 0, 0,			
11	(0,1)	1			
011	(1,1)	0,1			
0100	(0,2)	2			
0101	(2,1)	0,0,1			
0010 1	(0,3)	3			
0011 1	(3,1)	0,0,0,1			
0011 0	(4,1)	0,0,0,0,1			
0001 10	(1,2)	0,2			
0001 11	(5,1)	0,0,0,0,0,1			
0001 01	(6,1)	0, 0, 0, 0, 0, 0, 1			
0001 00	(7,1)	0, 0, 0, 0, 0, 0, 0, 0, 1			
0000 110	(0,4)	4			
0000 100	(2,2)	0,0,2			
0000 111	(8,1)	0, 0, 0, 0, 0, 0, 0, 0, 0, 1			
0000 101	(9,1)	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1			
0000 01	escape	< followed by fixed-length codes>			
0010 0110	(0,5)	5			
0010 0001	(0,6)	6			
0010 0101	(1,3)	0,3			
0010 0100	(3,2)	0,0,0,2			
0010 0111	(10,1)	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1			
0010 0011	(11,1)	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1			
0010 0010	(12,1)	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1			

Shannon-Fano-Elias Coding and Arithmetic Coding

Our Findings

• Achievable coding efficiency is limited by entropy rate: $\bar{\ell} \geq \bar{H}$

Shannon-Fano-Elias Coding and Arithmetic Coding

Our Findings

- Achievable coding efficiency is limited by entropy rate: $\bar{\ell} \geq \bar{H}$
- Block Huffman codes approach entropy rate \bar{H} for large block sizes N

$$\left(rac{1}{N}H_{N}
ight)\leqar{\ell}<\left(rac{1}{N}H_{N}
ight)+\left(rac{1}{N}
ight),\qquadar{H}=\lim_{N
ightarrow\infty}rac{1}{N}H_{N}$$
Our Findings

- Achievable coding efficiency is limited by entropy rate: $\bar{\ell} \geq \bar{H}$
- Block Huffman codes approach entropy rate \bar{H} for large block sizes N

$$\left(rac{1}{N}H_{N}
ight)\leqar{\ell}<\left(rac{1}{N}H_{N}
ight)+\left(rac{1}{N}
ight),\qquadar{H}=\lim_{N
ightarrow\infty}rac{1}{N}H_{N}$$

 \rightarrow Not implementable due to extreme memory requirements for large N

Our Findings

- Achievable coding efficiency is limited by entropy rate: $\bar{\ell} \geq \bar{H}$
- Block Huffman codes approach entropy rate \bar{H} for large block sizes N

$$\left(rac{1}{N}H_{N}
ight)\leqar{\ell}<\left(rac{1}{N}H_{N}
ight)+\left(rac{1}{N}
ight),\qquadar{H}=\lim_{N
ightarrow\infty}rac{1}{N}H_{N}$$

 \rightarrow Not implementable due to extreme memory requirements for large N

Basic Idea of Arithmetic Coding

Block codes for large N stay efficient even if they are slightly suboptimal, e.g.,

$$\left(\frac{1}{N} H_N\right) + \left(\frac{A}{N}\right) \leq \overline{\ell} < \left(\frac{1}{N} H_N\right) + \left(\frac{1+A}{N}\right) \quad \text{with} \quad A \ll N$$

Our Findings

- Achievable coding efficiency is limited by entropy rate: $\bar{\ell} \geq \bar{H}$
- Block Huffman codes approach entropy rate \bar{H} for large block sizes N

$$\left(rac{1}{N}H_{N}
ight)\leqar{\ell}<\left(rac{1}{N}H_{N}
ight)+\left(rac{1}{N}
ight),\qquadar{H}=\lim_{N
ightarrow\infty}rac{1}{N}H_{N}$$

 \rightarrow Not implementable due to extreme memory requirements for large N

Basic Idea of Arithmetic Coding

Block codes for large N stay efficient even if they are slightly suboptimal, e.g.,

$$\left(rac{1}{N}H_{N}
ight)+\left(rac{A}{N}
ight)\leq ar{\ell}<\left(rac{1}{N}H_{N}
ight)+\left(rac{1+A}{N}
ight) \quad ext{with} \quad A\ll N$$

If accepting suboptimality, can we construct codewords on-the-fly (i.e., without storing a large table)?

Our Findings

- Achievable coding efficiency is limited by entropy rate: $\bar{\ell} \geq \bar{H}$
- Block Huffman codes approach entropy rate \bar{H} for large block sizes N

$$\left(rac{1}{N}H_{N}
ight)\leqar{\ell}<\left(rac{1}{N}H_{N}
ight)+\left(rac{1}{N}
ight),\qquadar{H}=\lim_{N
ightarrow\infty}rac{1}{N}H_{N}$$

 \rightarrow Not implementable due to extreme memory requirements for large N

Basic Idea of Arithmetic Coding

Block codes for large N stay efficient even if they are slightly suboptimal, e.g.,

$$\left(rac{1}{N}H_{N}
ight)+\left(rac{A}{N}
ight)\leqar{\ell}<\left(rac{1}{N}H_{N}
ight)+\left(rac{1+A}{N}
ight) \quad ext{with} \quad A\ll N$$

If accepting suboptimality, can we construct codewords on-the-fly (i.e., without storing a large table)?
 → Arithmetic coding

Our Findings

- Achievable coding efficiency is limited by entropy rate: $\bar{\ell} \geq \bar{H}$
- Block Huffman codes approach entropy rate \bar{H} for large block sizes N

$$\left(rac{1}{N}H_{N}
ight)\leqar{\ell}<\left(rac{1}{N}H_{N}
ight)+\left(rac{1}{N}
ight),\qquadar{H}=\lim_{N
ightarrow\infty}rac{1}{N}H_{N}$$

 \rightarrow Not implementable due to extreme memory requirements for large N

Basic Idea of Arithmetic Coding

Block codes for large N stay efficient even if they are slightly suboptimal, e.g.,

$$\left(rac{1}{N}H_{N}
ight)+\left(rac{A}{N}
ight)\leqar{\ell}<\left(rac{1}{N}H_{N}
ight)+\left(rac{1+A}{N}
ight) \quad ext{with} \quad A\ll N$$

- If accepting suboptimality, can we construct codewords on-the-fly (i.e., without storing a large table)?
 - ➡ Arithmetic coding
 - → First: Shannon-Fano-Elias coding (idealized variant of arithmetic coding)

Special Block Code for *N* **symbols**

• Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots

Special Block Code for *N* **symbols**

• Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots

- Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots
- Each symbol sequence s_k is associated with a half-open interval $\mathcal{I}(s_k) = [L, L+W)$ of the cdf F(s)

- Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots
- Each symbol sequence s_k is associated with a half-open interval $\mathcal{I}(s_k) = [L, L+W)$ of the cdf F(s)

- Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots
- Each symbol sequence s_k is associated with a half-open interval $\mathcal{I}(s_k) = [L, L+W)$ of the cdf F(s)

- Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots
- Each symbol sequence s_k is associated with a half-open interval $\mathcal{I}(s_k) = [L, L+W)$ of the cdf F(s)

- Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots
- Each symbol sequence s_k is associated with a half-open interval $\mathcal{I}(s_k) = [L, L+W)$ of the cdf F(s)

- Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots
- Each symbol sequence s_k is associated with a half-open interval $\mathcal{I}(s_k) = [L, L+W)$ of the cdf F(s)

- Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots
- Each symbol sequence s_k is associated with a half-open interval $\mathcal{I}(s_k) = [L, L+W)$ of the cdf F(s)
- → Transmit any number v inside the interval $\mathcal{I}(s_k)$ as binary fraction

- Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots
- Each symbol sequence s_k is associated with a half-open interval $\mathcal{I}(s_k) = [L, L+W)$ of the cdf F(s)
- → Transmit any number v inside the interval $\mathcal{I}(s_k)$ as binary fraction

- Order all possible symbol sequences with N symbols: s_1, s_2, s_3, \cdots
- Each symbol sequence s_k is associated with a half-open interval $\mathcal{I}(s_k) = [L, L+W)$ of the cdf F(s)
- → Transmit any number v inside the interval $\mathcal{I}(s_k)$ as binary fraction

Probability Intervals

• All half-open intervals $\mathcal{I}(\boldsymbol{s}_k) \subset [0,1)$ are disjoint by definition

Probability Intervals

- All half-open intervals $\mathcal{I}(\boldsymbol{s}_k) \subset [0,1)$ are disjoint by definition
- Each interval $\mathcal{I}(\boldsymbol{s}_k) = [L, L+W)$ is characterized by
 - \Rightarrow interval width: $W = F(s_k) F(s_{k-1}) = P(S = s_k) = p(s_k)$
 - → lower boundary: $L = F(s_{k-1}) = P(S < s_k) = \sum_{\forall i < k} p(s_i)$

Probability Intervals

- All half-open intervals $\mathcal{I}(\boldsymbol{s}_k) \subset [0,1)$ are disjoint by definition
- Each interval $\mathcal{I}(\boldsymbol{s}_k) = [L, L+W)$ is characterized by
 - \Rightarrow interval width: $W = F(s_k) F(s_{k-1}) = P(S = s_k) = p(s_k)$
 - → lower boundary: $L = F(s_{k-1}) = P(S < s_k) = \sum_{\forall i < k} p(s_i)$

Identification of Intervals by Binary Fraction

All real numbers $v \in [0,1)$ belong to exactly one interval

Probability Intervals

- All half-open intervals $\mathcal{I}(\boldsymbol{s}_k) \subset [0,1)$ are disjoint by definition
- Each interval $\mathcal{I}(\boldsymbol{s}_k) = [L, L+W)$ is characterized by
 - \Rightarrow interval width: $W = F(s_k) F(s_{k-1}) = P(S = s_k) = p(s_k)$
 - → lower boundary: $L = F(s_{k-1}) = P(S < s_k) = \sum_{\forall i < k} p(s_i)$

Identification of Intervals by Binary Fraction

- All real numbers $v \in [0,1)$ belong to exactly one interval
- Represent number $v \in \mathcal{I}(\boldsymbol{s}_k)$ as binary fraction with K bits of precision

$$v = (0.b_1b_2b_3\cdots b_K)_{\mathrm{b}} = \sum_{i=1}^{K}b_i\cdot 2^{-i} = z\cdot 2^{-K}$$
 (z is an integer)

Probability Intervals

- All half-open intervals $\mathcal{I}(\boldsymbol{s}_k) \subset [0,1)$ are disjoint by definition
- Each interval $\mathcal{I}(\boldsymbol{s}_k) = [L, L+W)$ is characterized by
 - \Rightarrow interval width: $W = F(s_k) F(s_{k-1}) = P(S = s_k) = p(s_k)$
 - → lower boundary: $L = F(s_{k-1}) = P(S < s_k) = \sum_{\forall i < k} p(s_i)$

Identification of Intervals by Binary Fraction

- All real numbers $v \in [0,1)$ belong to exactly one interval
- Represent number $v \in \mathcal{I}(\boldsymbol{s}_k)$ as binary fraction with K bits of precision

$$v = (0.b_1b_2b_3\cdots b_K)_{\rm b} = \sum_{i=1}^{K} b_i \cdot 2^{-i} = z \cdot 2^{-K}$$
 (z is an integer)

