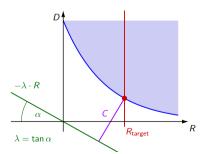
Optimal Scalar Quantization



Last Lectures: Lloyd Quantizer & Rate-Distortion Function

Lloyd Quantizer

- \blacksquare Minimizes distortion D for given number K of quantization intervals
- Design algorithm: Iterate between two optimization criterions
 - Centroid condition (MSE): $s'_k = \mathbb{E}\{S \mid S \in \mathcal{I}_k\}$
 - Nearest neighbor condition (MSE): $u_k = (s'_k + s'_{k-1})/2$

Rate-Distortion Function

- Greatest lower bound for lossy source coding:

$$R(D) = \lim_{N \to \infty} \inf_{g_N: \ \delta_N(g_N) \le D} \frac{I_N(g_N)}{N}$$

Property of the source (no consideration of codes)

High-Rate Approximations

- Panter & Dite asymptote for Lloyd quantizer (MSE): $D_F(R) = \varepsilon_F^2 \cdot \sigma^2 \cdot 2^{-2R}$
- $D_L(R) = \varepsilon_L^2 \cdot \sigma^2 \cdot 2^{-2R}$ ■ Shannon lower bound for rate-distortion function (MSE):
- → MSE distortion increase of Lloyd vs SLB: $\frac{D_F}{D_L}(R) = \frac{\varepsilon_F^2}{\varepsilon_L^2}$ → Gauss: ≈ 2.72 (4.34 dB) Laplace: ≈ 5.20 (7.16 dB)

Rate-Distortion Efficiency of Scalar Quantizers

Distortion

- Quantifies deviation between original and reconstructed samples
- Typically: Additive distortion measures with d(s, s') being the single-sample distortion

$$D = \mathrm{E} \{ d(S, S') \} = \sum_{orall k} \int_{u_k}^{u_{k+1}} d(s, s'_k) f(s) ds$$

Bit Rate

 \blacksquare Average number of bits for coding quantization indexes q (or reconstructed values s')

$$R = \mathrm{E}\{\,\ell(S')\,\} = \sum_{orall k} p_k \cdot \ell_k = \sum_{orall k} \ell_k \int_{u_k}^{u_{k+1}} f(s) \; \mathrm{d} s$$

Design of Scalar Quantizers

- Lloyd quantizer minimizes distortion, but ignores impact on bit rate (assumes fixed-length coding)
- → Improved performance: Consider bit rate in quantizer design

Joint Minimization of Distortion and Bit Rate

Constrained Optimization Problem

or, equivalently,

Optimization problem can be formulated as

min D	subject to	$R \leq R_{target}$
min R	subject to	$D \leq D_{target}$

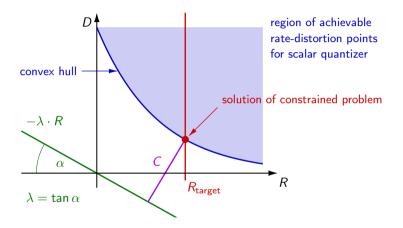
Reformulation as Unconstrained Problem

- Typically, constrained optimization problems cannot be solved directly
- Use technique of Lagrange multipliers for reformulation as unconstrained problem

min
$$D + \lambda \cdot R$$

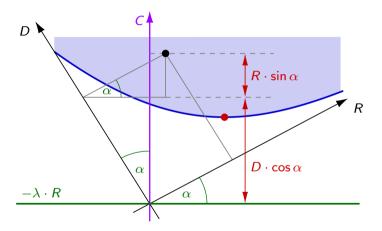
- \rightarrow The parameter $\lambda > 0$ is called **Lagrange multiplier**
- \rightarrow Each value of λ corresponds to a rate constraint R_{target} (or distortion constraint D_{target})

Convex Optimization: Illustration



- ightharpoonup Points on convex hull: Minimize distance C to line $D = -\lambda \cdot R$
- \rightarrow Geometrical interpretation: Rotate coordinate system by angle α

Convex Optimization: Lagrangian Formulation



- - Minimize distance: $C = D \cdot \cos \alpha + R \cdot \sin \alpha$
- \rightarrow Equivalent minimization: $J = D + \lambda \cdot R$ (note: Lagrange multiplier is given by $\lambda = \tan \alpha$)

Optimal Scalar Quantizer

Optimization Criterion

■ Minimization of Lagrangian cost for some given Lagrange multiplier λ

$$J = D + \lambda \cdot R$$

$$= \sum_{\forall k} \int_{u_k}^{u_{k+1}} d(s, s'_k) f(s) \, \mathrm{d}s + \lambda \sum_{\forall k} \ell_k \int_{u_k}^{u_{k+1}} f(s) \, \mathrm{d}s \qquad \text{(any additive distortion measure)}$$

ightharpoonup Each Lagrange multiplier $\lambda>0$ yields solution of original constrained problem for one R_{target}

Optimization Criterion for MSE Distortion

■ Determine quantizer parameters (s'_k and u_k) and codeword lengths ℓ_k such that the Lagrangian cost $J = D + \lambda R$ for MSE distortion is minimized

$$J = \sum_{\forall k} \int_{u_k}^{u_{k+1}} (s - s'_k)^2 f(s) ds + \lambda \sum_{\forall k} \ell_k \int_{u_k}^{u_{k+1}} f(s) ds$$

