
Scalar Quantization



Last Lecture

Last Lectures: Lossless Coding

Variable-length Coding
Scalar codes, conditional codes, block codes, V2V codes (using codeword tables)
For given pmf: Huffman algorithm yields optimal codeword table
Problem: Codeword tables become too large for practical application of block codes

Arithmetic Coding
No codeword table: On-the-fly encoding and decoding
Sub-optimal block code for arbitrarily large block sizes N (very close to optimum for N � 1)
Straightforward combination with conditional and adaptive probability models

Reduction of Inter-Symbols Dependencies before Entropy Coding
Affine and linear prediction: Suitable for reducing dependencies in audio, image, video data
Lempel-Ziv coding or block sorting: Suitable for text, source code, general files
Lossless coding in practice: Prediction followed by entropy coding of prediction errors

Lempel-Ziv coding or block sorting followed by entropy coding
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Lossy Source Coding

Lossy Coding

original s

decoder

reconstructed s′ 6= s

encoder
bitstream

bit rate R

distortion D

Lossy coding is characterized by two aspects:
Bit rate R: Average number of bits per sample (or per time unit)
Distortion D: Measure for deviation between original signal s and

reconstructed signal s′

Design Goal: Smallest possible bit rate for given maximum distortion, or
Smallest possible distortion for given maximum bit rate
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Lossy Source Coding

Lossy Coding: Bit Rate

original s

encoder
bitstream

bit rate R

Bit Rate R:
Images: Average number of bits per sample
Audio or video: Average number of bits per time units

Often used Approximation:
Assume that we have a close to optimal entropy coding (e.g., arithmetic coding)
Bit rate = Entropy of symbols that are actually transmitted
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Lossy Source Coding

Lossy Coding: Distortion

original s

decoder

reconstructed s′ 6= s

encoder
bitstream

distortion D

Distortion Measures used in Practice
General p-norm distortion:

Dp =
1
N

N∑
k=1

∣∣sk − s ′k
∣∣p or Dp = E

{ ∣∣S − S ′
∣∣p }

Most often: Mean squared error (MSE)

D2 =
1
N

N∑
k=1

(
sk − s ′k

)2 or D2 = E
{(

S − S ′
)2 }
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Lossy Source Coding

MSE Distortion as Signal-To-Noise Ratio (SNR)

Signal-to-Noise Ratio (SNR)
Logarithmic ratio of variance and MSE distortion

SNR = 10 · log10

(
σ2

D2

)
Measured in decibel (dB)

Advantages of using SNR
Independent of signal variance

Easy interpretation of differences

∆SNR = SNRa − SNRb = −10 · log10
Da

Db

Examples: Da = Db → ∆SNR ≈ 0.0 dB
Da = Db/

√
2 → ∆SNR ≈ 1.5 dB

Da = Db/2 → ∆SNR ≈ 3.0 dB
Da = Db/4 → ∆SNR ≈ 6.0 dB
Da = Db/8 → ∆SNR ≈ 9.0 dB

R

D

R

SNR
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Mathematical Basics

Probabilistic Modeling of Sources

Source Coding in Practice
Encoder and decoder are computer programs
Actual input signals are discrete-time and discrete-amplitude signals

Real-world signals
In most cases: Continuous-time and continuous-amplitude signals
Discrete signals are obtained by sampling and quantization
Typical scenarios: Initial quantization has negligible effect on source coding

Theoretical Analysis of Lossy Source Coding
Will mostly use models for discrete-time and continuous-amplitude signals
Main reason: Mathematical tractability
Interpretation: Consider signal before initial quantization
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Mathematical Basics / Continuous Random Variables

Review: Random Variables and Cumulative Distribution Function (CDF)

Random Variable
Function X (ζ) of the sample space O that assigns a real value x = X (ζ)

to each possible outcome ζ ∈ O of a random experiment

Cumulative Distribution Function (cdf)
Cumulative distribution function FX (x) of a random variable X

FX (s) = P(X ≤ x) = P( {ζ : X (ζ) ≤ x} )

Joint cdf of two random variables X and Y

FXY (x , y) = P(X ≤ x ,Y ≤ y)

Conditional cdf of a random variable X given another random variable Y

FX |Y (x | y) = P(X ≤ x |Y ≤ y) =
P(X ≤ x ,Y ≤ y)

P(Y ≤ y)
=

FXY (x , y)

