Scalar Quantization

Last Lectures: Lossless Coding

Variable-length Coding

- Scalar codes, conditional codes, block codes, V2V codes (using codeword tables)
- For given pmf: Huffman algorithm yields optimal codeword table
- Problem: Codeword tables become too large for practical application of block codes

Arithmetic Coding

- No codeword table: On-the-fly encoding and decoding
- Sub-optimal block code for arbitrarily large block sizes N (very close to optimum for $N \gg 1$)
- Straightforward combination with conditional and adaptive probability models

Reduction of Inter-Symbols Dependencies before Entropy Coding

- Affine and linear prediction: Suitable for reducing dependencies in audio, image, video data
- Lempel-Ziv coding or block sorting: Suitable for text, source code, general files
- → Lossless coding in practice: Prediction followed by entropy coding of prediction errors
 - Lempel-Ziv coding or block sorting followed by entropy coding

Lossy Coding

Lossy coding is characterized by two aspects:

- Bit rate *R*: Average number of bits per sample (or per time unit)
- Distortion D: Measure for deviation between original signal s and reconstructed signal s'

Design Goal: Smallest possible bit rate for given maximum distortion, or Smallest possible distortion for given maximum bit rate

Lossy Coding: Bit Rate

Bit Rate R:

- Images: Average number of bits per sample
- Audio or video: Average number of bits per time units

Often used Approximation:

- Assume that we have a close to optimal entropy coding (e.g., arithmetic coding)
- Bit rate = Entropy of symbols that are actually transmitted

Lossy Coding: Distortion

Distortion Measures used in Practice

General *p*-norm distortion:

$$D_p = rac{1}{N}\sum_{k=1}^N \left|s_k - s_k'
ight|^p$$
 or $D_p = \mathrm{E}\Big\{\left|S - S'
ight|^p\Big\}$

■ Most often: Mean squared error (MSE)

$$D_2 = rac{1}{N}\sum_{k=1}^N \left(s_k - s_k'
ight)^2$$
 or $D_2 = \mathrm{E}\Big\{\left(S - S'
ight)^2\Big\}$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization

MSE Distortion as Signal-To-Noise Ratio (SNR)

Signal-to-Noise Ratio (SNR)

Logarithmic ratio of variance and MSE distortion

$$\mathsf{SNR} = \mathsf{10} \cdot \mathsf{log_{10}}\!\left(\frac{\sigma^2}{D_2}\right)$$

Measured in decibel (dB)

Advantages of using SNR

- Independent of signal variance
- Easy interpretation of differences

$$\Delta \mathsf{SNR} = \mathsf{SNR}_a - \mathsf{SNR}_b = -10 \cdot \log_{10} \frac{D_a}{D_b}$$

-

Examples:

$D_a = D_b$	\rightarrow	$\Delta SNR \approx 0.0 dB$
$D_a=D_b/\sqrt{2}$	\rightarrow	$\Delta {\sf SNR}~\approx 1.5{\sf dB}$
$D_a = D_b/2$	\rightarrow	$\Delta {\sf SNR}~pprox$ 3.0 dB
$D_a = D_b/4$	\rightarrow	$\Delta {\sf SNR}~pprox 6.0{\sf dB}$
$D_a = D_b/8$	\rightarrow	Δ SNR \approx 9.0 dB

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization

Probabilistic Modeling of Sources

Source Coding in Practice

- Encoder and decoder are computer programs
- → Actual input signals are discrete-time and discrete-amplitude signals

Real-world signals

- In most cases: Continuous-time and continuous-amplitude signals
- Discrete signals are obtained by sampling and quantization
- Typical scenarios: Initial quantization has negligible effect on source coding

Theoretical Analysis of Lossy Source Coding

- Will mostly use models for discrete-time and continuous-amplitude signals
- Main reason: Mathematical tractability
- → Interpretation: Consider signal before initial quantization

Review: Random Variables and Cumulative Distribution Function (CDF)

Random Variable

Function X(ζ) of the sample space O that assigns a real value x = X(ζ) to each possible outcome ζ ∈ O of a random experiment

Cumulative Distribution Function (cdf)

