Dictionary-based Coding

already coded ~<¢———— not yet coded
search buffer look-ahead buffer
cursor
(L symbols)

A

e past but cannot control it. We (]

(N symbols)
We know 4h ontrol the futuLe but...

Last Lecture

Last Lecture: Predictive Lossless Coding

Predictive Lossless Coding

m Simple and effective way to exploit dependencies between neighboring symbols / samples

m Optimal predictor: Conditional mean (requires storage of large tables)

Affine and Linear Prediction
® Simple structure, low-complex implementation possible
m Optimal prediction parameters are given by solution of Yule-Walker equations

m Works very well for real signals (e.g., audio, images, ...)

Efficient Lossless Coding for Real-World Signals
m Affine/linear prediction (often: block-adaptive choice of prediction parameters)
m Entropy coding of prediction errors (e.g., arithmetic coding)
® Using marginal pmf often already yields good results

® Can be improved by using conditional pmfs (with simple conditions)

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 2/ 37

Dictionary-Based Coding

Coding of Text Files
m Very high amount of dependencies
m Affine prediction does not work (requires linear dependencies)
m Higher-order conditional coding should work well, but is way to complex (memory)

=» Alternative: Do not code single characters, but words or phrases

Example: English Texts

m Oxford English Dictionary lists less than 230 000 words (including obsolete words)
®m On average, a word contains about 6 characters

=> Average codeword length per character would be limited by

7< % : [log2 230000] ~3.0

=» Including “phrases” would further increase coding efficiency

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 3/ 37

Dictionary-based Coding

Lempel-Ziv Coding

Universal Algorithms for Lossless Data Compression
B Based on the work of ABRAHAM LEMPEL and JACOB Z1v

m Basic idea: Construct dictionary during encoding and decoding

Two Basic Variants

m LZ77: Based on [Ziv, Lempel, “A Universal algorithm for sequential data compresion”, 1977
=» Lempel-Ziv-Storer-Szymanski (LSZZ)
=» DEFLATE used in ZIP, gzip, PNG, TIFF, PDF, OpenDocument, ...
= Lempel-Ziv-Markov Chain Algorithm (LZMA) used in 7zip, xv, lzip
- .

m LZ78: Based on [Ziv, Lempel, “Compression of individual sequences via variable-rate coding”, 1978]
= Lempel-Ziv-Welch (LZW) used in compress, GIF, optional support in PDF, TIFF

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 4 /37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZ77

The Lempel-Ziv 1977 Algorithm (LZ77)

already coded ~¢———— not yet coded
search buffer look-ahead buffer
(N symbols) cursor (L symbols)

e past but cannot control it. We control the futu\re but cannot know it.

7 5 3 1
(d7‘€7 n) = (157 77 ’t')

|A

We know
(distance) 35 33 31 20 27 25 23 21 19 17 15 13 11 9

Basic Idea of the LZ77 Algorithm
m Dictionary of variable-length sequences is given by the preceding N symbols (sliding window)

=>» Find longest possible match for the sequence at the start of the look-ahead buffer
m Message is coded as sequence of triples (d, ¢, n):

=> d: distance of best match from next symbol to be coded
length of matched phrase (match starts in search buffer but may reach into look-ahead buffer)

= [
=» n: next symbol after matched sequence
® [f no match is found, then (1,0, n) is coded (with n being the next symbol after the cursor)
5/ 37

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZ77

Simplest Version: LZ77 Algorithm with Fixed-Length Coding

search buffer look-ahead buffer
(N symbols) cursor (L symbols)

¢

We know the past but cannot control it. We control the futu)r

(distance) 35 33 31 20 27 25 23 21 19 17 15 13 11 9

<

\

e but cannot know it.
' (d £.m) = (15,7,'%)
How Many Bits Do We Need ?
® Distance d: Can take values from 1... N (we could actually code d — 1)
= Require ng = [log, N | bits
® Length /: Can take values from 0...L —1

(¢4 1 symbols must fit into look-ahead buffer)
= Require n; = [log, L] bits
m Next symbol n: Can be any symbol of the alphabet A with size | A|

= Require n, = [log, |A| | bits (in most applications : 8 bits)

=>» The sizes of both the preview and the look-ahead buffer should be integer powers of two !