FY (y)
Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization 8 / 52



Mathematical Basics / Continuous Random Variables

Review: Examples of Cumulative Distribution Functions

x

FX (x)

Staircase function
Random variable X
can only take a
countable number
of values

Discrete
random variable

x

FX (x)

Continuous function
Random variable X
can take all values
inside one or more
non-zero intervals

Continuous
random variable

x

FX (x)

Mixed type
Random variable X
can take all values
inside one or more
non-zero intervals and
a countable number of
additional values
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Mathematical Basics / Continuous Random Variables

Continuous Random Variables and Probability Density Function (PDF)

Continuous Random Variables
A random variable X is called a continuous random variable
if and only if its cdf FX (x) is a continuous function

Probability Density Function
Probability density function (pdf) of a continuous random variable S

fX (x) =
∂

∂x
FX (x) ⇐⇒ FX (x) =

x∫
−∞

fX (t) dt

Properties: fX (x) ≥ 0, ∀x∫∞
−∞ fX (t) dt = 1

P(a < X ≤ b) =
∫ b

a
fX (t) dt
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Mathematical Basics / Continuous Random Variables

Examples for Continuous Distributions (Zero Mean)

Uniform Gaussian Laplacian

f (x) =

{ 1
2a : |x | ≤ a

0 : otherwise
f (x) = 1√

2πσ2 e
− (x−µ)2

2σ2 f (x) = 1√
2σ2 e

−
√

2
σ2 |x−µ|

x

f (x)

x

f (x)

x

f (x)

x

F (x)

x

F (x)

x

F (x)
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Mathematical Basics / Continuous Random Variables

Generalized Gaussian Distribution

Shape parameter β ∈ (0,∞):

f (x) =
β

2α Γ(1/β)
e−( |x−µ|

α )
β

with Γ(x) =

∫ ∞
0

e−t tx−1 dt

x

f (x)

x

F (x)
β = 0.5

β = 1.0 (Laplace)

β = 2.0 (Gauss)

β = 4.0

β →∞ (Uniform)

Suitable approximation for many distributions
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Mathematical Basics / Continuous Random Variables

Joint and Conditional Probability Density Function

Joint Probability Density Function
Joint pdf of two random variables X and Y

fXY (x , y) =
∂2

∂x ∂y
FXY (x , y)

Conditional Probability Density Function
Conditional pdf of a random variable X given another random variable Y

fX |Y (x | y) =
∂

∂x
FX |Y (x | y) =

∂

∂x

FXY (x , y)

FY (y)
=

∂2

∂x ∂y FXY (x , y)
∂
∂y FY (y)

=
fXY (x , y)

fY (y)
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Mathematical Basics / Expected Values

Expected Values for Continuous Random Variables

Expected Values
Expected value of a function g(X ) of a continuous random variable X

E{ g(X ) } = EX{ g(X ) } =

∫ ∞
−∞

g(x) fX (x) dx

Expected value of function g(X ,Y ) of two continuous random variables X and Y

E{ g(X ,Y ) } = EXY { g(X ,Y ) } =

∫ ∞
−∞

∫ ∞
−∞

g(x , y) fXY (x , y) dx dy

Conditional Expected Values
Expected value of function g(X ) of a random variable X given another random variable Y

E{ g(X ) |Y } =

∫ ∞
−∞

g(x) fX |Y (x |Y ) dx (is another random variable)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization 14 / 52



Mathematical Basics / Expected Values

Properties of Expected Values

same properties as in discrete case

Important Properties
Linearity of expected values

E{ a X + b Y } = a · E{X }+ b · E{Y }

For independent random variables X and Y

E{XY } = E{X } E{Y }

Iterative expectation rule

E{E{ g(X ) |Y } } = E{ g(X ) }
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Mathematical Basics / Expected Values

Important Expected Values

Mean µX of a random variable X

µX = E{X } =

∫ ∞
−∞

x · fX (x) dx

Variance σ2
X of a random variable X

σ2
X = E

{
(X − E{X })2

}
=

∫ ∞
−∞

(x − µX )2 · fX (x) dx

Covariance σ2
XY of two random variables X and Y , and correlation coefficient φXY

σ2
XY = E

{
(X − E{X }) (Y − E{Y })

}
=

∫ ∞
−∞

∫ ∞
−∞

(x − µx)(y − µy ) · fXY (x , y) dx dy

φXY =
σ2
XY√

σ2
X · σ2

Y

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization 16 / 52



Mathematical Basics / Continuous Random Processes

Continuous Random Processes

Discrete-Time Random Process
Series of random experiments at time instants tn, with n = 0, 1, 2, · · ·

