
Dictionary-based Coding

not yet codedalready coded

We know the past but cannot control it. We control the future but...

search buffer
(N symbols)

look-ahead buffer
(L symbols)cursor

Last Lecture

Last Lecture: Predictive Lossless Coding

Predictive Lossless Coding
Simple and effective way to exploit dependencies between neighboring symbols / samples
Optimal predictor: Conditional mean (requires storage of large tables)

Affine and Linear Prediction
Simple structure, low-complex implementation possible
Optimal prediction parameters are given by solution of Yule-Walker equations
Works very well for real signals (e.g., audio, images, ...)

Efficient Lossless Coding for Real-World Signals
Affine/linear prediction (often: block-adaptive choice of prediction parameters)
Entropy coding of prediction errors (e.g., arithmetic coding)

Using marginal pmf often already yields good results

Can be improved by using conditional pmfs (with simple conditions)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 2 / 37

Dictionary-based Coding

Dictionary-Based Coding

Coding of Text Files
Very high amount of dependencies
Affine prediction does not work (requires linear dependencies)
Higher-order conditional coding should work well, but is way to complex (memory)
Alternative: Do not code single characters, but words or phrases

Example: English Texts

Oxford English Dictionary lists less than 230 000 words (including obsolete words)
On average, a word contains about 6 characters
Average codeword length per character would be limited by

¯̀<
1
6
·
⌈

log2 230 000
⌉
≈ 3.0

Including “phrases” would further increase coding efficiency

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 3 / 37

Dictionary-based Coding

Lempel-Ziv Coding

Universal Algorithms for Lossless Data Compression
Based on the work of Abraham Lempel and Jacob Ziv

Basic idea: Construct dictionary during encoding and decoding

Two Basic Variants

LZ77: Based on [Ziv, Lempel, “A Universal algorithm for sequential data compresion”, 1977]

Lempel-Ziv-Storer-Szymanski (LSZZ)

DEFLATE used in ZIP, gzip, PNG, TIFF, PDF, OpenDocument, ...
Lempel-Ziv-Markov Chain Algorithm (LZMA) used in 7zip, xv, lzip
...

LZ78: Based on [Ziv, Lempel, “Compression of individual sequences via variable-rate coding”, 1978]

Lempel-Ziv-Welch (LZW) used in compress, GIF, optional support in PDF, TIFF
...

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 4 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZ77

The Lempel-Ziv 1977 Algorithm (LZ77)

not yet codedalready coded

We know the past but cannot control it. We control the future but cannot know it. · · ·

search buffer
(N symbols)

look-ahead buffer
(L symbols)cursor

(d , `, n) = (15, 7, ’t’)
1357911131517192123252729313335(distance)

Basic Idea of the LZ77 Algorithm
Dictionary of variable-length sequences is given by the preceding N symbols (sliding window)

Find longest possible match for the sequence at the start of the look-ahead buffer

Message is coded as sequence of triples (d , `, n):

d : distance of best match from next symbol to be coded
` : length of matched phrase (match starts in search buffer but may reach into look-ahead buffer)
n : next symbol after matched sequence

If no match is found, then (1, 0, n) is coded (with n being the next symbol after the cursor)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 5 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZ77

Simplest Version: LZ77 Algorithm with Fixed-Length Coding

We know the past but cannot control it. We control the future but cannot know it. · · ·

search buffer
(N symbols)

look-ahead buffer
(L symbols)cursor

(d , `, n) = (15, 7, ’t’)
1357911131517192123252729313335(distance)

How Many Bits Do We Need ?
Distance d : Can take values from 1 ...N (we could actually code d − 1)

Require nd =
⌈
log2 N

⌉
bits

Length ` : Can take values from 0 ... L− 1 (`+ 1 symbols must fit into look-ahead buffer)
Require n` =

⌈
log2 L

⌉
bits

Next symbol n : Can be any symbol of the alphabet A with size |A|
Require nn =

⌈
log2 |A|

⌉
bits (in most applications : 8 bits)

The sizes of both the preview and the look-ahead buffer should be integer powers of two !
Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 6 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZ77

Toy Example: LZ77 Encoding

Message: Miss␣Mississippi

look-ahead
search buffer buffer (d, `, n)

