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Last Lectures

Last Lectures: Lloyd Quantizer & Rate-Distortion Function

Lloyd Quantizer

® Minimizes distortion D for given number K of quantization intervals
m Design algorithm: Iterate between two optimization criterions

e Centroid condition (MSE): sk =E{S|S €L}

® Nearest neighbor condition (MSE):  ux = (s}, + s;_1)/2

Rate-Distortion Function

/
m Greatest lower bound for lossy source coding: R(D) = Nlim 6ir(1f \<b N(/\s;N)
00 gn: on(gN)=

m Property of the source (no consideration of codes)
High-Rate Approximations
m Panter & Dite asymptote for Lloyd quantizer (MSE): De(R) =2 -02.272R

® Shannon lower bound for rate-distortion function (MSE): D/ (R) =% - 02 .272F

D 2 D2, .
=» MSE distortion increase of Lloyd vs SLB: F(R) =F 5 Gauss 272 (4.34dB)

D& Laplace: ~5.20 (7.16dB)
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Entropy-Constrained Scalar Quantizer

Rate-Distortion Efficiency of Scalar Quantizers

Distortion
® Quantifies deviation between original and reconstructed samples

m Typically: Additive distortion measures with d(s,s’) being the single-sample distortion

Uk+1

D =E{d(S,S)} = Z / d(s,s) F(s) ds

Bit Rate

m Average number of bits for coding quantization indexes g (or reconstructed values s’)
Uk+1
R=B{US)} = pe- b= Zek/ £(s) ds
Vk Vk Uk

Design of Scalar Quantizers

m |loyd quantizer minimizes distortion, but ignores impact on bit rate (assumes fixed-length coding)
=» Improved performance: Consider bit rate in quantizer design
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Joint Minimization of Distortion and Bit Rate

Constrained Optimization Problem

m Optimization problem can be formulated as

min D subject to R < Riarget

or, equivalently, min R subject to D < Diarget

Reformulation as Unconstrained Problem
m Typically, constrained optimization problems cannot be solved directly
m Use technique of Lagrange multipliers for reformulation as unconstrained problem

min D+ X-R

=> The parameter A > 0 is called Lagrange multiplier
=> Each value of A corresponds to a rate constraint Riarget (Or distortion constraint Diarget)
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Entropy-Constrained Scalar Quantizer / Lagrangian Optimization

Convex Optimization: lllustration

DA region of achievable
rate-distortion points
for scalar quantizer

convex hull —
solution of constrained problem
AR /
« C
Rearget R
A =tana oree
=» Points on convex hull: Minimize distance C to line D = —\- R

=> Geometrical interpretation: Rotate coordinate system by angle «
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Convex Optimization: Lagrangian Formulation

ch
D
R -sin«
a 7777777777
R
leY D - cos«
AR a
=» Minimize distance: C=D-cosa+ R-sin«

=» Equivalent minimization: J =D + \-R (note: Lagrange multiplier is given by A = tan )
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Entropy-Constrained Scalar Quantizer / Optimization Criterions

Optimal Scalar Quantizer

Optimization Criterion

m Minimization of Lagrangian cost for some given Lagrange multiplier A

J=D+XR

Uk+1

Uk+1
= Z/ d(s,s;) f(s)ds+ A Z@k/ f(s) ds (any additive distortion measure)
vk v Uk vk Uk
=» Each Lagrange multiplier A > 0 yields solution of original constrained problem for one Riarget

Optimization Criterion for MSE Distortion

m Determine quantizer parameters (s, and uy) and codeword lengths ¢, such that
the Lagrangian cost J = D + AR for MSE distortion is minimized

J = Z/ (s — s1)* f(s) ds+>\Z£k/ f(s) ds
Yk v Uk Yk

uk
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Entropy-Constrained Scalar Quantizer / Optimization Criterions

Optimal Decoder Mapping: Centroid Condition

Ukt Uk4+1
- Z/ (s— 5,2 F(s) ds + A-Zek/ £(s) ds
Vk v Uk Vk Uk

Optimize reconstruction levels s, for given decision thresholds wj
® Note: Rate term does not depend on reconstruction levels s,

