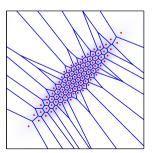
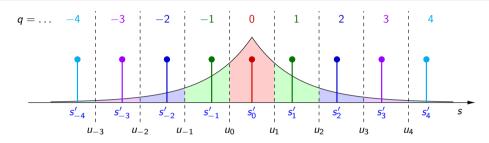
Vector Quantization



Last Lectures: Scalar Quantization



■ Performance of Scalar Quantizers: Distortion (MSE) and Bit Rate

$$D = \mathrm{E}\left\{ \left(S - Q(S) \right)^{2} \right\} = \sum_{\forall k} \int_{u_{k}}^{u_{k+1}} (s - s'_{k})^{2} f(s) \, \mathrm{d}s$$

$$R = \mathrm{E}\left\{ \ell\left(Q(S) \right) \right\} = \sum_{\forall k} \ell_{k} \int_{u_{k}}^{u_{k+1}} f(s) \, \mathrm{d}s$$

Last Lectures: Optimal Scalar Quantization

Lloyd Quantizer

- Minimizes distortion *D* for given number *K* of reconstruction levels
- Two optimization criterions:
 - Centroid condition (MSE): $s'_k = \mathbb{E}\{ S \mid S \in \mathcal{I}_k \}$
 - Nearest neighbor condition (MSE): $u_k = (s'_k + s'_{k-1})/2$
- Lloyd quantizer design: Iterate between the two optimization criterions

Last Lectures: Optimal Scalar Quantization

Lloyd Quantizer

- Minimizes distortion *D* for given number *K* of reconstruction levels
- Two optimization criterions:
 - Centroid condition (MSE): $s'_k = \mathbb{E}\{ S \mid S \in \mathcal{I}_k \}$
 - Nearest neighbor condition (MSE): $u_k = (s'_k + s'_{k-1})/2$
- Lloyd quantizer design: Iterate between the two optimization criterions

Entropy-Constrained Lloyd Quantizer

- Minimizes rate-distortion cost $J = D + \lambda R$ for given Lagrange multiplier $\lambda > 0$
- Three optimization criterions:
 - Centroid condition (MSE): $s'_k = \mathbb{E}\{S \mid S \in \mathcal{I}_k\}$
 - Entropy condition: $\ell_k = -\log_2 \int_{u_k}^{u_{k+1}} f(s) \, \mathrm{d}s$
 - Mod. nearest neighbor condition (MSE): $u_k = (s'_k + s'_{k-1})/2 + (\lambda/2)(\ell_k \ell_{k-1})/(s'_k + s'_{k-1})$
- EC-Lloyd quantizer design: Iterate between the optimization criterions

Last Lectures: Performance of Scalar Quantizers

High-Rate Approximations (MSE Distortion)

■ General form of high-rate distortion-rate function

$$D_X(R) = \varepsilon_X^2 \cdot \sigma^2 \cdot 2^{-2R}$$

where the constant factor $arepsilon_X^2$ depends on shape of pdf and quantizer design

- → Lloyd + fixed length: $\varepsilon_F^2 = \frac{1}{12} \left(\int_{-\infty}^{\infty} \sqrt[3]{f(s/\sigma)} \, \mathrm{d}s \right)^3$
- ightharpoonup EC-Lloyd + variable length: $\varepsilon_V^2 = \frac{1}{12} \, 2^{2 \, h(S/\sigma)}$ with $h(S) = \int_{-\infty}^{\infty} f(s) \, \log_2 f(s) \, \mathrm{d}s$
- → Shannon lower bound: $\varepsilon_L^2 = \frac{1}{2\pi e} 2^{2h(S/\sigma)}$

Last Lectures: Performance of Scalar Quantizers

High-Rate Approximations (MSE Distortion)

■ General form of high-rate distortion-rate function

$$D_X(R) = \varepsilon_X^2 \cdot \sigma^2 \cdot 2^{-2R}$$

where the constant factor $arepsilon_X^2$ depends on shape of pdf and quantizer design

→ Lloyd + fixed length:
$$\varepsilon_F^2 = \frac{1}{12} \left(\int_{-\infty}^{\infty} \sqrt[3]{f(s/\sigma)} \, \mathrm{d}s \right)^3$$

⇒ EC-Lloyd + variable length:
$$\varepsilon_V^2 = \frac{1}{12} 2^{2h(S/\sigma)}$$
 with $h(S) = -\int_{-\infty}^{\infty} f(s) \log_2 f(s) ds$

