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Last Lecture

Last Lecture: Arithmetic Coding

Arithmetic Coding

m Practical realization of Shannon-Fano-Elias Coding (using standard integer arithmetic)

® No codeword table, on-the-fly encoding and decoding

Arithmetic Coding vs Huffman Coding
m For given block size N: Huffman coding is optimal, arithmetic coding is suboptimal

m Arithmetic coding is realizable for large N, while Huffman coding is not

Coding Efficiency of Arithmetic Coding
m Given probabilities and large N : Coding efficiency is very close to theoretical optimum
m In practice: Coding efficiency depends on using suitable probabilities
=» Adaptive pmf estimation during encoding and decoding
=» Using conditional pmfs (switch adaptive pmfs during encoding and decoding)
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__Arithmetic Coding in Practice / Adaptive Pfs
Arithmetic Coding with Adaptive Pmfs

Basic Idea

m Update pmf after encoding of each symbol
m Update pmf after decoding of each symbol
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Arithmetic Coding in Practice / Adaptive Pmfs

Arithmetic Coding with Adaptive Pmfs

Basic Idea
m Update pmf after encoding of each symbol
m Update pmf after decoding of each symbol

Straightforward realization
m Count occurrences Nj of alphabet letters ax

® V-bit probabilities pv(ax) are given by

o lav o Nk rounding
pv(ax) = \‘2 >k NkJ (down !

m |nitialization: Vk, Ny=1
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Controlling Adaptation Speed
B One possibility:
Rescale counts after sum exceeds some limit
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Arithmetic Coding with Adaptive Pmfs

Basic Idea
m Update pmf after encoding of each symbol
m Update pmf after decoding of each symbol
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m Count occurrences Nj of alphabet letters ax

® V-bit probabilities pv(ax) are given by
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Controlling Adaptation Speed
B One possibility:
Rescale counts after sum exceeds some limit
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class Pmf // example for adaptive pmf implementation

{

public:

Pmf ( int Vbits, int numLetters, int maxSumCounts )
v ( Vbits )

, maxSum ( maxSumCounts ) // adaption speed

, sumCounts( numLetters )

, counts ( numLetters, 1 ) // all counts = 1

{3

int operator[] ( int index ) const {
return ( counts[ index ] << V ) / sumCounts;

}

void update( int index ) {
counts [ index J++;
if ( ++sumCounts >= maxSum ) {
sumCounts = 0;
for ( auto& cnt : counts ) // rounding up !
sumCounts += ( cnt = ( cnt + 1 ) >> 1 );
}
}

private:

};

const int v; // number of bits for pmf
const int maxSum ; // maximum sum of counts
int sumCounts ; // sum of all counts
vector<int> counts; // counts for letters
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__Arithmetic Coding in Practice / Conditional Pmfs
Arithmetic Coding with Conditional Pmfs

Basic Idea
m Switch pmf after encoding of each symbol
m Switch pmf after decoding of each symbol

®m Can be combined with adaptive pmfs
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Arithmetic Coding in Practice / Conditional Pmfs

Arithmetic Coding with Conditional Pmfs

Basic Idea
m Switch pmf after encoding of each symbol
m Switch pmf after decoding of each symbol

®m Can be combined with adaptive pmfs

Conditions for 1D Signals (e.g., audio)
® Directly preceding sample
® Two (or more) directly preceding samples

® Function of one or more preceding samples
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Arithmetic Coding with Conditional Pmfs

Basic Idea
m Switch pmf after encoding of each symbol
m Switch pmf after decoding of each symbol

®m Can be combined with adaptive pmfs

Conditions for 1D Signals (e.g., audio)
® Directly preceding sample
® Two (or more) directly preceding samples

® Function of one or more preceding samples

Conditions for 2D Signals (e.g., images)
B One already coded neighboring sample
® Two or more already coded neighboring samples

m Function of already coded neighboring samples
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Arithmetic Coding in Practice / Conditional Pmfs

Arithmetic Coding with Conditional Pmfs

Basic Idea x{roid encodeMessage ( const vector<int>& message, ... )
® Switch pmf after encoding of each symbol e Eneator E'L‘f,iﬁ xf‘_“f'“;t;ters’ Gt s
® Switch pmf after decoding of each symbol §2§<12§§§Zm23102 (c)l;xrrSymbol : message ) {
®m Can be combined with adaptive pmfs i‘:ii‘iﬁiii‘:f ? E':ijs[yisffsy'2331pif D
currPnf .update ( currSymbol );
lastSymbol = currSymbol;
Conditions for 1D Signals (e.g., audio) E},enc.teminate();
® Directly preceding sample '
® Two (or more) directly preceding samples
® Function of one or more preceding samples
Conditions for 2D Signals (e.g., images)
B One already coded neighboring sample
® Two or more already coded neighboring samples
m Function of already coded neighboring samples
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Arithmetic Coding in Practice / Conditional Pmfs

Arithmetic Coding with Conditional Pmfs

. void encodeMessage( const vector<int>& message, ... )
Basic Idea {
B . vector <Pmf> pmfs( numLetters, {...} );
® Switch pmf after encoding of each symbol ArithEncoder aenc( ... );
. . int lastSymbol = 0;
u SWltCh pmf after deCOdlng Of eaCh SymbOI for( const auto& currSymbol : message ) {
3 . . Pmf& currPmf = pmfs[ lastSymbol ];
m Can be Comb|n6d Wlth adapt|Ve pme aenc.encode ( currSymbol, currPmf );
currPmf .update ( currSymbol );
lastSymbol = currSymbol;
oo . . 3
Conditions for 1D Signals (e.g., audio) A T
. . }
® Directly preceding sample
® Two (or more) directly preceding samples vector<int> decodeMessage( int numSymbols, ... )
{
® Function of one or more preceding samples vector<int> message;
vector <Pmf> pmfs( numLetters, {...} );
ArithDecoder adec( ... );

int symbol = 0;
while ( message.size() < numSymbols ) {

Conditions for 2D Signals (e.g., images)

. . Pmf& currPmf = pmfs[ symbol ];

m One already coded nelghborlng samp|e symbol = adec.decode( currPmf );

i ) currPmf .update ( symbol );
® Two or more already coded neighboring samples message . push_back ( symbol );
. . . }
® Function of already coded neighboring samples return message;
}
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Example: Conditional Arithmetic Coding for Document Scans

1052713 bytes
183705 bytes (17.45%)
169049 bytes (16.05 %)
140307 bytes (13.33%)

Original:
gzip:
bzip2:
Izip:
PROCEEDINGS OF THE I.R.E.

1008 Seplember

A Method for the Construction of

Minimum-Redundancy Codes”
DAVID A. HUFFMAN{, ASSOCIATE, IRE

Summary—An optimum method of coding an ensemble of mes- will be defined here as an ensemble code which, for a

sages consisting of a finite number of members is developed. A
i dunds in such

ing digts pe

INTRODUCTION
NE IMPORTANT METHOD of transmitting
O ‘messages is to transmit in their place sequences
of symbols. If there are more messages which
‘might be sent than there are kinds of symbols available,
then some of the messages must use more than one sym-
bol. If it is assumed that each symbol requires the same
time for transmission, then the time for transmission
(length) of a message is directly proportional to the
number of symbols associated with it. In this paper, the
symbol or sequence of symbols associated with a given
message will be called the “message code.” The entire
number of messages which might be transmitted will be
called the “message ensemble.” The mutual agreement
between the transmitter and the receiver about the
‘meaning of the code for each message of the ensemble

will be called the “ensemble code.”
Probably the most familiar ensemble code was stated
in the nhrase “ane if by land and two if b sea.” In this
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‘message ensemble consisting of a finite number of mem-
bers, IV, and for a given number of coding digits, D,
yields the lowest possible average message length. In
order to avoid the use of the lengthy term “minimum-
redundancy,” this term will be replaced here by “opti-
mum.” It will be understood then that, in this paper,
“optimum code” means “minimum-redundancy code.”

The following basic restrictions will be imposed on an
ensemble code:

(a) No two messages will consist of iden tical arrange-

‘ments of coding digits.

(b) The message codes will be constructed in such a
way that no additional indication is necessary to
specify where a message code begins and ends
once the starting point of a sequence of messages
is known.