• Cumulative distribution function $F_X(x)$ of a random variable X

$$F_X(s) = \mathrm{P}(X \leq x) = \mathrm{P}(\{\zeta : X(\zeta) \leq x\})$$

■ Joint cdf of two random variables X and Y

$$F_{XY}(x,y) = P(X \le x, Y \le y)$$

Conditional cdf of a random variable X given another random variable Y

$$F_{X|Y}(x | y) = P(X \le x | Y \le y) = \frac{P(X \le x, Y \le y)}{P(Y \le y)} = \frac{F_{XY}(x, y)}{F_Y(y)}$$

Review: Examples of Cumulative Distribution Functions

Staircase function

 Random variable X can only take a countable number of values

➡ Discrete random variable

Continuous function

- Random variable X can take all values inside one or more non-zero intervals
- ➡ Continuous random variable

Mixed type

Random variable X can take all values inside one or more non-zero intervals and a countable number of additional values

Continuous Random Variables and Probability Density Function (PDF)

Continuous Random Variables

• A random variable X is called a **continuous random variable** if and only if its cdf $F_X(x)$ is a continuous function

Probability Density Function

Probability density function (pdf) of a continuous random variable S

$$f_X(x) = \frac{\partial}{\partial x} F_X(x) \quad \iff \quad F_X(x) = \int_{-\infty}^x f_X(t) \, \mathrm{d}t$$

→ Properties: • $f_X(x) > 0, \forall x$

•
$$\int_{-\infty}^{\infty} f_X(t) dt = 1$$

•
$$P(a < X \le b) = \int_a^b f_X(t) dt$$

Examples for Continuous Distributions (Zero Mean)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization

Generalized Gaussian Distribution

Shape parameter $\beta \in (0, \infty)$:

➡ Suitable approximation for many distributions

Joint and Conditional Probability Density Function

Joint Probability Density Function

• Joint pdf of two random variables X and Y

$$f_{XY}(x,y) = \frac{\partial^2}{\partial x \,\partial y} \, F_{XY}(x,y)$$

Conditional Probability Density Function

Conditional pdf of a random variable X given another random variable Y

$$f_{X|Y}(x|y) = \frac{\partial}{\partial x} F_{X|Y}(x|y) = \frac{\partial}{\partial x} \frac{F_{XY}(x,y)}{F_Y(y)} = \frac{\frac{\partial^2}{\partial x \partial y} F_{XY}(x,y)}{\frac{\partial}{\partial y} F_Y(y)} = \frac{f_{XY}(x,y)}{f_Y(y)}$$

Expected Values for Continuous Random Variables

Expected Values

• Expected value of a function g(X) of a continuous random variable X

$$\mathrm{E}\{g(X)\} = \mathrm{E}_X\{g(X)\} = \int_{-\infty}^{\infty} g(x) f_X(x) \, \mathrm{d}x$$

Expected value of function g(X, Y) of two continuous random variables X and Y

$$\mathbb{E}\left\{g(X,Y)\right\} = \mathbb{E}_{XY}\left\{g(X,Y)\right\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{XY}(x,y) \, \mathrm{d}x \, \mathrm{d}y$$

Conditional Expected Values

• Expected value of function g(X) of a random variable X given another random variable Y

$$E\{g(X) \mid Y\} = \int_{-\infty}^{\infty} g(x) f_{X|Y}(x \mid Y) dx \qquad (is another random variable)$$

Properties of Expected Values

same properties as in discrete case

Important Properties

Linearity of expected values

$$\mathrm{E}\{aX + bY\} = a \cdot \mathrm{E}\{X\} + b \cdot \mathrm{E}\{Y\}$$

• For independent random variables X and Y

$$\mathrm{E}\{XY\} = \mathrm{E}\{X\} \mathrm{E}\{Y\}$$

Iterative expectation rule

$$\mathrm{E}\{\mathrm{E}\{g(X) \mid Y\}\} = \mathrm{E}\{g(X)\}$$

Important Expected Values

Mean μ_X of a random variable X

$$\mu_X = \mathrm{E}\{X\} = \int_{-\infty}^{\infty} x \cdot f_X(x) \, \mathrm{d}x$$