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 6 / 37

Toy Example: LZ77 Encoding

Message: Miss_ Mississippi
original message:
® 16 characters (8 bits per symbols)
look-ahead = 128 bits (16 x 8 bits)
search buffer buffer (d, ¢, n)
Miss (1,0, M) LZ77 configuration:
M iss (1,0,1) e search buffer of N = 8 symbols
Mi ss M (1,0, s) ® |ook-ahead buffer of L = 4 symbols
Mis syMi (1,1,)
Miss,, Miss (5 3 S) coded representation (fixed-length):
iss Miss issi (3,3,1) => 8 triples (d, ¢, n)
Mississi ppi (1,0, P) ® 13 bits per triple (3 + 2 + 8 bits)
ississip pi (1,1,1) => 104 bits (19% bit savings)

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 7/ 37

Toy Example: LZ77 Decoding

Coded representation: (1,0,M) (1,0,1) (1,0,s8) (1,1,0) (5,3,8) (3,3,1) (1,0,p) (1,1,4)

Decode message: Miss Mississippi

search buffer (d, l, n) decoded phrase
(1,0,M) M
M (1,0,i) &
Mi (1,0, s) S
Mis (1,1,4) su
Miss,, (5,3, s) Miss
iss Miss (3,3,1) issi
Mississi (1,0, p) p
ississip (1,1,1) pi

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 8 / 37

Coding Efficiency and Complexity of LZ77

Coding Efficiency
m The LZ77 algorithm is asymptotically optimal (e.g., when using unary codes for d and /)

N — oo, L — 00 = /- H

B Proof can be found in [Cover, Thomas, “Elements of Information Theory” |

B In practice: Require really large search buffer sizes N

Implementation Complexity
m Decoder: Very low complexity (just copying characters)
® Encoder: Highly depends on buffer size N and actual implementation
=» Use suitable data structures such as search trees, radix trees, hash tables
=> Not necessary to find the “best match” (note: shorter match can actually be more efficient)

=> There are very efficient implementations for rather large buffer sizes (e.g., N = 32768)

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 9 /37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZSS

LZ77 Variant: The Lempel-Ziv-Storer-Szymanski Algorithm (LZSS)

already coded ~¢——— not yet coded
search buffer look-ahead buffer
(N symbols) cursor (L symbols)

>

We know the past but cannot control it. We control the futu\re but cannot know it.

1

(distance) 35 33 31 29 27 25 23 21 19 17 15 13 11 9 7 5 3

Changes relative to LZ77 Algorithm
At first, code a single bit b to indicate whether a match is found

For matches, don't transmit the following symbol

=» Message is coded as sequence of tuples (b, {d, ¢} |n)
® The indication bit b signals whether a match is found (b =1 — match found)

o If (b =0), then code next symbol n as literal

e If (b= 1), then code the match as distance-length pair {d, ¢} (with d € [1,N] and £ € [1,L])

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 10 / 37

LZSS Encoding

Toy Example:

Message:

search buffer

M

Mi

Mis

Miss
Miss|,
iss Miss
Mississi
ississip
ssissipp

Miss Mississippi
look-ahead (b, {d 5} | n)
Miss (0,M)
iss (0,1)
ss M (0,8)
suMi (1,1,1)
LuMis (0,u)
Miss (1,5,4)
issi (1,3,4)
ppi (0.p)
pi (1,1,1)
i (1,3,1)

Y

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding

original message:
® 16 characters (8 bits per symbols)
=» 128 bits (16 x 8 bits)

LZSS configuration:
® search buffer of N = 8 symbols
® |ook-ahead buffer of L = 4 symbols

coded representation (fixed-length):
= 5 literals (5 x 9 bits)
=» 5 matches (5 X 6 bits)
=» 75 bits (41% bit savings)