Miss (1, 0, M)
M iss␣ (1, 0, i)
Mi ss␣M (1, 0, s)
Mis s␣Mi (1, 1, ␣)

Miss␣ Miss (5, 3, s)
iss␣Miss issi (3, 3, i)
Mississi ppi (1, 0, p)
ississip pi (1, 1, i)

original message:
16 characters (8 bits per symbols)
128 bits (16× 8 bits)

LZ77 configuration:
search buffer of N = 8 symbols
look-ahead buffer of L = 4 symbols

coded representation (fixed-length):
8 triples (d , `, n)

13 bits per triple (3 + 2 + 8 bits)
104 bits (19% bit savings)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 7 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZ77

Toy Example: LZ77 Decoding

Coded representation: (1, 0, M) (1, 0, i) (1, 0, s) (1, 1, ␣) (5, 3, s) (3, 3, i) (1, 0, p) (1, 1, i)

Decode message: Miss␣Mississippi

(done)

search buffer (d, `, n) decoded phrase

(1, 0, M) M
M (1, 0, i) i
Mi (1, 0, s) s

Mis (1, 1, ␣) s␣
Miss␣ (5, 3, s) Miss

iss␣Miss (3, 3, i) issi
Mississi (1, 0, p) p
ississip (1, 1, i) pi

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 8 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZ77

Coding Efficiency and Complexity of LZ77

Coding Efficiency
The LZ77 algorithm is asymptotically optimal (e.g., when using unary codes for d and `)

N →∞, L→∞ =⇒ ¯̀→ H̄

Proof can be found in [Cover, Thomas, “Elements of Information Theory”]

In practice: Require really large search buffer sizes N

Implementation Complexity
Decoder: Very low complexity (just copying characters)

Encoder: Highly depends on buffer size N and actual implementation

Use suitable data structures such as search trees, radix trees, hash tables

Not necessary to find the “best match” (note: shorter match can actually be more efficient)

There are very efficient implementations for rather large buffer sizes (e.g., N = 32 768)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 9 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZSS

LZ77 Variant: The Lempel-Ziv-Storer-Szymanski Algorithm (LZSS)

not yet codedalready coded

We know the past but cannot control it. We control the future but cannot know it. · · ·

search buffer
(N symbols)

look-ahead buffer
(L symbols)cursor

1357911131517192123252729313335(distance)

Changes relative to LZ77 Algorithm
1 At first, code a single bit b to indicate whether a match is found

2 For matches, don’t transmit the following symbol

Message is coded as sequence of tuples (b, {d , `} | n)

The indication bit b signals whether a match is found (b = 1 → match found)

If (b = 0), then code next symbol n as literal

If (b = 1), then code the match as distance-length pair {d , `} (with d ∈ [1,N] and ` ∈ [1, L])

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 10 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZSS

Toy Example: LZSS Encoding

Message: Miss␣Mississippi

search buffer look-ahead (b, {d , `} | n)
Miss (0, M)

M iss␣ (0, i)
Mi ss␣M (0, s)
Mis s␣Mi (1, 1, 1)
Miss ␣Mis (0, ␣)
Miss␣ Miss (1, 5, 4)

iss␣Miss issi (1, 3, 4)
Mississi ppi (0, p)
ississip pi (1, 1, 1)
ssissipp i (1, 3, 1)

original message:
16 characters (8 bits per symbols)
128 bits (16× 8 bits)

LZSS configuration:
search buffer of N = 8 symbols
look-ahead buffer of L = 4 symbols

coded representation (fixed-length):
5 literals (5× 9 bits)
5 matches (5× 6 bits)
75 bits (41% bit savings)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 11 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZSS

Toy Example: LZSS Decoding

Coded representation: (0, M) (0, i) (0, s) (1, 1, 1) (0, ␣) (1, 5, 4) (1, 3, 4) (0, p) (1, 1, 1) (1, 3, 1)

Decode message: Miss␣Mississippi

(done)

search buffer (b, {d , `} | n) decoded phrase

(0, M) M
M (0, i) i
Mi (0, s) s
Mis (1, 1, 1) s
Miss (0, ␣) ␣
Miss␣ (1, 5, 4) Miss

iss␣Miss (1, 3, 4) issi (note: copy symbol by symbol)
Mississi (0, p) p
ississip (1, 1, 1) p
sissipp (1, 3, 1) i