Variance σ_X^2 of a random variable X

$$\sigma_X^2 = \mathrm{E}\left\{\left(X - \mathrm{E}\left\{X\right\}\right)^2\right\} = \int_{-\infty}^{\infty} (x - \mu_X)^2 \cdot f_X(x) \, \mathrm{d}x$$

Covariance σ_{XY}^2 of two random variables X and Y, and correlation coefficient ϕ_{XY}

$$\sigma_{XY}^2 = \mathrm{E}\left\{ \left(X - \mathrm{E}\left\{X\right\}\right) \left(Y - \mathrm{E}\left\{Y\right\}\right) \right\} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_x)(y - \mu_y) \cdot f_{XY}(x, y) \, \mathrm{d}x \, \mathrm{d}y$$
$$\phi_{XY} = \frac{\sigma_{XY}^2}{\sqrt{\sigma_X^2 \cdot \sigma_Y^2}}$$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization

Continuous Random Processes

Discrete-Time Random Process

- Series of random experiments at time instants t_n , with $n = 0, 1, 2, \cdots$
- For each experiment: Random variable $X_n = X(t_n)$
- Random process: Series of random variables

$$X = \{X_0, X_1, X_2, \cdots\} = \{X_n\}$$

Discrete-Time Continuous-Amplitude Random Process

- Random variables X_n are continuous random variables
- → Type of random processes we consider for analyzing lossy coding

Statistical Properties of Continuous Random Processes

Characterization of Statistical Properties

Consider *N*-dimensional random vector

$$\boldsymbol{X}_{k}^{(N)} = \{X_{k}, X_{k+1}, \cdots, X_{k+N-1}\}$$

N-th order joint cdf

$$\mathcal{F}_k^{(N)}(\mathbf{x}) = \mathrm{P}\left(\mathbf{X}_k^{(N)} \leq \mathbf{x}\right) = \mathrm{P}(X_k \leq x_0, X_{k+1} \leq x_1, \cdots, X_{k+N-1} \leq x_{N-1})$$

N-th order joint pdf

$$f_k^{(N)}(\boldsymbol{x}) = \frac{\partial^N}{\partial x_0 \cdots \partial x_{N-1}} F_k^{(N)}(\boldsymbol{x})$$

Also: Conditional cdfs and conditional pdfs

Models for Random Processes

Stationary Random Processes

- Statistical properties are invariant to a shift in time
- In this course: Typically restrict our considerations to stationary processes

Memoryless Random Processes

• All random variables X_n are independent of each other

Independent and Identically Distributed (IID) Random Processes

Random processes that are stationary and memoryless

Markov Processes

Markov property: Future outcomes do only depend on present outcome, but not on past outcomes

$$F(x_n | x_{n-1}, x_{n-2}, x_{n-3}, \cdots) = F(x_n | x_{n-1})$$

$$f(x_n | x_{n-1}, x_{n-2}, x_{n-3}, \cdots) = f(x_n | x_{n-1})$$

Simple model for random processes with memory

Autoregressive (AR) Processes

General AR(p) Model

• Autoregressive model of order p for random variables X_n with mean μ

$$X_n = Z_n + \mu + \sum_{k=1}^{p} \varrho_k \cdot (X_{n-k} - \mu)$$

where $\mathbf{Z} = \{Z_n\}$ is a zero-mean iid process (innovation process) and $\varrho_1, \dots, \varrho_p$ are the model parameters

Special case: AR(1) model

• Autoregressive model of order p = 1

$$X_n = Z_n + \mu + \varrho \cdot (X_{n-1} - \mu)$$

→ Completely specified by mean μ , correlation coefficient ϱ , and pdf $f_Z(z)$ of iid process $\{Z_n\}$ → Important type of stationary Markov process for continuous random processes

Gaussian Processes

Gaussian Random Process

- All finite collections of random variables X_n are Gaussian random vectors
- N-th order pdf is given by N-th order auto-covariance matrix \boldsymbol{C}_{N} and mean μ

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^N |\mathbf{C}_N|}} e^{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \mathbf{C}_N^{-1}(\mathbf{x}-\boldsymbol{\mu})} \quad \text{with} \quad \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu} \\ \vdots \\ \boldsymbol{\mu} \end{pmatrix}$$