Optimal Decoder Mapping: Centroid Condition

$$J = \sum_{\forall k} \int_{u_k}^{u_{k+1}} (s - s_k')^2 f(s) ds + \lambda \cdot \sum_{\forall k} \ell_k \int_{u_k}^{u_{k+1}} f(s) ds$$

- **1** Optimize reconstruction levels s'_k for given decision thresholds u_k
 - Note: Rate term does not depend on reconstruction levels s'_k
 - → Same condition as for Lloyd quantizer
- → Centroid condition for MSE distortion
 - Optimal reconstruction level s'_k is given by conditional mean

$$s'_k = \mathrm{E}\{S \mid S \in \mathcal{I}_k\} = \int_{u_k}^{u_{k+1}} s f(s \mid s \in \mathcal{I}_k) ds = \frac{1}{p_k} \int_{u_k}^{u_{k+1}} s f(s) ds = \frac{\int_{u_k}^{u_{k+1}} s f(s) ds}{\int_{u_k}^{u_{k+1}} f(s) ds}$$

Optimal Lossless Mapping: Entropy Condition

$$J = \sum_{\forall k} \int_{u_k}^{u_{k+1}} (s - s_k')^2 f(s) ds + \lambda \cdot \sum_{\forall k} \ell_k \int_{u_k}^{u_{k+1}} f(s) ds$$

- **2** Optimize codeword lengths ℓ_k for given decision thresholds u_k
 - Note: Distortion term does not depend on codeword lengths ℓ_k
 - \rightarrow Remember: Lossless coding theorem: $R \geq H(S')$

$$\sum_{\forall k} p_k \cdot \ell_k \ge -\sum_{\forall k} p_k \cdot \log_2 p_k \qquad \text{ (equality if and only if } \ell_k = -\log_2 p_k)$$

→ Entropy condition (neglecting inefficiency of actual entropy coding)

$$\ell_k = -\log_2 p_k = -\log_2 \left(\int_{u_k}^{u_{k+1}} f(s) ds \right)$$

Optimal Encoder Mapping: Condition for Decision Thresholds

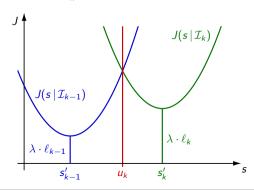
$$J = \sum_{\forall k} \int_{u_k}^{u_{k+1}} (s - s_k')^2 f(s) ds + \lambda \cdot \sum_{\forall k} \ell_k \int_{u_k}^{u_{k+1}} f(s) ds$$

- **3 Optimize decision thresholds** u_k for given reconstruction levels s'_k and codeword lengths ℓ_k
 - Note: Each threshold u_k impacts only neighbouring intervals \mathcal{I}_{k-1} and \mathcal{I}_k
 - → Map each input value s to interval \mathcal{I}_k that minimizes contribution to Lagrangian cost

$$J(s \mid \mathcal{I}_k) = (s - s'_k)^2 + \lambda \cdot \ell_k$$

 \rightarrow At decision threshold u_k , we require

$$J(u_k \mid \mathcal{I}_{k-1}) = J(u_k \mid \mathcal{I}_k)$$



Optimal Encoder Mapping: Modified Nearest Neighbour Condition

Optimal encoding mapping for MSE distortion

$$J(u_{k} | \mathcal{I}_{k-1}) = J(u_{k} | \mathcal{I}_{k})$$

$$(u_{k} - s'_{k-1})^{2} + \lambda \cdot \ell_{k-1} = (u_{k} - s'_{k})^{2} + \lambda \cdot \ell_{k}$$

$$u_{k}^{2} - 2u_{k}s'_{k-1} + (s'_{k-1})^{2} + \lambda \cdot \ell_{k-1} = u_{k}^{2} - 2u_{k}s'_{k} + (s'_{k})^{2} + \lambda \cdot \ell_{k}$$

$$2u_{k}(s'_{k} - s'_{k-1}) = (s'_{k})^{2} - (s'_{k-1})^{2} + \lambda (\ell_{k} - \ell_{k-1})$$

$$2u_{k}(s'_{k} - s'_{k-1}) = (s'_{k} - s'_{k-1})(s'_{k} + s'_{k-1}) + \lambda (\ell_{k} - \ell_{k-1})$$

→ Modified nearest neighbour condition for MSE distortion

$$u_k = rac{1}{2}\left(s_{k-1}^\prime + s_k^\prime
ight) + rac{\lambda}{2}\left(rac{\ell_k - \ell_{k-1}}{s_k^\prime - s_{k-1}^\prime}
ight)$$

→ Threshold is shifted towards the reconstruction level with the longer codeword

Entropy-Constrained Lloyd Quantizer: Minimization of Lagrangian Cost

Necessary Conditions for Optimality (MSE distortion)

1 Centroid condition

$$s_k' = \frac{\int_{u_k}^{u_{k+1}} s f(s) ds}{\int_{u_k}^{u_{k+1}} f(s) ds}$$

2 Entropy condition

$$\ell_k = -\log_2 p_k$$

3 Modified nearest neighbor condition

$$u_k = \frac{1}{2} \left(s'_{k-1} + s'_k \right) + \frac{\lambda}{2} \left(\frac{\ell_k - \ell_{k-1}}{s'_k - s'_{k-1}} \right)$$