Restriction (b) necessitates that no message be coded
in such a way that its code appears, digit for digit, as the
first part of any message cade of greater length. Thus,
01,102, 111, and 202 are valid message codes for an en-
semble of four members. For instance, a sequence of
these messages 1111022020101111102 can be broken up
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Arithmetic Coding in Practice / Conditional Pmfs

Example: Conditional Arithmetic Coding for Document Scans

No condition: 1 binary pmf
=> File size = 418369 bytes (39.74 %)

Original:

1052713 bytes

gzip: 183705 bytes (17.45%)
bzip2: 169049 bytes (16.05 %)
Izip: 140307 bytes (13.33%)

1008 PROCEEDINGS OF THE LR.E. Seplember

A Method for the Construction of
Minimum-Redundancy Codes”
DAVID A. HUFFMAN{, ASSOCIATE, IRE

‘Summary—An optimum method of coding an ensemble of mes-
sages consisting of a finite number of members is developed. A
i dunds in such

ing digts pe

INTRODUCTION
NE IMPORTANT METHOD of transmitting
O ‘messages is to transmit in their place sequences
of symbols. If there are more messages which
‘might be sent than there are kinds of symbols available,
then some of the messages must use more than one sym-
bol. If it is assumed that each symbol requires the same
time for transmission, then the time for transmission
(length) of a message is directly proportional to the
number of symbols associated with it. In this paper, the
symbol or sequence of symbols associated with a given
message will be called the “message code.” The entire
number of messages which might be transmitted will be
called the “message ensemble.” The mutual agreement
between the transmitter and the receiver about the
‘meaning of the code for each message of the ensemble

will be called the “ensemble code.”
Probably the most familiar ensemble code was stated
in the nhrase “ane if by land and two if b sea.” In this
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will be defined here as an ensemble code which, for a
‘message ensemble consisting of a finite number of mem-
bers, IV, and for a given number of coding digits, D,
yields the lowest possible average message length. In
order to avoid the use of the lengthy term “minimum-
redundancy,” this term will be replaced here by “opti-
mum.” It will be understood then that, in this paper,
“optimum code” means “minimum-redundancy code.”

The following basic restrictions will be imposed on an
ensemble code:

(a) No two messages will consist of iden tical arrange-

‘ments of coding digits.

(b) The message codes will be constructed in such a
way that no additional indication is necessary to
specify where a message code begins and ends
once the starting point of a sequence of messages
is known.

Restriction (b) necessitates that no message be coded
in such a way that its code appears, digit for digit, as the
first part of any message cade of greater length. Thus,
01,102, 111, and 202 are valid message codes for an en-
semble of four members. For instance, a sequence of
these messages 1111022020101111102 can be broken up




Arithmetic Coding in Practice / Conditional Pmfs

Example: Conditional Arithmetic Coding for Document Scans

No condition: 1 binary pmf
=> File size = 418369 bytes (39.74 %)

Left neighbour: 2 binary pmfs
=> File size = 192841 bytes (18.32%)

Original:

1052713 bytes

gzip: 183705 bytes (17.45%)

bzip2:

169049 bytes (16.05 %)

Izip: 140307 bytes (13.33%)
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DAVID A. HUFFMAN{, ASSOCIATE, IRE

‘Summary—An optimum method of coding an ensemble of mes-
sages consisting of a finite number of members is developed. A
i dunds in such
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INTRODUCTION
NE IMPORTANT METHOD of transmitting
O ‘messages is to transmit in their place sequences
of symbols. If there are more messages which
‘might be sent than there are kinds of symbols available,
then some of the messages must use more than one sym-
bol. If it is assumed that each symbol requires the same
time for transmission, then the time for transmission
(length) of a message is directly proportional to the
number of symbols associated with it. In this paper, the
symbol or sequence of symbols associated with a given
message will be called the “message code.” The entire
number of messages which might be transmitted will be
called the “message ensemble.” The mutual agreement
between the transmitter and the receiver about the
‘meaning of the code for each message of the ensemble

will be called the “ensemble code.”
Probably the most familiar ensemble code was stated
in the nhrase “ane if by land and two if b sea.” In this
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will be defined here as an ensemble code which, for a
‘message ensemble consisting of a finite number of mem-
bers, IV, and for a given number of coding digits, D,
yields the lowest possible average message length. In
order to avoid the use of the lengthy term “minimum-
redundancy,” this term will be replaced here by “opti-
mum.” It will be understood then that, in this paper,
“optimum code” means “minimum-redundancy code.”

The following basic restrictions will be imposed on an
ensemble code:

(a) No two messages will consist of iden tical arrange-

‘ments of coding digits.

(b) The message codes will be constructed in such a
way that no additional indication is necessary to
specify where a message code begins and ends
once the starting point of a sequence of messages
is known.

Restriction (b) necessitates that no message be coded
in such a way that its code appears, digit for digit, as the
first part of any message cade of greater length. Thus,
01,102, 111, and 202 are valid message codes for an en-
semble of four members. For instance, a sequence of
these messages 1111022020101111102 can be broken up
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Example: Conditional Arithmetic Coding for Document Scans

Original: 1052713 bytes

gzip: 183705 bytes (17.45%)
bzip2: 169049 bytes (16.05 %)
Izip: 140307 bytes (13.33%)

No condition: 1 binary pmf
=> File size = 418369 bytes (39.74 %)

1008 PROCEEDINGS OF THE LR.E. Seplember

A Method for the Construction of
Minimum-Redundancy Codes”
DAVID A. HUFFMAN{, ASSOCIATE, IRE

Left neighbour: 2 binary pmfs

=> File size = 192841 bytes (18.32%)

Left and above: 4 binary pmfs
= File size = 120198 bytes (11.42 %)

‘Summary—An optimum method of coding an ensemble of mes-
sages consisting of a finite number of members is developed. A

will be defined here as an ensemble code which, for
message ensemble consisting of a finite number of mem-

ine dii in such o bers, N, and for a given number of coding digits, D,
ik yields the lowest possible average message length. In
INTRODUCTION order to avoid the use of the lengthy term “minimum-

‘messages is to transmit in their place sequences
of symbols. If there are more messages which
‘might be sent than there are kinds of symbols available,
then some of the messages must use more than one sym-
bol. If it is assumed that each symbol requires the same
time for transmission, then the time for transmission
(length) of a message is directly proportional to the
number of symbols associated with it. In this paper, the
symbol or sequence of symbols associated with a given
message will be called the “message code.” The entire
number of messages which might be transmitted will be
called the “message ensemble.” The mutual agreement
between the transmitter and the receiver about the
‘meaning of the code for each message of the ensemble
will be called the “ensemble code.”
Probably the most familiar ensemble code was stated
in the nhrase “ane if by land and two if b sea.” In this

ONE IMPORTANT METHOD of transmitting
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redundancy,” this term will be replaced here by “opti-
mum.” It will be understood then that, in this paper,
“optimum code” means “minimum-redundancy code.”

The following basic restrictions will be imposed on an
ensemble code:

(a) No two messages will consist of iden tical arrange-

‘ments of coding digits.

(b) The message codes will be constructed in such a
way that no additional indication is necessary to
specify where a message code begins and ends
once the starting point of a sequence of messages
is known.

Restriction (b) necessitates that no message be coded
in such a way that its code appears, digit for digit, as the
first part of any message code of greater length. Thus,
01,102, 111, and 202 are valid message codes for an en-
semble of four members. For instance, a sequence of
these messages 1111022020101111102 can be broken up
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Arithmetic Coding in Practice / Conditional Pmfs

Example: Conditional Arithmetic Coding for Document Scans

No condition: 1 binary pmf
=> File size = 418369 bytes (39.74 %)

H Left neighbour: 2 binary pmfs
=> File size = 192841 bytes (18.32%)

Left and above: 4 binary pmfs
= File size = 120198 bytes (11.42 %)

3 Four neighbours: 16 binary pmfs
=> File size = 101819 bytes (9.67 %)

Heiko Schwarz (Freie Universit

Original:

1052713 bytes

gzip: 183705 bytes (17.45%)

bzip2:

169049 bytes (16.05 %)

Izip: 140307 bytes (13.33%)

1008 PROCEEDINGS OF THE LR.E. Seplember

A Method for the Construction of
Minimum-Redundancy Codes”
DAVID A. HUFFMAN{, ASSOCIATE, IRE

‘Summary—An optimum method of coding an ensemble of mes-
sages consisting of a finite number of members is developed. A
i dunds in such

ing digts pe

INTRODUCTION
NE IMPORTANT METHOD of transmitting
O ‘messages is to transmit in their place sequences
of symbols. If there are more messages which
‘might be sent than there are kinds of symbols available,
then some of the messages must use more than one sym-
bol. If it is assumed that each symbol requires the same
time for transmission, then the time for transmission
(length) of a message is directly proportional to the
number of symbols associated with it. In this paper, the
symbol or sequence of symbols associated with a given
message will be called the “message code.” The entire
number of messages which might be transmitted will be
called the “message ensemble.” The mutual agreement
between the transmitter and the receiver about the
‘meaning of the code for each message of the ensemble

will be called the “ensemble code.”
Probably the most familiar ensemble code was stated
in the nhrase “ane if by land and two if b sea.” In this
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will be defined here as an ensemble code which, for a
‘message ensemble consisting of a finite number of mem-
bers, N, and for a given number of coding digits, D,
yields the lowest possible average message length. In
order to avoid the use of the lengthy term “minimum-
redundancy,” this term will be replaced here by “opti-
mum.” It will be understood then that, in this paper,
“optimum code” means “minimum-redundancy code.”