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 12 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / DEFLATE

The DEFLATE Algorithm: Combining LZSS with Huffman Coding

The Concept of DEFLATE
Pre-process message/file/symbol sequence using the LZSS algorithm (remove dependencies)

Entropy coding of tuples (b, {d , `} | n) using Huffman coding

Details of DEFLATE Format
Input as interpreted as sequence of bytes (alphabet size of 256)

LZSS configuration: Search buffer of N = 32 768, look-ahead buffer of L = 258
Input data are coded using variable-length blocks (for optimizing the Huffman coding)

3-bit block header (at start of each block)

1 bit 0 there are blocks that follow the current block
1 this is the last block of the file / data stream

2 bits 00 uncompressed block (number of bytes in block is coded after block header, max. 65k)
01 compressed block using pre-defined Huffman tables
10 compressed block with transmitted Huffman tables (most frequently used type)
11 reserved (forbidden)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 13 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / DEFLATE

The DEFLATE Format: Two Huffman Tables

Main Huffman table with 288 codewords

index n meaning (additional codewords follow for n = 257 ... 285)

0 – 255 literal with ASCII code being equal to n

256 end-of-block (last symbol of a block)

257 – 264 match with ` = (n − 254)
265 – 268 match with ` = 2 · (n − 260) + 1+ x (1 extra bit for x)
269 – 272 match with ` = 4 · (n − 265) + 3+ x (2 extra bits for x)
273 – 276 match with ` = 8 · (n − 269) + 3+ x (3 extra bits for x)
277 – 280 match with ` = 16 · (n − 273) + 3+ x (4 extra bits for x)
281 – 284 match with ` = 32 · (n − 277) + 3+ x (5 extra bits for x)

285 match with ` = 258

286 – 287 reserved (forbidden codeword)

Note 1: The values for x are coded using fixed-length codes.
Note 2: The match size must be in range ` = 3 ... 258.

Huffman table for distance

n distance d bits for z

0 – 3 d = 1+ n
4 d = 5+ z 1
5 d = 7+ z 1
6 d = 9+ z 2
7 d = 13+ z 2
8 d = 17+ z 4
...

...
...

26 d = 8 193+ z 12
27 d = 12 289+ z 12
28 d = 16 385+ z 13
29 d = 24 577+ z 13

30 – 31 reserved

Note: The values for z are coded
using fixed-length codes.

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 14 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / DEFLATE

The DEFLATE Algorithm in Practice

Encoding and Decoding
Decoding: Straightforward (follow format specification)

Encoding: Can trade-off coding efficiency and complexity
Fixed pre-defined or dynamic Huffman tables

Determination of suitable block sizes

Simplified search for finding best matches

Applications
One the most used algorithms in practice

Archive formats: Library zlib, ZIP, gzip, PKZIP, Zopfli, CAB
Lossless image coding: PNG, TIFF
Documents: OpenDocument, PDF
Cryptography: Crypto++
...

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 15 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZMA

LZ77 Variant: Lempel-Ziv-Markov Chain Algorithm (LZMA)

The Concept of LZMA
Pre-process byte sequence using an LZ77 variant (similar to LZSS, but with special cases)
Entropy coding of resulting bit sequence using a range encoder (adaptive binary arithmetic coding)

Improvements over DEFLATE
Most important: Context-based adaptive binary arithmetic coding of bit sequences
Larger search buffer of up to N = 4 294 967 296 (32 bit), look-ahead buffer of L = 273
Special codes for using same distances as for one of the last four matches

Applications of LZMA
Next generation file compressors
7zip, xv, lzip, ZIPX

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 16 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZMA

LZMA: Mapping of Byte Sequences to Bit Sequences

Code for single byte sequence (match or literal)

0 + (byte) Direct encoding of next byte (no match)
10 + ` + d Conventional match (followed by codes for length ` and distance d)

1100 Match of length ` = 1, distance d is equal to last used distance
1101 + ` Match of length `, distance d is equal to last used distance
1110 + ` Match of length `, distance d is equal to second last used distance
11110+ ` Match of length `, distance d is equal to third last used distance
11111+ ` Match of length `, distance d is equal to fourth last used distance