Design of optimal entropy-constrained scalar quantizers

- In general: Cannot be derived in closed form
- → Iterative algorithm similar to Lloyd algorithm

Entropy-Constrained Lloyd Algorithm for Given Pdf (MSE Distortion)

Given is:

- the marginal probability density function f(s) of the source
- a Lagrange multiplier $\lambda > 0$

Iterative quantizer design

- 1 Choose an initial set of reconstruction levels $\{s'_k\}$ and codeword lengths $\{\ell_k\}$
- 2 Update the decision thresholds $\{u_k\}$ according to

$$u_k = \frac{1}{2} \left(s'_{k-1} + s'_k \right) + \frac{\lambda}{2} \left(\frac{\ell_k - \ell_{k-1}}{s'_k - s'_{k-1}} \right)$$

3 Update the reconstruction levels $\{s'_k\}$ and codeword lengths $\{\ell_k\}$ according to

$$s'_k = rac{\int_{u_k}^{u_{k+1}} s \, f(s) \, \mathrm{d}s}{\int_{u_k}^{u_{k+1}} f(s) \, \mathrm{d}s}$$
 and $\ell_k = -\log_2 \left(\int_{u_k}^{u_{k+1}} f(s) \, \mathrm{d}s \right)$

4 Repeat the previous two steps until convergence

Entropy-Constrained Lloyd Algorithm for a Training Set (MSE Distortion)

- Given is:
- a sufficiently large realization $\{s_n\}$ of the considered source
- a Lagrange multiplier $\lambda > 0$

Iterative quantizer design

- **1** Choose an initial set of reconstruction levels $\{s'_k\}$ and codeword lengths $\{\ell_k\}$
- **2** Associate all samples of the training set $\{s_n\}$ with one of quantization intervals \mathcal{I}_k

$$q(s_n) = \arg\min_{orall k} (s_n - s'_k)^2 + \lambda \cdot \ell_k$$

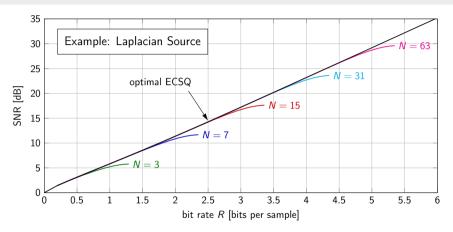
3 Update the reconstruction levels $\{s'_k\}$ and codeword lengths $\{\ell_k\}$ according to

$$s_k' = \frac{1}{N_k} \sum_{n: q(s) = k} s_n$$
 and $\ell_k = -\log_2\left(\frac{N_k}{N}\right)$

where N_k is the number of samples associated with \mathcal{I}_k and N is the total number of samples

4 Repeat the previous two steps until convergence

Number of Initial Intervals for Entropy-Constrained Lloyd Algorithm



- Too small number of intervals leads to sub-optimal design
- EC Lloyd algorithm removes intervals during iterations (probabilities get smaller and smaller)
- → Use large number of intervals in initialization

Example: EC Lloyd Algorithm for Gaussian Source

Gaussian Source

- \blacksquare Zero mean $\mu = 0$
- Unit variance $\sigma^2 = 1$

EC Lloyd Quantizer for 2 bits per sample

■ Decision thresholds:

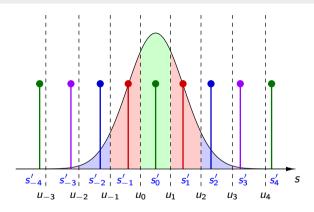
$$u_{0/1} = \pm 0.538$$

 $u_{-1/2} = \pm 1.623$
 $u_{-2/3} = \pm 2.743$
 $u_{-3/4} = \pm 3.926$

■ Reconstruction levels:

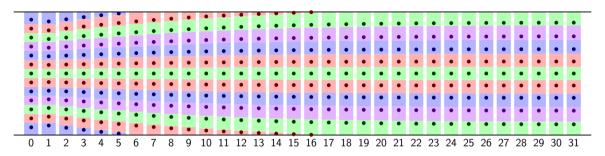
$$s'_0 = 0.000$$

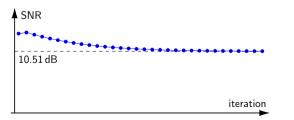
 $s'_{\pm 1} = \pm 0.980$
 $s'_{\pm 2} = \pm 1.981$
 $s'_{\pm 3} = \pm 3.029$
 $s'_{\pm 4} = \pm 4.148$

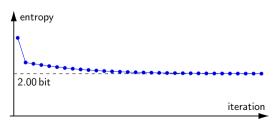


$$R = 2.00$$
 (rate = entropy)
 $D = 0.089$
SNR = 10.51 dB (RD bound = 12.04 dB)

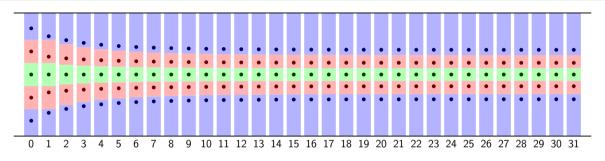
Example: Convergence of EC Lloyd Algorithm for Gaussian Source