The following basic restrictions will be imposed on an
ensemble code:

(a) No two messages will consist of iden tical arrange-

‘ments of coding digits.

(b) The message codes will be constructed in such a
way that no additional indication is necessary to
specify where a message code begins and ends
once the starting point of a sequence of messages
is known.

Restriction (b) necessitates that no message be coded
in such a way that its code appears, digit for digit, as the
first part of any message cade of greater length. Thus,
01,102, 111, and 202 are valid message codes for an en-
semble of four members. For instance, a sequence of
these messages 1111022020101111102 can be broken up
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Arithmetic Coding in Practice / Conditional Pmfs

Example: Conditional Arithmetic Coding for Document Scans

No condition:

1 binary pmf

=> File size = 418369 bytes (39.74 %)

H Left neighbour: 2 binary pmfs
=> File size = 192841 bytes (18.32%)

Left and above: 4 binary pmfs
= File size = 120198 bytes (11.42 %)

3 Four neighbours: 16 binary pmfs
=> File size = 101 819 bytes (9.67 %)

HE Eleven neighbours: 2048 binary pmfs
=> File size = 92527 bytes (8.79 %)
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Original:
gzip:
bzip2:

1008 PROCEEDINGS OF THE LR.E.

1052713 bytes
183705 bytes
169049 bytes

Izip: 140307 bytes

(17.45%)
(16.05 %)
(13.33%)

Seplember

A Method for the Construction of
Minimum-Redundancy Codes”
DAVID A. HUFFMANY, ASSOCIATE, IRE

‘Summary—An optimum method of coding an ensemble of mes-
sages consisting of a finite number of members is developed. A
i dunds in such

of coding digits p
INTRODUCTION
NE IMPORTANT METHOD of transmitting
O ‘messages is to transmit in their place sequences
of symbols. If there are more messages which
‘might be sent than there are kinds of symbols available,
then some of the messages must use more than one sym-
bol. If it is assumed that each symbol requires the same
time for transmission, then the time for transmission
(length) of a message is directly proportional to the
number of symbols associated with it. In this paper, the
symbol or sequence of symbols associated with a given
message will be called the “message code.” The entire
number of messages which might be transmitted will be
called the “message ensemble.” The mutual agreement
between the transmitter and the receiver about the
‘meaning of the code for each message of the ensemble
will be called the “ensemble code.”
Probably the most familiar ensemble code was stated
in the nhrase “ane if by land and two if b sea.” In this

ive Lossless Coding

will be defined here as an ensemble code which, for a
message ensemble consisting of a finite number of mem-
bers, N, and for a given number of coding digits, D,
yields the lowest possible average message length. In
order to avoid the use of the lengthy term “minimum-
redundancy,” this term will be replaced here by “opti-
mum.” It will be understood then that, in this paper,
“optimum code” means “minimum-redundancy code.”

The following basic restrictions will be imposed on an
ensemble code:

(a) No two messages will consist of iden tical arrange-

‘ments of coding digits.

(b) The message codes will be constructed in such a
way that no additional indication is necessary to
specify where a message code begins and ends
once the starting point of a sequence of messages
is known.

Restriction (b) necessitates that no message be coded
in such a way that its code appears, digit for digit, as the
first part of any message cade of greater length. Thus,
01,102, 111, and 202 are valid message codes for an en-
semble of four members. For instance, a sequence of
these messages 1111022020101111102 can be broken up
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Example: Conditional Arithmetic Coding for 8-bit Images

Original: 262159 bytes (512x512)
gzip: 222999 bytes (85.06 %)
bzip2: 173877 bytes (66.33%)
Izip: 180000 bytes (68.66 %)
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Example: Conditional Arithmetic Coding for 8-bit Images

[ ] Original: 262159 bytes (512x512)
gzip: 222999 bytes (85.06 %)
bzip2: 173877 bytes (66.33%)
(68.66 %)

Izip: 180000 bytes

No condition:
= 256 probability masses (2%)
=> File size = 240112 bytes (91.59 %)
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Example: Conditional Arithmetic Coding for 8-bit Images

[T ] Original: 262159 bytes (512x512)
gzip: 222999 bytes (85.06 %)

bzip2: 173877 bytes (66.33%)

(68.66 %)

Izip: 180000 bytes

No condition:
= 256 probability masses (2%)
=> File size = 240112 bytes (91.59 %)

Left sample:
= 65536 probability masses (2° - 28)
=> File size = 179179 bytes (68.35 %)
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Arithmetic Coding in Practice / Conditional Pmfs

Example: Conditional Arithmetic Coding for 8-bit Images

\ Original: 262159 bytes (512x512)
gzip: 222999 bytes (85.06 %)
bzip2: 173877 bytes (66.33%)
(68.66 %)

Izip: 180000 bytes

No condition:
= 256 probability masses (2%)
=> File size = 240112 bytes (91.59 %)

Left sample:
= 65536 probability masses (2° - 28)
=> File size = 179179 bytes (68.35 %)

Left sample and above sample:
= 16777216 probability masses (28 - 28 . 28)
=> File size = 221849 bytes (84.62 %)
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Arithmetic Coding in Practice / Conditional Pmfs

Example: Conditional Arithmetic Coding for 8-bit Images

\ Original: 262159 bytes (512x512)
gzip: 222999 bytes (85.06 %)
bzip2: 173877 bytes (66.33%)
(68.66 %)

Izip: 180000 bytes

No condition:
= 256 probability masses (2%)
=> File size = 240112 bytes (91.59 %)

Left sample:
= 65536 probability masses (2° - 28)
=> File size = 179179 bytes (68.35 %)

Left sample and above sample:
= 16777216 probability masses (28 - 28 . 28)
=> File size = 221849 bytes (84.62 %)

=> Too many probability masses
=» Pmfs do not adapt to image statistics
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Example: Conditional Arithmetic Coding for 16-bit Audio

Original: 26559960 bytes (5:01 minutes)
gzip: 24926843 bytes (93.85%)
bzip2: 22445509 bytes (84.51%)
Izip: 23777258 bytes (89.52%)
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Example: Conditional Arithmetic Coding for 16-bit Audio

HEEE EEEEN Original: 26559960 bytes (5:01 minutes)
gzip: 24926843 bytes (93.85%)
No condition: bzip2: 22445509 bytes (84.51%)
= 65536 probability masses (2'°) Izip: 23777258 bytes (89.52%)

=> File size = 23700606 bytes (89.23 %)
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Example: Conditional Arithmetic Coding for 16-bit Audio

([ EWTITITTL Original: 26559960 bytes (5:01 minutes)
gzip: 24926843 bytes (93.85%)
No condition: bzip2: 22445509 bytes (84.51%)
= 65536 probability masses (2'°) Izip: 23777258 bytes (89.52 %)

=> File size = 23700606 bytes (89.23 %)

Previous sample:
=> 4294967296 probability masses (2'¢ - 21°)
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Example: Conditional Arithmetic Coding for 16-bit Audio

([ EWTITITTL Original: 26559960 bytes (5:01 minutes)
gzip: 24926843 bytes (93.85%)
No condition: bzip2: 22445509 bytes (84.51%)
= 65536 probability masses (2'°) Izip: 23777258 bytes (89.52%)

=> File size = 23700606 bytes (89.23 %)

Previous sample:
= 4204967296 probability masses (21 - 29)

=> Not possible on normal computers

=>» Requires 16 GByte of memory
(when we use 32 bit per probability)
=»> Would not adapt well to statistics
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Example: Conditional Arithmetic Coding for 16-bit Audio

([ EWTITITTL Original: 26559960 bytes (5:01 minutes)
gzip: 24926843 bytes (93.85%)
No condition: bzip2: 22445509 bytes (84.51%)
= 65536 probability masses (2'°) Izip: 23777258 bytes (89.52%)

=> File size = 23700606 bytes (89.23 %)

Previous sample:
= 4204967296 probability masses (21 - 29)

=> Not possible on normal computers

=>» Requires 16 GByte of memory
(when we use 32 bit per probability)
=»> Would not adapt well to statistics

=» Cannot exploit dependencies between
symbols using this type of coding !!!
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Predictive Coding / Motivation
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Predictive Coding / Motivation