→ codeword: → Bit sequence
$$\{b_1, b_2, b_3, \cdots, b_K\}$$

Probability Intervals

- All half-open intervals $\mathcal{I}(\boldsymbol{s}_k) \subset [0,1)$ are disjoint by definition
- Each interval $\mathcal{I}(\boldsymbol{s}_k) = [L, L+W)$ is characterized by
 - → interval width: $W = F(s_k) F(s_{k-1}) = P(S = s_k) = p(s_k)$
 - → lower boundary: $L = F(s_{k-1}) = P(S < s_k) = \sum_{\forall i < k} p(s_i)$

Identification of Intervals by Binary Fraction

- All real numbers $v \in [0,1)$ belong to exactly one interval
- Represent number $v \in \mathcal{I}(\boldsymbol{s}_k)$ as binary fraction with K bits of precision

$$v = (0.b_1b_2b_3\cdots b_K)_{
m b} = \sum_{i=1}^{K} b_i \cdot 2^{-i} = z \cdot 2^{-K}$$
 (z is an integer)

→ codeword: → Bit sequence
$$\{b_1, b_2, b_3, \dots, b_K\}$$

→ Binary representation of integer *z* with *K* bits

Required Number of Bits

Distance between successive binary fractions of K bits is 2^{-K}

Required Number of Bits

- **Distance between successive binary fractions of** K bits is 2^{-K}
- → For guaranteeing that a binary fraction of K bits falls inside an interval $\mathcal{I}(s_k)$ of width W, we require

$$2^{-\kappa} \leq W$$

Required Number of Bits

- **Distance between successive binary fractions of** K bits is 2^{-K}
- → For guaranteeing that a binary fraction of K bits falls inside an interval $\mathcal{I}(s_k)$ of width W, we require

$$2^{-K} \leq W$$

$$K \geq -\log_2 W$$

Required Number of Bits

- **Distance between successive binary fractions of** K bits is 2^{-K}
- → For guaranteeing that a binary fraction of K bits falls inside an interval $\mathcal{I}(\mathbf{s}_k)$ of width W, we require

$$2^{-\kappa} \leq W$$

$$K \geq -\log_2 W$$

➡ Hence, we choose

$$K = \left[-\log_2 W \right] = \left[-\log_2 p(\boldsymbol{s}_k) \right]$$

Interval Representative (number $v \in \mathcal{I}$)

Interval Representative (number $v \in \mathcal{I}$)

 \rightarrow Round up lower interval boundary L to next binary fraction of K bits

Interval Representative (number $v \in \mathcal{I}$)

 \rightarrow Round up lower interval boundary L to next binary fraction of K bits

Interval Representative (number $v \in \mathcal{I}$)

 \rightarrow Round up lower interval boundary L to next binary fraction of K bits

$$\mathcal{I} = [L, W): \Rightarrow v = [L \cdot 2^{K}] \cdot 2^{-K} \text{ with } K = [-\log_2 W]$$

Interval Representative (number $v \in \mathcal{I}$)

 \rightarrow Round up lower interval boundary L to next binary fraction of K bits

$$\mathcal{I} = [L, W): \Rightarrow v = [L \cdot 2^{K}] \cdot 2^{-K} \text{ with } K = [-\log_2 W]$$

Codeword

• K fractional bits of interval representative $v = (0.b_1b_2b_3\cdots b_K)_{\rm b}$

Interval Representative (number $v \in \mathcal{I}$)

 \rightarrow Round up lower interval boundary L to next binary fraction of K bits

$$\mathcal{I} = [L, W): \Rightarrow v = [L \cdot 2^{K}] \cdot 2^{-K} \text{ with } K = [-\log_2 W]$$

Codeword

- K fractional bits of interval representative $v = (0.b_1b_2b_3\cdots b_K)_{\rm b}$
- \rightarrow Binary representation $[b_1 b_2 \cdots b_K]$ with K bits of integer number

$$z = \left\lceil L \cdot 2^{K} \right\rceil = v \cdot 2^{K}$$

given: • ordered set of sequences $\{s_k\}$

• associated pmf $p_k = p(s_k)$

given: • ordered set of sequences $\{s_k\}$

• associated pmf $p_k = p(s_k)$

Codeword construction for s_k

- given: ordered set of sequences $\{s_k\}$
 - associated pmf $p_k = p(s_k)$

Codeword construction for s_k

1 determine interval $\mathcal{I} = \begin{bmatrix} L, L + W \end{bmatrix}$

$$W = p(s_k)$$
 and $L = \sum_{i \le k} p(s_i)$

- given: ordered set of sequences $\{s_k\}$
 - associated pmf $p_k = p(s_k)$

Codeword construction for s_k

1 determine interval $\mathcal{I} = \begin{bmatrix} L, L + W \end{bmatrix}$

$$W = p(s_k)$$
 and $L = \sum_{i \le k} p(s_i)$

- given: ordered set of sequences $\{s_k\}$
 - associated pmf $p_k = p(s_k)$

Codeword construction for s_k

1 determine interval $\mathcal{I} = [L, L+W)$

$$W = p(s_k)$$
 and $L = \sum_{i \le k} p(s_i)$

- given: ordered set of sequences $\{s_k\}$
 - associated pmf $p_k = p(s_k)$

- **1** determine interval $\mathcal{I} = [\mathbf{L}, \mathbf{L} + W)$
 - $W = p(s_k)$ and $L = \sum_{i < k} p(s_i)$
- **2** determine codeword length *K*
 - $K = \big\lceil -\log_2 W \big\rceil$

- given: ordered set of sequences $\{s_k\}$
 - associated pmf $p_k = p(s_k)$

- **1** determine interval $\mathcal{I} = [\mathbf{L}, \mathbf{L} + W)$
 - $W = p(s_k)$ and $L = \sum_{i < k} p(s_i)$
- 2 determine codeword length K
 - $K = \left\lceil -\log_2 W \right\rceil$
- 3 determine representative integer z $z = \left\lceil L \cdot 2^{K} \right\rceil$

- given: ordered set of sequences $\{s_k\}$
 - associated pmf $p_k = p(s_k)$

- **1** determine interval $\mathcal{I} = [\mathbf{L}, \mathbf{L} + W)$
 - $W = p(s_k)$ and $L = \sum_{i < k} p(s_i)$
- 2 determine codeword length K
 - $K = \left\lceil -\log_2 W \right\rceil$
- 3 determine representative integer z $z = \left\lceil L \cdot 2^{K} \right\rceil$

- given: ordered set of sequences $\{s_k\}$
 - associated pmf $p_k = p(s_k)$

- **1** determine interval $\mathcal{I} = [\mathbf{L}, \mathbf{L} + W)$
 - $W = p(s_k)$ and $L = \sum_{i < k} p(s_i)$
- 2 determine codeword length K
 - $K = \left\lceil -\log_2 W \right\rceil$
- 3 determine representative integer z $z = \left\lceil L \cdot 2^{K} \right\rceil$

- given: ordered set of sequences $\{s_k\}$
 - associated pmf $p_k = p(s_k)$

- **1** determine interval $\mathcal{I} = [\mathbf{L}, \mathbf{L} + W)$
 - $W = p(s_k)$ and $L = \sum_{i < k} p(s_i)$
- 2 determine codeword length K
 - $K = \left\lceil -\log_2 W \right\rceil$
- 3 determine representative integer z $z = \left\lceil L \cdot 2^{K} \right\rceil$
- 4 determine codeword
 - \rightarrow K-bit representation of integer z

given: • ordered set of sequences $\{s_k\}$

• associated pmf $p_k = p(s_k)$

Decode given codeword

- given: ordered set of sequences $\{s_k\}$
 - associated pmf $p_k = p(s_k)$

Decode given codeword

1 read **codeword** \rightarrow **integer** *z* of *K* bits

read codeword:

binary representation of z with K bits

- given: ordered set of sequences $\{s_k\}$
 - associated pmf $p_k = p(s_k)$

Decode given codeword

- **1** read **codeword** \rightarrow integer z of K bits
- 2 initialization:

$$\mathbf{v} = \mathbf{z} \cdot 2^{-1}$$

read codeword: binary representation of z with K bits F(**s**) representative value: $\mathbf{v} = \mathbf{z} \cdot 2^{-K}$ sequences s $\boldsymbol{s}_k \quad \boldsymbol{s}_{k+1}$ \boldsymbol{s}_1 \mathbf{S}_{k-1} . . .

 \boldsymbol{s}_1

sequences s

 $\boldsymbol{s}_k \quad \boldsymbol{s}_{k+1}$

. . .

 \mathbf{S}_{k-1}

given: • ordered set of sequences $\{s_k\}$

• associated pmf $p_k = p(s_k)$

Decode given codeword

1 read **codeword** \rightarrow **integer** *z* of *K* bits

- 2 initialization:
 - $\mathbf{v} = \mathbf{z} \cdot 2^{-\kappa}$

$$k = 1$$
 (message index)
 $J_k = L(s_1) + W(s_1) = p(s_1)$

read codeword: binary representation of z with K bits F(**s**) representative value: $v = z \cdot 2^{-K}$ $\boldsymbol{U_k} = \sum p(\boldsymbol{s}_i)$ U_1 $i \leq k$ sequences s \boldsymbol{S}_k \boldsymbol{s}_1 \mathbf{S}_{k-1} S_{k+1} . . .

given: • ordered set of sequences $\{s_k\}$ read codeword: • associated pmf $p_k = p(\boldsymbol{s}_k)$ binary representation of z with K bits decoding process: F(**s**) Compare v with Decode given codeword upper interval representative value: boundaries U = L + W**1** read **codeword** \rightarrow integer z of K bits $\mathbf{v} = \mathbf{z} \cdot 2^{-\kappa}$ in increasing order 2 initialization: $v = z \cdot 2^{-K}$ k = 1 (message index) $U_k = L(s_1) + W(s_1) = p(s_1)$ 3 if $(v < U_k)$ $\boldsymbol{U_k} = \sum p(\boldsymbol{s}_i)$ else $U_1 \leq v$ sequences s \boldsymbol{s}_k **S**1 S_{k-1} S_{k+1} . . .

given: • ordered set of sequences $\{s_k\}$ read codeword: • associated pmf $p_k = p(\boldsymbol{s}_k)$ binary representation of z with K bits decoding process: F(**s**) Compare v with Decode given codeword upper interval representative value: boundaries U = L + W**1** read **codeword** \rightarrow integer z of K bits $\mathbf{v} = \mathbf{z} \cdot 2^{-\kappa}$ in increasing order 2 initialization: $\mathbf{v} = \mathbf{z} \cdot 2^{-K}$ k = 1 (message index) $U_k = L(s_1) + W(s_1) = p(s_1)$ 3 if $(v < U_k)$ $U_{k-1} < v$ $U_k = \sum p(s_i)$ else $U_1 < v$ \rightarrow update: k = k + 1 $U_{k} = U_{k-1} + p(\boldsymbol{s}_{k})$ sequences s **S**1 S_{k-1} $\boldsymbol{s}_k \quad \boldsymbol{s}_{k+1}$. . . → goto step 3

given: • ordered set of sequences $\{s_k\}$ read codeword: • associated pmf $p_k = p(\boldsymbol{s}_k)$ binary representation of z with K bits decoding process: F(**s**) Compare v with Decode given codeword upper interval representative value: boundaries U = L + W**1** read **codeword** \rightarrow integer z of K bits $\mathbf{v} = \mathbf{z} \cdot 2^{-K}$ in increasing order 2 initialization: $\mathbf{v} = \mathbf{z} \cdot 2^{-K}$ $U_k > v$ k = 1 (message index) $U_k = L(s_1) + W(s_1) = p(s_1)$ 3 if $(v < U_k)$ $U_{k-1} < v$ else $U_1 < v$ \rightarrow update: k = k + 1 $U_{k} = U_{k-1} + p(\boldsymbol{s}_{k})$ **S**1 S_{k-1} $\boldsymbol{s}_k \quad \boldsymbol{s}_{k+1}$. . . → goto step 3