=» Same condition as for Lloyd quantizer

=» Centroid condition for MSE distortion

® Optimal reconstruction level s; is given by conditional mean

Uk41
Ukt Ukt /
— / sf(s)ds =

sL:E{5|5€Ik}:/ f(s|seZy)d

'-’k+1
Uk
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Entropy-Constrained Scalar Quantizer / Optimization Criterions

Optimal Lossless Mapping: Entropy Condition

Ukt Uk4+1
J = Z/ (s— 5,2 F(s) ds + A-Zek/ £(s) ds
Vk v Uk Vk Uk

Optimize codeword lengths /, for given decision thresholds uy
® Note: Distortion term does not depend on codeword lengths ¢,
=» Remember: Lossless coding theorem: R > H(S')

Z Pkl > — Zpk - log, pk (equality if and only if £, = —log, pk)
vk Vk

=» Entropy condition (neglecting inefficiency of actual entropy coding)

Ukt
b = —log, px = —log, (/ f(s) ds)
ug
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Entropy-Constrained Scalar Quantizer / Optimization Criterions

Optimal Encoder Mapping: Condition for Decision Thresholds

Ukt Uk4+1
J = Z/ (s— 5,2 F(s) ds + A-Zek/ £(s) ds
Vk v Uk Vk Uk

Optimize decision thresholds u, for given reconstruction levels s, and codeword lengths ¢,
p g k g

® Note: Each threshold wuy impacts only JA
neighbouring intervals Z,_; and Z

=>» Map each input value s to interval Z, that
minimizes contribution to Lagrangian cost

J(s|T) = (s — sp)2 + X - 4y

=> At decision threshold vy, we require

J(uk |Ik_1) = J(uk ‘Ik)
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Entropy-Constrained Scalar Quantizer / Optimization Criterions

Optimal Encoder Mapping: Modified Nearest Neighbour Condition

m Optimal encoding mapping for MSE distortion
J(Uk |Ik,1) J(Uk |Ik)
(uk—sL_1)2+A-€k_1 = (Uk—5[,<)2+)\'€k

u? —2ues; 1+ (sh )2+ X le_1 = uZ —2us;, + (s5)° + X - e
2uk(Si = Ske1) = (k)% = (Sk—1)® + A (b — L)
2ui(sk — k1) = (sk — Sk—1)(sk + k1) + A (b = Li—1)

=» Modified nearest neighbour condition for MSE distortion

A (e =Ll
— / ! — PR —
2 (ko 54) + 2 (SL ~ Si1

—

Uk

=> Threshold is shifted towards the reconstruction level with the longer codeword
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Entropy-Constrained Lloyd Quantizer: Minimization of Lagrangian Cost

Necessary Conditions for Optimality (MSE distortion)

Centroid condition )
[t sf(s) ds

/ uy

S = g
k f k+ f(S)
Entropy condition
Lk = — log, pk
Modified nearest neighbor condition
1, N
uk =5 (Sker )+ 5 | o0
2 2 \s,—s;_1

Design of optimal entropy-constrained scalar quantizers
B |n general: Cannot be derived in closed form

=> |terative algorithm similar to Lloyd algorithm
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Entropy-Constrained Scalar Quantizer / Entropy-Constrained Lloyd Algorithm

Entropy-Constrained Lloyd Algorithm for Given Pdf (MSE Distortion)

Given is: @ the marginal probability density function f(s) of the source
® a Lagrange multiplier A > 0

Iterative quantizer design
Choose an initial set of reconstruction levels {s;} and codeword lengths {¢,}

Update the decision thresholds {ux} according to
1 A (Ll — Ll
weg b g (G240
Update the reconstruction levels {s,} and codeword lengths {{,} according to
/ fuL:(Jd S f(S) ds d ’ | (/Uk+1 f( ) q )
S = —— an =—lo s)ds
CLT ) ds R

B Repeat the previous two steps until convergence
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Entropy-Constrained Scalar Quantizer / Entropy-Constrained Lloyd Algorithm

Entropy-Constrained Lloyd Algorithm for a Training Set (MSE Distortion)

Given is: e a sufficiently large realization {s,} of the considered source
® a Lagrange multiplier A > 0