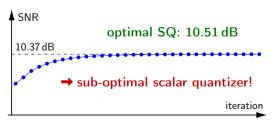


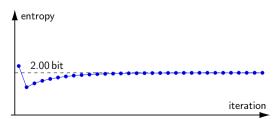




Example: EC Lloyd with Insufficient Initial Intervals (Gaussian Source)

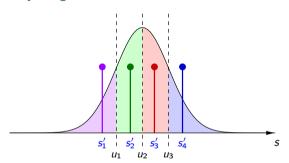






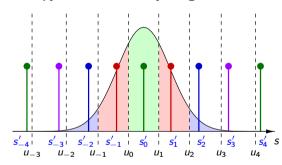
Example: EC Lloyd vs Lloyd at Same Entropy (Gaussian)

Lloyd Algorithm



SNR = 9.30 dB

Entropy-Constrained Lloyd Algorithm



$$\lambda = 0.1393$$

$$H = 1.911$$

$$D = 0.101$$

→ factor 0.86 smaller

 $SNR = 9.98 \, dB \rightarrow 0.68 \, dB \, better$

Example: EC Lloyd Algorithm for Laplacian Source

Laplacian Source

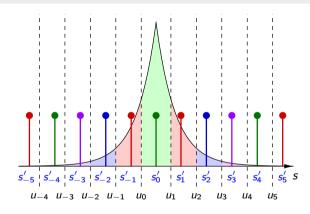
lacksquare Zero mean $\mu=0$ and unit variance $\sigma^2=1$

EC Lloyd Quantizer for 2 bits per sample

Decision thresholds:

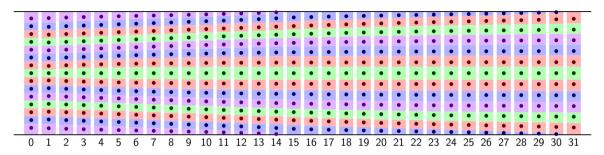
■ Reconstruction levels:

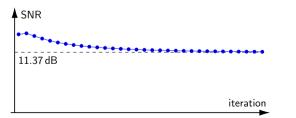
$$\begin{array}{lll} s_0' &=& 0.000 \\ s_{\pm 1}' &=& \pm 0.905 \\ s_{\pm 2}' &=& \pm 1.830 \\ s_{\pm 3}' &=& \pm 2.755 \\ s_{\pm 4}' &=& \pm 3.681 \\ s_{\pm 5}' &=& \pm 4.606 \\ & \cdots \end{array}$$

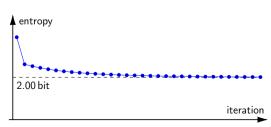


$$R = 2.00$$
 (rate = entropy)
 $D = 0.073$
SNR = 11.37 dB (SLB = 12.67 dB)

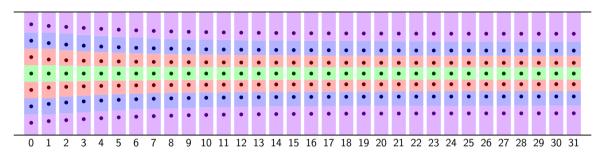
Example: Convergence of EC Lloyd Algorithm for Laplacian Source

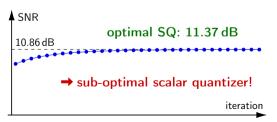


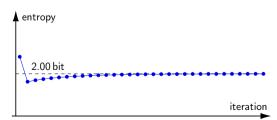




Example: EC Lloyd with Insufficient Initial Intervals (Laplacian Source)

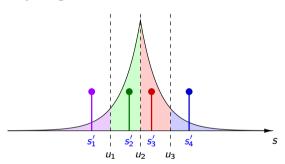






Example: EC Lloyd vs Lloyd at Same Entropy (Laplace)

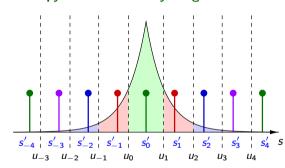
Lloyd Algorithm



$$K = 4$$
 $(R_{FL} = 2.0)$
 $H = 1.728$
 $D = 0.176$

SNR = 7.54 dB

Entropy-Constrained Lloyd Algorithm



$$\lambda = 0.1350$$

$$H = 1.728$$

$$D = 0.104$$

→ factor 0.59 smaller

 $SNR = 9.83 \, dB \rightarrow 2.29 \, dB \, better$

Review: MSE Distortion for Centroid Quantizers at High Rates

High-Rate Approximation

■ High rates: Pdf f(s) is nearly constant inside each quantization interval

$$f(s) pprox rac{p_k}{\Delta_k} = rac{p_k}{u_{k+1} - u_k} \qquad \Longrightarrow \qquad p_k pprox f(s_k') \cdot \Delta_k$$