 $U_k = \sum p(s_i)$

sequences s

given: • ordered set of sequences $\{s_k\}$

• associated pmf $p_k = p(s_k)$

Decode given codeword

1 read **codeword** \rightarrow **integer** *z* of *K* bits

2 initialization:

 $\mathbf{v} = \mathbf{z} \cdot 2^{-K}$

 $k = 1 \qquad (message index)$ $U_k = L(s_1) + W(s_1) = p(s_1)$

3 if ($v < U_k$)

→ output s_k (decoded message) else

→ update:
$$k = k + 1$$

 $U_k = U_{k-1} + p(s_k)$

→ goto step 3

read codeword:

Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k			
aaa	0.512			
aab	0.128			
aba	0.128			
abb	0.032			
baa	0.128			
bab	0.032			
bba	0.032			
bbb	0.008			

Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	W_k	L_k
aaa	0.512	0.512	0.000
aab	0.128	0.128	0.512
aba	0.128	0.128	0.640
abb	0.032	0.032	0.768
baa	0.128	0.128	0.800
bab	0.032	0.032	0.928
bba	0.032	0.032	0.960
bbb	0.008	0.008	0.992

$$W_k = p_k$$
 $L_k = \sum_{i < k} p_i$

Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	W_k	L_k	K_k
aaa	0.512	0.512	0.000	1
aab	0.128	0.128	0.512	3
aba	0.128	0.128	0.640	3
abb	0.032	0.032	0.768	5
baa	0.128	0.128	0.800	3
bab	0.032	0.032	0.928	5
bba	0.032	0.032	0.960	5
bbb	0.008	0.008	0.992	7

$$W_k = p_k$$

 $L_k = \sum_{i < k} p_i$

$$K_k = ig - \log_2 W_k ig$$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Universal Codes, V2V Codes, and Shannon-Fano-Elias Codes

Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	W_k	L_k	K_k	z_k
aaa	0.512	0.512	0.000	1	0
aab	0.128	0.128	0.512	3	5
aba	0.128	0.128	0.640	3	6
abb	0.032	0.032	0.768	5	25
baa	0.128	0.128	0.800	3	7
bab	0.032	0.032	0.928	5	30
bba	0.032	0.032	0.960	5	31
bbb	0.008	0.008	0.992	7	127

 $W_k = p_k$ $L_k = \sum_{i < k} p_i$

$$egin{aligned} \mathcal{K}_k &= igg - \log_2 \mathcal{W}_k igg \ z_k &= igg L_k \cdot 2^{\mathcal{K}_k} igg \end{aligned}$$

Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	$ W_k $	L_k	K_k	z_k	codeword	$\mathcal{W}_k=oldsymbol{ ho}_k$
aaa	0.512	0.512	0.000	1	0	0	
aab	0.128	0.128	0.512	3	5	101	$L_k = \sum p_i$
aba	0.128	0.128	0.640	3	6	110	i < k
abb	0.032	0.032	0.768	5	25	11001	
baa	0.128	0.128	0.800	3	7	111	$K_k = \left\lceil -\log_2 W_k ight ceil$
bab	0.032	0.032	0.928	5	30	11110	
bba	0.032	0.032	0.960	5	31	11111	$z_k = L_k \cdot 2^{\kappa_k} $
bbb	0.008	0.008	0.992	7	127	1111111	
				•			codeword :

 z_k with K_k bits

Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	$ W_k $	L_k	K_k	z_k	codeword	$\mathcal{W}_k=oldsymbol{ ho}_k$
aaa	0.512	0.512	0.000	1	0	0	
aab	0.128	0.128	0.512	3	5	101	$L_k = \sum p_i$
aba	0.128	0.128	0.640	3	6	110	i < k
abb	0.032	0.032	0.768	5	25	11001	
baa	0.128	0.128	0.800	3	7	111	$\mathcal{K}_k = ig\lceil -\log_2 W_k ig ceil$
bab	0.032	0.032	0.928	5	30	11110	
bba	0.032	0.032	0.960	5	31	11111	$z_k = L_k \cdot 2^{\kappa_k} $
bbb	0.008	0.008	0.992	7	127	1111111	
		avera	age codev	$\overline{\ell} = 0.733$	codeword :		

 z_k with K_k bits

Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	W_k	L_k	K_k	z_k	codeword	$\mathcal{W}_k = \mathcal{p}_k$
aaa	0.512	0.512	0.000	1	0	0	
aab	0.128	0.128	0.512	3	5	101	$L_k = \sum p_i$
aba	0.128	0.128	0.640	3	6	110	i <k< td=""></k<>
abb	0.032	0.032	0.768	5	25	11001	
baa	0.128	0.128	0.800	3	7	111	$\mathcal{K}_k = ig \lceil -\log_2 \mathcal{W}_k ig ceil$
bab	0.032	0.032	0.928	5	30	11110	
bba	0.032	0.032	0.960	5	31	11111	$z_k = \lfloor L_k \cdot 2^{n_k} \rfloor$
bbb	0.008	0.008	0.992	7	127	1111111	
		avera	age codev	vord le	$\bar{\ell} = 0.733$	codeword :	
			block Hu	ffman	$\bar{\ell}=0.728$	z_k with K_k bits	

Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	$ W_k $	L_k	K_k	z_k	codeword	$W_k = p_k$
aaa	0.512	0.512	0.000	1	0	0	
aab	0.128	0.128	0.512	3	5	101	$L_k = \sum p_i$
aba	0.128	0.128	0.640	3	6	110	i < k
abb	0.032	0.032	0.768	5	25	11001	
baa	0.128	0.128	0.800	3	7	111	$\mathcal{K}_k = ig - \log_2 W_k ig $
bab	0.032	0.032	0.928	5	30	11110	
bba	0.032	0.032	0.960	5	31	11111	$z_k = L_k \cdot 2^{\kappa_k} $
bbb	0.008	0.008	0.992	7	127	1111111	
		avera	age codev	vord le	ength:	$\bar{\ell} = 0.733$	codeword :
	block Huffman code:						z_k with K_k bits

→ Worse than block Huffman code for same block size (N = 3)

Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	$ W_k $	L_k	K_k	z_k	codeword	$W_k = p_k$
aaa	0.512	0.512	0.000	1	0	0	
aab	0.128	0.128	0.512	3	5	101	$L_k = \sum p_i$
aba	0.128	0.128	0.640	3	6	110	i < k
abb	0.032	0.032	0.768	5	25	110 01	
baa	0.128	0.128	0.800	3	7	111	$\mathcal{K}_k = ig\lceil -\log_2 W_k ig ceil$
bab	0.032	0.032	0.928	5	30	11110	
bba	0.032	0.032	0.960	5	31	11111	$z_k = L_k \cdot 2^{\kappa_k} $
bbb	0.008	0.008	0.992	7	127	111 1111	
		avera	age codev	ength:	$\bar{\ell} = 0.733$	codeword :	
	block Huffman code:						z_k with K_k bits

- → Worse than block Huffman code for same block size (N = 3)
- → Code is not prefix-free ! → Can be a problem (depends on application) !

• Encoder transmits codeword of K bits, signaling the binary fraction $v \in \mathcal{I}$

 $v = (0.b_1b_2b_3\cdots b_K)_{\mathrm{b}}$

• Encoder transmits codeword of K bits, signaling the binary fraction $v \in \mathcal{I}$

 $v=(0.b_1b_2b_3\cdots b_K)_{\rm b}$

• Decoder sees a modified binary fraction v^* given by

 $\mathbf{v}^* = (\mathbf{0}.b_1b_2b_3\cdots b_K \mathbf{b_{K+2}}\mathbf{b_{K+3}}\cdots)_{\mathrm{b}}$

where $\{b_{K+1}b_{K+2}\cdots\}$ are the bits of following codewords

• Encoder transmits codeword of K bits, signaling the binary fraction $v \in \mathcal{I}$

 $\mathbf{v} = (\mathbf{0}.b_1b_2b_3\cdots b_K)_{\mathrm{b}}$

• Decoder sees a modified binary fraction v^* given by

 $\mathbf{v}^* = (\mathbf{0}.b_1b_2b_3\cdots b_K \mathbf{b_{K+2}}\mathbf{b_{K+3}}\cdots)_{\mathrm{b}}$

where $\{b_{K+1}b_{K+2}\cdots\}$ are the bits of following codewords

→ Value v^* seen by decoder can lay outside the interval \mathcal{I}

→ Need to ensure that $v^* < L + W$

→ Need to ensure that
$$v^* < L + W$$

worst case : $v^* = v + \sum_{i=K+1}^{\infty} 2^{-i}$

→ Need to ensure that
$$v^* < L + W$$

worst case : $v^* = v + \sum_{i=K+1}^{\infty} 2^{-i} < L + W$

→ Need to ensure that $v^* < L + W$ worst case : $v^* = v + \sum_{i=K+1}^{\infty} 2^{-i} < L + W$ sufficient : $v + 2^{-K} \leq L + W$
→ Need to ensure that $v^* < L + W$ worst case : $v^* = v + \sum_{i=K+1}^{\infty} 2^{-i} < L + W$ sufficient : $v + 2^{-K} \leq L + W$ $v = \lfloor L \cdot 2^K \rfloor 2^{-K}$: $\lfloor L \cdot 2^K \rfloor \cdot 2^{-K} + 2^{-K} \leq L + W$

→ Need to ensure that $v^* < L + W$ worst case : $v^* = v + \sum_{i=K+1}^{\infty} 2^{-i} < L + W$ sufficient : $v + 2^{-K} \leq L + W$ $v = \lfloor L \cdot 2^K \rfloor 2^{-K}$: $\lfloor L \cdot 2^K \rfloor \cdot 2^{-K} + 2^{-K} \leq L + W$ $\lceil x \rceil < x + 1$: $(L \cdot 2^K + 1) \cdot 2^{-K} + 2^{-K} \leq L + W$

→ Need to ensure that $v^* < L + W$ worst case : $v^* = v + \sum_{i=K+1}^{\infty} 2^{-i} < L + W$ sufficient : $v + 2^{-K} \leq L + W$ $v = \lfloor L \cdot 2^K \rfloor 2^{-K}$: $\lfloor L \cdot 2^K \rfloor \cdot 2^{-K} + 2^{-K} \leq L + W$ $\lfloor x \rceil < x + 1$: $(L \cdot 2^K + 1) \cdot 2^{-K} + 2^{-K} \leq L + W$ $L + 2 \cdot 2^{-K} \leq L + W$

→ Need to ensure that $v^* < L + W$ worst case : $v^* = v + \sum_{i=K+1}^{\infty} 2^{-i} < L + W$ sufficient : $v + 2^{-K} \le L + W$ $v = \lfloor L \cdot 2^K \rfloor 2^{-K}$: $\lfloor L \cdot 2^K \rfloor \cdot 2^{-K} + 2^{-K} \le L + W$ $\lceil x \rceil < x + 1$: $(L \cdot 2^K + 1) \cdot 2^{-K} + 2^{-K} \le L + W$ $L + 2 \cdot 2^{-K} \le L + W$ $2^{1-K} \le W$