Iterative quantizer design

Choose an initial set of reconstruction levels {s;} and codeword lengths {/,}

Associate all samples of the training set {s,} with one of quantization intervals Z;
a(s) = arg min (s, — 5,2 + A+

Update the reconstruction levels {s; } and codeword lengths {{,} according to
1

N
SL:N—k Z Sn and Ek:|0g2< k>

n: q(s:)=k N

where N is the number of samples associated with Z, and N is the total number of samples
B Repeat the previous two steps until convergence
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Entropy-Constrained Scalar Quantizer / Entropy-Constrained Lloyd Algorithm

Number of Initial Intervals for Entropy-Constrained Lloyd Algorithm

35

30

25

20

15

SNR [dB]

10

Example: Laplacian Source

N =63
optimal ECSQ N =31
\ N =15
N=7
N=3 i
| | | | | | | | |
05 1 15 25 3 35 4 45 55 6

bit rate R [bits per sample]

B Too small number of intervals leads to sub-optimal design

m EC Lloyd algorithm removes intervals during iterations (probabilities get smaller and smaller)

=>» Use large number of intervals in initialization
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Example: EC Lloyd Algorithm for Gaussian Source

Gaussian Source
B Zero mean =0

m Unit variance 02 = 1

EC Lloyd Quantizer for 2 bits per sample

m Decision thresholds: ugy = +0.538
U_1/2 = +1.623
U_2/3 = 12.743

u_34 = +3.926 sly, si3) sloysla) so ) St 1S 1S5 .S, S
u_3 u_o u—_1 Uo uy uz us Ug
B Reconstruction levels: s = 0.000
sy, = +0.980 B B
s, — +1.081 R = 2.00 (rate = entropy)
sy = 43.029 D = 0.089
shy = +4.148 SNR = 10.51dB  (RD bound = 12.04dB)
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Entropy-Constrained Scalar Quantizer / Examples

Example: Convergence of EC Lloyd Algorithm for Gaussian Source

2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1

0

A entropy

iteration

[

A SNR

iteration

[

17 / 46

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Optimal Scalar Quantization



Example: EC Lloyd with Insufficient Initial Intervals (Gaussian Source)

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A SNR A entropy
optimal SQ: 10.51dB
110.37dB .o
) o 200bt .
=» sub-optimal scalar quantizer! W
iteratioi iteratio&

| -
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Example: EC Lloyd vs Lloyd at Same Entropy (Gaussian)

Lloyd Algorithm Entropy-Constrained Lloyd Algorithm

1
1
1
1
1
1
1
|
1
1
|
1
1
|
1
1
1
u

s sl slg sl sl 0 s§ sy 1 sh sk S5 S
Uz U_2 U-1 U ur u2 3 Ug
A = 0.1393
H = 1.011 H = 1.911
D = 0.117 D = 0.101 = factor 0.86 smaller
SNR = 9.30dB SNR = 9.98dB =» 0.68dB better
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Example: EC Lloyd Algorithm for Laplacian Source

Laplacian Source

® Zero mean 4 = 0 and unit variance 02 = 1

1

|

EC Lloyd Quantizer for 2 bits per sample :
m Decision thresholds: up1 = +0.540 X
U71/2 = +1.465 :

u_z;3 = +2.390 :

u_sjs = +3.315 :

U a5 = +4.240 |

) s'g1s 418 518,18 | sy 1Sy 1sh | sy 1 sy s
m Reconstruction levels: s6 = 0.000 | ! I | | '
sy = +0.905 T
sh, = £1.830
shy = +2.755 R = 2.00 (rate = entropy)
shs = £3.681 D — 0073

ss = +4.606

SNR = 11.37dB  (SLB = 12.67dB)
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Entropy-Constrained Scalar Quantizer / Examples

Example: Convergence of EC Lloyd Algorithm for Laplacian Source

2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A entropy

iteration

[

A SNR

iteration

[
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Example: EC Lloyd with Insufficient Initial Intervals (Laplacian Source)

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

A SNR A entropy
optimal SQ: 11.37dB

10.86dB

2.00 bit

=» sub-optimal scalar quantizer!