MSE Distortion for Centroid Quantizers at High Rates

■ When considering Lloyd quantizers, we derived

$$D = \frac{1}{12} \sum_{\forall k} p_k \; \Delta_k^2$$

Entropy of Quantization Indexes at High Rates

Average Bit Rate for Optimal Entropy Coding

■ Approximation for high bit rates $(\Delta_k \to 0)$

$$R = H(S') = -\sum_{\forall k} p_k \cdot \log_2 p_k$$

$$= -\sum_{\forall k} p_k \left(\log_2 f(s'_k) + \log_2 \Delta_k \right)$$

$$= -\sum_{\forall k} f(s'_k) \log_2 f(s'_k) \Delta_k - \sum_{\forall k} p_k \log_2 \Delta_k$$

$$\left[\Delta_k \to 0 \right]$$

$$= -\int_{-\infty}^{\infty} f(s) \log_2 f(s) ds - \frac{1}{2} \sum_{\forall k} p_k \log_2 \Delta_k^2$$

$$R = h(S) - \frac{1}{2} \sum_{\forall k} p_k \log_2 \Delta_k^2$$

High-Rate Approximation: Optimal Entropy-Constrained Scalar Quantizers

■ Will use: **Jensen's inequality** for convex functions $\psi(x)$

$$\sum_{k} \alpha_{k} = 1 \qquad \Longrightarrow \qquad \sum_{k} \alpha_{k} \, \psi(x_{k}) \, \geq \, \psi \left(\sum_{k} \alpha_{k} \, x_{k} \right) \qquad \qquad \left[\text{ equality iff } x_{k} = \text{const } \right]$$

High-Rate Approximation for Average Bit Rate

■ Apply Jensen's inequality for convex function $\psi(x) = -\log_2(x)$

$$R = h(S) - \frac{1}{2} \sum_{\forall k} p_k \log_2 \Delta_k^2$$

$$\geq h(S) - \frac{1}{2} \log_2 \left(\sum_{\forall k} p_k \Delta_k^2 \right) \qquad \qquad \left[\text{ equality iff } \Delta_k = \text{const } \right]$$

$$= h(S) - \frac{1}{2} \log_2 (12D)$$

High-Rate Approximation for MSE Distortion: Gish & Pierce Asymptote

- → MSE distortion & high rates: Optimal scalar quantizers have uniform step sizes
- → MSE Distortion at high rates

$$D = \frac{1}{12} \sum_{\forall k} p_k \Delta_k^2 = \frac{\Delta^2}{12}$$

→ High-rate operational rate-distortion function (Gish & Pierce)

$$R_V(D) = h(S) - \frac{1}{2} \log_2 (12 D)$$

→ High-rate operational distortion-rate function

$$D_V(R) = \frac{1}{12} \, 2^{2h(S)} \, 2^{-2R}$$

Comparison to Shannon Lower Bound

■ High-rate approximations for MSE distortion

EC Lloyd:
$$R_V(D) = h(S) - \frac{1}{2} \log_2 (12D)$$
 and $D_V(R) = \frac{1}{12} \cdot 2^{2h(S)} \cdot 2^{-2R}$

SLB:
$$R_L(D) = h(S) - \frac{1}{2} \log_2 (2\pi e D)$$
 and $D_L(R) = \frac{1}{2\pi e} \cdot 2^{2h(S)} \cdot 2^{-2R}$

→ Distortion increase (at same rate) relative to Shannon lower bound

$$\frac{D_V(R)}{D_U(R)} = \frac{\pi e}{6} \approx 1.42$$
 \rightarrow 1.53 dB loss in SNR

→ Rate increase (at same distortion) relative to Shannon lower bound

$$R_V(D) - R_L(D) = \frac{1}{2} \log_2\left(\frac{\pi e}{6}\right) \approx 0.2546$$
 \rightarrow roughly 1/4 bit per sample

Summary: High-Rate Approximations for MSE Distortion

General form of high-rate approximations for MSE distortion

$$D_X(R) = \varepsilon_X^2 \cdot \sigma^2 \cdot 2^{-2R}$$

and

$$R_X(D) = \frac{1}{2} \log_2 \left(\frac{\varepsilon_X^2 \cdot \sigma^2}{D} \right)$$

	Shannon lower bound	EC Lloyd + VLC	Lloyd + FLC
general:	$arepsilon_L^2 = rac{1}{2\pi e} 2^{2h(S/\sigma)}$	$\varepsilon_V^2 = \frac{1}{12} 2^{2h(S/\sigma)}$	$arepsilon_F^2 = rac{1}{12} \int_{-\infty}^{\infty} \sqrt[3]{f(s/\sigma)} \mathrm{d}s$
uniform :	$arepsilon_L^2 = rac{6}{\pi e} pprox 0.70$	$arepsilon_V^2=1$	$arepsilon_{\it F}^2=1$
Laplace:	$arepsilon_{\it L}^2 = rac{e}{\pi} pprox 0.86$	$arepsilon_V^2 = rac{{ m e}^2}{6} pprox 1.23$	$arepsilon_{F}^{2}=rac{9}{2}=4.5$
Gauss :	$arepsilon_{\it L}^{\it 2}=1$	$arepsilon_V^2 = rac{\pi \ e}{6} pprox 1.42$	$arepsilon_F^2 = rac{\sqrt{3}\pi}{2} pprox 2.72$