➡ Need to ensu	ire that $v^* < L +$	W	\sim			
wo	irst case :	$v^* = v + \frac{1}{2}$	$\sum_{i=K+1}^{\infty} 2$? ⁻ⁱ <	L + W	
SI	ufficient :		$v + 2^{-1}$	$^{-\kappa} \leq$	L + W	
$\mathbf{v} = \begin{bmatrix} L \cdot 2 \end{bmatrix}$	$2^{\kappa}] 2^{-\kappa}$:	$\left\lceil L \cdot 2^{K} \right\rceil \cdot 2^{-}$	$\kappa + 2^{6}$	$^{-\kappa} \leq$	L + W	
x	< x + 1 : (L	$\cdot 2^{\kappa} + 1 \big) \cdot 2^{-1}$	$\kappa + 2^{6}$	$^{-\kappa} \leq$	L + W	
		L -	$+2 \cdot 2^{-1}$	$^{-\kappa} \leq$	L + W	
			2 ¹	$^{-\kappa} \leq$	W	
		→ ne	ed :	$K \geq$	$1 - \log$; ₂ W

Need to ensure that
$$v^* < L + W$$

worst case : $v^* = v + \sum_{i=K+1}^{\infty} 2^{-i} < L + W$
sufficient : $v + 2^{-K} \leq L + W$
 $v = \lceil L \cdot 2^K \rceil 2^{-K}$: $\lceil L \cdot 2^K \rceil \cdot 2^{-K} + 2^{-K} \leq L + W$
 $\lceil x \rceil < x + 1$: $(L \cdot 2^K + 1) \cdot 2^{-K} + 2^{-K} \leq L + W$
 $L + 2 \cdot 2^{-K} \leq L + W$
 $2^{1-K} \leq W$
 \Rightarrow need : $\lceil K \geq 1 - \log_2 W$

→ Unique decodability is guaranteed, if we choose

→ prefix-free :
$$K = [1 - \log_2 W]$$

Need to ensure that v*	< L + W
worst case :	$\mathbf{v}^* = \mathbf{v} + \sum_{i=K+1}^{\infty} 2^{-i} < L + W$
sufficient :	$v+2^{-\kappa} \leq L+W$
$\mathbf{v} = \begin{bmatrix} L \cdot 2^K \end{bmatrix} 2^{-K}$:	$\left\lceil L \cdot 2^{K} \right\rceil \cdot 2^{-K} + 2^{-K} \leq L + W$
$\lceil x \rceil < x + 1$:	$ig(L \cdot 2^{\kappa} + 1ig) \cdot 2^{-\kappa} + 2^{-\kappa} \ \le \ L + W$
	$L+2\cdot 2^{-\kappa} \leq L+W$
	$2^{1-\kappa} \leq W$
	→ need : $K \ge 1 - \log_2 W$

→ Unique decodability is guaranteed, if we choose

→ prefix-free :
$$K = [1 - \log_2 W]$$

→ Require one additional bit per codeword (i.e., per *N* symbols)

.

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Universal Codes, V2V Codes, and Shannon-Fano-Elias Codes

Repeated: Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	W_k	L_k
aaa	0.512	0.512	0.000
aab	0.128	0.128	0.512
aba	0.128	0.128	0.640
abb	0.032	0.032	0.768
baa	0.128	0.128	0.800
bab	0.032	0.032	0.928
bba	0.032	0.032	0.960
bbb	0.008	0.008	0.992

$$W_k = p_k$$
$$L_k = \sum_{i < k} p_i$$

Repeated: Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	W_k	L_k	K_k	z_k
aaa	0.512	0.512	0.000	2	0
aab	0.128	0.128	0.512	4	9
aba	0.128	0.128	0.640	4	11
abb	0.032	0.032	0.768	6	50
baa	0.128	0.128	0.800	4	13
bab	0.032	0.032	0.928	6	60
bba	0.032	0.032	0.960	6	62
bbb	0.008	0.008	0.992	8	254

$$L_k = \sum_{i < k} p_i$$

14/ ----

$$egin{aligned} \mathcal{K}_k &= igg \lceil 1 - \log_2 \mathcal{W}_k igg
ceil \ z_k &= igg \lceil L_k \cdot 2^{\mathcal{K}_k} igg
ceil \end{aligned}$$

Repeated: Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	$ W_k $	L_k	K_k	z_k	codeword	$\mathcal{W}_k=oldsymbol{ ho}_k$
aaa	0.512	0.512	0.000	2	0	00	
aab	0.128	0.128	0.512	4	9	1001	$L_k = \sum p_i$
aba	0.128	0.128	0.640	4	11	1011	i < k
abb	0.032	0.032	0.768	6	50	110010	
baa	0.128	0.128	0.800	4	13	1101	$\mathcal{K}_k = ig [1 - \log_2 W_k ig]$
bab	0.032	0.032	0.928	6	60	111100	
bba	0.032	0.032	0.960	6	62	111110	$z_k = \lfloor L_k \cdot 2^{\kappa_k} \rfloor$
bbb	0.008	0.008	0.992	8	254	11111110	
							codeword :

codeword : z_k with K_k bits

Repeated: Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	W_k	L_k	K_k	z_k	codeword	$W_k = p_k$
aaa	0.512	0.512	0.000	2	0	00	
aab	0.128	0.128	0.512	4	9	1001	$L_k = \sum p_i$
aba	0.128	0.128	0.640	4	11	1011	i <k< td=""></k<>
abb	0.032	0.032	0.768	6	50	110010	
baa	0.128	0.128	0.800	4	13	1101	$\mathcal{K}_k = ig egin{array}{c} 1 - \log_2 \mathcal{W}_k \end{array}$
bab	0.032	0.032	0.928	6	60	111100	
bba	0.032	0.032	0.960	6	62	111110	$z_k = L_k \cdot 2^{n_k} $
bbb	0.008	0.008	0.992	8	254	11111110	
		avera	age codev	word le	ength:	$\bar{\ell} = 1.067$	codeword :
			block Hu	ffman	code:	$ar{\ell}=0.728$	z_k with K_k bits

Repeated: Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	W_k	L_k	K_k	z_k	codeword	$W_k = oldsymbol{ ho}_k$
aaa	0.512	0.512	0.000	2	0	00	
aab	0.128	0.128	0.512	4	9	1001	$L_k = \sum p_i$
aba	0.128	0.128	0.640	4	11	1011	i <k< td=""></k<>
abb	0.032	0.032	0.768	6	50	110010	
baa	0.128	0.128	0.800	4	13	1101	$\mathcal{K}_k = ig [1 - \log_2 \mathcal{W}_k ig]$
bab	0.032	0.032	0.928	6	60	111100	
bba	0.032	0.032	0.960	6	62	111110	$z_k = \lfloor L_k \cdot 2^{n_k} \rfloor$
bbb	0.008	0.008	0.992	8	254	11111110	
		avera	age codev	word le	ength:	$ar{\ell}=1.067$	codeword :
			block Hu	ffman	code:	$\bar{\ell}=0.728$	z_k with K_k bits

→ Additional bit ensures that code becomes a prefix code

Repeated: Blocks of 3 Symbols for a Binary IID Source

→ Binary iid source with alphabet $A = \{a, b\}$ and pmf $p = \{0.8, 0.2\}$

\boldsymbol{s}_k	p_k	W_k	L_k	K_k	z_k	codeword	$\mathcal{W}_k=oldsymbol{ ho}_k$
aaa	0.512	0.512	0.000	2	0	00	
aab	0.128	0.128	0.512	4	9	100 <mark>1</mark>	$L_k = \sum p_i$
aba	0.128	0.128	0.640	4	11	101 <mark>1</mark>	i < k
abb	0.032	0.032	0.768	6	50	1100 <mark>10</mark>	
baa	0.128	0.128	0.800	4	13	1101	$K_k = \left\lceil 1 - \log_2 W_k ight ceil$
bab	0.032	0.032	0.928	6	60	11110 <mark>0</mark>	
bba	0.032	0.032	0.960	6	62	111110	$z_k = \lfloor L_k \cdot 2^{n_k} \rfloor$
bbb	0.008	0.008	0.992	8	254	111111 <mark>10</mark>	
		avera	age codev	word le	ength:	$\overline{\ell} = 1.067$	codeword :
			block Hu	ffman	code:	$\bar{\ell} = 0.728$	z_k with K_k bits

- → Additional bit ensures that code becomes a prefix code
- → Worse than block Huffman code (several redundant bits)

Average Codeword Length

• Average codeword length $\overline{\ell}$ per symbol (for *N*-symbol messages **S**)

$$\bar{\ell} = \frac{\mathrm{E}\Big\{\,\mathcal{K}(\boldsymbol{S})\,\Big\}}{N}$$

Average Codeword Length

• Average codeword length $\overline{\ell}$ per symbol (for *N*-symbol messages **S**)

$$\bar{\ell} = \frac{\mathrm{E}\left\{ \left. \mathcal{K}(\boldsymbol{S}) \right. \right\}}{N} = \frac{\mathrm{E}\left\{ \left. \left[\mathcal{A} - \log_2 p_N(\boldsymbol{S}) \right] \right. \right\}}{N} \qquad \text{with} \qquad \mathcal{A} = \left\{ \begin{array}{ll} 1 & : \text{ prefix-free} \\ 0 & : \text{ otherwise} \end{array} \right.$$

Average Codeword Length

• Average codeword length $\bar{\ell}$ per symbol (for *N*-symbol messages **S**)

$$\bar{\ell} = \frac{\mathrm{E}\left\{\left.\mathcal{K}(\boldsymbol{S})\right.\right\}}{N} = \frac{\mathrm{E}\left\{\left.\left[A - \log_2 p_N(\boldsymbol{S})\right]\right.\right\}}{N} \qquad \text{with} \qquad A = \left\{\begin{array}{ll} 1 & : \text{ prefix-free} \\ 0 & : \text{ otherwise} \end{array}\right.$$

Bounds on Average Codeword Length

Average Codeword Length

• Average codeword length $\bar{\ell}$ per symbol (for *N*-symbol messages **S**)

$$\bar{\ell} = \frac{\mathrm{E}\left\{ \left. \mathcal{K}(\boldsymbol{S}) \right. \right\}}{N} = \frac{\mathrm{E}\left\{ \left. \left[A - \log_2 p_N(\boldsymbol{S}) \right] \right. \right\}}{N} \qquad \text{with} \qquad A = \left\{ \begin{array}{ll} 1 & : \text{ prefix-free} \\ 0 & : \text{ otherwise} \end{array} \right.$$

Bounds on Average Codeword Length

• Using the inequality $x \leq \lceil x \rceil < x + 1$, we obtain

Average Codeword Length

• Average codeword length $\bar{\ell}$ per symbol (for *N*-symbol messages **S**)

$$\bar{\ell} = \frac{\mathrm{E}\left\{ \left. \mathcal{K}(\boldsymbol{S}) \right. \right\}}{N} = \frac{\mathrm{E}\left\{ \left. \left[A - \log_2 p_N(\boldsymbol{S}) \right] \right. \right\}}{N} \qquad \text{with} \qquad A = \left\{ \begin{array}{ll} 1 & : \text{ prefix-free} \\ 0 & : \text{ otherwise} \end{array} \right.$$