iteration iteration
> >

| -
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Example: EC Lloyd vs Lloyd at Same Entropy (Laplace)

Lloyd Algorithm Entropy-Constrained Lloyd Algorithm

e

s A s s 41 s 3,8 5181, S S S S5 sS
u1 2 us u-3 uU-2 U1 uo ui uz us 27}
K =14 (ReL = 2.0) A = 0.1350
H = 1.728 H = 1.728
D = 0.176 D = 0.104 = factor 0.59 smaller
SNR = 7.54dB SNR = 9.83dB =» 2.29dB better
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Entropy-Constrained Scalar Quantizer / High-Rate Approximation

Review: MSE Distortion for Centroid Quantizers at High Rates

High-Rate Approximation

m High rates: Pdf 7(s) is nearly constant inside each quantization interval

Pk Pk /
f(s) ~ S S = ~f -A
(s) A v pr = f(s) - Ak

MSE Distortion for Centroid Quantizers at High Rates

m When considering Lloyd quantizers, we derived

1 2
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Entropy of Quantization Indexes at High Rates

Average Bit Rate for Optimal Entropy Coding
m Approximation for high bit rates (Ax — 0)

R = H(S') == p« - log, p
Vk
[P = F(s}) A ] = =" pu (loga F(sf) + log, A)
Vk

— ) f(si) logz (i) Ak — Y pi logy A

vk Vk

o0 1
- / f6)loga f(5)ds =3 3 pulog; ]

[Ay—0]

1
R = h(S)— 53 plog A}
Vk
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High-Rate Approximation: Optimal Entropy-Constrained Scalar Quantizers

m Will use: Jensen'’s inequality for convex functions (x)

Zak =1 — Zak V(xk) > Y (Z ok Xk> [equality iff x, = const
k k k

High-Rate Approximation for Average Bit Rate

m Apply Jensen's inequality for convex function ¥ (x) = — log,(x)

1
R = h(S)— 53" prlogs A2
Vk

Y

1
h(S) — > log, (Z pkAi> [equality iff Ay = const}
vk

h(S) — %Iogz( 12D)
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High-Rate Approximation for MSE Distortion: Gish & Pierce Asymptote

=» MSE distortion & high rates: Optimal scalar quantizers have uniform step sizes

=» MSE Distortion at high rates
1 5 A2
D = IR ;Pk Ay = 12

=> High-rate operational rate-distortion function (Gish & Pierce)

Rv(D) = h(S) — % log, (12D)

=» High-rate operational distortion-rate function

1 _
DV(R) _ E 22h(5) 2 2R
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Entropy-Constrained Scalar Quantizer / High-Rate Approximation

Comparison to Shannon Lower Bound

m High-rate approximations for MSE distortion

ECLloyd: Ry(D) = h(S)—%Iog2 (12D) and  Dy(R) = %.22"(5).2*2'?
SLB:  R(D) = h(5)—%|og2 (2reD) and  Di(R) = ﬁ-zzh(s).zfz’?
=» Distortion increase (at same rate) relative to Shannon lower bound
g‘:((g)) = %e ~ 1.42 = 1.53 dB loss in SNR

=> Rate increase (at same distortion) relative to Shannon lower bound

1
Ry(D) — R.(D) = 5|og2(’r—e) ~ 0.2546 -

5 roughly 1/4 bit per sample
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Summary: High-Rate Approximations for MSE Distortion

® General form of high-rate approximations for MSE distortion

2 2 5-2R 1 ek o’
Dx(R) = ex-0°-2 and Rx(D) = §|°g2 5
Shannon lower bound EC Lloyd + VLC Lloyd + FLC
1 1 1 i
general : &= e 22h(S/) & = o 22h(S/) &= D 700\3/ f(s/o) ds
. >_ 6 2 2
uniform : L= ~ 0.70 ey =1 eg=1
2
Laplace: g2 = % ~ 0.86 T % ~1.23 g2 = g =4.5
Gauss: =1 gy = %e ~ 1.42 R= @ ~2.72
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Comparison of Quantizers and High-Rate Approximations: Gaussian Source