Stationary Gauss-Markov Process

- Stationary Markov process that is also a Gaussian random process
- Can be constructed with Gaussian iid process $\mathbf{Z} = \{Z_n\}$ according to

$$X_n = \mu + \varrho \left(X_{n-1} - \mu \right) + Z_n$$

Statistical properties are completely specified by mean μ , variance σ^2 , correlation coefficient ρ Will use it as very simple model for sources with memory

/ \

Examples of Gauss-Markov Processes (1000 Samples)

Summary of Mathematical Basics (for Continuous Case)

Continuous Random Variables

- Can take all values inside one or more non-zero intervals
- Cumulative distribution function (cdf): Continuous function
- Probability density function (pdf)
- Expected values: Mean, variance, covariance

Discrete-Time Continuous-Amplitude Random Processes

- Sequence of continuous random variables: Model for lossy source coding
- Types of random processes: Stationary, memoryless, iid, Markov
- Suitable model for real signals: Autoregressive processes
- Special importance for lossy source coding: Gaussian processes
- Simple model for sources with memory: Gauss-Markov process

Quantization

- "Lossy part" of source coding
- Non-reversible mapping from input to output samples
- Determines trade-off between signal fidelity and bit rate

Scalar Quantization: Functional Mapping

$$s$$
 quantizer Q s'

Scalar Quantization: Functional mapping of an input sample to an output sample

$$s' = Q(s)$$

- Input: Discrete or continuous
- Output: Set of obtainable output points is countable
 - Less obtainable output points than input points
- → Non-reversible loss in signal fidelity

Structure of Scalar Quantizers: Encoder and Decoder Mapping

- Split quantizer Q into encoder mapping α and decoder mapping β
- Encoder mapping α : Maps input sample s to a quantizer index q (integer)

$$q = \alpha(s)$$

• Decoder mapping β : Maps quantizer index q to reconstructed samples s'

$$s' = \beta(q) = \beta(\alpha(s)) = Q(s)$$

Principle of Scalar Quantization

Partition real line into a countable (typically finite) number of quantization intervals \mathcal{I}_k

- Partitioning is given by decision thresholds $\{u_k\}$
- Quantization intervals are labeled by quantization index q
- A quantization interval is the given by $\mathcal{I}_k = [u_k, u_{k+1})$
- Each quantization interval \mathcal{I}_k is associated with a reconstruction level $s'_k \in \mathcal{I}_k$

→ Scalar quantization: Replace input value s that falls inside \mathcal{I}_k with reconstruction value s'_k

Scalar Quantization: Input-Output Function

 $Q: \mathbb{R} \mapsto \{\cdots, s'_{k-1}, s'_k, s'_{k+1}, \cdots\}$

- Scalar quantizer mapping:
- Quantization intervals:
- Quantization step sizes:

$$\Delta_k = u_{k+1} - u_k$$

 $\mathcal{T}_{L} = [\mu_{L}, \mu_{L+1}]$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization

Scalar Quantization and Entropy Coding

• Add lossless coding γ of quantization indexes (e.g., Huffman or arithmetic coding)

Encoding/decoding process:

1 Encoder mapping α : Input samples $s \mapsto$ quantization indexes q

2 Lossless mapping γ : Quantization indexes $q \mapsto$ bitstream **b**

- **3** Transmission channel: Transmission of bitstream (assume: error-free)
- 4 Lossless mapping γ^{-1} : Bitstream $\boldsymbol{b} \mapsto$ quantization indexes \boldsymbol{q}
- **5** Decoder mapping β : Quantization indexes $q \mapsto$ reconstructed samples s'

Scalar Quantization: Discretization of Pdf

$$p_k = \mathrm{P}(S' = s'_k) = \int\limits_{u_k}^{u_{k+1}} f(s) \,\mathrm{d}s$$

Performance of Scalar Quantizers: Bit Rate

• Average bit rate R (ℓ_k = codeword length for quantization index k)

$$R = \mathrm{E}\{\ell(S')\} = \mathrm{E}\{\ell(\alpha(S))\} = \sum_{k} p_k \ell_k \quad \text{with} \quad p_k = \int_{u_k}^{u_{k+1}} f(s) \, \mathrm{d}s$$