11 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZSS

Toy Example: LZSS Decoding

Coded representation: (0,M) (0,1) (0,s) (1,1,1) (0,u) (1,5,4) (1,3,4) (0,p) (1,1,1) (1,3,1)

Decode message: Miss Mississippi

search buffer (b, {d, £}|n)

decoded phrase

(0,m)
M (0,1i)
Mi (0,s)
Mis (1,1,1)
Miss (0,u)
Miss,, (1,5,4)
iss Missfi (1,3,4)
Mississi (0,p)
ississip (1,1,1)
sissipp (1,3,1)

C o n k=

Miss

issl (note: copy symbol by symbol)
P

p

il

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 12 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / DEFLATE

The DEFLATE Algorithm: Combining LZSS with Huffman Coding

The Concept of DEFLATE
m Pre-process message/file/symbol sequence using the LZSS algorithm (remove dependencies)

® Entropy coding of tuples (b, {d, ¢} | n) using Huffman coding

Details of DEFLATE Format
® Input as interpreted as sequence of bytes (alphabet size of 256)
m | 7SS configuration: Search buffer of N = 32768, look-ahead buffer of L = 258

® Input data are coded using variable-length blocks (for optimizing the Huffman coding)

3-bit block header (at start of each block)

1 bit 0 there are blocks that follow the current block
1 this is the last block of the file / data stream

2 bits 00 uncompressed block (number of bytes in block is coded after block header, max. 65k)
01 compressed block using pre-defined Huffman tables
10 compressed block with transmitted Huffman tables (most frequently used type)
11 reserved (forbidden)

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 13 / 37

The DEFLATE Format: Two Huffman Tables

Main Huffman table with 288 codewords Huffman table for distance
index n meaning (additional codewords follow for n = 257 ... 285) n distance d bits for z
0-255 literal with ASCII code being equal to n 0-3 d=1+n
4 d=5+=z 1
256 end-of-block (last symbol of a block) 5 d=74z 1
257-264 match with £ = (n — 254) o Z = i’;jz :
265-268 match with £ =2-(n—260) +1+x (1 extra bit for x) 8 d—17 i 2
269-272 match with £ =4 -(n—265)+ 3+ x (2 extra bits for x) . : :
273-276 match with £ =8 (n—269) +3+ x (3 extra bits for x) 2'6 d : 8103 + 1'2
. . = z
277-280 match w!th £=16-(n—273)+3+x (4 extra b!ts for x) 27 d—12289 4+ z 12
281-284 match with £ =32-(n—277) + 3+ x (5 extra bits for x) 28 d=—16385+z 13
285 match with ¢ = 258 29 d=24577+z 13
286—-287 reserved (forbidden codeword) 30-31 reserved
Note 1: The values for x are coded using fixed-length codes. Note: The values for z are coded
Note 2: The match size must be in range £ = 3 ... 258. using fixed-length codes.

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 14 / 37

The DEFLATE Algorithm in Practice

Encoding and Decoding

m Decoding: Straightforward (follow format specification)

® Encoding: Can trade-off coding efficiency and complexity
=> Fixed pre-defined or dynamic Huffman tables
= Determination of suitable block sizes

=» Simplified search for finding best matches

Applications
B One the most used algorithms in practice
=> Archive formats: Library zlib, ZIP, gzip, PKZIP, Zopfli, CAB
=> Lossless image coding: PNG, TIFF
=» Documents: OpenDocument, PDF
=» Cryptography: Crypto++

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 15 / 37

LZ77 Variant: Lempel-Ziv-Markov Chain Algorithm (LZMA)

The Concept of LZMA
m Pre-process byte sequence using an LZ77 variant (similar to LZSS, but with special cases)

m Entropy coding of resulting bit sequence using a range encoder (adaptive binary arithmetic coding)

Improvements over DEFLATE
m Most important: Context-based adaptive binary arithmetic coding of bit sequences
m Larger search buffer of up to N = 4294967 296 (32 bit), look-ahead buffer of L = 273

m Special codes for using same distances as for one of the last four matches
Applications of LZMA