High-rate approximations

Dx(R) =% -0°-27%F

SLB: e =1
Lloyd: 2 = @
2

EC-Lloyd: €2 = %e
DF \/g’/T
— = —— =~ 272 (4.34dB
Dy 5 ( )
D\/ e
— = — =~ 1.42 1.53dB
D, 5 ( )

SNR [dB]

45
40
35

30|

25
20
15
10

—— Shannon lower bound
—— Panter & Dite
—— Gish & Pierce

e Lloyd quantizers

e EC Lloyd quantizers

1 2 3

bit rate R [bits per sample]
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Comparison of Quantizers and High-Rate Approximations: Laplacian Source

High-rate approximations 45 ‘ ‘ ‘
Dx(R) =ex -0%-272F a0l —— Shannon |ower bound
—— Panter & Dite
35 || — Gish & Pierce i
SLB: 2 = e 30| ° Lloyd quantizers.
T = e EC Lloyd quantizers
Lloyd: 2 _ 9 3, 25 7
oyd: EF = 5 o
5 z 20 i
. 2 _ €
EC-Lloyd: v =& 15 |
10 |
%f = 2—’; ~ 520 (7.16dB) 5 ]
0 | | |
% = TS~ 142 (L53dB) 0 1 2 3 4 5 6 7
L

bit rate R [bits per sample]
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Uniform Reconstruction Quantizer

Scalar Quantization in Practice

Quantization in Practice

m Most quantizers used in practice are scalar quantizers

m Examples for usage of scalar quantization (in combination with other techniques):
e Audio coding: MP3, AAC

® Image coding: JPEG, JPEG-2000, JPEG-XR
® Video coding: MPEG-2 Video, H.264/AVC, H.265/HEVC

Entropy-Constrained Scalar Quantizers ?
m Rarely used in practice
=» Problem: Reconstruction levels depends on source properties
® |n practice, source to be coded has unknown statistical properties
® Need to transmit reconstruction levels (can change over time)

=» Need simpler, but still efficient design
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Uniform Reconstruction Quantizers (URQs)

U_qg u-3 Us
5/75 : 5’,4 : : Sé
I I I
I I I
I I I
I I I
I I I
—5A —4A —3A —2A —1A 0 1A 2A 3A 4A 5A S

Uniform reconstruction quantizers

m Equally spaced reconstruction levels (indicated by quantization step size A)

=» Decoder: ® Reconstruction levels are completely specified by quantization step size A

® Simple decoding process: s, =A-q,

=> Encoder: @ Freedom to adapt decision thresholds to source statistics
® Simple encoding (rounding) or advanced encoding (Lagrange optimization)
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Optimum Uniform Reconstruction Quantizer (URQ)

Optimum URQ Design for MSE Distortion
® Minimization of Lagrange cost for given Lagrange multiplier A

J=D+X-R

B{ (S-Q(9) } + - E{¢(Q(9)) }

= Z/ k+1(5—kA)2f(s) ds+/\~Z£k/ f(s) ds [sp=k-A]
Vk k Vk Uk

u

=> Select Lagrange multiplier A (which determines operation point)
=» Minimize J with respect to

® Decision thresholds wuy

® Codeword lengths ¢,

® Quantization step size A
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Optimization Criterions for URQs with MSE Distortion

Uk+1

Uk41
J=D+)X-R= Z/ (s — kA)? s)ds+>\~Z£k/ f(s) ds
k Uk

Optimal decision thresholds wuj for given A and ¢, (same as for EC Lloyd)

uk—A(k—1>+2A(€k—€k 1) [note: s, = kA |

Optimal codeword lengths ¢, for given uy (same as for EC Lloyd)

Uk+1
b = —logy p = — |Og2/ f(s) ds

Uk

Optimum quantization step size A for given uy
) B Sk [ sf(s)ds

— J=—D=0 = A=
oA [SJAN S k2 [, f(s)ds
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Iterative URQ Design Algorithm

Given is: @ the marginal probability density function 7(s) of the source
® a Lagrange multiplier A > 0

Iterative quantizer design
Choose an initial quantization step size A and initial codeword lengths {¢,}