Code for length `

0 + (3 bits) Length in range ` = 2 ... 9
10+ (3 bits) Length in range ` = 10 ... 17
11+ (8 bits) Length in range ` = 18 ... 273

Code for distance d

6 bits for indicating “distance slot”
followed by 0–30 of bits (depending on slot)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 17 / 37

Dictionary-based Coding / The LZ77 Algorithm and Selected Variants / LZMA

LZMA: Entropy Coding of Bit Sequence after LZ77 Variant

Entropy Coding of Bit Sequences
Context-based Adaptive Binary Arithmetic Coding (called range encoder)
Multiple adaptive binary probability models + bypass mode (probability 0.5)
Sophisticated context modeling: Probability model for next bit is chosen based on ...

type of bit, value of preceding byte, preceding bits of current byte,

type of preceding byte sequences, ...

Binary Arithmetic Coding Engine
11 bits of precision for binary probability masses (only store p0, since p1 = 211 − p0)
32 bits of precision for interval width
Probability models are updated according to

p0 =

{
p0 +

(
(211 − p0)� 5

)
: bit = 0

p0 − (p0 � 5) : bit = 1

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 18 / 37

Dictionary-based Coding / The LZ78 Algorithms and a Selected Variant / LZ78

The Lempel-Ziv 1978 Algorithm (LZ78)

Main Difference to LZ77
Dictionary is not restricted to preceding N symbols
Dictionary is constructed during encoding and decoding

The LZ78 Algorithm
Starts with an empty dictionary
Next variable-length symbol sequence as coded by tuple {k, n}

k : Index for best match in dictionary (or “0” if no match is found)
n : Next symbol (similar to LZ77)

After coding a tuple {k, n}, the represented phrase is added to the dictionary

Number of Bits for Dictionary Index
Number of bits nk for dictionary index depends in dictionary size

nk =
⌈
log2(1+ dictionary size)

⌉
In practice: Dictionary is reset after it becomes too large

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 19 / 37

Dictionary-based Coding / The LZ78 Algorithms and a Selected Variant / LZ78

Toy Example: LZ78 Encoding

phrase output bits dictionary

t (0, t) 8 1 : t
h (0, h) 9 2 : h
i (0, i) 10 3 : i
n (0, n) 10 4 : n
k (0, k) 11 5 : k
in (3, n) 11 6 : in
g (0, g) 11 7 : g
␣ (0, ␣) 11 8 : ␣
th (1, h) 12 9 : th
ing (6, g) 12 10 : ing
s (0, s) 12 11 : s
␣t (8, t) 12 12 : ␣t
hr (2, r) 12 13 : hr
o (0, o) 12 14 : o
u (0, u) 12 15 : u
gh (7, h) 12 16 : gh

Message:

thinking␣things␣through

Result:
Original message: 184 bits (23 bytes)
Required 177 bits in total

Remember: Number of bits for dictionary index k

nk =
⌈

log2(1 + dictionary size)
⌉

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 20 / 37

Dictionary-based Coding / The LZ78 Algorithms and a Selected Variant / LZ78

Toy Example: LZ78 Decoding

input phrase dictionary

(0, t) t 1 : t
(0, h) h 2 : h
(0, i) i 3 : i
(0, n) n 4 : n
(0, k) k 5 : k
(3, n) in 6 : in
(0, g) g 7 : g
(0, ␣) ␣ 8 : ␣
(1, h) th 9 : th
(6, g) ing 10 : ing
(0, s) s 11 : s
(8, t) ␣t 12 : ␣t
(2, r) hr 13 : hr
(0, o) o 14 : o
(0, u) u 15 : u
(7, h) gh 16 : gh

Decoded Message:

thinking␣things␣through

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 21 / 37

Dictionary-based Coding / The LZ78 Algorithms and a Selected Variant / LZW

LZ78 Variant: The Lempel-Ziv-Welch Algorithm (LZW)

Main Difference to LZ78
Dictionary is initialized with all strings of length one (i.e., all byte codes)

Next symbol is not included in code

The LZW Algorithm
Send code for dictionary entry that matches start of remaining sequence