For each experiment: Random variable Xn = X (tn)

Random process: Series of random variables

X = {X0,X1,X2, · · · } = {Xn}

Discrete-Time Continuous-Amplitude Random Process
Random variables Xn are continuous random variables

Type of random processes we consider for analyzing lossy coding
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Mathematical Basics / Continuous Random Processes

Statistical Properties of Continuous Random Processes

Characterization of Statistical Properties
Consider N-dimensional random vector

X (N)
k = {Xk ,Xk+1, · · · ,Xk+N−1}

N-th order joint cdf

F
(N)
k (x) = P

(
X (N)

k ≤ x
)

= P(Xk ≤ x0,Xk+1 ≤ x1, · · · ,Xk+N−1 ≤ xN−1)

N-th order joint pdf

f
(N)
k (x) =

∂N

∂x0 · · · ∂xN−1
F

(N)
k (x)

Also: Conditional cdfs and conditional pdfs
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Mathematical Basics / Continuous Random Processes

Models for Random Processes

Stationary Random Processes
Statistical properties are invariant to a shift in time
In this course: Typically restrict our considerations to stationary processes

Memoryless Random Processes
All random variables Xn are independent of each other

Independent and Identically Distributed (IID) Random Processes
Random processes that are stationary and memoryless

Markov Processes
Markov property: Future outcomes do only depend on present outcome, but not on past outcomes

F (xn | xn−1, xn−2, xn−3, · · · ) = F (xn | xn−1)

f (xn | xn−1, xn−2, xn−3, · · · ) = f (xn | xn−1)

Simple model for random processes with memory
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Mathematical Basics / Continuous Random Processes

Autoregressive (AR) Processes

General AR(p) Model
Autoregressive model of order p for random variables Xn with mean µ

Xn = Zn + µ+

p∑
k=1

%k · (Xn−k − µ)

where Z = {Zn} is a zero-mean iid process (innovation process)
and %1, · · · , %p are the model parameters

Special case: AR(1) model
Autoregressive model of order p = 1

Xn = Zn + µ+ % · (Xn−1 − µ)

Completely specified by mean µ, correlation coefficient %, and pdf fZ (z) of iid process {Zn}
Important type of stationary Markov process for continuous random processes
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Mathematical Basics / Continuous Random Processes

Gaussian Processes

Gaussian Random Process
All finite collections of random variables Xn are Gaussian random vectors
N-th order pdf is given by N-th order auto-covariance matrix CN and mean µ

fX (x) =
1√

(2π)N |CN |
e−

1
2 (x−µ)T C−1

N (x−µ) with µ =

 µ
...
µ


Stationary Gauss-Markov Process

Stationary Markov process that is also a Gaussian random process
Can be constructed with Gaussian iid process Z = {Zn} according to

Xn = µ+ % (Xn−1 − µ) + Zn

Statistical properties are completely specified by mean µ, variance σ2, correlation coefficient %
Will use it as very simple model for sources with memory
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Mathematical Basics / Continuous Random Processes

Examples of Gauss-Markov Processes (1000 Samples)

% = 0

% = 0.9

% = 0.99
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Mathematical Basics / Summary

Summary of Mathematical Basics (for Continuous Case)

Continuous Random Variables
Can take all values inside one or more non-zero intervals
Cumulative distribution function (cdf): Continuous function
Probability density function (pdf)
Expected values: Mean, variance, covariance

Discrete-Time Continuous-Amplitude Random Processes
Sequence of continuous random variables: Model for lossy source coding
Types of random processes: Stationary, memoryless, iid, Markov
Suitable model for real signals: Autoregressive processes
Special importance for lossy source coding: Gaussian processes
Simple model for sources with memory: Gauss-Markov process
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Scalar Quantization

Quantization

quantization

“Lossy part” of source coding
Non-reversible mapping from input to output samples
Determines trade-off between signal fidelity and bit rate
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Scalar Quantization / Structure

Scalar Quantization: Functional Mapping

quantizer Q
s ′s

Scalar Quantization: Functional mapping of an input sample to an output sample

s ′ = Q( s )

Input: Discrete or continuous

Output: Set of obtainable output points is countable

Less obtainable output points than input points

Non-reversible loss in signal fidelity
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Scalar Quantization / Structure