Update the decision thresholds {ux} according to

1 A
up = A (k 2) + E(fk — li-1)

Update the codeword lengths {¢x} and quantization step size A according to
P kfu“:“ sf(s)ds
Y k2 fuu:“ f(s)ds

gk = 7|Og2 Pk A

A Repeat the previous three steps until convergence

Note: Similar iterative algorithm for training set (instead of pdf)
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Coding Efficiency Comparison: Optimal URQs vs ECSQs

0 1073 Gaussian Pdf 9 104 Laplacian Pdf
T T T T [ [ [ [ [
. 81 7 _ 8| optimal URQ vs ECSQ |
m 7| a o 7 .
o 6l . S o6l i
" 5l optimal URQ vs ECSQ w 5| |
S 4l . 38 4l |
x 3 - o 3| .
& 2| . & 2f .
1h . 1 .
| | | | | | | |
0O 1 2 3 4 5 6 00 1 2 3 4 5 6
bit rate (entropy) [bits per sample] bit rate (entropy) [bits per sample]
D D
ASNR < 0.0063 = —= < 1.0015 ASNR < 0.00081 = -2 10002
opt opt

=> For typical pdfs: Negligible loss versus optimal ECSQ
=» Same high-rate performance as optimal ECSQ
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Quantization Step Size vs Lagrange Multiplier

m High-rate distortion approximations

1 A?
_ 2.2 5-2R _ 2 _ -
D(R)=¢"-0°-27°", D= R Ek pk Aj = R (also valid for URQ)
B [agrangian optimization
d d
— (D(R R) = - =——D(R
dR (D(R) +AR) =0 A dR (R)

=» Lagrange multiplier at high rates
d In2

A = fd—RD(R):2~In2~52~02~2’2R:2~In2~D:7~A2

=» Often used relationship between )\ and A

_In2
6

Heiko Schwarz (Freie Universitit Berlin) — Data Compression: Optimal Scalar Quantization 38 / 46

A

A? or, more generally, \ = const - A?



Uniform Reconstruction Quantizer / URQs in Practice

URQs used in Practice

Bitstream Syntax and Decoding Process

m Select quantization step size A at encoder: Trade-off quality and bit rate
B Transmit quantization step size A and quantization indexes k
m Reconstruction at decoder: s’ = k- A

Encoding Process: Determine optimal quantization indexes
m Set Lagrange multiplier according to A = const - A?
m Codeword length {¢} are given by
® Codeword table (specified in standard) or
® Probabilities used in arithmetic coding (¢x = — log, p«)
® For each sample s: Choose quantization index k that minimizes
J(k) = (s — kD)2 + X4y
=> Note: We only need to check the two neighboring reconstruction levels
ki = |s/A] and ko = [s/A]
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Uniform Reconstruction Quantizer / URQs in Practice

Advantages of Uniform Reconstruction Quantizers

URQ vs Optimal Scalar Quantizers (ECSQs)
m Performance of optimal URQs is very close to that of optimal scalar quantizers
=> Transmit single parameter A for specifying operating point
=» Very simple decoding process: s’ = kA

=> Leave all optimizations to encoder (may or may not be exploited)

Useful Design: URQ + Adaptive Arithmetic Coding
m Codeword lengths ¢, given by probabilities ¢, = — log, p«
m Optimal encoder decision: Choose quantization index k that minimizes Lagrangian cost J(k)
m Quantizer (thresholds) and entropy coding adapt to source statistics
=> Suitable for unknown and/or instationary sources
=» Straightforward to exploit conditional probabilities

=» Most quantizers used in practice are URQs
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Summary of Lecture

Summary of Lecture

Optimal Scalar Quantizers
® Minimizes Lagrangian cost J = D + AR (where A > 0 determines operation point)
m Three optimization criterions: =» centroid condition
=> entropy condition
=» modified nearest neighbour condition
®m May need large number (K — o0) of intervals for obtaining optimal quantizer
B High-rate approximation: => distortion is factor 1.42 higher than SLB (1.53 dB)
=> bit rate is roughly 0.25 bits per sample larger than SLB

Uniform Reconstruction Quantizers
m Uniformly spaced reconstruction levels (specified by quantization step size A)
m Very simple decoder mapping: s’ = A - k
m Coding efficiency very close to optimal scalar quantizers (with suitable encoder decisions)
=> Most often used quantizer in practice
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_eecises
Exercise 1: Implement the Entropy-Constrained Lloyd Algorithm (optional)