After sending a code, a new dictionary entry is added that consists of

the phrases that was just coded followed by

the next symbol in the message

Applications using the LZW Algorithm
Unix file compression tool compress
Image coding format GIF
Optional compression mode in PDF and TIFF

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 22 / 37

Dictionary-based Coding / The LZ78 Algorithms and a Selected Variant / LZW

Toy Example: LZW Encoding
phrase next output dictionary

t h <116> 256: th
h i <104> 257: hi
i n <105> 258: in
n k <110> 259: nk
k i <107> 260: ki
in g <258> 261: ing
g ␣ <103> 262: g␣
␣ t <32> 263: ␣t
th i <256> 264: thi
ing s <261> 265: ings
s ␣ <115> 266: s␣
␣t h <263> 267: ␣th
h r <104> 268: hr
r o <114> 269: ro
o u <111> 270: ou
u g <117> 271: ug
g h <103> 272: gh
h <104> 273: h

Message:

thinking␣things␣through

Pre-initialized dictionary:
All byte codes: <0> ... <255>

Result:
Original message: 184 bits (23 bytes)
Required 162 bits (18× 9 bits)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 23 / 37

Dictionary-based Coding / The LZ78 Algorithms and a Selected Variant / LZW

Toy Example: LZW Decoding
input output dictionary conjecture

<116> t 256: t?
<104> h 256: th 257: h?
<105> i 257: hi 258: i?
<110> n 258: in 259: n?
<107> k 259: nk 260: k?
<258> in 260: ki 261: in?
<103> g 261: ing 262: g?
<32> ␣ 262: g␣ 263: ␣?
<256> th 263: ␣t 264: th?
<261> ing 264: thi 265: ing?
<115> s 265: ings 266: s?
<263> ␣t 266: s␣ 267: ␣t?
<104> h 267: ␣th 268: h?
<114> r 268: hr 269: r?
<111> o 269: ro 270: o?
<117> u 270: ou 271: u?
<103> g 271: ug 272: g?
<104> h 272: gh 273: h?

Message:

thinking␣things␣through

Pre-initialized dictionary:
All byte codes: <0> ... <255>

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 24 / 37

Dictionary-based Coding / The LZ78 Algorithms and a Selected Variant / LZW

LZW: The K-Omega-K Problem

Property of LZW Algorithm
Decoder is one step behind encoder in constructing dictionary
Encoder might send code for not yet completed dictionary entry

Example: Coding of sequence “...cXYZcXYZca...”

encoder
phrase next output dictionary

<300>: cXYZ

cXYZ c <300> <400>: cXYZc
cXYZc a <400> <401>: cXYZca

decoder
input output dictionary conjecture

<300>: cXYZ

<300> cXYZ <400>: cXYZ?
<400> cXYZ? (cXYZ? must be cXYZc)

How can the decoder correctly decode in such a case ?
Incomplete dictionary entry is last added entry
This entry is used only if the first symbol of new sequence is the last symbol of incomplete entry
Last symbol must be equal to first symbol ! (in our example: “cXYZ?” = ”cXYZc”)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 25 / 37

Data Compression using Block Sorting / Burrows-Wheeler Transform (BWT)

The Burrows-Wheeler Transform (BWT)

1 Create all rotations of the original message

2 Sort all rotations in lexicographical order

3 Output: Last column of the sorted block + index of original message (in sorted block)

Example: Message “BANANAMAN”

rotations−−−−−→

B A N A N A M A N
A N A N A M A N B
N A N A M A N B A
A N A M A N B A N
N A M A N B A N A
A M A N B A N A N
M A N B A N A N A
A N B A N A N A M
N B A N A N A M A

sorting−−−−→

A M A N B A N A N
A N A M A N B A N
A N A N A M A N B
A N B A N A N A M
B A N A N A M A N
M A N B A N A N A
N A M A N B A N A
N A N A M A N B A
N B A N A N A M A

last column−−−−−−→
index

N N B M N A A A A

index = 4

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 26 / 37

Data Compression using Block Sorting / Burrows-Wheeler Transform (BWT)

BWT: The Inverse Transform (Can we reconstruct the original message?)

index = 4
A
A
A
A
B
M
N
N
N

N
N
B
M
N
A
A
A
A

4

decoded message:
B A N A N A M A N

Given:
Last column of sorted block “N N B M N A A A A”

Index of original message in sorted block (4)

Decoding procedure
1 Create first column of sorted block (by sorting)

2 First symbol is given at transmitted index

3 Next symbol is obtained by

a Look for corresponding symbol in last column
(i.e., same count of same letter)

b Next symbol is at same position in first column
(since following symbol is in first column)

4 Continue procedure until all letters are decoded

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 27 / 37

Data Compression using Block Sorting / Burrows-Wheeler Transform (BWT)

BWT: Why Is It Useful for Compression ?