Comparison of Quantizers and High-Rate Approximations: Gaussian Source

High-rate approximations

$$D_X(R) = \varepsilon_X^2 \cdot \sigma^2 \cdot 2^{-2R}$$

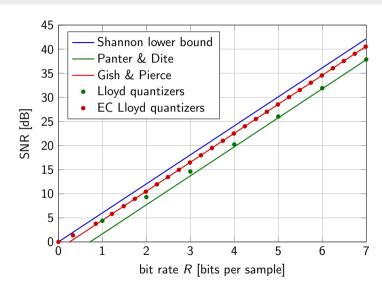
SLB:
$$\varepsilon_{I}^{2} = 1$$

Lloyd:
$$\varepsilon_F^2 = \frac{\sqrt{3}\pi}{2}$$

EC-Lloyd:
$$\varepsilon_V^2 = \frac{\pi e}{6}$$

$$\frac{D_F}{D_L} = \frac{\sqrt{3} \pi}{2} \approx 2.72 \quad (4.34 \, \text{dB})$$

$$\frac{D_V}{D_L} = \frac{\pi e}{6} \approx 1.42$$
 (1.53 dB)



Comparison of Quantizers and High-Rate Approximations: Laplacian Source

High-rate approximations

$$D_X(R) = \varepsilon_X^2 \cdot \sigma^2 \cdot 2^{-2R}$$

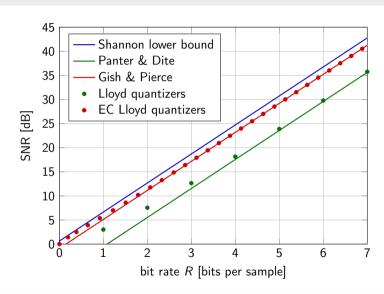
SLB:
$$\varepsilon_L^2 = \frac{\epsilon}{2}$$

Lloyd:
$$\varepsilon_F^2 = \frac{9}{2}$$

EC-Lloyd:
$$\varepsilon_V^2 = \frac{e^2}{6}$$

$$\frac{D_F}{D_I} = \frac{9 \, \pi}{2 \, e} \approx 5.20 \quad (7.16 \, \text{dB})$$

$$\frac{D_V}{D_I} = \frac{\pi e}{6} \approx 1.42 \quad (1.53 \, \text{dB})$$



Scalar Quantization in Practice

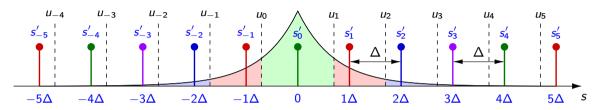
Quantization in Practice

- Most quantizers used in practice are scalar quantizers
- Examples for usage of scalar quantization (in combination with other techniques):
 - Audio coding: MP3, AAC
 - Image coding: JPEG, JPEG-2000, JPEG-XR
 - Video coding: MPEG-2 Video, H.264/AVC, H.265/HEVC

Entropy-Constrained Scalar Quantizers?

- Rarely used in practice
- → Problem: Reconstruction levels depends on source properties
 - In practice, source to be coded has unknown statistical properties
 - Need to transmit reconstruction levels (can change over time)
- → Need simpler, but still efficient design

Uniform Reconstruction Quantizers (URQs)



Uniform reconstruction quantizers

- \blacksquare Equally spaced reconstruction levels (indicated by quantization step size Δ)
- ightharpoonup Decoder: Reconstruction levels are completely specified by quantization step size Δ
 - Simple decoding process: $s'_n = \Delta \cdot q_n$
- → Encoder: Freedom to adapt decision thresholds to source statistics
 - Simple encoding (rounding) or advanced encoding (Lagrange optimization)

Optimum Uniform Reconstruction Quantizer (URQ)

Optimum URQ Design for MSE Distortion

lacktriangle Minimization of Lagrange cost for given Lagrange multiplier λ

$$J = D + \lambda \cdot R$$

$$= E \left\{ \left(S - Q(S) \right)^2 \right\} + \lambda \cdot E \left\{ \ell(Q(S)) \right\}$$

$$= \sum_{\forall k} \int_{u_k}^{u_{k+1}} (s - k\Delta)^2 f(s) ds + \lambda \cdot \sum_{\forall k} \ell_k \int_{u_k}^{u_{k+1}} f(s) ds \qquad \left[s_k' = k \cdot \Delta \right]$$

- \rightarrow Select Lagrange multiplier λ (which determines operation point)
- → Minimize J with respect to
 - Decision thresholds u_k
 - Codeword lengths ℓ_k
 - Quantization step size Δ

Optimization Criterions for URQs with MSE Distortion

$$J = D + \lambda \cdot R = \sum_{k} \int_{u_k}^{u_{k+1}} (s - k\Delta)^2 f(s) ds + \lambda \cdot \sum_{k} \ell_k \int_{u_k}^{u_{k+1}} f(s) ds$$

1 Optimal decision thresholds u_k for given Δ and ℓ_k (same as for EC Lloyd)

$$u_k = \Delta \left(k - \frac{1}{2} \right) + \frac{\lambda}{2\Delta} \left(\ell_k - \ell_{k-1} \right)$$
 [note: $s'_k = k\Delta$]

2 Optimal codeword lengths ℓ_k for given u_k (same as for EC Lloyd)

$$\ell_k = -\log_2 p_k = -\log_2 \int_{u_k}^{u_{k+1}} f(s) ds$$

3 Optimum quantization step size Δ for given u_k

$$\frac{\partial}{\partial \Delta} J = \frac{\partial}{\partial \Delta} D = 0 \qquad \Longrightarrow \qquad \Delta = \frac{\sum_{k} k \int_{u_{k}}^{u_{k+1}} s f(s) \, \mathrm{d}s}{\sum_{k} k^{2} \int_{u_{k+1}}^{u_{k+1}} f(s) \, \mathrm{d}s}$$