Structure of Scalar Quantizers: Encoder and Decoder Mapping

quantizer Q

encoder
mapping α

decoder
mapping β

s q s ′

quantization indexes

Split quantizer Q into encoder mapping α and decoder mapping β

Encoder mapping α: Maps input sample s to a quantizer index q (integer)

q = α( s )

Decoder mapping β: Maps quantizer index q to reconstructed samples s ′

s ′ = β( q ) = β(α( s ) ) = Q( s )
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Scalar Quantization / Structure

Principle of Scalar Quantization

s

u−3 u−2 u−1 u0 u1 u2 u3 u4

q = . . . −4 −3 −2 −1 0 1 2 3 4

s ′−4 s ′−3 s ′−2 s ′−1 s ′0 s ′1 s ′2 s ′3 s ′4

Partition real line into a countable (typically finite) number of quantization intervals Ik
Partitioning is given by decision thresholds {uk}
Quantization intervals are labeled by quantization index q

A quantization interval is the given by Ik = [uk , uk+1)

Each quantization interval Ik is associated with a reconstruction level s ′k ∈ Ik

Scalar quantization: Replace input value s that falls inside Ik with reconstruction value s ′k
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Scalar Quantization / Structure

Scalar Quantization: Input-Output Function

s

s ′ = Q(s)

s ′k

s ′k+1

s ′k−1

s ′k−2

s ′k−3

K reconstruction levels

uk−2 uk−1

uk uk+1

K − 1 decision thresholds

∆k

quantization
step sizes

Scalar quantizer mapping: Q : R 7→ { · · · , s ′k−1, s
′
k , s
′
k+1, · · · }

Quantization intervals: Ik = [uk , uk+1)

Quantization step sizes: ∆k = uk+1 − uk
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Scalar Quantization / Structure

Scalar Quantization and Entropy Coding

transmission

channelγ γ−1α β
s q b b q s ′

Add lossless coding γ of quantization indexes (e.g., Huffman or arithmetic coding)

Encoding/decoding process:
1 Encoder mapping α: Input samples s 7→ quantization indexes q

2 Lossless mapping γ: Quantization indexes q 7→ bitstream b

3 Transmission channel: Transmission of bitstream (assume: error-free)

4 Lossless mapping γ−1: Bitstream b 7→ quantization indexes q

5 Decoder mapping β: Quantization indexes q 7→ reconstructed samples s ′
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Scalar Quantization / Performance

Scalar Quantization: Discretization of Pdf

u−3 u−2 u−1 u0 u1 u2 u3 u4 s

s ′−4 s ′−3 s ′−2 s ′−1 s ′0 s ′1 s ′2 s ′3 s ′4 s ′

pk = P(S ′ = s ′k) =

uk+1∫
uk

f (s) ds
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Scalar Quantization / Performance

Performance of Scalar Quantizers: Bit Rate

s ′−4 s ′−3 s ′−2 s ′−1 s ′0 s ′1 s ′2 s ′3 s ′4 s ′

Average bit rate R (`k = codeword length for quantization index k)

R = E{ `(S ′ ) } = E{ `(α(S) ) } =
∑
k

pk `k with pk =

∫ uk+1

uk

f (s) ds

Approximations (without knowledge of actual entropy coding)

fixed-length coding: R =
⌈

log2 K
⌉

(K : number of quantization intervals )

optimal entropy coding: R = H(S ′) = H(α(S) ) = −
∑
k

pk log2 pk
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Scalar Quantization / Performance

Performance of Scalar Quantizers: MSE Distortion

s

u−3 u−2 u−1 u0 u1 u2 u3 u4

s ′−4 s ′−3 s ′−2 s ′−1 s ′0 s ′1 s ′2 s ′3 s ′4

Average MSE distortion D is given by

D = E
{(

S − Q(S)
)2 }

=

∫ ∞
−∞

(s − Q(s))2 f (s) ds =
∑
∀k

∫ uk+1

uk

(s − s ′k)2 f (s) ds

Similar for other additive distortion measures (e.g., all p-norm distortion measures)
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Lloyd Quantizer

Optimal Scalar Quantizer for Fixed-Length Coding

Goal: Minimize MSE Distortion for Quantizer with K Quantization Intervals
Neglect impact of entropy coding Consider fixed-length coding

Rate R and MSE distortion D are given by

R =
⌈

log2 K
⌉

( typically K = 2B , with B being the bits per codeword )