Analysis: Typical Properties of Real Signals

oI

HNNWMW

p(x)

Marginal Pmf

® Not much room for compression
® Entropy H = 7.45 (8-bit data)
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Analysis: Typical Properties of Real Signals

x| 50
8-bit image data P20 p(x|2) =
] N | o
[ [l
x =50 X
. p(x) p(x|128)
Marginal Pmf
® Not much room for compression
® Entropy H = 7.45 (8-bit data)
x =128 x
Conditional Pmfs plx| 200)
m Significantly narrower than marginal pmf (room for compression)
® Shape is very similar for all conditions, but shifted by x,_1

x =200 X
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Analysis: Typical Properties of Real Signals

x| 50
8-bit image data P20 p(x|2) =
] N | o
[ [t
x =50 X
. p(x) p(x|128)
Marginal Pmf
® Not much room for compression
® Entropy H = 7.45 (8-bit data)
x =128 x
Conditional Pmfs plx| 200)
m Significantly narrower than marginal pmf (room for compression)
® Shape is very similar for all conditions, but shifted by x,_1
=» Idea: Code difference to previous sample !!! =200 X
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Predictive Coding / Motivation

Simple Predictive Coding using Preceding Sample

Sn o Un entropy bitstream
N encoder
delay —T
Sp—1
Encoding

® Generate difference sample
Up = Sp — Sp—1

® Encode difference sample u,
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Predictive Coding / Motivation

Simple Predictive Coding using Preceding Sample

Sn

Py

Un

Encoding

o
©

N

delay

B

Sp—1

Up, = S, —

entropy
encoder

bitstream

® Generate difference sample
Sn—1

® Encode difference sample u,

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Predictive Lossless Coding

entropy | Un @ _ Sn
decoder Y

L dela

Sp—1 Y
Decoding

® Decode difference sample u,

® Reconstruct original sample

Sn = Sp—1 + U,
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Predictive Coding / Motivation

Simple Predictive Coding using Preceding Sample

bitstream

Sn @ Up entropy
N encoder
delay —T
Sp—1
Encoding

® Generate difference sample
Up = Sp — Sp—1

® Encode difference sample u,

Basic Effect

entropy | Un Sn

()
decoder &
L delay

Sp—1

Decoding
® Decode difference sample u,

® Reconstruct original sample

Sn = Sp—1 + U,

m Prediction removes large part of inter-symbol dependencies before actual entropy coding

® Reduces required complexity for the entropy coding (e.g., marginal instead of conditional coding)
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How Well Does That Type of Prediction Work ?

ps(x)

H=7.45
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Predictive Coding / Motivation

How Well Does That Type of Prediction Work ?

ps(x) pu(x)
Up = Sp — Sp—1
-_— H=5.05
H=7.45 N N
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Predictive Coding / Motivation

How Well Does That Type of Prediction Work ?

ps(x)

H=7.45

pu(x)
Up = Sp — Sp—1
» H=5.05

ps(x)

Heiko Schwarz (Freie Universitidt Berlin) — Data Compression:
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Predictive Coding / Motivation

How Well Does That Type of Prediction Work ?

ps(x) §pu(x)
Up = Sp — Sp—1
> H=5.05
H=7.45

ps(x) pu(x)

Un = S = Sp-1 H=12.39
_——
Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Predictive Lossless Coding

saves nearly
2 bits per
sample !
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Predictive Coding / Motivation

How Well Does That Type of Prediction Work ?

ps(x)
Up = Sp — Sp—1
—_—
H=7.45
A ps(x)
H=14.25 Up = Sp — Sp—1
—_—
ps(x) A
White
Gaussian H=6.95
Noise
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H=5.05

pu(x)

H=12.39

saves nearly
2 bits per
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Predictive Coding / Motivation

How Well Does That Type of Prediction Work ?

ps(x)
Up = Sp — Sp—1
—_—
H=7.45
A ps(x)
H=14.25 Uy = Sp — Sp—1
—_—
ps(x) &
White
Gaussian H=6.95 Up = Sp — Sp1
—_—
Noise
Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Predictive Lossless Coding

pu(x)

H=5.05

pu(x)
H=12.39

pu(x)
H=7.45

saves nearly
2 bits per
sample !

prediction
increases
entropy !

10 / 34



Predictive Coding / General Prediction

General Predictive Coding

Sn o up entropy bitstream entropy | Un

o
N encoder decoder g
prediction —1 Sn S L

prediction

Sn

Predictive Lossless Coding
m Predict current sample s, using a function of preceding samples
§n - f(sn—la Sp—2," " )
m Entropy coding of prediction error samples

A

Up = 55 — Sp
m Decoder uses exactly the same prediction and reconstructs the original samples according to
Sn =57+ Uy
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Predictive Coding / General Prediction

Choice of Observation Set and Predictor

SHL =OL’

prediction —T Sy

Choice of Observation Set B,

m Use small number of preceding samples for prediction

=» Choose the samples B, with highest dependencies to current sample s,
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Predictive Coding / General Prediction

Choice of Observation Set and Predictor

Sn

u 1D signals: [ [ [ [ T [ 1

L

=3 n

prediction

J§n

Choice of Observation Set B,

m Use small number of preceding samples for prediction

=» Choose the samples B, with highest dependencies to current sample s,

® 1D signals (e.g., audio): N directly preceding samples — B, = {sy—1,Sn—2, "+ ,Sn—n}
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Predictive Coding / General Prediction

Choice of Observation Set and Predictor

Sn u 1D signals: [ [ [ [ T [ 1

e

B []
prediction —T§,, 2D signals: H

Choice of Observation Set 5,
m Use small number of preceding samples for prediction

=>» Choose the samples B, with highest dependencies to current sample s,

® 1D signals (e.g., audio): N directly preceding samples — B, = {sa—1,Sp—2, -

® 2D signals (e.g., images):  Samples in causal direct neighborhood
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Predictive Coding / General Prediction

Choice of Observation Set and Predictor

Sh :Un 1Dsignals: [T T[T T T ]

- ]
prediction —T§,,

2D signals: H

=>» Choose the samples B, with highest dependencies to current sample s,

Choice of Observation Set B,

m Use small number of preceding samples for prediction

® 1D signals (e.g., audio): N directly preceding samples — B, = {sa—1,Sp—2, -

® 2D signals (e.g., images):  Samples in causal direct neighborhood

Choice of Predictor for given Observation Set
® Question: What function §, = f(B,) should we use for prediction ?
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Predictive Coding / General Prediction

Choice of Observation Set and Predictor

Sn -0 Un IDsignals: [T T T TTTTT N T]
B []
prediction S, 2D signals: H

=>» Choose the samples B, with highest dependencies to current sample s,

Choice of Observation Set B,

m Use small number of preceding samples for prediction

® 1D signals (e.g., audio): N directly preceding samples — B, = {sa—1,Sn—2, "+ ,Sn—n}

® 2D signals (e.g., images):  Samples in causal direct neighborhood

Choice of Predictor for given Observation Set
® Question: What function §, = f(B,) should we use for prediction ?

® Want to minimize entropy H(U,) of prediction error samples {u,} (difficult to access directly)
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Predictive Coding / General Prediction

Choice of Observation Set and Predictor

Sn -0 Un IDsignals: [T T T TTTTT N T]
B []
prediction S, 2D signals: H

=>» Choose the samples B, with highest dependencies to current sample s,

Choice of Observation Set B,

m Use small number of preceding samples for prediction

® 1D signals (e.g., audio): N directly preceding samples — B, = {sa—1,Sn—2, "+ ,Sn—n}

® 2D signals (e.g., images):  Samples in causal direct neighborhood

Choice of Predictor for given Observation Set
® Question: What function §, = f(B,) should we use for prediction ?
® Want to minimize entropy H(U,) of prediction error samples {u,} (difficult to access directly)

=» Can minimize variance o7, and ignore shape of pmf p(u)
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Optimization Criterion for Deriving Predictor

Typical Optimization Criterion

®m Minimize Energy of Prediction Error Signal

& n( ) :E{ (Sn_gn)z} :E{ (Sn—f(Bn))2}
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Optimization Criterion for Deriving Predictor

Typical Optimization Criterion
®m Minimize Energy of Prediction Error Signal

e =FB{U2} = E{ (S0 §n)2 } - E{ (50— f(B,,))2 }
®m Reformulate prediction error energy
ey = B{ U} ZE{(Un—uu+uu)2}
E{ (Un — pu)? } + py +2pu E{ Uy — pu }

= oh+uy
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Optimization Criterion for Deriving Predictor