B Next generation file compressors
= 7zip, xv, lzip, ZIPX

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 16 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZMA

LZMA: Mapping of Byte Sequences to Bit Sequences

Code for single byte sequence (match or literal)

0 + (byte) Direct encoding of next byte (no match)
10 4+ ¢4+ d Conventional match (followed by codes for length ¢ and distance d)

1100 Match of length ¢ = 1, distance d is equal to last used distance
1101 + ¢ Match of length ¢, distance d is equal to last used distance
1110 + ¢ Match of length ¢, distance d is equal to second last used distance
11110+ ¢ Match of length ¢, distance d is equal to third last used distance
11111+ ¢ Match of length ¢, distance d is equal to fourth last used distance
Code for length ¢ Code for distance d
0 + (3 bits) Lengthinrange £=2...9 ® 6 bits for indicating “distance slot”
10+ (3 bits) Length in range £ =10...17 o followed by 0-30 of bits (depending on slot)

11+ (8 bits) Length in range ¢ = 18...273

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 17 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZMA

LZMA: Entropy Coding of Bit Sequence after LZ77 Variant

Entropy Coding of Bit Sequences
m Context-based Adaptive Binary Arithmetic Coding (called range encoder)
m Multiple adaptive binary probability models + bypass mode (probability 0.5)
m Sophisticated context modeling: Probability model for next bit is chosen based on ...
® type of bit, value of preceding byte, preceding bits of current byte,
e type of preceding byte sequences, ...

Binary Arithmetic Coding Engine
m 11 bits of precision for binary probability masses (only store pg, since p; = 211 — pg)
m 32 bits of precision for interval width

m Probability models are updated according to

P+ (2" —po)>5) ¢ bit=0
Po = po — (po > 5) ©obit=1

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 18 / 37

Dictionary-based Coding / The LZ78 Algorithms and a Selected Variant / LZ78

The Lempel-Ziv 1978 Algorithm (LZ78)

Main Difference to LZ77
® Dictionary is not restricted to preceding N symbols

m Dictionary is constructed during encoding and decoding

The LZ78 Algorithm
® Starts with an empty dictionary
m Next variable-length symbol sequence as coded by tuple {k, n}
® k: Index for best match in dictionary (or “0" if no match is found)
® n: Next symbol (similar to LZ77)

m After coding a tuple {k, n}, the represented phrase is added to the dictionary

Number of Bits for Dictionary Index
® Number of bits nx for dictionary index depends in dictionary size
ng = [Iogz(l + dictionary size)—‘
® |n practice: Dictionary is reset after it becomes too large

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 19 / 37

Toy Example: LZ78 Encoding

phrase output bits dictionary

Message:
t (o,t) 8 1'%
h (0,h) 9 2:h thinking things through
i (0,i) 10 3:i
n (o,n) 10 4:n
k (0,x) 11 5:k
in (3,n) 11 6:in Result:
g gg’gg ﬁ ; g ® Original message: 184 bits (23 bytes)
Eh (1:1:) 12 9 Eh ® Required 177 bits in total
ing (6,g) 12 10:ing
S (o,s) 12 1l:s
ut (8,t) 12 12: 4t
hr (2,r) 12 13:hr Remember: Number of bits for dictionary index k
0 (0,0) 12 14:0
u (0,u) 12 15:u ne = [Iog 1 + dictionary size W
gh (7,h) 12 16:gh o)

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 20 / 37

Toy Example: LZ78 Decoding

input phrase dictionary

(0,t) & 1:t

(0,h) & 2:h

(0,i) i 3:i

(0,n) m 4:n

(0,x) k 5k Decoded Message:
(3,n) im 6:in L .
(0,g) & 78 thinking things through
(0,u) U 8:u

(1,h) th 9:th

(6,g) ing 10: ing

(0,s) s 11:s

(8,t) ut 12: .t

(2,r) hr 13: hr

(0,0) Do 14:0

(O,u) wm 15:u

(7,h) gh 16: gh

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 21 / 37

LZ78 Variant: The Lempel-Ziv-Welch Algorithm (LZW)