Iterative URQ Design Algorithm

- Given is: the marginal probability density function f(s) of the source
 - a Lagrange multiplier $\lambda > 0$

Iterative quantizer design

- **1** Choose an initial quantization step size Δ and initial codeword lengths $\{\ell_k\}$
- 2 Update the decision thresholds $\{u_k\}$ according to

$$u_k = \Delta \left(k - \frac{1}{2}\right) + \frac{\lambda}{2\Delta} \left(\ell_k - \ell_{k-1}\right)$$

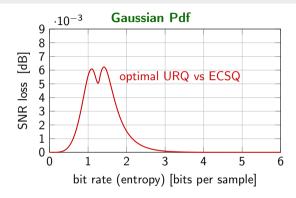
3 Update the codeword lengths $\{\ell_k\}$ and quantization step size Δ according to

$$\ell_k = -\log_2 p_k,$$
 $\Delta = \frac{\sum_k k \int_{u_k}^{u_{k+1}} s f(s) ds}{\sum_k k^2 \int_{u_k}^{u_{k+1}} f(s) ds}$

4 Repeat the previous three steps until convergence

Note: Similar iterative algorithm for training set (instead of pdf)

Coding Efficiency Comparison: Optimal URQs vs ECSQs



optimal URQ vs ECSQ [qB]SNR loss 4 3 2 5 6 bit rate (entropy) [bits per sample]

Laplacian Pdf

 $\cdot 10^{-4}$

$$\Delta \text{SNR} < 0.0063$$
 \rightarrow $\frac{D_{\text{URQ}}}{D_{\text{opt}}} < 1.0015$

$$\Delta \mathsf{SNR} < 0.00081 \quad \Rightarrow \quad \frac{D_{\mathsf{URQ}}}{D_{\mathsf{opt}}} < 1.0002$$

- → For typical pdfs: Negligible loss versus optimal ECSQ
- → Same high-rate performance as optimal ECSQ

Quantization Step Size vs Lagrange Multiplier

■ High-rate distortion approximations

$$D(R) = \varepsilon^2 \cdot \sigma^2 \cdot 2^{-2R},$$
 $D = \frac{1}{12} \sum_k p_k \, \Delta_k^2 = \frac{\Delta^2}{12}$ (also valid for URQ)

Lagrangian optimization

$$\frac{\mathrm{d}}{\mathrm{d}R} \left(D(R) + \lambda R \right) = 0 \qquad \Rightarrow \qquad \lambda = -\frac{\mathrm{d}}{\mathrm{d}R} D(R)$$

→ Lagrange multiplier at high rates

$$\lambda = -\frac{\mathrm{d}}{\mathrm{d}R} D(R) = 2 \cdot \ln 2 \cdot \varepsilon^2 \cdot \sigma^2 \cdot 2^{-2R} = 2 \cdot \ln 2 \cdot D = \frac{\ln 2}{6} \cdot \Delta^2$$

 \rightarrow Often used relationship between λ and Δ

$$\lambda = \frac{\ln 2}{6} \cdot \Delta^2$$
 or, more generally, $\lambda = \mathrm{const} \cdot \Delta^2$

URQs used in Practice

Bitstream Syntax and Decoding Process

- Select quantization step size Δ at encoder: Trade-off quality and bit rate
- Transmit quantization step size Δ and quantization indexes k
- Reconstruction at decoder: $s' = k \cdot \Delta$

Encoding Process: Determine optimal quantization indexes

- Set Lagrange multiplier according to $\lambda = \text{const} \cdot \Delta^2$
- Codeword length $\{\ell_k\}$ are given by
 - Codeword table (specified in standard) or
 - Probabilities used in arithmetic coding $(\ell_k = -\log_2 p_k)$
- For each sample s: Choose quantization index k that minimizes

$$J(k) = (s - k\Delta)^2 + \lambda \cdot \ell_k$$

→ Note: We only need to check the two neighboring reconstruction levels

$$k_1 = \lfloor s/\Delta \rfloor$$
 and $k_2 = \lceil s/\Delta \rceil$

Advantages of Uniform Reconstruction Quantizers

URQ vs Optimal Scalar Quantizers (ECSQs)

- Performance of optimal URQs is very close to that of optimal scalar quantizers
- \rightarrow Transmit single parameter Δ for specifying operating point
- \rightarrow Very simple decoding process: $s' = k\Delta$
- → Leave all optimizations to encoder (may or may not be exploited)

Useful Design: URQ + Adaptive Arithmetic Coding

- Codeword lengths ℓ_k given by probabilities $\ell_k = -\log_2 p_k$
- Optimal encoder decision: Choose quantization index k that minimizes Lagrangian cost J(k)
- Quantizer (thresholds) and entropy coding adapt to source statistics
- → Suitable for unknown and/or instationary sources
- → Straightforward to exploit conditional probabilities

→ Most quantizers used in practice are URQs

Summary of Lecture

Optimal Scalar Quantizers

- Minimizes Lagrangian cost $J = D + \lambda R$ (where $\lambda > 0$ determines operation point)
- Three optimization criterions: → centroid condition
 - entropy condition
 - → modified nearest neighbour condition
- lacktriangle May need large number $(K o \infty)$ of intervals for obtaining optimal quantizer
- High-rate approximation:

- \rightarrow distortion is factor 1.42 higher than SLB (1.53 dB)
- → bit rate is roughly 0.25 bits per sample larger than SLB

Uniform Reconstruction Quantizers

- Uniformly spaced reconstruction levels (specified by quantization step size Δ)
- Very simple decoder mapping: $s' = \Delta \cdot k$
- Coding efficiency very close to optimal scalar quantizers (with suitable encoder decisions)
- → Most often used quantizer in practice

Exercise 1: Implement the Entropy-Constrained Lloyd Algorithm (optional)

Implement the entropy-constrained Lloyd algorithm using a programming language of your choice.