Bounds on Average Codeword Length

• Using the inequality $x \leq \lceil x \rceil < x + 1$, we obtain

$$\frac{\mathrm{E}\{-\log_2 p_N(\boldsymbol{S})\}}{N} + \frac{A}{N} \leq \bar{\ell} < \frac{\mathrm{E}\{-\log_2 p_N(\boldsymbol{S})\}}{N} + \frac{1+A}{N}$$

Average Codeword Length

• Average codeword length $\bar{\ell}$ per symbol (for *N*-symbol messages **S**)

$$\bar{\ell} = \frac{\mathrm{E}\left\{ \left. \mathcal{K}(\boldsymbol{S}) \right. \right\}}{N} = \frac{\mathrm{E}\left\{ \left. \left[A - \log_2 p_N(\boldsymbol{S}) \right] \right. \right\}}{N} \qquad \text{with} \qquad A = \left\{ \begin{array}{ll} 1 & : \text{ prefix-free} \\ 0 & : \text{ otherwise} \end{array} \right.$$

Bounds on Average Codeword Length

• Using the inequality $x \leq \lceil x \rceil < x + 1$, we obtain

$$\frac{\mathrm{E}\{-\log_2 p_N(\boldsymbol{S})\}}{N} + \frac{A}{N} \leq \bar{\ell} < \frac{\mathrm{E}\{-\log_2 p_N(\boldsymbol{S})\}}{N} + \frac{1+A}{N}$$
$$\frac{H_N(\boldsymbol{S})}{N} + \frac{A}{N} \leq \bar{\ell} < \frac{H_N(\boldsymbol{S})}{N} + \frac{1+A}{N}$$

Average Codeword Length

• Average codeword length $\bar{\ell}$ per symbol (for *N*-symbol messages **S**)

$$\bar{\ell} = \frac{\mathrm{E}\left\{ \left. \mathcal{K}(\boldsymbol{S}) \right. \right\}}{N} = \frac{\mathrm{E}\left\{ \left. \left[A - \log_2 p_N(\boldsymbol{S}) \right] \right. \right\}}{N} \qquad \text{with} \qquad A = \left\{ \begin{array}{ll} 1 & : \text{ prefix-free} \\ 0 & : \text{ otherwise} \end{array} \right.$$

Bounds on Average Codeword Length

• Using the inequality $x \leq \lceil x \rceil < x + 1$, we obtain

$$\frac{\mathbb{E}\{-\log_2 p_N(\boldsymbol{S})\}}{N} + \frac{A}{N} \leq \bar{\ell} < \frac{\mathbb{E}\{-\log_2 p_N(\boldsymbol{S})\}}{N} + \frac{1+A}{N}$$
$$\frac{H_N(\boldsymbol{S})}{N} + \frac{A}{N} \leq \bar{\ell} < \frac{H_N(\boldsymbol{S})}{N} + \frac{1+A}{N}$$

→ Non-prefix-free version (A = 0): Same bounds as for block Huffman coding

Average Codeword Length

• Average codeword length $\bar{\ell}$ per symbol (for *N*-symbol messages **S**)

$$\bar{\ell} = \frac{\mathrm{E}\left\{ \left. \mathcal{K}(\boldsymbol{S}) \right. \right\}}{N} = \frac{\mathrm{E}\left\{ \left. \left[A - \log_2 p_N(\boldsymbol{S}) \right] \right. \right\}}{N} \qquad \text{with} \qquad A = \left\{ \begin{array}{ll} 1 & : \text{ prefix-free} \\ 0 & : \text{ otherwise} \end{array} \right.$$

Bounds on Average Codeword Length

• Using the inequality $x \leq \lceil x \rceil < x + 1$, we obtain

$$\frac{\mathbb{E}\{-\log_2 p_N(\boldsymbol{S})\}}{N} + \frac{A}{N} \leq \bar{\ell} < \frac{\mathbb{E}\{-\log_2 p_N(\boldsymbol{S})\}}{N} + \frac{1+A}{N}$$
$$\frac{H_N(\boldsymbol{S})}{N} + \frac{A}{N} \leq \bar{\ell} < \frac{H_N(\boldsymbol{S})}{N} + \frac{1+A}{N}$$

→ Non-prefix-free version (A = 0): Same bounds as for block Huffman coding

→ Both versions: Close to entropy rate for $N \gg 1$ (for typical sources)

Shannon-Fano-Elias Code

■ Special block code (for given number of symbols *N*)

Shannon-Fano-Elias Code

- Special block code (for given number of symbols *N*)
- Worse than block Huffman code of same size N

Shannon-Fano-Elias Code

- Special block code (for given number of symbols *N*)
- Worse than block Huffman code of same size N
- Still close to entropy bound (H_N/N) for $N \gg 1$

Shannon-Fano-Elias Code

- Special block code (for given number of symbols *N*)
- Worse than block Huffman code of same size N
- Still close to entropy bound (H_N/N) for $N \gg 1$
- ➡ No need to store codeword table !

Shannon-Fano-Elias Code

- Special block code (for given number of symbols *N*)
- Worse than block Huffman code of same size N
- Still close to entropy bound (H_N/N) for $N \gg 1$
- ➡ No need to store codeword table !
- → Have to store *N*-th order joint pmf (or *N*-th order joint cdf) !

What is the advantage?

Shannon-Fano-Elias Code

- Special block code (for given number of symbols N)
- Worse than block Huffman code of same size N
- Still close to entropy bound (H_N/N) for $N \gg 1$
- ➡ No need to store codeword table !
- → Have to store *N*-th order joint pmf (or *N*-th order joint cdf) !

What is the advantage?

Iterative Coding

Can define a suitable order for sequences of *N* symbols

Shannon-Fano-Elias Code

- Special block code (for given number of symbols N)
- Worse than block Huffman code of same size N
- Still close to entropy bound (H_N/N) for $N \gg 1$
- ➡ No need to store codeword table !
- → Have to store *N*-th order joint pmf (or *N*-th order joint cdf) !

What is the advantage?

Iterative Coding

- Can define a suitable order for sequences of *N* symbols
- → Iterative calculation of interval boundaries

Shannon-Fano-Elias Code

- Special block code (for given number of symbols *N*)
- Worse than block Huffman code of same size N
- Still close to entropy bound (H_N/N) for $N \gg 1$
- ➡ No need to store codeword table !
- → Have to store *N*-th order joint pmf (or *N*-th order joint cdf) !

What is the advantage?

Iterative Coding

- Can define a suitable order for sequences of N symbols
- → Iterative calculation of interval boundaries
- ➡ Iterative codeword construction

- Sorted alphabet $\mathcal{A} = \{a_1, a_2, a_3, \cdots\}$
- Two symbol sequences: x < y iff

$$\exists n: \left(\forall k < n: x_k = y_k \right) \land \left(x_n < y_n \right)$$

- Sorted alphabet $\mathcal{A} = \{a_1, a_2, a_3, \cdots\}$
- Two symbol sequences: x < y iff

$$\exists n: \left(\forall k < n: x_k = y_k \right) \land \left(x_n < y_n \right)$$

Example:	$\mathcal{A} = \{ \textit{a}, \textit{b}, \textit{c} \}$
<i>N</i> = 4:	аааа
	aaab
	ааас
	aaba
	aabb
	aabc
	aaca
	aacb
	aacc
	abaa
	abab
	abac

- Sorted alphabet $\mathcal{A} = \{a_1, a_2, a_3, \cdots\}$
- Two symbol sequences: x < y iff $\exists n : (\forall k < n : x_k = y_k) \land (x_n < y_n)$

Example:	$\mathcal{A} = \{ \textit{a},\textit{b},\textit{c} \}$
<i>N</i> = 4:	аааа
	aaab
	ааас
	aaba
	aabb
	aabc
	aaca
	aacb
	aacc
	abaa
	abab
	abac
	•••

- Sorted alphabet $\mathcal{A} = \{a_1, a_2, a_3, \cdots\}$
- Two symbol sequences: x < y iff $\exists n : (\forall k < n : x_k = y_k) \land (x_n < y_n)$

Example:	$\mathcal{A} = \{ \textit{a},\textit{b},\textit{c} \}$
N = 4:	a a a a a a a b a a a c a a b a a a b b a a b c
	a a c b a a c c a b a a a b a b a b a c

- Sorted alphabet $\mathcal{A} = \{a_1, a_2, a_3, \cdots\}$
- Two symbol sequences: x < y iff $\exists n : (\forall k < n : x_k = y_k) \land (x_n < y_n)$

Example:	$\mathcal{A} = \{ \textit{a},\textit{b},\textit{c} \}$
N = 4:	a a a a a a a b a a a c a a b a a a b b a a b c
	a a c b a a c c a b a a a b a b a b a c

- Sorted alphabet $\mathcal{A} = \{a_1, a_2, a_3, \cdots\}$
- Two symbol sequences: x < y iff $\exists n : (\forall k < n : x_k = y_k) \land (x_n < y_n)$

N = 4: a a a a a a a b a a a c a a b a a a b b a a b c a a c b a a c b a a c c	Example:	$\mathcal{A} = \{ \textit{a},\textit{b},\textit{c} \}$
a b a a a b a b a b a c 	N = 4:	a a a a a a a b a a a c a a b a a a b b a a b c a a c c a a a c c a a a c c a a a c c a b a a a b a b a b a c

- Sorted alphabet $\mathcal{A} = \{a_1, a_2, a_3, \cdots\}$
- Two symbol sequences: x < y iff $\exists n : (\forall k < n : x_k = y_k) \land (x_n < y_n)$

Example:	$\mathcal{A} = \{ \pmb{a}, \pmb{b}, \pmb{c} \}$
Example: <i>N</i> = 4:	A = {a, b, c} a a a a a a a b a a a c a a b a a a b b a a b c a a b c a a c c a a c b a a c c a a c c a b a a
	abab
	abac

Lexicographical Order: Nested Probability Intervals

Lexicographical Order

- Sorted alphabet $\mathcal{A} = \{a_1, a_2, a_3, \cdots\}$
- Two symbol sequences: x < y iff $\exists n : (\forall k < n : x_k = y_k) \land (x_n < y_n)$