Main Difference to LZ78
® Dictionary is initialized with all strings of length one (i.e., all byte codes)

® Next symbol is not included in code

The LZW Algorithm
® Send code for dictionary entry that matches start of remaining sequence
m After sending a code, a new dictionary entry is added that consists of
® the phrases that was just coded followed by

® the next symbol in the message

Applications using the LZW Algorithm
m Unix file compression tool compress
® |mage coding format GIF

®m Optional compression mode in PDF and TIFF

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 22 / 37

Toy Example: LZW Encoding

phrase next output dictionary
t h <116> 256: th Message:
h i <104> 257: hi
i n <105> 258: in thinking things, through
n k <110> 259: nk
k i <107> 260: ki
in g <268> 261: ing
f i <iggz 222 EE Pre-initialized dictionary:
th i <256> 264: thi e All byte codes: <0> ... <255>
ing s <261> 265: ings
s U <115> 266: sy
ut h <263> 267: th
h r <104> 268: hr
r o <114> 269: 1o Result:
o u <111> 270: ou ® Original message: 184 bits (23 bytes)
- D e 271: ug ® Required 162 bits (18 x 9 bits)
g h <103> 272: gh
h <104> 273: h

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 23 / 37

Toy Example: LZW Decoding

input output dictionary conjecture

<116> t 256: t7

<104> h 256: th 257: h7?

<105> i 257: hi 258: i? Message:

<110> n 258: in 259: n? o

07>k 259: nk 260: k7 thinking things,through
<258> in 260: ki 261: in?

<103> g 261: ing 262: g7

<32> U 262: g 263: 7

<256> th 263: ut 264: th? Pre-initialized dictionary:

<261> i 264: thi 265: ing?
e * e ® All byte codes: <0> ... <255>

<115> 265: ings 266: s7?
<263> t 266: sy 267: t?
<104> 267: ,th 268: h?

s
(]}
h
<114> r 268: hr 269: r7?
<111> o 269: ro 270: o7
<117> u 270: ou 271: u?
<103> g 271: ug 272: g7
<104> h 272: gh 273: h7?

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 24 / 37

Dictionary-based Coding / The LZ78 Algorithms and a Selected Variant / LZW

LZW: The K-Omega-K Problem
Property of LZW Algorithm

m Decoder is one step behind encoder in constructing dictionary
®m Encoder might send code for not yet completed dictionary entry

Example: Coding of sequence “...cXYZcXYZca..."

encoder decoder

phrase next output dictionary input output dictionary conjecture
<300>: cXYZ <300>: cXYZ

cXYZ c <300> <400>: cXYZc <300> cXYZ <400>: cXYZ?

cXYZc a <400> <401>: cXYZca <400> cXYZ? (cXYZ? must be cXYZc)

How can the decoder correctly decode in such a case?
® Incomplete dictionary entry is last added entry
m This entry is used only if the first symbol of new sequence is the last symbol of incomplete entry
=» Last symbol must be equal to first symbol ! (in our example: "cXYZ?" ="cXYZc")

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 25 / 37

The Burrows-Wheeler Transform (BWT)

Create all rotations of the original message
Sort all rotations in lexicographical order

Output: Last column of the sorted block + index of original message (in sorted block)

Example: Message ‘“BANANAMAN”

BANANAMAN AMANBANAN
ANANAMANB ANAMANBAN
NANAMANBA ANANAMANB

rotations ANAMANBAN sorting ANBANANAM last column NNBMNAAAA

NAMANBANA BANANAMAN ,
AMANBANAN MANBANANA index index = 4
MANBANANA NAMANBANA
ANBANANAM NANAMANBA
NBANANAMA NBANANAMA

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 26 / 37

BWT: The Inverse Transform (Can we reconstruct the original message?)

index = 4 Given:
A N m Last column of sorted block “NNBMNAAAA"
A N ® Index of original message in sorted block (4)
A B
4 A M gi q
B N Decoding procedure
M A Create first column of sorted block (by sorting)
N A First symbol is given at transmitted index
N A Next symbol is obtained by
N A

© Look for corresponding symbol in last column
(i.e., same count of same letter)

decoded message: O Next symbol is at same position in first column
BANANAMAN (since following symbol is in first column)

B Continue procedure until all letters are decoded

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 27 / 37

BWT: Why Is It Useful for Compression ?