Typical Optimization Criterion

®m Minimize Energy of Prediction Error Signal

e =FB{U2} = E{ (S0 §n)2 } - E{ (50— f(B,,))2 }
®m Reformulate prediction error energy
ey = B{ U} ZE{(Un—uu+uu)2}
E{ (Un — pu)? } + py +2pu E{ Uy — pu }

= oh+uy

=» Minimization of squared prediction error £2, implies minimization of variance 0%, and mean 1.2,
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Optimization Criterion for Deriving Predictor

Typical Optimization Criterion

®m Minimize Energy of Prediction Error Signal

e =FB{U2} = E{ (S0 §n)2 } - E{ (50— f(B,,))2 }
®m Reformulate prediction error energy
ey = B{ U} :E{(UH_MU+NU)2}
E{ (Un — pu)? } + py +2pu E{ Uy — pu }

= oh+uy

=» Minimization of squared prediction error £2, implies minimization of variance 0%, and mean 1.2,

=> Minimize the width of the pmf py(u), but ignore its actual shape
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Optimization Criterion for Deriving Predictor

Typical Optimization Criterion

®m Minimize Energy of Prediction Error Signal

e =FB{U2} = E{ (S0 §n)2 } - E{ (50— f(B,,))2 }
®m Reformulate prediction error energy
ey = B{ U} :E{(UH_MU+NU)2}
E{ (Un — pu)? } + py +2pu E{ Uy — pu }

= oh+uy

=» Minimization of squared prediction error £2, implies minimization of variance 0%, and mean 1.2,
=> Minimize the width of the pmf py(u), but ignore its actual shape
=> Suitable alternative to minimization of the entropy H(U)
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Optimal Predictor for Given Observation Set

m Question: What value a minimizes the prediction error energy ?

ey = B{(S.—2a)*}
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Optimal Predictor for Given Observation Set

m Question: What value a minimizes the prediction error energy ?

2 = B{(Sh—a)?} =E{(Sa—E{S,}+E{S.} —a)*}
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Predictive Coding / General Prediction

Optimal Predictor for Given Observation Set
m Question: What value a minimizes the prediction error energy ?
ey = E{(Sh—a)’} =E{(S0 —E{S.} +E{S,} —a)*}
E{(Sn—E{Sn})2}+E{(E{5n}—a)2}+2E{(5n—E{5n})(E{5n}_a) }
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Optimal Predictor for Given Observation Set

m Question: What value a minimizes the prediction error energy ?
ey = E{(Sh—a)’} =E{(S0 —E{S.} +E{S,} —a)*}
E{(Sn—E{Sn})2}+E{(E{5n}—a)2}+2E{(5n—E{5n})(E{5n}_a) }
o5+ (E{S,} —a)°
——————

>0
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Optimal Predictor for Given Observation Set

m Question: What value a minimizes the prediction error energy ?
ey = E{(Sh—a)’} =E{(S0 —E{S.} +E{S,} —a)*}
E{(Sn—E{Sn})2}+E{(E{5n}—a)2}+2E{(5n—E{5n})(E{5n}_a) }
o5+ (E{S,} —a)°
——————

>0

=> Prediction error energy is minimized by mean, i.e., by setting a=E{S, }
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Optimal Predictor for Given Observation Set

m Question: What value a minimizes the prediction error energy ?
ey = E{(Sh—a)’} =E{(S0 —E{S.} +E{S,} —a)*}
E{(Sn—E{Sn})2}+E{(E{5n}—a)2}+2E{(5n—E{5n})(E{5n}_a) }
o5+ (E{S,} —a)°
——————

>0

=> Prediction error energy is minimized by mean, i.e., by setting a=E{S, }

Minimization of mean-squared prediction error for given observation set B,

® Similar optimization problem: Minimize E{ (Sn — F(Bn))? |B,,}
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Optimal Predictor for Given Observation Set

m Question: What value a minimizes the prediction error energy ?
ey = E{(Sh—a)’} =E{(S0 —E{S.} +E{S,} —a)*}
E{(Sn—E{Sn})2}+E{(E{5n}—a)2}+2E{(5n—E{5n})(E{5n}_a) }
o5+ (E{S,} —a)°
——————

>0

=> Prediction error energy is minimized by mean, i.e., by setting a=E{S, }

Minimization of mean-squared prediction error for given observation set B,
® Similar optimization problem: Minimize E{ (Sn — F(Bn))? |B,,}

=» Solution: Optimal predictor is given by the conditional mean

§n - ﬂ)pt(Bn) = E{5"|B"}‘
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Optimal Predictor for Given Observation Set

m Question: What value a minimizes the prediction error energy ?
ey = E{(Sh—a)’} =E{(S0 —E{S.} +E{S,} —a)*}
E{(Sn—E{Sn})2}+E{(E{5n}—a)2}+2E{(5n—E{5n})(E{5n}_a) }
o5+ (E{S,} —a)°
——————

>0

=> Prediction error energy is minimized by mean, i.e., by setting a=E{S, }

Minimization of mean-squared prediction error for given observation set B,
® Similar optimization problem: Minimize E{ (Sn — F(Bn))? |B,,}

=» Solution: Optimal predictor is given by the conditional mean

§n - ﬂ)pt(Bn) = E{5"|B"}‘

=> General case requires storage of large tables (often impractical and complex)
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Optimal Predictor for Autoregressive Sources

Autoregressive Sources of Order m
m Good probabilistic model for many real signals: AR(m) process

Sn = s + Z ak - (Sn—k — 1s) + Zs (Z, is zero-mean iid process)
k=1
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Optimal Predictor for Autoregressive Sources

Autoregressive Sources of Order m
m Good probabilistic model for many real signals: AR(m) process

Sn = s + Z ak - (Sn—k — 1s) + Zs (Z, is zero-mean iid process)
k=1

=» Optimal predictor if we know the entire past, i.e., B, = {sp—1,Sp—2," " }

E{S:|Bn}
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Optimal Predictor for Autoregressive Sources

Autoregressive Sources of Order m
m Good probabilistic model for many real signals: AR(m) process

Sn = s + Z ak - (Sn—k — 1s) + Zs (Z, is zero-mean iid process)
k=1

=» Optimal predictor if we know the entire past, i.e., B, = {sp—1,Sp—2," " }

E{ Sn | Bn} = E{ Ms + Zak . (Sn—k - Ns) + Zn Sn—1,5n—-2,""" }
k=1
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Optimal Predictor for Autoregressive Sources

Autoregressive Sources of Order m
m Good probabilistic model for many real signals: AR(m) process

Sn = s + Z ak - (Sn—k — 1s) + Zs (Z, is zero-mean iid process)
k=1

=» Optimal predictor if we know the entire past, i.e., B, = {sp—1,Sp—2," " }

Sn—1,Sn—2,""" }

Spn—1,Sn—2,""" } +E{ Zn

E{S:|Bn}

E{ Ms + Zak . (Sn—k - Ns) + Zn
k=1

Ibs (1 _Zak) +Zak'E{5nfk
) =1

Spn—1,Sn—2,""" }
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Optimal Predictor for Autoregressive Sources

Autoregressive Sources of Order m
m Good probabilistic model for many real signals: AR(m) process

Sn = s + Z ak - (Sn—k — 1s) + Zs (Z, is zero-mean iid process)
k=1

=» Optimal predictor if we know the entire past, i.e., B, = {sp—1,Sp—2," " }

Sn—1,Sn—2,""" }

Spn—1,Sn—2,""" } +E{ Zn

E{S:|Bn}

E{ Ms + Zak . (Sn—k - Ns) + Zn
k=1
Hs (1 —Zak) +Zak'E{5nfk
k=1 k=1
= ao—i—iak-s,,,k with  ag = us <1—iak>
k=1

k=1

Spn—1,Sn—2,""" }
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Optimal Predictor for Autoregressive Sources

Autoregressive Sources of Order m
m Good probabilistic model for many real signals: AR(m) process

Sn = s + Z ak - (Sn—k — 1s) + Zs (Z, is zero-mean iid process)
k=1

=» Optimal predictor if we know the entire past, i.e., B, = {sp—1,Sp—2," " }

E{ Sn |Bn} = E{ Ms + Zak . (Sn—k - Ns) + Zn Sn—1,Sn—2,""" }
k=1
= ls (1_Zak) +Zak'E{5nfk
k=1 k=1
= ao—l—Zak - Sp—k with  ag = us <1—Zak>
k=1

k=1

Spn—1,Sn—2,""" } +E{ Zn

Spn—1,Sn—2,""" }

=» Optimal predictor is an affine function of the past m samples
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Variance and Mean for Affine Prediction

K
Affine Predictor: S, = ap + Z ax - bx for any observation set B, = {b1, b2, - , bk}
k=1
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Variance and Mean for Affine Prediction