Example:	$\mathcal{A} = \{ \textit{a},\textit{b},\textit{c} \}$
<i>N</i> = 4:	аааа
	aaab
	aaac
	aaba
	aabb
	aabc
	aaca
	aacb
	aacc
	abaa
	abab
	abac

$$W_{n} = W_{n-1} \cdot p(\mathfrak{s}_{n} | \cdots)$$

$$L_{n} = L_{n-1} + W_{n-1} \cdot c(\mathfrak{s}_{n} | \cdots)$$

$$W_{n} = P(\mathfrak{S}^{n} = \cdots \times)$$

$$= P(\mathfrak{S}^{n-1} = \cdots) \cdot P(\mathfrak{S}_{n} = \mathfrak{x} | \cdots)$$

$$= W_{n-1} \cdot p(\mathfrak{x} | \cdots)$$

$$W_{n} = P(\mathfrak{S}^{n-1} = \cdots) \cdot P(\mathfrak{S}_{n} = \mathfrak{x} | \cdots)$$

$$= W_{n-1} \cdot p(\mathfrak{x} | \cdots)$$

$$W_{n} = P(\mathfrak{S}^{n-1} = \cdots) \cdot P(\mathfrak{S}_{n} < \mathfrak{x} | \cdots)$$

$$= P(\mathfrak{S}^{n-1} < \cdots) + P(\mathfrak{S}^{n-1} = \cdots) \cdot P(\mathfrak{S}_{n} < \mathfrak{x} | \cdots)$$

$$= L_{n-1} + W_{n-1} \cdot \sum_{\forall a < \mathfrak{x}} p(a | \cdots)$$

$$= L_{n-1} + W_{n-1} \cdot c(\mathfrak{x} | \cdots)$$

$$W_{0} = 1$$

$$L_{0} = 0$$

$$W_{n} = W_{n-1} \cdot p(\mathfrak{s}_{n} | \cdots)$$

$$L_{n} = L_{n-1} + W_{n-1} \cdot c(\mathfrak{s}_{n} | \cdots)$$

$$= P(\mathfrak{S}^{n-1} = \cdots) \cdot P(\mathfrak{S}_{n} = \mathfrak{x} | \cdots)$$

$$= W_{n-1} \cdot p(\mathfrak{x} | \cdots)$$

$$W_{n} = P(\mathfrak{S}^{n} = \cdots \mathfrak{x})$$

$$= P(\mathfrak{S}^{n-1} = \cdots) \cdot P(\mathfrak{S}_{n} = \mathfrak{x} | \cdots)$$

$$= W_{n-1} \cdot p(\mathfrak{x} | \cdots)$$

$$= P(\mathfrak{S}^{n-1} < \cdots) + P(\mathfrak{S}^{n-1} = \cdots) \cdot P(\mathfrak{S}_{n} < \mathfrak{x} | \cdots)$$

$$= L_{n-1} + W_{n-1} \cdot \sum_{\forall a < \mathfrak{x}} p(a | \cdots)$$

$$= L_{n-1} + W_{n-1} \cdot c(\mathfrak{x} | \cdots)$$

Iterative Algorithm for Calculating Interval Boundaries

...

 $W_0 = 1$ Initialization:

$$L_{0} = 0$$

. . .

Iteration Step:

$$W_n = W_{n-1} \cdot p(s_n | \cdots)$$

$$L_n = L_{n-1} + W_{n-1} \cdot c(s_n | \cdots)$$

with
$$c(x \mid \cdots) = \sum_{\forall a < x} p(a \mid \cdots)$$

Iterative Algorithm for Calculating Interval Boundaries

- Initialization: $W_0 = 1$ $L_0 = 0$
- Iteration Step: $W_n = W_{n-1} \cdot p(s_n | \cdots)$ with $c(x | \cdots) = \sum_{\forall a < x} p(a | \cdots)$ $L_n = L_{n-1} + W_{n-1} \cdot c(s_n | \cdots)$
 - \rightarrow Require *N*-th order conditional pmf instead of *N*-th order joint pmf

Iterative Algorithm for Calculating Interval Boundaries

- Initialization: $W_0 = 1$ $L_0 = 0$
- Iteration Step: $W_n = W_{n-1} \cdot p(s_n | \cdots)$ with $c(x | \cdots) = \sum_{\forall a < x} p(a | \cdots)$ $L_n = L_{n-1} + W_{n-1} \cdot c(s_n | \cdots)$
 - \rightarrow Require *N*-th order conditional pmf instead of *N*-th order joint pmf
 - → Same amount of data ! → What is the advantage?

Iterative Algorithm for Calculating Interval Boundaries

- Initialization: $W_0 = 1$ $L_0 = 0$
- Iteration Step: $W_n = W_{n-1} \cdot p(s_n | \cdots)$ with $c(x | \cdots) = \sum_{\forall a < x} p(a | \cdots)$ $L_n = L_{n-1} + W_{n-1} \cdot c(s_n | \cdots)$
 - \rightarrow Require *N*-th order conditional pmf instead of *N*-th order joint pmf
 - → Same amount of data ! → What is the advantage?

Iterative Refinement in Practice

Conditional pmfs can be well approximated using simple models

Iterative Algorithm for Calculating Interval Boundaries

- Initialization: $W_0 = 1$ $L_0 = 0$
- Iteration Step: $W_n = W_{n-1} \cdot p(s_n | \cdots)$ with $c(x | \cdots) = \sum_{\forall a < x} p(a | \cdots)$ $L_n = L_{n-1} + W_{n-1} \cdot c(s_n | \cdots)$
 - \rightarrow Require *N*-th order conditional pmf instead of *N*-th order joint pmf
 - → Same amount of data ! → What is the advantage ?

Iterative Refinement in Practice

Conditional pmfs can be well approximated using simple models

→ IID model:
$$p(s_n | s_{n-1}, \cdots) = p(s_n)$$

Iterative Algorithm for Calculating Interval Boundaries

- Initialization: $W_0 = 1$ $L_0 = 0$
- Iteration Step: $W_n = W_{n-1} \cdot p(s_n | \cdots)$ with $c(x | \cdots) = \sum_{\forall a < x} p(a | \cdots)$ $L_n = L_{n-1} + W_{n-1} \cdot c(s_n | \cdots)$
 - \rightarrow Require *N*-th order conditional pmf instead of *N*-th order joint pmf
 - → Same amount of data ! → What is the advantage ?

Iterative Refinement in Practice

- Conditional pmfs can be well approximated using simple models
 - → IID model: $p(s_n | s_{n-1}, \cdots) = p(s_n)$
 - → Markov model: $p(s_n | s_{n-1}, \cdots) = p(s_n | s_{n-1})$

Iterative Algorithm for Calculating Interval Boundaries

- Initialization: $W_0 = 1$ $L_0 = 0$
- Iteration Step: $W_n = W_{n-1} \cdot p(s_n | \cdots)$ with $c(x | \cdots) = \sum_{\forall a < x} p(a | \cdots)$ $L_n = L_{n-1} + W_{n-1} \cdot c(s_n | \cdots)$
 - \rightarrow Require *N*-th order conditional pmf instead of *N*-th order joint pmf
 - → Same amount of data ! → What is the advantage ?

Iterative Refinement in Practice

- Conditional pmfs can be well approximated using simple models
 - → IID model: $p(s_n | s_{n-1}, \cdots) = p(s_n)$
 - → Markov model: $p(s_n | s_{n-1}, \cdots) = p(s_n | s_{n-1})$
 - → Simple function: $p(s_n | s_{n-1}, \cdots) = p(s_n | f(s_{n-1}, \cdots))$

Given: Sequence $s = \{s_1, s_2, s_3, \cdots, s_N\}$ of N symbols

Given: Sequence $s = \{s_1, s_2, s_3, \cdots, s_N\}$ of N symbols

1 Initialization of probability interval

 $W_0 = 1$ and $L_0 = 0$

Given: Sequence $s = \{s_1, s_2, s_3, \cdots, s_N\}$ of N symbols

1 Initialization of probability interval

 $W_0 = 1$ and $L_0 = 0$

2 Determine probability interval $[L_N, L_N + W_N)$:

for
$$n = 1$$
 to N :
 $W_n = W_{n-1} \cdot p(s_n | \cdots)$
 $L_n = L_{n-1} + W_{n-1} \cdot c(s_n | \cdots)$

Given: Sequence $s = \{s_1, s_2, s_3, \cdots, s_N\}$ of N symbols

1 Initialization of probability interval

$$W_0 = 1$$
 and $L_0 = 0$

2 Determine probability interval $[L_N, L_N + W_N)$:

for
$$n = 1$$
 to N : $W_n = W_{n-1} \cdot p(s_n | \cdots)$
 $L_n = L_{n-1} + W_{n-1} \cdot c(s_n | \cdots)$

3 Determine codeword length and codeword value

$$K = \left[-\log_2 W_N \right]$$
 (for prefix-free variant: $K \to K + 1$)
 $z = \left[L_N \cdot 2^K \right]$

Given: Sequence $s = \{s_1, s_2, s_3, \cdots, s_N\}$ of N symbols

1 Initialization of probability interval

$$W_0 = 1$$
 and $L_0 = 0$

2 Determine probability interval $[L_N, L_N + W_N)$:

for
$$n = 1$$
 to N : $W_n = W_{n-1} \cdot p(s_n | \cdots)$
 $L_n = L_{n-1} + W_{n-1} \cdot c(s_n | \cdots)$

3 Determine codeword length and codeword value

$$K = \left[-\log_2 W_N \right]$$
 (for prefix-free variant: $K \to K + 1$)
 $z = \left[L_N \cdot 2^K \right]$

4 Transmit codeword : Binary representation of z with K bits

$$W_{n+1} = W_n \cdot p(s_n)$$

 $L_{n+1} = L_n + W_n \cdot c(s_n)$

$$W_{n+1} = W_n \cdot p(s_n)$$
$$L_{n+1} = L_n + W_n \cdot c(s_n)$$

	init	В	Α	N	Α	Ν	Α	
W _n	1	$\frac{1}{6}$						
L _n	0	<u>5</u> 6						
$W_{2} = W_{1} \cdot p(\mathbf{A}) = \frac{1}{6} \cdot \frac{1}{2} = \frac{1}{12}$ $L_{2} = L_{1} + W_{1} \cdot c(\mathbf{A}) = \frac{5}{6} + \frac{1}{6} \cdot 0 = \frac{5}{6}$								

	init	В	Α	Ν	Α	Ν	Α	
W _n	1	$\frac{1}{6}$	$\frac{1}{12}$					
L _n	0	<u>5</u> 6	<u>5</u> 6					

$$W_{n+1} = W_n \cdot p(s_n)$$
$$L_{n+1} = L_n + W_n \cdot c(s_n)$$

	init	В	Α	N	Α	N	Α		
W _n	1	$\frac{1}{6}$	$\frac{1}{12}$						
L _n	0	<u>5</u> 6	<u>5</u> 6						
$W_3 = W_2 \cdot p(\mathbf{N}) = \frac{1}{12} \cdot \frac{1}{3} = \frac{1}{36}$ $L_3 = L_2 + W_2 \cdot c(\mathbf{N}) = \frac{5}{6} + \frac{1}{12} \cdot \frac{1}{2} = \frac{21}{24}$									

а	p(a)	c(a)	i	nit	В	Α	N	Α	Ν	Α
Α	$\frac{1}{2}$	0	W_n	1	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{36}$			
Ν	$\frac{1}{3}$	$\frac{1}{2}$	L _n	0	$\frac{5}{6}$	<u>5</u> 6	<u>21</u> 24			
в	$\frac{1}{6}$	$\frac{5}{6}$								