D =
∑
∀k

∫ uk+1

uk

(s − s ′k)2 f (s) ds

Optimize Quantizer of size K

Bit rate R is independent on decision thresholds and reconstruction levels (R is given by K )
Distortion (MSE) depends on

K reconstruction levels s ′k
K − 1 decision thresholds uk
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Lloyd Quantizer / Conditions for Optimality

Centroid Condition

D =
∑
∀i

∫ ui+1

ui

(s − s ′i )
2 f (s) ds

Optimize reconstruction levels s ′k for given decision thresholds uk

∂

∂ s ′k
D =

∫ uk+1

uk

2 · (s − s ′k) · (−1) · f (s) ds = 0∫ uk+1

uk

s f (s) ds = s ′k ·
∫ uk+1

uk

f (s) ds

Centroid Condition for MSE Distortion

s ′k = E{ S |S ∈ Ik } =
1
pk

∫ uk+1

uk

s f (s) ds =

∫ uk+1
uk

s f (s) ds∫ uk+1
uk

f (s) ds

Optimal reconstruction level s ′k is given by conditional mean
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Lloyd Quantizer / Conditions for Optimality

Nearest Neighbour Condition

D =
∑
∀i

∫ ui+1

ui

(s − s ′i )
2 f (s) ds

Optimize decision thresholds uk for given reconstruction levels s ′k
Threshold uk lies somewhere between neighboring reconstruction levels: s ′k−1 < uk < s ′k
At the threshold uk , we have the same distortion for both neighbouring intervals

(uk − s ′k−1)2 = (uk − s ′k)2

uk − s ′k−1 = s ′k − uk

2 uk = s ′k−1 + s ′k

Nearest Neighbour Condition for MSE Distortion

uk =
1
2
(
s ′k−1 + s ′k

)
Optimal decision threshold uk lies in the middle between the neighboring reconstruction levels
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Lloyd Quantizer / Lloyd Algorithm

Lloyd Quantizer: Minimization of Distortion

Necessary Conditions for Minimizing MSE Distortion
1 Centroid condition

s ′k =

∫ uk+1
uk

s f (s) ds∫ uk+1
uk

f (s) ds

2 Nearest neighbour condition

uk =
1
2
(
s ′k + s ′k−1

)

Design of Lloyd quantizers
In general: Cannot be derived in closed form

Iterative algorithm consisting of
Optimize decision thresholds uk given reconstruction levels s ′k
Optimize reconstruction levels s ′k given decision thresholds uk
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Lloyd Quantizer / Lloyd Algorithm

Lloyd Algorithm for Given Pdf (MSE Distortion)

Given is: the size K of the quantizer (i.e., the number of quantization intervals)
the marginal probability density function f (s) of the source

Iterative quantizer design
1 Choose an initial set of K reconstruction levels {s ′k}

2 Update the K − 1 decision thresholds {uk} according to

uk =
s ′k + s ′k−1

2
(nearest neighbor condition)

3 Update the K reconstruction levels {s ′k} according to

s ′k =

∫ uk+1
uk

s f (s) ds∫ uk+1
uk

f (s) ds
(centroid condition)

4 Repeat the previous two steps until convergence
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Lloyd Quantizer / Lloyd Algorithm

Lloyd Algorithm for a Training Set (MSE Distortion)

Given is: the size K of the quantizer (i.e., the number of quantization intervals)
a sufficiently large realization {sn} of considered source

Iterative quantizer design
1 Choose an initial set of K reconstruction levels {s ′k}
2 Associate all samples of the training set {sn} with one of the quantization intervals Ik

q(sn) = arg min
∀k

(sn − s ′k)2 (nearest neighbor condition)

3 Update the reconstruction levels {s ′k} according to

s ′k =
1
Nk

∑
n: q(sn)=k

sn (centroid condition)

where Nk is the number of samples associated with Ik

4 Repeat the previous two steps until convergence
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Lloyd Quantizer / Examples

Example: Lloyd Algorithm for Gaussian Source

Gaussian Source
Zero mean µ = 0
Unit variance σ2 = 1

Lloyd Quantizer of size K = 4
Decision thresholds: u1 = −0.982

u2 = 0.000
u3 = 0.982

Reconstruction levels: s ′0 = −1.510
s ′1 = −0.453
s ′2 = 0.453
s ′3 = 1.510

s
u1 u2 u3

s ′0 s ′1 s ′2 s ′3

R = 2.0 (fixed-length coding)