Approximations (without knowledge of actual entropy coding)

→ fixed-length coding: $R = \lceil \log_2 K \rceil$ (K: number of quantization intervals) → optimal entropy coding: $R = H(S') = H(\alpha(S)) = -\sum p_k \log_2 p_k$

Performance of Scalar Quantizers: MSE Distortion

• Average MSE distortion *D* is given by

$$D = E\left\{\left(S - Q(S)\right)^{2}\right\} = \int_{-\infty}^{\infty} (s - Q(s))^{2} f(s) ds = \sum_{\forall k} \int_{u_{k}}^{u_{k+1}} (s - s_{k}')^{2} f(s) ds$$

→ Similar for other additive distortion measures (e.g., all *p*-norm distortion measures)

Optimal Scalar Quantizer for Fixed-Length Coding

Goal: Minimize MSE Distortion for Quantizer with K Quantization Intervals

- Neglect impact of entropy coding → Consider fixed-length coding
- \rightarrow Rate R and MSE distortion D are given by

$$R = \left\lceil \log_2 K \right\rceil \quad (\text{typically } K = 2^B, \text{ with } B \text{ being the bits per codeword })$$
$$D = \sum_{\forall k} \int_{u_k}^{u_{k+1}} (s - s'_k)^2 f(s) \, \mathrm{d}s$$

Optimize Quantizer of size K

- Bit rate R is independent on decision thresholds and reconstruction levels (R is given by K)
- Distortion (MSE) depends on
 - \rightarrow K reconstruction levels s'_k
 - → K 1 decision thresholds u_k

Centroid Condition

$$D = \sum_{\forall i} \int_{u_i}^{u_{i+1}} (s - s_i')^2 f(s) \, \mathrm{d}s$$

• Optimize reconstruction levels s'_k for given decision thresholds u_k

$$\frac{\partial}{\partial s'_k} D = \int_{u_k}^{u_{k+1}} 2 \cdot (s - s'_k) \cdot (-1) \cdot f(s) \, \mathrm{d}s = 0$$
$$\int_{u_k}^{u_{k+1}} s f(s) \, \mathrm{d}s = s'_k \cdot \int_{u_k}^{u_{k+1}} f(s) \, \mathrm{d}s$$

→ Centroid Condition for MSE Distortion

$$s_k' = \mathrm{E}\{ S \mid S \in \mathcal{I}_k \} = \frac{1}{p_k} \int_{u_k}^{u_{k+1}} s f(s) \, \mathrm{d}s = \frac{\int_{u_k}^{u_{k+1}} s f(s) \, \mathrm{d}s}{\int_{u_k}^{u_{k+1}} f(s) \, \mathrm{d}s}$$

→ Optimal reconstruction level s'_k is given by conditional mean

Heiko Schwarz (Freie Universität Berlin) - Data Compression: Scalar Quantization

Nearest Neighbour Condition

$$D = \sum_{\forall i} \int_{u_i}^{u_{i+1}} (s - s'_i)^2 f(s) \, \mathrm{d}s$$

- Optimize decision thresholds u_k for given reconstruction levels s'_k
 - Threshold u_k lies somewhere between neighboring reconstruction levels: $s'_{k-1} < u_k < s'_k$
 - At the threshold u_k , we have the same distortion for both neighbouring intervals

$$(u_k - s'_{k-1})^2 = (u_k - s'_k)^2$$

$$u_k - s'_{k-1} = s'_k - u_k$$

$$2 u_k = s'_{k-1} + s'_k$$

➡ Nearest Neighbour Condition for MSE Distortion

$$u_k = \frac{1}{2} \left(s_{k-1}' + s_k' \right)$$

 \rightarrow Optimal decision threshold u_k lies in the middle between the neighboring reconstruction levels

Lloyd Quantizer: Minimization of Distortion

Necessary Conditions for Minimizing MSE Distortion

1 Centroid condition

$$s_k' = rac{\int_{u_k}^{u_{k+1}} s\,f(s)\,\mathrm{d}s}{\int_{u_k}^{u_{k+1}} f(s)\,\mathrm{d}s}$$