K
Affine Predictor: S, = ap + Z ax - bx for any observation set B, = {b1, b2, - , bk}
k=1

® Mean py of prediction error
no=E{Un}
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Variance and Mean for Affine Prediction

K
Affine Predictor: S, = ap + Z ax - bx for any observation set B, = {b1, b2, - , bk}
k=1

® Mean py of prediction error
Wy =F{Up} = B{S,—a0— S aBi
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Variance and Mean for Affine Prediction

K
Affine Predictor: S, = ap + Z ax - bx for any observation set B, = {b1, b2, - , bk}
k=1

® Mean py of prediction error
uy =E{U,} = E{Sn*QO*ZkK:]_akBk}
(1Sl n) -
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Variance and Mean for Affine Prediction

K
Affine Predictor: S, = ap + Z ax - bx for any observation set B, = {b1, b2, - , bk}
k=1

® Mean py of prediction error
uy =E{U,} = E{Sn*QO*ZkK:]_akBk}
(1Sl n) -

=> Can be forced to puy = 0 by setting agp = us (1 — Zszl 3k>
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Variance and Mean for Affine Prediction

Affine Predictor:

K
5n = ao + g ay - by
k=1

® Mean py of prediction error
uy =E{U,} = E{Sn*QO*ZkK:]_akBk}
= Hs (1 - Zszl ak) —do

for any observation set B, = {b1, b2, - , bk}

=> Can be forced to puy = 0 by setting agp = us (1 — Zszl 3k>

m Variance o3, of predictor error does not depend on constant offset ag

ot = B{(U,—E{U,})*}
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Variance and Mean for Affine Prediction

K
Affine Predictor: S, = ap + Z ax - bx for any observation set B, = {b1, b2, - , bk}
k=1

® Mean py of prediction error
uy =E{U,} = E{Sn*QO*ZkK:]_akBk}
= Hs (1 - Zszl ak) —do

=> Can be forced to puy = 0 by setting agp = us (1 — Zszl 3k>

m Variance o3, of predictor error does not depend on constant offset ag

o = E{(U.—E{U,})*} :E{ (S,,—ao—szzlakBk—E{Sn—ao—ZkK:lakBk})z}
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Variance and Mean for Affine Prediction

K
Affine Predictor: S, = ap + Z ax - bx for any observation set B, = {b1, b2, - , bk}
k=1

® Mean py of prediction error
uy =E{U,} = E{Sn*QO*ZkK:]_akBk}
(1Sl n) -

=> Can be forced to puy = 0 by setting agp = us (1 — Zszl 3k>

m Variance o3, of predictor error does not depend on constant offset ag

oy = B{(Un—E{U,})*} =E{ (Sn—ao—szzlakBk—E{sn_ao_ZkK:lakBk})z}
=Bl (5 ThanB) —ns (1T a) " L4 e

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Predictive Lossless Coding 16 / 34



Affine and Linear Prediction

K
Affine Predictor: §, = ap + Z ay - by for any observation set B, = {b1, ba,--- , bk}
k=1
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Affine and Linear Prediction

K
Affine Predictor: §, = ap + Z ay - by for any observation set B, = {b1, ba,--- , bk}
k=1

=» For a minimization of the prediction error variance 03, a linear predictor is sufficient

K
§,, = E ak - bk
k=1
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Affine and Linear Prediction

K
Affine Predictor: §, = ap + Z ay - by for any observation set B, = {b1, ba,--- , bk}
k=1

=» For a minimization of the prediction error variance 03, a linear predictor is sufficient

K
§n = Z ak - bk
k=1
=» The mean uy of the prediction error can be forced to zero by additionally setting

K
ag=ps (1-) a
k=1
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Affine and Linear Prediction

K
Affine Predictor: §, = ap + Z ay - by for any observation set B, = {b1, ba,--- , bk}
k=1

=» For a minimization of the prediction error variance 03, a linear predictor is sufficient

K
§n = Z ak - bk
k=1
=» The mean uy of the prediction error can be forced to zero by additionally setting

K
ag=ps (1-) a
k=1

=» How can we derive optimal prediction parameters {a;,a>, -+ ,ax}
for a given observation set and a given source ?7
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Consider: Linear Prediction and Minimization of Variance

Vector Notation (for simplifying derivations)
m QObservation set: B,=(B1,Bs, - ,Bk)T
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Consider: Linear Prediction and Minimization of Variance

Vector Notation (for simplifying derivations)
m QObservation set: B,=(B1,Bs, - ,Bk)T

B Prediction parameters: a=(a;, a0, - ,ak)T
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Consider: Linear Prediction and Minimization of Variance

Vector Notation (for simplifying derivations)

m QObservation set: B,=(B1,Bs, - ,Bk)T
B Prediction parameters: a=(a;, a0, - ,ak)T
= Linear predictor: S,=a’-B,
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Consider: Linear Prediction and Minimization of Variance

Vector Notation (for simplifying derivations)

m QObservation set: B,=(B1,Bs, - ,Bk)T

B Prediction parameters: a=(a;, a0, - ,ak)T

=» Linear predictor: S,=a’ B,

=» Predictor error: Uu,=5,-5,=S5,—a’'B,
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Consider: Linear Prediction and Minimization of Variance

Vector Notation (for simplifying derivations)

m QObservation set: B,=(B1,Bs, - ,Bk)T

B Prediction parameters: a=(a;, a0, - ,ak)T

=» Linear predictor: S,=a’ B,

=» Predictor error: Uu,=5,-5,=S5,—a’'B,

Optimization Problem

® Minimization of prediction error variance

@) - o (u-e(u,))’ ]
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Predictive Coding / Optimal Linear Prediction

Consider: Linear Prediction and Minimization of Variance

Vector Notation (for simplifying derivations)

m QObservation set: B,=(B1,Bs, - ,Bk)T

B Prediction parameters: a=(a;, a0, - ,ak)T

=» Linear predictor: S,=a’ B,

=» Predictor error: Uu,=5,-5,=S5,—a’'B,

Optimization Problem

® Minimization of prediction error variance

o%(a) = E{ (U,,—E{Un})2} :E{ (S,,—aTBn—E{S,,—aTBn})2}
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Predictive Coding / Optimal Linear Prediction

Consider: Linear Prediction and Minimization of Variance

Vector Notation (for simplifying derivations)

m QObservation set: B,=(B1,Bs, - ,Bk)T

B Prediction parameters: a=(a;, a0, - ,ak)T

=» Linear predictor: S,=a’ B,

=» Predictor error: Uu,=5,-5,=S5,—a’'B,

Optimization Problem

® Minimization of prediction error variance

o3(a) = E{ (U,, ~E{ U,,})2 } - E{ (sn ~a'B,—E{S,—a"B,} )2 }
= o{ ((5,-5(s:)) - a" (B, L8 )" |
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Reformulate Prediction Error Variance

®m Prediction error variance

o?(a) = E{ ((Sn—E{S,,}) —aT(B,, ~E{ Bn}))z}
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Predictive Coding / Optimal Linear Prediction

Reformulate Prediction Error Variance

®m Prediction error variance

o%(a) = E{ ((s—E(s:}) —aT(Bn—E{Bn}))z}
- E{ (Sn—E{Sn})Z}fZaT'E{ (So-E{s:})(Br—E(Bn}) }

+aT.E{ (Bn—E{Bn})(B,,—E{B,,})T}.a
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Predictive Coding / Optimal Linear Prediction

Reformulate Prediction Error Variance

®m Prediction error variance

o3(a) = E{ ((s:-B(5:}) —aT<Bn—E{Bn}))2}
_ E{ (SnfE{Sn})z}fZaT-E{ (5, -E{s})(B.—E(B.}) }
+aT-E{ (Bn—E{Bn})(Bn—E{Bn})T}~a
—o2-2a"c+a"Csa
with Cg and ¢ being given by
Ce = E{ (Bn—E{Bn})(Bn—E{Bn})T}
¢ = B{ (S, —E{S)})(B.—E{B.}) }

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Predictive Lossless Coding 19 / 34



Auto-Covariance Matrix of the Observation Set

1 012 01,3 - 01K

- 02,1 1 023 ' 02K

comsf orst001) (o p1) f oot | e T
OK,1 OKz2 O0K3 “°° 1

® Each entry represents the correlation coefficient between two samples of the observation set

cov(Ba, By) _ E{ (B" B ”5) (Bb B “5) }

o2 E{ (sn—us)z}

Qa,b = Ob,a =
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Auto-Covariance Matrix of the Observation Set