A M A N B A N A N
A N A M A N B A N
A N A N A M A N B
A N B A N A N A M
B A N A N A M A N
M A N B A N A N A
N A M A N B A N A
N A N A M A N B A
N B A N A N A M A

Property of BTW (for large blocks)
Symbols on left side of sorted block are contexts
(symbols that follow last column in message)

Block lines are sorted according to the contexts

Likely that same symbol (last column) precedes same context
(source with memory: conditional pmf with high peak)

Last column contains long sequences of identical symbols

How to exploit this property ?
In following processing steps
Example: Move-to-front transform (MTF)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 28 / 37

Data Compression using Block Sorting / Move-To-Front Transform (MTF)

The Move-To-Front Transform (MTF)

MTF: Map Symbols Sequences to Sequence of Unsigned Integers
1 Replace next symbol with its alphabet index
2 Update alphabet A by moving symbol to the front

Example: Sequence “NNBMNAAAA” (result of BWT for “BANANAMAN”)

N N B M N A A A A 13 A = {A B C D E F G H I J K L M N O P Q R S T U V W X Y Z}
N N B M N A A A A 0 A = {N A B C D E F G H I J K L M O P Q R S T U V W X Y Z}
N N B M N A A A A 2 A = {N A B C D E F G H I J K L M O P Q R S T U V W X Y Z}
N N B M N A A A A 13 A = {B N A C D E F G H I J K L M O P Q R S T U V W X Y Z}
N N B M N A A A A 2 A = {M B N A C D E F G H I J K L O P Q R S T U V W X Y Z}
N N B M N A A A A 3 A = {N M B A C D E F G H I J K L O P Q R S T U V W X Y Z}
N N B M N A A A A 0 A = {A N M B C D E F G H I J K L O P Q R S T U V W X Y Z}
N N B M N A A A A 0 A = {A N M B C D E F G H I J K L O P Q R S T U V W X Y Z}
N N B M N A A A A 0 A = {A N M B C D E F G H I J K L O P Q R S T U V W X Y Z}

Effect: Many small values for sequences with long repetitions (e.g., results of a BWT)
Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 29 / 37

Data Compression using Block Sorting / BZIP2

File Compression Utility BZIP2

Main Components for Compression
Run-length encoding of input data (special V2V code)
Block-wise Burrows-Wheeler Transform (BWT)
Move-To-Front Transform (MTF) of BWT result
Run-length encoding of MTF result
Dynamic Huffman coding

Some more details
Block size for BWT/MTF of up to 900 kBytes
Smart coding of Huffman tables
Up to 6 Huffman tables per block
Adaptive selection between Huffman tables (every 50 symbols)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 30 / 37

Lossless Compression in Practice

Universal File Compressors

Marginal Huffman Coding
Very old Unix utility pack

Lempel-Ziv-Welch (LZW) Algorithm
Old Unix utility compress

DEFLATE: Lempel-Ziv-Storer-Szymanski (LZSS) + Huffman Coding
File compressors ZIP, gzip, PKZIP, Zopfli, CAB

Lempel-Ziv-Markov-Chain (LZMA) with binary arithmetic coding
File compressors 7zip, xv, lzip

Block Sorting: Burrows-Wheeler & Move-To-Front Transform
File compressor bzip2

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 31 / 37

Lossless Compression in Practice

Lossless Audio Coding: Free Lossless Audio Codec (FLAC)

Basic Source Codec

1 Decompose audio file into variable-size blocks
Block sizes determines capability for adaptation to signal statistics

2 Inter-channel decorrelation (invertible)
For example: Stereo is coded as mid = (left+ right)/2

side = (left− right)