2 Nearest neighbour condition

$$u_k=\frac{1}{2}\bigl(s_k'+s_{k-1}'\bigr)$$

Design of Lloyd quantizers

- In general: Cannot be derived in closed form
- → Iterative algorithm consisting of
 - Optimize decision thresholds u_k given reconstruction levels s'_k
 - Optimize reconstruction levels s'_k given decision thresholds u_k

Lloyd Algorithm for Given Pdf (MSE Distortion)

Given is: • the size K of the quantizer (i.e., the number of quantization intervals)

• the marginal probability density function f(s) of the source

Iterative quantizer design

1 Choose an initial set of K reconstruction levels $\{s'_k\}$

2 Update the K - 1 decision thresholds $\{u_k\}$ according to

$$\mu_k = rac{s_k' + s_{k-1}'}{2}$$
 (nearest neighbor condition)

3 Update the K reconstruction levels $\{s'_k\}$ according to

$$s_k' = rac{\int_{u_k}^{u_{k+1}} s f(s) \, \mathrm{d}s}{\int_{u_k}^{u_{k+1}} f(s) \, \mathrm{d}s}$$
 (centroid condition)

4 Repeat the previous two steps until convergence

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization

Lloyd Algorithm for a Training Set (MSE Distortion)

- Given is: the size K of the quantizer (i.e., the number of quantization intervals)
 - a sufficiently large realization $\{s_n\}$ of considered source

Iterative quantizer design

- **1** Choose an initial set of K reconstruction levels $\{s'_k\}$
- **2** Associate all samples of the training set $\{s_n\}$ with one of the quantization intervals \mathcal{I}_k

$$q(s_n) = \arg\min_{\forall k} (s_n - s'_k)^2$$
 (nearest neighbor condition)

3 Update the reconstruction levels $\{s'_k\}$ according to

$$s_k' = rac{1}{N_k} \sum_{n: \; q(s_n) = k} s_n$$
 (centroid condition)

where N_k is the number of samples associated with \mathcal{I}_k

4 Repeat the previous two steps until convergence

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization

Example: Lloyd Algorithm for Gaussian Source

Gaussian Source

- **Z**ero mean $\mu = 0$
- Unit variance $\sigma^2 = 1$

Lloyd Quantizer of size K = 4

 Decision thresholds: $u_1 = -0.982$ $u_2 = 0.000$ $u_3 = 0.982$ Reconstruction levels: $s'_0 = -1.510$ $s'_1 = -0.453$ $s'_2 = 0.453$

 $s'_{3} = 1.510$

Example: Convergence of Lloyd Algorithm for Gaussian Source

Example: Lloyd Algorithm for Laplacian Source

Laplacian Source

- **Z**ero mean $\mu = 0$
- Unit variance $\sigma^2 = 1$

Lloyd Quantizer of size K = 4

• Decision thresholds: $u_1 = -1.127$ $u_2 = -0.000$

$$u_2 = 0.000$$

 $u_3 = 1.127$

• Reconstruction levels: $s'_0 = -1.834$

$$s_0 = -0.420$$

 $s_1' = -0.420$
 $s_2' = -0.420$
 $s_3' = -0.420$

R = 2.0 (fixed-length coding)

$$D = 0.176$$

$$SNR = 7.54 \text{ dB}$$

Lloyd Quantizer / Examples

Example: Convergence of Lloyd Algorithm for Laplacian Source

Centroid Quantizer at High Rates

High-Rate Approximation

• High rates: Pdf f(s) is nearly constant inside each quantization interval

$$f(s)pproxrac{p_k}{\Delta_k}=rac{p_k}{u_{k+1}-u_k}$$

→ Direct consequence: Reconstruction value s'_k lies in center of quantization interval \mathcal{I}_k

$$\begin{aligned} s'_{k} &= \frac{1}{p_{k}} \int_{u_{k}}^{u_{k+1}} s f(s) \, \mathrm{d}s \ = \ \frac{1}{p_{k}} \cdot \frac{p_{k}}{u_{k+1} - u_{k}} \int_{u_{k}}^{u_{k+1}} s \, \mathrm{d}s \\ &= \ \frac{1}{2} \cdot \frac{1}{u_{k+1} - u_{k}} \cdot \left(u_{k+1}^{2} - u_{k}^{2}\right) \ = \ \frac{1}{2} \cdot \frac{(u_{k+1} + u_{k}) \cdot (u_{k+1} - u_{k})}{u_{k+1} - u_{k}} \\ &= \ \frac{1}{2} \left(u_{k} + u_{k+1}\right) = u_{k} + \frac{\Delta_{k}}{2} \end{aligned}$$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization

High-Rate Approximation of MSE Distortion for Centroid Quantizers

$$D = \sum_{\forall k} \int_{u_k}^{u_{k+1}} (s - s'_k)^2 \cdot f(s) \, \mathrm{d}s$$
$$= \sum_{\forall k} \frac{p_k}{\Delta_k} \int_{u_k}^{u_{k+1}} (s - s'_k)^2 \, \mathrm{d}s$$
$$= \sum_{\forall k} \frac{p_k}{\Delta_k} \int_{u_k - s'_k}^{u_{k+1} - s'_k} t^2 \, \mathrm{d}t$$
$$= \sum_{\forall k} \frac{p_k}{\Delta_k} \int_{-\Delta_k/2}^{\Delta_k/2} t^2 \, \mathrm{d}t$$
$$= \sum_{\forall k} \frac{p_k}{\Delta_k} \cdot \frac{1}{3} \cdot \left(\frac{\Delta_k^3}{8} + \frac{\Delta_k^3}{8}\right)$$
$$\overline{D} = \frac{1}{12} \sum_{\forall k} p_k \, \Delta_k^2$$

High-Rate Approximation: MSE Distortion for Lloyd Quantizer

• Will use: Hölders inequality in the following form (with $x_k \ge 0$ and $y_k \ge 0$)

$$\alpha + \beta = 1 \qquad \Longrightarrow \qquad \left(\sum_{k} x_{k}\right)^{\alpha} \cdot \left(\sum_{k} y_{k}\right)^{\beta} \geq \sum_{k} x_{k}^{\alpha} y_{k}^{\beta}$$

with equality iff y_k is proportional to x_k , i.e., $y_k = \text{const} \cdot x_k$

Average MSE distortion of Lloyd quantizer of size K (at high rates)

Approximation for centroid quantizers

$$D = \frac{1}{12} \sum_{i=0}^{K-1} p_i \Delta_i^2 = \frac{1}{12} \sum_{i=0}^{K-1} f(s_i') \Delta_i^3$$

• Rewrite expression using $\sum_{i=0}^{K-1} (1/K) = K \cdot (1/K) = 1$

$$D = \frac{1}{12} \left(\left(\sum_{i=0}^{K-1} f(s'_i) \, \Delta_i^3 \right)^{\frac{1}{3}} \cdot \left(\sum_{i=0}^{K-1} \frac{1}{K} \right)^{\frac{2}{3}} \right)^3$$

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Scalar Quantization

High-Rate Approximation: MSE Distortion for Lloyd Quantizer

Average MSE distortion of Lloyd quantizer of size K (at high rates)

Apply Hölders inequality

$$D \geq \frac{1}{12} \left(\sum_{i=0}^{K-1} \left(f(s_i') \Delta_i^3 \right)^{\frac{1}{3}} \left(\frac{1}{K} \right)^{\frac{2}{3}} \right)^3 = \frac{1}{12 K^2} \left(\sum_{i=0}^{K-1} \sqrt[3]{f(s_i')} \Delta_i \right)^3$$

with equality iff $\Delta_i \sqrt[3]{f(s'_i)} = \text{const}$

Remember: Lloyd quantizer minimizes distortion for given size K

$$D = rac{1}{12 \, \mathcal{K}^2} \, \left(\sum_{i=0}^{K-1} \sqrt[3]{f(s'_i)} \, \Delta_i
ight)^3$$

• Asymptotic limit for large K ($\Delta_k \rightarrow 0$)

$$D = \frac{1}{12 \, \mathcal{K}^2} \, \left(\int_{-\infty}^{\infty} \sqrt[3]{f(s)} \, \mathrm{d}s \right)^3$$