Implement the entropy-constrained Lloyd algorithm using a programming language of your choice.

m Test the algorithm for

® 3 unit-variance Gaussian pdf: 1

® 3 unit-variance Laplacian pdf: 1
— V2l
f(s) e
V2

m Use the following Lagrange multipliers: A = 0.5,0.2,0.1,0.05,0.02,0.01.
m Determine the rate (entropy) R and the distortion D for your quantizers.

m Compare the R-D performance of your quantizers to the high-rate approximation.

You can implement the EC Lloyd algorithm that directly uses the pdf or the EC Lloyd algorithm that
uses a training set (files with 1000000 samples in float32 format are provided on the course web site)
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Exercise 2: Quantization of Sources with Memory

Consider a discrete Markov process X = {X,} with the symbol alphabet Ax = {0,2,4,6}
and the conditional pmf

a i Xp = Xp—1
%(1 —a) 1 Xp# Xp—1

The parameter a, with 0 < a < 1, is a variable that specifies the probability that the current symbol is
equal to the previous symbol. For a = 1/4, our source X would be i.i.d.

pX,,|X,,_1(Xn|Xn71) = {

Given is a two-interval quantizer with the reconstruction levels sy =1 and s; =5
and the decision threshold u; = 3.

(a) Assume optimal entropy coding using the marginal probabilities of the quantization indices and
determine the rate-distortion point of the quantizer.

(b) Can the overall quantizer performance be improved by applying conditional entropy coding
(e.g., using arithmetic coding with conditional probabilities)?

How does it depend on the parameter a?
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Exercise 3: High-Rate Quantization

Consider scalar quantization of a Laplacian source at high rates:

2
f(x) = % ce A with o2 = 2

In a given system, the used quantizer is a Lloyd quantizer with fixed-length entropy coding
(the number of quantization intervals represents a power of 2).

How many bits per sample (for the same MSE distortion) can be saved if the quantizer is replaced
by an entropy-constrained quantizer with optimal entropy coding?

Note:

Assume that the operation points of the quantizers can be accurately described
by the corresponding high rate approximations.
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Exercise 4: Implementation of First Lossy Image Codec

m Use the PPM format as raw data format (see earlier exercise on lossless image coding)

m Use any of the lossless image codecs available in the KVV (or your own implementation) as basis

Implement an Image Encoder
® Quantize the original image samples s[x, y] using a fixed quantization step size A
=» Simple rounding is sufficient for our purpose: k[x,y] = round(s[x, y]/A)
=> Transmit the quantization step size A at the beginning of the bitstream
B Use the lossless codec for coding the quantization indexes k[x, y|

Implement the corresponding Image Decoder
m Decode the quantization indexes k[x, y]| using the lossless codec

m Reconstruct the image samples according to:  s'[x, y] = k[x,y]- A

Test your Codec
m Code selected test images with different quantization step sizes (e.g., A = 2,4, 8,16, 32,64)
m Measure the compression factors (based on the file sizes) and judge the image quality by visual inspection
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_ esercises
Exercise 5: Quantization of Exponential Source (optional / more difficult)

Consider uniform threshold quantization of an exponential pdf given by f(x) = ae™?~.
With A denoting the quantization step size, the thresholds are given by uy = kA, with k =0,1,2,---.

(a) Determine the pmf for the quantization indexes.
Calculate the rate (entropy) as function of the probability p = P(X > A) = e~ A,
Describe an entropy coding scheme for the quantization indices that virtually achieves the entropy.

(b) Derive a formula for the optimal reconstruction levels s, for MSE distortion, as function of the
quantization step size A, the lower interval boundaries uy, and the probability p = e™22.

(c) Is the obtained quantizer an optimal entropy-constrained scalar quantizer?

(d) Determine the distortion in dependence of the quantization step size for the developed quantizer.

. 1 —~ k a 2k a(l+a)
Hint:  For |a| <1, > a =1 > ka “a-ap D K= 1—ap
k=0 k=0 k=0
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