1 012 01,3 - 01K

- 02,1 1 023 ' 02K

G —b{ (B.-(6.)) (B~ B(8,))  J ot | &1 @2 1o
0K,1 ©OK2 ©OK3 -+ 1

® Each entry represents the correlation coefficient between two samples of the observation set

cov(Ba, By) _ E{ (B" B ”5) (Bb B “5) }

o2 E{ (sn—us)z}

=> Property of the source (and choice of observation set)

Qa,b = Ob,a =
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Auto-Covariance Matrix of the Observation Set

1 012 01,3 - 01K

- 02,1 1 023 ' 02K

comsf orst001) (o p1) f oot | e T
OK,1 OKz2 O0K3 “°° 1

® Each entry represents the correlation coefficient between two samples of the observation set

cov(Ba, By) _ E{ (B" B ”5) (Bb B MS) }

o2 E{ (sn—us)z}

=> Property of the source (and choice of observation set)

Qa,b = Ob,a =

=> Can be measured for given signal (or set of signals)
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Predictive Coding / Optimal Linear Prediction

Cross-Covariance Vector of the Observation Set and Current Sample

QOc,1
Oc,2

c=B{ (S, —E{S,} ) (B, —E{B,} ) | =of- | €3

QC,K

m Each entry represents the correlation coefficient between the sample to be predicted and a sample

of the observation set
cov(s, 8) _ B (S:—ns) (B —1s) }

i E{ (sn—us)z}

Oc,k =
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Predictive Coding / Optimal Linear Prediction

Cross-Covariance Vector of the Observation Set and Current Sample
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Oc,2

c=B{ (S, —E{S,} ) (B, —E{B,} ) | =of- | €3

QC,K

m Each entry represents the correlation coefficient between the sample to be predicted and a sample

of the observation set
cov(s, 8) _ B (S:—ns) (B —1s) }

i E{ (sn—us)z}

=> Property of the source (and choice of observation set)

Oc,k =
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Predictive Coding / Optimal Linear Prediction

Cross-Covariance Vector of the Observation Set and Current Sample

QOc,1
Oc,2

c=B{ (S, —E{S,} ) (B, —E{B,} ) | =of- | €3

QC,K

m Each entry represents the correlation coefficient between the sample to be predicted and a sample

of the observation set
cov(s, 8) _ B (S:—ns) (B —1s) }

i E{ (sn—us)z}

=> Property of the source (and choice of observation set)

Oc,k =

=> Can be measured for given signal (or set of signals)
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Optimal Linear and Affine Prediction

®m Goal: Minimization of prediction error variance 0(2]

o}(a)=02-2a"c+a’ Cza
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Optimal Linear and Affine Prediction

®m Goal: Minimization of prediction error variance 0(2]
o}(a)=02-2a"c+a’ Cza
m Set derivative with respect to a equal to zero

9 -

aau(a):—2c+2CB-a:O
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Optimal Linear and Affine Prediction

®m Goal: Minimization of prediction error variance 0(2]
o}(a)=02-2a"c+a’ Cza
m Set derivative with respect to a equal to zero

9 -

aau(a):—2c+2CB-a:O

=> Yule-Walker equations (linear equation system)

optimal predictor a solves
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Optimal Linear and Affine Prediction

®m Goal: Minimization of prediction error variance afj
o}(a)=02-2a"c+a’ Cza
m Set derivative with respect to a equal to zero

9 -

aau(a):—2c+2CB-a:O

=> Yule-Walker equations (linear equation system)

optimal predictor a solves

=» Optimal affine prediction: Additionally, set

K
ap=ps [1—) ax
k=1
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Summary: Derivation of Optimal Affine Predictor for Given Source

Choose suitable observation set B, = {b1, ba, - , bi}
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Summary: Derivation of Optimal Affine Predictor for Given Source

Choose suitable observation set B, = {b1, ba, - , bi}

Determine mean s of sources and required correlation coefficients gy ¢

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Predictive Lossless Coding 23 / 34



Predictive Coding / Optimal Linear Prediction

Summary: Derivation of Optimal Affine Predictor for Given Source

Choose suitable observation set B, = {b1, ba, - , bi}
Determine mean s of sources and required correlation coefficients gy ¢

Solve linear equation system for determining prediction parameters ay, ap, - - - , ak

1 012 013 - 01K ay Oc,1
021 1 023 - 02k ar Oc,2
031 032 1 - o3k | .| a3 | = | 03
oK1 OKk2 0Ok3 -+ 1 ak Oc,K
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Predictive Coding / Optimal Linear Prediction

Summary: Derivation of Optimal Affine Predictor for Given Source

Choose suitable observation set B, = {b1, ba, - , bi}
Determine mean s of sources and required correlation coefficients gy ¢
Solve linear equation system for determining prediction parameters ay, ap, - - - , ak
1 12 013 - 01K al Qc,1
02,1 1 023 - 02k as 0c,2
031 032 1 - o3k | .| a3 | = | 03
oK1 OKk2 0Ok3 -+ 1 ak Oc,K

B Determine constant offset
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Example: Prediction of Audio Signals using Three Preceding Samples

Choice of observation set for sample s,: B, = {s,—1, Sn—2, Sn—3}
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Example: Prediction of Audio Signals using Three Preceding Samples

Choice of observation set for sample s,: B, = {s,—1, Sn—2, Sn—3}

Need to determine mean us and three correlation coefficients g, (for k = 1,2,3)
ps = E{S,}

o = E{(Sn — p15)(Sn—k — p1s) }
E{(S) — us)?}
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Example: Prediction of Audio Signals using Three Preceding Samples

Choice of observation set for sample s,: B, = {s,—1, Sn—2, Sn—3}

Need to determine mean us and three correlation coefficients g, (for k = 1,2,3)

1 N
B{S} =D s
n=1

o = E{(Sn — p15)(Sn—k — p1s) }
E{(S) — us)?}

ps
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Example: Prediction of Audio Signals using Three Preceding Samples

Choice of observation set for sample s,: B, = {s,—1, Sn—2, Sn—3}

Need to determine mean us and three correlation coefficients g, (for k = 1,2,3)

1 N
B{S} =D s
n=1

o — E{(Sn = 15)(Sn—r — 115) } _ Sopie(Sn — p15)(sn—k — pis)
E{(Sh — ns)* } Yo i(sn — ps)?

ps
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Example: Prediction of Audio Signals using Three Preceding Samples

Choice of observation set for sample s,: B, = {s,—1, Sn—2, Sn—3}

Need to determine mean us and three correlation coefficients g, (for k = 1,2,3)

1 N
B{S} =D s
n=1

o — E{(Sn = 15)(Sn—r — 115) } _ Sopie(Sn — p15)(sn—k — pis)
E{(Sh — ns)* } Yo i(sn — ps)?

T
LAY

ps

= 0.8619
= 0.7564

SHELES AIKE TERSSPIRIT
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Example: Prediction of Audio Signals using Three Preceding Samples

Solve linear equation system

1 o1 o a1 01 a1 = 1.9409
o1 1 o1 || @ |=]| o = a» = —1.4580
02 o1 1 as 03 as = 0.4804
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Example: Prediction of Audio Signals using Three Preceding Samples

Solve linear equation system

1 o1 o a1 01 a1 = 1.9409
o1 1 o1 || @ |=]| o = a» = —1.4580
02 o1 1 as 03 as = 0.4804

I Determine constant offset

K
a0 = s <1 - Zak> = a0 = —1.3833
k=1
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Example: Prediction of Audio Signals using Three Preceding Samples

Solve linear equation system

1 o1 o a1 01 a1 = 1.9409
o1 1 o1 || @ |=]| o = a» = —1.4580
02 o1 1 as 03 as = 0.4804

I Determine constant offset
K
a0 = s <1 - Zak> = a0 = —1.3833
k=1

=> Predictor is given by

S = round( a +a1-Sp—1+ a2 Sp—2+asz- 5n—3)

- round( —1.3833 + 1.9400 - 5,_1—1.4580 - 5,_o + 0.4804 - sH)
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Example: Prediction of Audio Signals using Three Preceding Samples

Solve linear equation system

1 o1 o a1 01 a1 = 1.9409
o1 1 o1 || @ |=]| o = a» = —1.4580
02 o1 1 as 03 as = 0.4804

I Determine constant offset
K
a0 = s <1 - Zak> = a0 = —1.3833
k=1

=> Predictor is given by

S = round( a +a1-Sp—1+ a2 Sp—2+asz- 5n—3)

round( ~1.3833 4 1.9409 - 5,_1—1.4580 - 5,_2 + 0.4804 - 5,_3 )

Note: Predictor must be rounded to an integer (want to apply lossless coding)
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Predictive Coding / Affine Prediction for Audio and Images

Example: Prediction of Audio Signals using Three Preceding Samples

original A ps(x)

o = 4880.3
H = 14.25

Y

L)
SWBLLY LTKE TERY SPIRIT
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Predictive Coding / Affine Prediction for Audio and Images