D = 0.117

SNR = 9.30 dB
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Lloyd Quantizer / Examples

Example: Convergence of Lloyd Algorithm for Gaussian Source

0 1 2 3 4 5 6 7 8 9 10 11 12

9.30 dB

SNR

0 1 2 3 4 5 6 7 8 9 10 11 12

9.30 dB

SNR
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Lloyd Quantizer / Examples

Example: Lloyd Algorithm for Laplacian Source

Laplacian Source
Zero mean µ = 0
Unit variance σ2 = 1

Lloyd Quantizer of size K = 4
Decision thresholds: u1 = −1.127

u2 = 0.000
u3 = 1.127

Reconstruction levels: s ′0 = −1.834
s ′1 = −0.420
s ′2 = 0.420
s ′3 = 1.834

s

u1 u2 u3

s ′0 s ′1 s ′2 s ′3

R = 2.0 (fixed-length coding)

D = 0.176

SNR = 7.54 dB
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Lloyd Quantizer / Examples

Example: Convergence of Lloyd Algorithm for Laplacian Source

0 1 2 3 4 5 6 7 8 9 10 11 12

7.54 dB

SNR

0 1 2 3 4 5 6 7 8 9 10 11 12

7.54 dB

SNR
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Lloyd Quantizer / High-Rate Approximation

Centroid Quantizer at High Rates

High-Rate Approximation
High rates: Pdf f (s) is nearly constant inside each quantization interval

f (s) ≈ pk
∆k

=
pk

uk+1 − uk

Direct consequence: Reconstruction value s ′k lies in center of quantization interval Ik

s ′k =
1
pk

∫ uk+1

uk

s f (s) ds =
1
pk
· pk
uk+1 − uk

∫ uk+1

uk

s ds

=
1
2
· 1
uk+1 − uk

·
(
u2
k+1 − u2

k

)
=

1
2
· (uk+1 + uk) · (uk+1 − uk)

uk+1 − uk

=
1
2

(
uk + uk+1

)
= uk +

∆k

2
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Lloyd Quantizer / High-Rate Approximation

High-Rate Approximation of MSE Distortion for Centroid Quantizers

D =
∑
∀k

∫ uk+1

uk

(s − s ′k)2 · f (s) ds

=
∑
∀k

pk
∆k

∫ uk+1

uk

(s − s ′k)2 ds

=
∑
∀k

pk
∆k

∫ uk+1−s′k

uk−s′k
t2 dt

=
∑
∀k

pk
∆k

∫ ∆k/2

−∆k/2
t2 dt

=
∑
∀k

pk
∆k
· 1
3
·
(

∆3
k

8
+

∆3
k

8

)

D =
1
12

∑
∀k

pk ∆2
k
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Lloyd Quantizer / High-Rate Approximation

High-Rate Approximation: MSE Distortion for Lloyd Quantizer

Will use: Hölders inequality in the following form (with xk ≥ 0 and yk ≥ 0)

α + β = 1 =⇒
(∑

k
xk
)α
·
(∑

k
yk
)β
≥
∑

k
xαk yβk

with equality iff yk is proportional to xk , i.e., yk = const · xk

Average MSE distortion of Lloyd quantizer of size K (at high rates)

Approximation for centroid quantizers

D =
1
12

K−1∑
i=0

pi ∆2
i =

1
12

K−1∑
i=0

f (s ′i ) ∆3
i

Rewrite expression using
∑K−1

i=0 (1/K ) = K · (1/K ) = 1

D =
1
12

(K−1∑
i=0

f (s ′i ) ∆3
i

)1
3

·

(
K−1∑
i=0

1
K

)2
3
3
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Lloyd Quantizer / High-Rate Approximation

High-Rate Approximation: MSE Distortion for Lloyd Quantizer

Average MSE distortion of Lloyd quantizer of size K (at high rates)
Apply Hölders inequality

D ≥ 1
12

(
K−1∑
i=0

(
f (s ′i ) ∆3

i

) 1
3
(

1
K

)2
3
)3

=
1

12K 2

(
K−1∑
i=0

3
√
f (s ′i ) ∆i

)3

with equality iff ∆i
3
√

f (s ′i ) = const

Remember: Lloyd quantizer minimizes distortion for given size K

D =
1

12K 2

(
K−1∑
i=0

3
√

f (s ′i ) ∆i

)3

Asymptotic limit for large K (∆k → 0)