а	p(a)	c(a)							
Α	$\frac{1}{2}$	0							
Ν	$\frac{1}{3}$	$\frac{1}{2}$							
в	$\frac{1}{6}$	<u>5</u> 6							
$W_{n+1} = W_n \cdot p(s_n)$ $L_{n+1} = L_n + W_n \cdot c(s_n)$									

		init	В	Α	N	Α	Ν	Α		
	W _n	1	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{36}$					
_	L _n	0	<u>5</u> 6	$\frac{5}{6}$	$\frac{21}{24}$					
	$W_4 = W_3 \cdot p(\mathbf{A}) = \frac{1}{36} \cdot \frac{1}{2} = \frac{1}{72}$ $L_4 = L_3 + W_3 \cdot c(\mathbf{A}) = \frac{21}{24} + \frac{1}{36} \cdot 0 = \frac{21}{24}$									

$$W_{n+1} = W_n \cdot p(s_n)$$
$$L_{n+1} = L_n + W_n \cdot c(s_n)$$

а	p(a)	c(a)	
Α	$\frac{1}{2}$	0	
Ν	$\frac{1}{3}$	$\frac{1}{2}$	
в	$\frac{1}{6}$	<u>5</u> 6	
W_{n+2} L_{n+2}	$u = W_n$ $u = L_n$	$\cdot p(s_n)$ + $W_n \cdot c$:(<i>s</i> _

	init	В	Α	N	Α	N	Α
W _n	1	$\frac{1}{6}$	$\frac{1}{12}$	$\frac{1}{36}$	$\frac{1}{72}$		
L _n	0	<u>5</u> 6	<u>5</u> 6	$\frac{21}{24}$	$\frac{21}{24}$		
W5 L5	= W = L	$V_4 \cdot ho(N)$	$)=rac{1}{72}$ · $c(N)=$	$ \cdot \frac{1}{3} = \frac{1}{2} $ $ = \frac{21}{24} + $	$\frac{1}{16}$ $\frac{1}{72} \cdot \frac{1}{2}$	$=\frac{127}{144}$	

$$W_{n+1} = W_n \cdot p(s_n)$$

 $L_{n+1} = L_n + W_n \cdot c(s_n)$

$$egin{aligned} &\mathcal{W}_{n+1}\,=\,\mathcal{W}_n\cdot p(s_n)\ &\ &L_{n+1}\,=\,L_n\,+\,\mathcal{W}_n\cdot c(s_n) \end{aligned}$$

- Given: Bitstream $\{b_1, b_2, b_3, \cdots, b_M\}$ of $M \ge K$ bits
 - Number *N* of symbols to be decoded

Given: • Bitstream $\{b_1, b_2, b_3, \cdots, b_M\}$ of $M \ge K$ bits

• Number *N* of symbols to be decoded

1 Determine interval representative: $v = (0.b_1b_2b_3\cdots b_M)_b = z \cdot 2^{-M}$

Given: • Bitstream $\{b_1, b_2, b_3, \cdots, b_M\}$ of $M \ge K$ bits

• Number *N* of symbols to be decoded

1 Determine interval representative: $v = (0.b_1b_2b_3\cdots b_M)_b = z \cdot 2^{-M}$

2 Initialization of probability interval: $W_0 = 1$ and $L_0 = 0$

Given: • Bitstream $\{b_1, b_2, b_3, \cdots, b_M\}$ of $M \ge K$ bits

• Number *N* of symbols to be decoded

1 Determine interval representative: $v = (0.b_1b_2b_3\cdots b_M)_b = z \cdot 2^{-M}$

2 Initialization of probability interval: $W_0 = 1$ and $L_0 = 0$

3 For n = 1 to N: (*iterative decoding*)

Given: • Bitstream $\{b_1, b_2, b_3, \cdots, b_M\}$ of $M \ge K$ bits

• Number *N* of symbols to be decoded

1 Determine interval representative: $v = (0.b_1b_2b_3\cdots b_M)_b = z \cdot 2^{-M}$

2 Initialization of probability interval: $W_0 = 1$ and $L_0 = 0$

3 For n = 1 to N: (*iterative decoding*)

a Initialization of upper interval boundary U_1 for first symbol a_1 of sorted alphabet

$$k = 1,$$
 $U_k = L_{n-1} + W_{n-1} \cdot p(a_k | \cdots)$

Given: • Bitstream $\{b_1, b_2, b_3, \cdots, b_M\}$ of $M \ge K$ bits

• Number *N* of symbols to be decoded

1 Determine interval representative: $v = (0.b_1b_2b_3\cdots b_M)_b = z \cdot 2^{-M}$

2 Initialization of probability interval: $W_0 = 1$ and $L_0 = 0$

3 For n = 1 to N: (*iterative decoding*)

a Initialization of upper interval boundary U_1 for first symbol a_1 of sorted alphabet

$$k = 1,$$
 $U_k = L_{n-1} + W_{n-1} \cdot p(a_k | \cdots)$

b While ($v \ge U_k$), update upper boundary for next alphabet symbol

$$k = k + 1,$$
 $U_k = U_{k-1} + W_{n-1} \cdot p(a_k | \cdots)$

Given: • Bitstream $\{b_1, b_2, b_3, \cdots, b_M\}$ of $M \ge K$ bits

• Number *N* of symbols to be decoded

1 Determine interval representative: $v = (0.b_1b_2b_3\cdots b_M)_b = z \cdot 2^{-M}$

2 Initialization of probability interval: $W_0 = 1$ and $L_0 = 0$

3 For n = 1 to N: (*iterative decoding*)

a Initialization of upper interval boundary U_1 for first symbol a_1 of sorted alphabet

$$k = 1,$$
 $U_k = L_{n-1} + W_{n-1} \cdot p(a_k | \cdots)$

b While ($v \ge U_k$), update upper boundary for next alphabet symbol

$$k = k + 1,$$
 $U_k = U_{k-1} + W_{n-1} \cdot p(a_k | \cdots)$

c Output symbol *a_k* and update probability interval

$$W_n = W_{n-1} \cdot p(a_k | \cdots)$$
$$L_n = U_k - W_n$$

в

Α

$$L_{n+1} = L_n + W_n \cdot c(.)$$

$$W_{n+1} = W_n \cdot p(.)$$

(L_n, W_n)	0,1	
$(L_{n+1}, W_{n+1})(A)$		
$(L_{n+1}, W_{n+1})(N)$		
(L_{n+1}, W_{n+1}) (B)		
symbol <i>s</i> _n		
$v = \frac{452}{512}$	$v = (0.111000100)_{ m b} = rac{452}{512}$	

B

Α

$$L_{n+1} = L_n + W_n \cdot c(.)$$
$$W_{n+1} = W_n \cdot p(.)$$

(L_n, W_n)	0,1		
(L_{n+1}, W_{n+1}) (A) (L_{n+1}, W_{n+1}) (N) (L_{n+1}, W_{n+1}) (B)	$0, \frac{1}{2}$ $\frac{1}{2}, \frac{1}{3}$ $\frac{5}{2}, \frac{1}{2}$		
symbol <i>s</i> _n	0,0		
$v = \frac{452}{512}$		$L_1(B) = \frac{5}{6} \le \frac{452}{512} < 1 = L_1(B) + W_1(B)$	

$$L_{n+1} = L_n + W_n \cdot c(.)$$

$$W_{n+1} = W_n \cdot p(.)$$

$$B = B$$

$$N$$

$$N$$

$$A$$

(L_n, W_n)	0,1	$\frac{5}{6}, \frac{1}{6}$		
(L_{n+1}, W_{n+1}) (A)	$0, \frac{1}{2}$			
(L_{n+1}, W_{n+1}) (N)	$\frac{1}{2}, \frac{1}{3}$			
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$			
symbol <i>s</i> _n	В			
$v = \frac{452}{512}$				

-

T

$$L_{n+1} = L_n + W_n \cdot c(.)$$

$$W_{n+1} = W_n \cdot p(.)$$

тт

(L_n, W_n)	0,1	$\frac{5}{6}, \frac{1}{6}$		
$(L_{n+1}, W_{n+1})(A)$	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$		
(L_{n+1}, W_{n+1}) (N)	$\frac{1}{2}, \frac{1}{3}$	$\frac{11}{12}, \frac{1}{18}$		
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$		
symbol <i>s</i> _n	В			
$v = \frac{452}{512}$		$L_2(\mathbf{A}) =$	$=rac{5}{6} \leq rac{452}{512} < rac{11}{12} = L_2(\mathbf{A}) + W_2(\mathbf{A})$	

(L_n, W_n)	0,1	$\frac{5}{6}, \frac{1}{6}$	$\frac{5}{6}, \frac{1}{12}$		
(L_{n+1}, W_{n+1}) (A)	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$			
$(L_{n+1}, W_{n+1})(N)$	$\frac{1}{2}, \frac{1}{3}$	$\frac{11}{12}, \frac{1}{18}$			
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$			
symbol <i>s</i> _n	В	Α			
$v = \frac{452}{512}$					

$v = \frac{452}{512}$		$L_3(N) =$	$\frac{21}{24} \leq \frac{452}{512}$	$< rac{65}{72} = L_3(N) + W_3(N)$	
symbol <i>s</i> _n	В	Α			
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$	$\frac{65}{72}, \frac{1}{72}$		
(L_{n+1}, W_{n+1}) (N)	$\frac{1}{2}, \frac{1}{3}$	$\frac{11}{12}, \frac{1}{18}$	$\tfrac{21}{24}, \tfrac{1}{36}$		
(L_{n+1}, W_{n+1}) (A)	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{5}{6}, \frac{1}{24}$		
(L_n, W_n)	0,1	$\frac{5}{6}, \frac{1}{6}$	$\frac{5}{6}, \frac{1}{12}$		

$L_{n+1} = L_n + W_n \cdot c(.)$ $W_{n+1} = W_n \cdot p(.)$	B N A	B N A	B	B N A	
(L_n, W_n)	0,1	$\frac{5}{6}, \frac{1}{6}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{21}{24}, \frac{1}{36}$	
(L_{n+1}, W_{n+1}) (A)	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{5}{6}, \frac{1}{24}$		
(L_{n+1}, W_{n+1}) (N)	$\frac{1}{2}, \frac{1}{3}$	$\frac{11}{12}, \frac{1}{18}$	$\frac{21}{24}, \frac{1}{36}$		
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$	$\frac{65}{72}, \frac{1}{72}$		
symbol <i>s</i> _n	В	Α	N		
$v = \frac{452}{512}$					

$v = \frac{452}{512}$		<i>L</i> ₄ (A) =	$\frac{21}{24} \le \frac{452}{512}$	$< rac{8}{9} = L_4(A) + W_4(A)$	
symbol <i>s</i> _n	В	Α	Ν		
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$	$\frac{65}{72}, \frac{1}{72}$	$\frac{97}{108}, \frac{1}{216}$	
(L_{n+1}, W_{n+1}) (N)	$\frac{1}{2}, \frac{1}{3}$	$\frac{11}{12}, \frac{1}{18}$	$\tfrac{21}{24}, \tfrac{1}{36}$	$\frac{8}{9}, \frac{1}{108}$	
(L_{n+1}, W_{n+1}) (A)	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{5}{6}, \frac{1}{24}$	$\frac{21}{24}, \frac{1}{72}$	
(L_n, W_n)	0,1	$\frac{5}{6}, \frac{1}{6}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{21}{24}, \frac{1}{36}$	

symbol <i>s</i> _n	В	Α	N	Α		
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$	$\frac{65}{72}, \frac{1}{72}$	$\frac{97}{108}, \frac{1}{216}$		
(L_{n+1}, W_{n+1}) (N)	$\frac{1}{2}, \frac{1}{3}$	$\frac{11}{12}, \frac{1}{18}$	$\frac{21}{24}, \frac{1}{36}$	$\frac{8}{9}, \frac{1}{108}$		
(L_{n+1}, W_{n+1}) (A)	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{5}{6}, \frac{1}{24}$	$\frac{21}{24}, \frac{1}{72}$		
(L_n, W_n)	0,1	$\frac{5}{6}, \frac{1}{6}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{21}{24}, \frac{1}{36}$	$\frac{21}{24}, \frac{1}{72}$	
$V_{n+1} = W_n \cdot p(.)$	A	A	А	A	A	
$L_{n+1} = L_n + W_n \cdot c(.)$	N	N	N	N	N	
	в₫	В	В	В	в	

$$v = \frac{452}{512}$$

$v = \frac{452}{512}$		$L_5(N) = \frac{1}{14}$	$\frac{27}{44} \leq \frac{452}{512}$	$< \frac{383}{432} = L_5($	$N) + W_5(N)$	
symbol <i>s</i> _n	В	Α	Ν	Α		
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$	$\frac{65}{72}, \frac{1}{72}$	$\frac{97}{108}, \frac{1}{216}$	$\frac{383}{432}, \frac{1}{432}$	
$(L_{n+1}, W_{n+1})(N)$	$\frac{1}{2}, \frac{1}{3}$	$\frac{11}{12}, \frac{1}{18}$	$\tfrac{21}{24}, \tfrac{1}{36}$	$rac{8}{9},rac{1}{108}$	$\frac{127}{144}, \frac{1}{216}$	
(L_{n+1}, W_{n+1}) (A)	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{5}{6}, \frac{1}{24}$	$\frac{21}{24}, \frac{1}{72}$	$\frac{21}{24}, \frac{1}{144}$	
(L_n, W_n)	0,1	$\frac{5}{6}, \frac{1}{6}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{21}{24}, \frac{1}{36}$	$\frac{21}{24}, \frac{1}{72}$	