Example: Prediction of Audio Signals using Three Preceding Samples

original A ps(x)

o = 4880.3
H = 14.25

Y

L)
SWBLLY LTKE TERY.
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simple predictor A pu(x)

(§n = snfl)
o = 1412.0
H = 12.39
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Predictive Coding / Affine Prediction for Audio and Images

Example: Prediction of Audio Signals using Three Preceding Samples

original A ps(x)
o = 4880.3
H = 14.25

Y

L)
SWBLLY LTKE TERY SPIRIT

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Predictive Lossless Coding

simple predictor A pu(x)
(§n = snfl)
o 1412.0
12.39
optimal A pu(x)
affine predictor
(3 samples) o = 887.6
H 11.72
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Predictive Coding / Affine Prediction for Audio and Images

Potential Improvements for Audio Coding

Use more samples as observation set
=> May improve the affine predictor
=> Requires transmission of more prediction parameters
=» Audio compression format FLAC uses up to 32 preceding samples

27 / 34
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Predictive Coding / Affine Prediction for Audio and Images

Potential Improvements for Audio Coding

Use more samples as observation set
=> May improve the affine predictor
=> Requires transmission of more prediction parameters
=» Audio compression format FLAC uses up to 32 preceding samples

Adapt predictor during coding
e Audio signals have instationary properties
=> A single predictor may not be suitable for all parts of an audio stream
=» Split data into chunks and determine best predictor for each chunk

27 / 34
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Example: Prediction of Image Signals using Three Neighboring Samples

Choice of prediction structure

X=a+a-L+ax-A+ac-C ClA
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Predictive Coding / Affine Prediction for Audio and Images

Example: Prediction of Image Signals using Three Neighboring Samples

Choice of prediction structure

X=a+a-L+ax-A+ac-C ClA

Determine mean and required correlation factors

>y (sIx ¥l = ps)(slx — 1,y] — us)

Ghor = >, (shay] — ns)?
2, syl = ps)(shx, y — 1] — ps)
Grer = >, (sbay] — ns)?
X, (sbxoy] = ps)(slx — Ly — 1] — pis)
gu = >, (sl y] — ps)?
X, (sbxoy] = ps)(slx + Ly — 1] — pis)
Gor = >, (sl y] — ps)?
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Example: Prediction of Image Signals using Three Neighboring Samples

Choice of prediction structure

X=a+a-L+ax-A+ac-C ClA

Determine mean and required correlation factors

Dy (8D ¥l = us)(slx = 1, y] — us)

oo = S, (b yT — jis)?
>y (8D y1 = ps)(slx, y — 1] — ps)
D YA E e e bs = 12405
A Ohor = 0.9722
o — Doy (8P y] = us)(slx — 1,y — 1] — us) Over = 0.9850
al —
2y (b, y] — ps)? 0a1 = 0.9508
o~ Dloboy] = ns)(sbx+ Ly — 11— ps) 0ar = 0.9689
" >y (s vl — ps)?
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Example: Prediction of Image Signals using Three Neighboring Samples

Solve linear equation system

1 Qar Over ar Ohor C A
Oar 1 Ohor . aA = Over -
Over Ohor 1 ac Qal L X
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Example: Prediction of Image Signals using Three Neighboring Samples

Solve linear equation system

1 Oar Over ar Ohor ar 0.5892
Oar 1 Ohor . aa == Over - aan = 0.8255
Over  Ohor 1 ac Oal ac = —0.4262 L|X
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Example: Prediction of Image Signals using Three Neighboring Samples

Solve linear equation system
1 QOar Over ar Ohor aL = 05892 C A
Oar 1 Ohor . aa = Over - ap = 0.8255
Over  Ohor 1 ac Oal ac = —0.4262 L (X
B Determine constant offset
ao=pus (1 —aL—aa—ac) S ao = 1.4198
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Example: Prediction of Image Signals using Three Neighboring Samples

Solve linear equation system
1 QOar Over ar Ohor aL = 05892 C A
Oar 1 Ohor . aa = Over - ap = 0.8255
Over  Ohor 1 ac Oal ac = —0.4262 L (X
B Determine constant offset
ao=pus (1 —aL—aa—ac) S ao = 1.4198

=> Predictor is given by

X = round(ao+aL~L+aA-A+ac~C)

round( 1.4198 4+ 0.5892 - L + 0.8255 - A— 0.4262 - C)
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Example: Prediction of Image Signals using Three Neighboring Samples

A ps(x)
original o = 47.85

H = 7.45

Y
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Example: Prediction of Image Signals using Three Neighboring Samples

A ps(x) simple predictor A pu(x)
iginal — 47, (X=10
orin o =418 o = 11.34
H = 7.45 H — 505

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Predictive Lossless Coding 30/ 34



Predictive Coding / Affine Prediction for Audio and Images

Example: Prediction of Image Signals using Three Neighboring Samples

A ps(x) sirAane predictor A pu(x)
iginal — 47, (X=10
orin o =418 o = 11.34
H = 7.45 H — 505

optimal A pu(x)

affine predictor

(3 neighbours) o = 6.78
H = 452
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Potential Improvements for Image Coding

Use more samples as observation set
=> May improve the affine predictor

=> Requires transmission of more prediction parameters
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Potential Improvements for Image Coding

Use more samples as observation set
=> May improve the affine predictor

=> Requires transmission of more prediction parameters

Adapt predictor during coding
® Image signals have instationary properties: Direction of edges plays an important role
=» Split image into blocks and choose predictor for each block
=» May be sufficient to choose between pre-defined predictors
» Horizontal predictor for parts with horizontal edges
» Vertical predictor for parts with vertical edges

» Some further predictors
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Potential Improvements for Image Coding

Use more samples as observation set
=> May improve the affine predictor

=> Requires transmission of more prediction parameters

Adapt predictor during coding
® Image signals have instationary properties: Direction of edges plays an important role
=» Split image into blocks and choose predictor for each block
=» May be sufficient to choose between pre-defined predictors
» Horizontal predictor for parts with horizontal edges
» Vertical predictor for parts with vertical edges

» Some further predictors

Non-linear Predictors

=> Non-linear predictors may be able to deal with different edge directions
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Examples for Non-Linear Predictors

LOCO Predictor used in JPEG-LS
m Each sample X is predicted according to

min(L,A) : C > max(L,A)
X =< max(L,A) : C<min(L,A)
L+A—C : otherwise
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Examples for Non-Linear Predictors

LOCO Predictor used in JPEG-LS

m Each sample X is predicted according to
C|A
min(L,A) : C > max(L,A) 5
X =< max(L,A) : C<min(L,A)
L+ A—C : otherwise
Motion Vector Prediction in Video Coding Standards
®m Motion vector m is predicted by component-wise median
(X)) = median(mX(A), my(B), mX(C)) AlC
L [X
iy (X) = median(my(A), m,(B), my(C))
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Summary of Lecture

Predictive Lossless Coding
m Entropy coding of prediction error signals u, = s, — §,
m Simple and effective way to exploit dependencies between neighbouring samples

m Complexity reduction relative to more general conditional entropy coding

Optimal Prediction
® Given by conditional mean for an observation set

m Complex due to requirement of large tables (similar to conditional entropy coding)

Affine and Linear Prediction
m Simple structure of predictor, low-complex implementations possible
m Optimal prediction parameters are given by solution of Yule-Walker equations
m For instationary sources (such as audio, image, video signals):
® Determine predictor for smaller sets of samples (still large enough)
e Determine optimal predictor or choose between set of predefined predictors
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Exercise: Lossless Image Compression Challenge (Part I)

Implement an encoder and decoder for
lossless coding of 8-bit color images:

We use the PPM format as raw data format:

® The encoder should read the original images in
PPM format.

® The decoder should write the reconstructed
images in PPM format.

Example images (24 PPM images of the Kodak set) are
provided on the course web-site (and in the KVV).

Use coding techniques that you learned for efficiently
compressing the 8-bit color images.

® A combination of prediction and entropy coding of
the prediction errors is suggested.

® Start with a simple (but working) approach and
try to improve your codec step by step.

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Predictive Lossless Coding

structure of “ppm” files:

P6 // ascii (fixed)
width height // ascii
255 // ascii (max. value)

<binary data> // binary

binary data:
® pixels in raster-scan order (line by line)
® cach pixel consists of three 8-bit values
= R: red component (0..255)
= G: green component (0..255)
= B: blue component (0..255)

® the values R, G, B for a pixel follow each
other (before the values for the next pixel)

suggestion:
® Store the red, green, and blue components
of an image into separate arrays

® Code the color components independently
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