Property of BTW (for large blocks)

AMANBANAN ® Symbols on left side of sorted block are contexts
ANAMANBAN (symbols that follow last column in message)
ANANAMANB m Block lines are sorted according to the contexts
ANBANANAM m Likely that same symbol (last column) precedes same context
BANANAMAN (source with memory: conditional pmf with high peak)
MANBANANA =» Last column contains long sequences of identical symbols
NAMANBANA

NANAMANBA How to exploit this property ?

NBANANAMA ® |n following processing steps

m Example: Move-to-front transform (MTF)

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 28 / 37

The Move-To-Front Transform (MTF)

MTF: Map Symbols Sequences to Sequence of Unsigned Integers
Replace next symbol with its alphabet index
Update alphabet A by moving symbol to the front

Example: Sequence “NNBMNAAAA” (result of BWT for “BANANAMAN”)

NNBMNAAAA 13 A={ABCDEFGHIJKLMNOPQRSTUVWXYZ}
NNBMNAAAA 0 A={NABCDEFGHIJKLMOPQRSTUVWXYZ}
NNBMNAAAA 2 A={NABCDEFGHIJKLMOPQRSTUVWXYZ}
NNBMNAAAA 13 A={BNACDEFGHIJKLMOPQRSTUVWXYZ}

NNBMNAAAA 2 A={MBNACDEFGHIJKLOPQRSTUVWXYZ}
NNBMNAAAA 3 A={NMBACDEFGHIJKLOPQRSTUVWXYZ}
NNBMNAAAA 0 A={ANMBCDEFGHIJKLOPQRSTUVWXYZ}
NNBMNAAAA 0 A= {ANMBCDEFGHIJKLOPQRSTUVWXYZ}
NNBMNAAAA 0 A={ANMBCDEFGHIJKLOPQRSTUVWXYZ}

=> Effect: Many small values for sequences with long repetitions (e.g., results of a BWT)

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 29 / 37

File Compression Utility BZIP2

Main Components for Compression
® Run-length encoding of input data (special V2V code)
® Block-wise Burrows-Wheeler Transform (BWT)
®m Move-To-Front Transform (MTF) of BWT result
®m Run-length encoding of MTF result
® Dynamic Huffman coding

Some more details
m Block size for BWT/MTF of up to 900 kBytes
® Smart coding of Huffman tables
m Up to 6 Huffman tables per block
m Adaptive selection between Huffman tables (every 50 symbols)

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 30 / 37

Lossless Compression in Practice

Universal File Compressors

Marginal Huffman Coding
=> Very old Unix utility pack

Lempel-Ziv-Welch (LZW) Algorithm
= Old Unix utility compress

DEFLATE: Lempel-Ziv-Storer-Szymanski (LZSS) + Huffman Coding
=» File compressors ZIP, gzip, PKZIP, Zopfli, CAB

Lempel-Ziv-Markov-Chain (LZMA) with binary arithmetic coding
=» File compressors 7zip, xv, lzip

Block Sorting: Burrows-Wheeler & Move-To-Front Transform
=» File compressor bzip2

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 31/ 37

Lossless Audio Coding: Free Lossless Audio Codec (FLAC)

Basic Source Codec

Decompose audio file into variable-size blocks

=>» Block sizes determines capability for adaptation to signal statistics

Inter-channel decorrelation (invertible)
® For example: Stereo is coded as mid = (left + right)/2
side = (left — right)

Linear prediction (4 types)

© No prediction

O Prediction by a constant value

@ Prediction using pre-defined linear predictor (order 1 to 4)