$v = \frac{452}{512}$						
symbol <i>s</i> _n	В	Α	Ν	Α	Ν	
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$	$\frac{65}{72}, \frac{1}{72}$	$\frac{97}{108}, \frac{1}{216}$	$\frac{383}{432}, \frac{1}{432}$	
(L_{n+1}, W_{n+1}) (N)	$\frac{1}{2}, \frac{1}{3}$	$\frac{11}{12}, \frac{1}{18}$	$\tfrac{21}{24}, \tfrac{1}{36}$	$rac{8}{9},rac{1}{108}$	$\frac{127}{144}, \frac{1}{216}$	
(L_{n+1}, W_{n+1}) (A)	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{5}{6}, \frac{1}{24}$	$\tfrac{21}{24}, \tfrac{1}{72}$	$\frac{21}{24}, \frac{1}{144}$	
(L_n, VV_n)	0,1	$\frac{\overline{6}}{\overline{6}}, \frac{\overline{1}}{\overline{6}}$	$\frac{3}{6}, \frac{1}{12}$	$\frac{1}{24}, \frac{1}{36}$	$\frac{1}{24}, \frac{1}{72}$	$\frac{121}{144}, \frac{1}{216}$

$v = \frac{452}{512}$ $L_6(\mathbf{A}) = \frac{127}{144} \le \frac{452}{512} < \frac{191}{216} = L_6(\mathbf{A}) + W_6(\mathbf{A})$						
symbol <i>s</i> _n	В	Α	Ν	Α	Ν	
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$	$\frac{65}{72}, \frac{1}{72}$	$\frac{97}{108}, \frac{1}{216}$	$\frac{383}{432}, \frac{1}{432}$	$\frac{287}{324}, \frac{1}{1296}$
(L_{n+1}, W_{n+1}) (N)	$\frac{1}{2}, \frac{1}{3}$	$\tfrac{11}{12}, \tfrac{1}{18}$	$\tfrac{21}{24}, \tfrac{1}{36}$	$rac{8}{9},rac{1}{108}$	$\frac{127}{144}, \frac{1}{216}$	$rac{191}{216},rac{1}{648}$
$(L_{n+1}, W_{n+1})(A)$	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{5}{6}, \frac{1}{24}$	$\frac{21}{24}, \frac{1}{72}$	$\frac{21}{24}, \frac{1}{144}$	$\frac{127}{144}, \frac{1}{432}$
(L_n, W_n)	0,1	$\frac{5}{6}, \frac{1}{6}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{21}{24}, \frac{1}{36}$	$\frac{21}{24}, \frac{1}{72}$	$\frac{127}{144}, \frac{1}{216}$

$v = \frac{452}{512}$						
symbol <i>s</i> _n	В	Α	Ν	Α	Ν	Α
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$	$\frac{65}{72}, \frac{1}{72}$	$\frac{97}{108}, \frac{1}{216}$	$\frac{383}{432}, \frac{1}{432}$	$\frac{287}{324}, \frac{1}{1296}$
(L_{n+1}, W_{n+1}) (N)	$\frac{1}{2}, \frac{1}{3}$	$\tfrac{11}{12}, \tfrac{1}{18}$	$\tfrac{21}{24}, \tfrac{1}{36}$	$rac{8}{9},rac{1}{108}$	$\frac{127}{144}, \frac{1}{216}$	$rac{191}{216},rac{1}{648}$
$(L_{n+1}, W_{n+1})(A)$	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{5}{6}, \frac{1}{24}$	$\frac{21}{24}, \frac{1}{72}$	$\frac{21}{24}, \frac{1}{144}$	$\frac{127}{144}, \frac{1}{432}$
(L_n, W_n)	$(L_n, W_n) = 0,1$		$\frac{5}{6}, \frac{1}{12}$	$\frac{21}{24}, \frac{1}{36}$	$\frac{21}{24}, \frac{1}{72}$	$\frac{127}{144}, \frac{1}{216}$

$v = \frac{452}{512}$		b = "1110	00100"	\rightarrow s =	"BANANA"	
symbol <i>s</i> _n	В	Α	Ν	Α	Ν	Α
(L_{n+1}, W_{n+1}) (B)	$\frac{5}{6}, \frac{1}{6}$	$\frac{35}{36}, \frac{1}{36}$	$\frac{65}{72}, \frac{1}{72}$	$\frac{97}{108}, \frac{1}{216}$	$\frac{383}{432}, \frac{1}{432}$	$\frac{287}{324}, \frac{1}{1296}$
(L_{n+1}, W_{n+1}) (N)	$\frac{1}{2}, \frac{1}{3}$	$rac{11}{12},rac{1}{18}$	$\tfrac{21}{24}, \tfrac{1}{36}$	$rac{8}{9},rac{1}{108}$	$\frac{127}{144}, \frac{1}{216}$	$rac{191}{216},rac{1}{648}$
(L_{n+1}, W_{n+1}) (A)	$0, \frac{1}{2}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{5}{6}, \frac{1}{24}$	$\frac{21}{24}, \frac{1}{72}$	$\frac{21}{24}, \frac{1}{144}$	$\frac{127}{144}, \frac{1}{432}$
(L_n, W_n)	0,1	$\frac{5}{6}, \frac{1}{6}$	$\frac{5}{6}, \frac{1}{12}$	$\frac{21}{24}, \frac{1}{36}$	$\frac{21}{24}, \frac{1}{72}$	$\frac{127}{144}, \frac{1}{216}$

Summary of Lecture: Universal, V2V, Shannon-Fano-Elias Codes

Universal Codes

- Follow certain structure → No codeword table required
- Examples for coding non-negative integers: Unary code, Rice codes, Exp-Golomb codes

Summary of Lecture: Universal, V2V, Shannon-Fano-Elias Codes

Universal Codes

- Follow certain structure → No codeword table required
- Examples for coding non-negative integers: Unary code, Rice codes, Exp-Golomb codes

V2V Codes

- Mapping of variable-length symbol sequences to codewords
- → Typically higher efficiency than block Huffman codes with same number of codewords

Summary of Lecture: Universal, V2V, Shannon-Fano-Elias Codes

Universal Codes

- Follow certain structure → No codeword table required
- Examples for coding non-negative integers: Unary code, Rice codes, Exp-Golomb codes

V2V Codes

- Mapping of variable-length symbol sequences to codewords
- → Typically higher efficiency than block Huffman codes with same number of codewords

Shannon-Fano-Elias Codes

- Sub-optimal block codes (still close to entropy rate for $N \gg 1$)
- No codeword table required
- → Iterative encoding and decoding procedure
- → Precursor of arithmetic coding (used in most modern codec's)

Exercise 1: V2V Codes for Black and White Document Scans (Part 1/2)

Analyze a structured V2V code for coding 300dpi black and white document scans

 Write a program that reads all binary samples of a document scan into an array of bits (e.g., of type vector<bool> if you use C++)

The original document files are coded in the PBM format, which is a raw data format (see description on the right hand side).

The following files (found on the course web site) should be used as examples:

- "paper300dpi-page00.pbm"
- "paper300dpi-page01.pbm"
- "paper300dpi-page02.pbm"
- "paper300dpi-page03.pbm"

structure of "pbm" files:

P4 // ascii (fixed) width height // ascii <binary data> // binary

binary data:

- samples in raster-scan order (line by line)
- each sample is represented by one bit
 - ightarrow bit 0 \rightarrow white sample
 - ightarrow bit 1 ightarrow black sample
- 8 bits are packet in one byte, where the first sample in scan order is placed in the most significant bit
- the first byte of the binary data contains the first 8 bits in scan order, etc.

Exercise 1: V2V Codes for Black and White Document Scans (Part 2/2)

2	Extend your program as follows:
	Experimentally determine the probabilities for the symbol sequences of the two codes (block code and V2V code) shown on the right hand side.
3	Develop optimal codeword tables for both cases (using the Huffman algorithm).
	You can do it on paper or implement it.
4	Calculate the average codeword length (per binary sample) for both developed codes.
	Which code would yield a better compression efficiency?

olock code	V2V code
0000	0000 0000 0000 0000
0001	0000 0000 0000 001
0010	0000 0000 0000 01
0011	$0000 \ 0000 \ 0000 \ 1$
0100	0000 0000 0001
0101	0000 0000 001
0110	0000 0000 01
0111	0000 0000 1
1000	0000 0001
1001	0000 001
1010	0000 01
1011	0000 1
1100	0001
1101	001
1110	01
1111	1

Exercise 2: Audio Coding using Rice Codes

Investigate lossless audio coding with Rice codes. Use the example file "audioData.raw" (from the course web site) for these investigations. The file consists of raw audio data in signed 8-bit format. That means, each byte of the file represents one sample and has to be interpreted as 8-bit signed integer.

1 Write an encoder and decoder for coding the audio data using Rice codes.

- Each sample x_n should be coded as: $abs \rightarrow \text{Rice code for } abs(x_n)$ if(abs > 0) $sign \rightarrow single bit indicating the sign$
- The Rice parameter should be given as input to the encoder and written at the beginning of the bitstream (e.g., using a fixed-length code of 8 bits or a unary code).
- Check that the decoder decodes the file correctly.
- Try different Rice parameters and measure the size of the generated bitstream.
- 2 (Optional) Try to improve your lossless audio codec by coding the audio samples using chunks of 1024 successive samples.
 - Determine the optimal Rice parameter for each chunk.
 - Code the Rice parameter at the beginning of each chunk.

Exercise 3: Iterative Shannon-Fano-Elias Coding

Given is an IID source with the alphabet $\mathcal{A} = \{ E, E\}$, R, F	} and the pmf
--	--------	---------------

symbol	probability
E	5/8
R	2/8
F	1/8

- **1** Construct the Shannon-Fano-Elias codeword for the message "REFEREE" using the iterative encoding algorithm.
 - Use the prefix-free variant (only important at the end).
 - Assume that the symbols in the alphabet are ordered as: E, R, F.
- **2** Verify that the original message can be correctly decoded from the codeword using the iterative decoding algorithm.

Feel free to implement the encoding and decoding (instead of doing it on paper).