High-Rate Approximation: Lloyd Quantizer with Fixed-Length Coding

MSE Distortion for Lloyd Quantizer at High Rates and Rate for Fixed-Length Coding

$$D = \frac{1}{12 \, K^2} \, \left(\int_{-\infty}^{\infty} \sqrt[3]{f(s)} \, \mathrm{d}s \right)^3 \qquad \text{and} \qquad R = \log_2 K \implies \frac{1}{K^2} = 2^{-2R}$$

Lloyd Quantizer with Fixed-Length Coding at High Rates

Panter and Dite approximation for operational distortion-rate function

Lloyd Quantizer with Fixed-Length Coding vs Panter-Dite Approximation

Summary of Lecture

Scalar Quantization

- Input-output function s' = Q(s) is a staircase function
- Quantizer is characterized by K reconstruction levels s'_k and K-1 decision thresholds u_k

Lloyd Quantizer

- Minimizes distortion D for given number K of quantization intervals
- Two optimization criterions
 - Centroid condition (MSE): $s'_k = \mathrm{E}\{ \ S \mid S \in \mathcal{I}_k \}$
 - Nearest neighbor condition (MSE): $u_k = (s'_k + s'_{k-1})/2$
- Lloyd quantizer design: Iterate between the two optimization criterions
- High-rate approximation of Lloyd quantizer with fixed-length coding (Panter-Dite approximation)

Next Steps

- Theoretical limits for lossy source coding
- Consider entropy coding in quantizer design

Exercise 1: Implement Lloyd Algorithm

Implement the Lloyd algorithm using a programming language of your choice.

- Test the algorithm (for quantizer sizes of K = 2, 4, 8, 16, 32) for
 - a unit-variance Gaussian pdf:

$$f(s) = rac{1}{\sqrt{2\pi}} e^{-rac{1}{2}s^2}$$

• a unit-variance Laplacian pdf:

$$f(s)=rac{1}{\sqrt{2}}\,e^{-\sqrt{2}\,|s|}$$

- Determine the distortion *D* for your quantizers.
- Compare the R-D performance of your quantizers (for K = 2, 4, 8, 16, 32) to the high-rate approximation for Lloyd quantizers with fixed-length codes.

You can implement the Lloyd algorithm that directly uses the pdf or the Lloyd algorithm that uses a training set (files with 1 000 000 samples in float32 format are provided on the course web site)

Exercise 2: Lloyd Quantizer for MSE Distortion (Alternative)

Given is a stationary source with a zero-mean Laplace pdf f(x) and a symmetric 3-interval quantizer:

$$f(x) = rac{1}{\sqrt{2\sigma^2}} e^{-\sqrt{rac{2}{\sigma^2}}|x|}$$
 and $Q(x) = \left\{egin{array}{ccc} -b & : & x < -a \ 0 & : & |x| \leq a \ b & : & x > a \end{array}
ight.$

(a) Derive the optimal reconstruction value b as a function of the threshold a for MSE distortion. Express the resulting distortion as function of the threshold a and the variance σ^2 .

- (b) Determine the decision threshold a in a way that a Lloyd quantizer for MSE distortion is obtained. Determine the distortion and rate for the Lloyd quantizer by assuming fixed-length coding (R = log₂K) and compare the obtained R-D point with the high-rate approximation.
- (c) Can the derived optimal quantizer for fixed-length coding be improved by adding entropy coding (without changing the decision thresholds and reconstruction levels)?

Exercise 3: Lloyd Quantizer for MAE Distortion (Another Alternative)

Given is a stationary source with a zero-mean Laplace pdf f(x) and a symmetric 3-interval quantizer:

$$f(x) = \frac{1}{2m} e^{-\frac{|x|}{m}} \qquad \text{and} \qquad Q(x) = \begin{cases} -b : x < -a \\ 0 : |x| \le a \\ b : x > a \end{cases}$$

(a) Derive the centroid condition and nearest neighbor condition for MAE distortion

$$D = \mathrm{E}\{ \left| S - S' \right| \}$$

- (b) Derive the optimal reconstruction value b as a function of the threshold a for MAE distortion. Express the resulting distortion as function of the threshold a and the parameter m.
- (c) Determine the decision threshold *a* in a way that a Lloyd quantizer for MAE distortion is obtained. Determine the distortion and rate for the quantizer by assuming fixed-length coding ($R = \log_2 K$).