D =
1

12K 2

(∫ ∞
−∞

3
√

f (s) ds
)3
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Lloyd Quantizer / High-Rate Approximation

High-Rate Approximation: Lloyd Quantizer with Fixed-Length Coding

MSE Distortion for Lloyd Quantizer at High Rates and Rate for Fixed-Length Coding

D =
1

12K 2

(∫ ∞
−∞

3
√

f (s) ds
)3

and R = log2 K =⇒ 1
K 2 = 2−2R

Lloyd Quantizer with Fixed-Length Coding at High Rates
Panter and Dite approximation for operational distortion-rate function

DF (R) =
1
12

(∫ ∞
−∞

3
√
f (s) ds

)3

· 2−2R

DF (R) = ε2F · σ2 · 2−2R with ε2F =
1

12σ2

(∫ ∞
−∞

3
√
f (s) ds

)3
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Lloyd Quantizer / High-Rate Approximation

Lloyd Quantizer with Fixed-Length Coding vs Panter-Dite Approximation

Uniform pdf

ε2F = 1

Gaussian pdf

ε2F =

√
3π
2

Laplacian pdf

ε2F = 4.5
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SN
R
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Summary

Summary of Lecture

Scalar Quantization
Input-output function s ′ = Q(s) is a staircase function
Quantizer is characterized by K reconstruction levels s ′k and K − 1 decision thresholds uk

Lloyd Quantizer
Minimizes distortion D for given number K of quantization intervals
Two optimization criterions

Centroid condition (MSE): s ′k = E{ S |S ∈ Ik }
Nearest neighbor condition (MSE): uk = (s ′k + s ′k−1)/2

Lloyd quantizer design: Iterate between the two optimization criterions
High-rate approximation of Lloyd quantizer with fixed-length coding (Panter-Dite approximation)

Next Steps
Theoretical limits for lossy source coding
Consider entropy coding in quantizer design
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Exercises

Exercise 1: Implement Lloyd Algorithm

Implement the Lloyd algorithm using a programming language of your choice.
Test the algorithm (for quantizer sizes of K = 2, 4, 8, 16, 32) for

a unit-variance Gaussian pdf:
f (s) =

1√
2π

e−
1
2 s2

a unit-variance Laplacian pdf:
f (s) =

1√
2
e−
√

2 |s|

Determine the distortion D for your quantizers.

Compare the R-D performance of your quantizers (for K = 2, 4, 8, 16, 32)
to the high-rate approximation for Lloyd quantizers with fixed-length codes.

You can implement the Lloyd algorithm that directly uses the pdf or the Lloyd algorithm that uses a
training set (files with 1 000 000 samples in float32 format are provided on the course web site)
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Exercises

Exercise 2: Lloyd Quantizer for MSE Distortion (Alternative)

Given is a stationary source with a zero-mean Laplace pdf f (x) and a symmetric 3-interval quantizer:

f (x) =
1√
2σ2

e−
√

2
σ2 |x| and Q(x) =

 −b : x < −a
0 : |x | ≤ a
b : x > a

(a) Derive the optimal reconstruction value b as a function of the threshold a for MSE distortion.
Express the resulting distortion as function of the threshold a and the variance σ2.

(b) Determine the decision threshold a in a way that a Lloyd quantizer for MSE distortion is obtained.
Determine the distortion and rate for the Lloyd quantizer by assuming fixed-length coding
(R = log2K ) and compare the obtained R-D point with the high-rate approximation.

(c) Can the derived optimal quantizer for fixed-length coding be improved by adding entropy coding
(without changing the decision thresholds and reconstruction levels)?
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Exercises

Exercise 3: Lloyd Quantizer for MAE Distortion (Another Alternative)

Given is a stationary source with a zero-mean Laplace pdf f (x) and a symmetric 3-interval quantizer:

f (x) =
1
2m

e−
|x|
m and Q(x) =

 −b : x < −a
0 : |x | ≤ a
b : x > a

(a) Derive the centroid condition and nearest neighbor condition for MAE distortion

D = E{ |S − S ′| }

(b) Derive the optimal reconstruction value b as a function of the threshold a for MAE distortion.
Express the resulting distortion as function of the threshold a and the parameter m.

(c) Determine the decision threshold a in a way that a Lloyd quantizer for MAE distortion is obtained.
Determine the distortion and rate for the quantizer by assuming fixed-length coding (R = log2K ).
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