3 Linear prediction (4 types)
a No prediction
b Prediction by a constant value
c Prediction using pre-defined linear predictor (order 1 to 4)
d Prediction using adaptive linear predictor (up to order 32)

4 Entropy coding of prediction error samples
Rice coding with adaptive Rice parameter selection

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 32 / 37

Lossless Compression in Practice

Lossless Image Coding: Portable Network Graphics (PNG)

Basic Source Codec

1 Separate Coding of Individual Color Planes

2 Prediction of Image Samples
Predictor is selected per image row

Five predictors are pre-defined (no adaptive prediction coefficients)

0 none direct coding of image samples
1 left prediction using left sample
2 above prediction using above sample
3 average prediction using rounded average of left and above sample
4 Paeth non-linear prediction using left, above, and corner sample (most often use)

3 Entropy Coding of Prediction Error Samples
DEFLATE algorithm:
Lempel-Ziv-Storer-Szymanski (LZSS) algorithm for dependency removal
Huffman coding of LZSS output (adaptive Huffman tables)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 33 / 37

Lossless Compression in Practice

Lossless Image Coding: JPEG-LS (Joint Photographic Experts Group)

Basic Source Codec
1 First prediction stage: LOCO Predictor

X̂ =

min(L,A) : C ≥ max(L,A)

max(L,A) : C ≤ min(L,A)

L+ A− C : otherwise

C A D

L X

2 Second order prediction using conditional mean E{ x | g1, g2, g3 }
Given by clipped gradients (365 contexts after merging contexts with positive and negative signs)

g1 = max(−4,min(4,D − A))

g2 = max(−4,min(4,A− C))

g3 = max(−4,min(4,C − L))

3 Entropy Coding of Prediction Error Samples
Rice codes

Optional: Run-length coding (for uniform areas)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 34 / 37

Lossless Compression in Practice

Comparison: Universal vs Specialized Compressors

text images audio

compression compression factor compression factor compression factor

gzip (DEFLATE) 2.60 1.20 1.09
lzip (LZMA) 3.53 1.41 1.17
bzip2 (BWT+MTF) 3.55 1.39 1.15

PNG (prediction) 1.62
FLAC (prediction) 1.82

Specialized Compressors achieve Higher Coding Efficiency

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 35 / 37

Summary

Summary of Lecture

Dictionary-based Coding
Lempel-Ziv 1977 and 1978 algorithms (LZ77, LZ78): Basis for many universal compressors
Lempel-Ziv-Storer-Szymanski (LZSS): Variant of LZ77
Lempel-Ziv-Welch (LZW): Variant of LZ78
DEFLATE: Combining LZSS with Huffman Coding
Lempel-Ziv-Markov Chain Algorithm (LZMA): LZ78 Variant with Binary Arithmetic Coding

Lossless Coding using Block Sorting
Burrows-Wheeler Transform (BWT)
Move-To-Front Transform (MFT)

Lossless Compression Applications
Universal File Compression: compress, gzip, bezip2, lzip
Lossless Audio Coding: FLAC
Lossless Image Coding: PNG, JPEG-LS

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 36 / 37

Exercises

Exercise: Lossless Image Compression Challenge (Part II)

Improve your codec for lossless coding of 8-bit color images
Try different things discussed in lectures and exercises

The following might be worth trying
Prediction

Simple prediction using left sample

Fixed non-linear predictor like LOCO or Paeth predictor

Line- or block-adaptive selection of predictor (e.g., between horizontal, vertical, ...)

Entropy Coding of Prediction Errors
Simple Rice codes (may be with adaptive Rice parameter)

Arithmetic coding with adaptive marginal pmf

Arithmetic coding with conditional pmf (very simple conditions)

Measure and provide the compressed file sizes for the Kodak test set!

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Dictionary-based Coding 37 / 37

	Dictionary-based Coding
	Last Lecture
	Dictionary-based Coding
	The LZ77 Algorithm and Selected Variants
	The LZ78 Algorithms and a Selected Variant

	Data Compression using Block Sorting
	Burrows-Wheeler Transform (BWT)
	Move-To-Front Transform (MTF)
	BZIP2

	Lossless Compression in Practice
	Summary
	Exercises