@ Prediction using adaptive linear predictor (up to order 32)

B Entropy coding of prediction error samples

® Rice coding with adaptive Rice parameter selection

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 32 / 37

Lossless Image Coding: Portable Network Graphics (PNG)

Basic Source Codec

Separate Coding of Individual Color Planes

Prediction of Image Samples
=> Predictor is selected per image row

=» Five predictors are pre-defined (no adaptive prediction coefficients)

none direct coding of image samples
left prediction using left sample
above prediction using above sample

average prediction using rounded average of left and above sample

A~ W NN H O

Paeth non-linear prediction using left, above, and corner sample (most often use)

Entropy Coding of Prediction Error Samples
o DEFLATE algorithm:
=> Lempel-Ziv-Storer-Szymanski (LZSS) algorithm for dependency removal
= Huffman coding of LZSS output (adaptive Huffman tables)

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 33 / 37

Lossless Image Coding: JPEG-LS (Joint Photographic Experts Group)

Basic Source Codec
First prediction stage: LOCO Predictor
min(L,A) : C > max(L, A) L | x
X ={ max(L,A) : C<min(L,A)
L+ A—C : otherwise

Second order prediction using conditional mean E{ x | g1, g2, &3 }
® Given by clipped gradients (365 contexts after merging contexts with positive and negative signs)
g1 = max(—4, min(4,D — A))
g2 = max(—4, min(4,A — C))
g3 = max(—4, min(4,C — L))

Entropy Coding of Prediction Error Samples
® Rice codes

® Optional: Run-length coding (for uniform areas)

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 34 / 37

Lossless Compression in Practice

Comparison: Universal vs Specialized Compressors

text images

compression compression factor compression factor compression factor
gzip (DEFLATE) 2.60 1.20 1.09

lZip (LZMA) 3.53 1.41 1.17

bzip2 (BWT+MTF) 3.55 1.39 1.15

PNG (prediction) 1.62

FLAC (prediction) 1.82

=» Specialized Compressors achieve Higher Coding Efficiency

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 35 / 37

Summary of Lecture

Dictionary-based Coding
m L empel-Ziv 1977 and 1978 algorithms (LZ77, LZ78): Basis for many universal compressors
Lempel-Ziv-Storer-Szymanski (LZSS): Variant of LZ77
m | empel-Ziv-Welch (LZW): Variant of LZ78
®m DEFLATE: Combining LZSS with Huffman Coding
m Lempel-Ziv-Markov Chain Algorithm (LZMA): LZ78 Variant with Binary Arithmetic Coding

Lossless Coding using Block Sorting
® Burrows-Wheeler Transform (BWT)
®m Move-To-Front Transform (MFT)

Lossless Compression Applications
m Universal File Compression: compress, gzip, bezip2, Izip
m |ossless Audio Coding: FLAC
B Lossless Image Coding: PNG, JPEG-LS

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 36 / 37

B EEEEEEEE————————
Exercise: Lossless Image Compression Challenge (Part Il)

Improve your codec for lossless coding of 8-bit color images

m Try different things discussed in lectures and exercises

The following might be worth trying
m Prediction
e Simple prediction using left sample
® Fixed non-linear predictor like LOCO or Paeth predictor

® Line- or block-adaptive selection of predictor (e.g., between horizontal, vertical, ...)

m Entropy Coding of Prediction Errors
® Simple Rice codes (may be with adaptive Rice parameter)
e Arithmetic coding with adaptive marginal pmf

® Arithmetic coding with conditional pmf (very simple conditions)

Measure and provide the compressed file sizes for the Kodak test set!

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Dictionary-based Coding 37 / 37

	Dictionary-based Coding
	Last Lecture
	Dictionary-based Coding
	The LZ77 Algorithm and Selected Variants
	The LZ78 Algorithms and a Selected Variant

	Data Compression using Block Sorting
	Burrows-Wheeler Transform (BWT)
	Move-To-Front Transform (MTF)
	BZIP2

	Lossless Compression in Practice
	Summary
	Exercises