- Test the algorithm for
 - a unit-variance Gaussian pdf:

$$f(s) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} s^2}$$

a unit-variance Laplacian pdf:

$$f(s) = \frac{1}{\sqrt{2}} e^{-\sqrt{2}\,|s|}$$

- Use the following Lagrange multipliers: $\lambda = 0.5, 0.2, 0.1, 0.05, 0.02, 0.01$.
- Determine the rate (entropy) R and the distortion D for your quantizers.
- Compare the R-D performance of your quantizers to the high-rate approximation.

You can implement the EC Lloyd algorithm that directly uses the pdf or the EC Lloyd algorithm that uses a training set (files with 1000000 samples in float32 format are provided on the course web site)

Exercise 2: Quantization of Sources with Memory

Consider a discrete Markov process $\mathbf{X}=\{X_n\}$ with the symbol alphabet $\mathcal{A}_X=\{0,2,4,6\}$ and the conditional pmf

$$p_{X_n|X_{n-1}}(x_n|x_{n-1}) = \begin{cases} a & : x_n = x_{n-1} \\ \frac{1}{3}(1-a) & : x_n \neq x_{n-1} \end{cases}$$

The parameter a, with 0 < a < 1, is a variable that specifies the probability that the current symbol is equal to the previous symbol. For a = 1/4, our source **X** would be i.i.d.

Given is a two-interval quantizer with the reconstruction levels $s'_0 = 1$ and $s'_1 = 5$ and the decision threshold $u_1 = 3$.

- (a) Assume optimal entropy coding using the marginal probabilities of the quantization indices and determine the rate-distortion point of the quantizer.
- (b) Can the overall quantizer performance be improved by applying conditional entropy coding (e.g., using arithmetic coding with conditional probabilities)?

How does it depend on the parameter a?

Exercise 3: High-Rate Quantization

Consider scalar quantization of a Laplacian source at high rates:

$$f(x) = \frac{\lambda}{2} \cdot e^{-\lambda |x|}$$
 with $\sigma_S^2 = \frac{2}{\lambda^2}$

In a given system, the used quantizer is a Lloyd quantizer with fixed-length entropy coding (the number of quantization intervals represents a power of 2).

How many bits per sample (for the same MSE distortion) can be saved if the quantizer is replaced by an entropy-constrained quantizer with optimal entropy coding?

Note:

Assume that the operation points of the quantizers can be accurately described by the corresponding high rate approximations.

Exercise 4: Implementation of First Lossy Image Codec

- Use the PPM format as raw data format (see earlier exercise on lossless image coding)
- Use any of the lossless image codecs available in the KVV (or your own implementation) as basis

Implement an Image Encoder

- Quantize the original image samples s[x, y] using a fixed quantization step size Δ
 - → Simple rounding is sufficient for our purpose: $k[x, y] = \text{round}(s[x, y]/\Delta)$
 - \rightarrow Transmit the quantization step size Δ at the beginning of the bitstream
- Use the lossless codec for coding the quantization indexes k[x, y]

Implement the corresponding Image Decoder

- Decode the quantization indexes k[x, y] using the lossless codec
- Reconstruct the image samples according to: $s'[x, y] = k[x, y] \cdot \Delta$

Test your Codec

- Code selected test images with different quantization step sizes (e.g., $\Delta = 2, 4, 8, 16, 32, 64$)
- Measure the compression factors (based on the file sizes) and judge the image quality by visual inspection

Exercise 5: Quantization of Exponential Source (optional / more difficult)

Consider uniform threshold quantization of an exponential pdf given by $f(x) = a e^{-ax}$.

With Δ denoting the quantization step size, the thresholds are given by $u_k = k\Delta$, with $k = 0, 1, 2, \cdots$.

- (a) Determine the pmf for the quantization indexes. Calculate the rate (entropy) as function of the probability $p = P(X > \Delta) = e^{-a\Delta}$. Describe an entropy coding scheme for the quantization indices that virtually achieves the entropy.
- (b) Derive a formula for the optimal reconstruction levels s'_k , for MSE distortion, as function of the quantization step size Δ , the lower interval boundaries u_k , and the probability $p = e^{-a\Delta}$.
- (c) Is the obtained quantizer an optimal entropy-constrained scalar quantizer?
- (d) Determine the distortion in dependence of the quantization step size for the developed quantizer.

Hint: For
$$|a| < 1$$
, $\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$, $\sum_{k=0}^{\infty} k \, a^k = \frac{a}{(1-a)^2}$, $\sum_{k=0}^{\infty} k^2 \, a^k = \frac{a(1+a)}{(1-a)^3}$