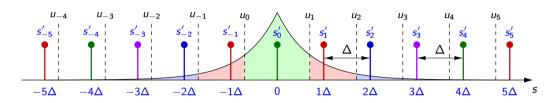
⇒ Shannon lower bound:
$$\varepsilon_L^2 = \frac{1}{2\pi a} 2^{2h(S/\sigma)}$$

Comparison of Coding Efficiency

- EC-Lloyd often significantly better than Lloyd (Gauss: 2.81 dB; Laplace: 5.63 dB)
- Constant high-rate performance gap between EC-Lloyd and Shannon lower bound

$$\frac{D_V(R)}{D_L(R)} = \frac{\pi e}{6} \approx 1.42 \text{ (1.53 dB)}, \qquad \qquad R_V(D) - R_L(D) = \frac{1}{2} \log_2 \frac{\pi e}{6} \approx 0.25$$

Last Lectures: Scalar Quantization in Practice



Uniform Reconstruction Quantizers (URQs)

- Simple decoding process: $s'_n = \Delta \cdot q_n$
- Encoder can choose trade-off between coding efficiency and complexity
 - **→** Simplest encoding: $q_n = \text{round}(s_n/\Delta)$
 - ightharpoonup Optimal encoding: Choose q_n that minimizes Lagrange cost $J(q_n) = (s_n q_n \cdot \Delta)^2 + \lambda \cdot \ell_k$, typically using fixed relationship $\lambda = \mathrm{const} \cdot \Delta^2$
- URQs with optimal encoding are virtually as good as optimal scalar quantizers (for typical pdfs)

Quantization: Open Questions

Performance Gap to Theoretical Bound

■ Remember: High-rate performance of optimal scalar quantizer for IID sources

$$\frac{D_V}{D_L}(R) = \frac{\pi e}{6} \approx 1.42 \qquad (1.53 \, \text{dB loss in SNR})$$

- → What causes this performance gap?
- → How can the quantizer performance be improved?

Quantization: Open Questions

Performance Gap to Theoretical Bound

Remember: High-rate performance of optimal scalar quantizer for IID sources

$$\frac{D_V}{D_L}(R) = \frac{\pi e}{6} \approx 1.42 \qquad (1.53 \, \text{dB loss in SNR})$$

- → What causes this performance gap?
- → How can the quantizer performance be improved?

Quantization of Sources with Memory

- Scalar quantizers cannot exploit dependencies between samples (use only marginal pdf)
- → How can we improve lossy coding for sources with memory?

Quantization: Open Questions

Performance Gap to Theoretical Bound

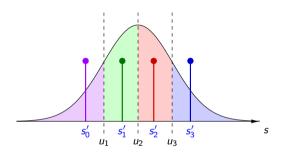
■ Remember: High-rate performance of optimal scalar quantizer for IID sources

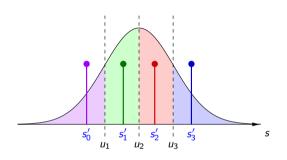
$$\frac{D_V}{D_L}(R) = \frac{\pi e}{6} \approx 1.42 \qquad (1.53 \, \text{dB loss in SNR})$$

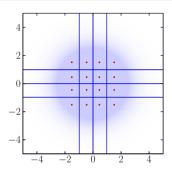
- → What causes this performance gap?
- → How can the quantizer performance be improved?

Quantization of Sources with Memory

- Scalar quantizers cannot exploit dependencies between samples (use only marginal pdf)
- → How can we improve lossy coding for sources with memory?
 - Conditional entropy coding of quantization indexes?
 - Combination of scalar quantization and prediction?
 - ...?

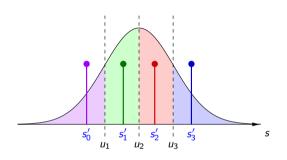


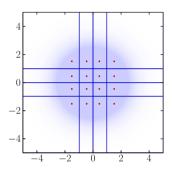




Interpretation of Scalar Quantization in N-dimensional Signal Space

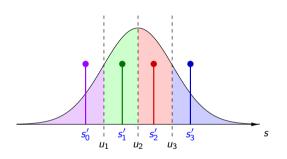
- lacktriangle N-dimensional input vector $oldsymbol{s}$ is mapped to N-dimensional reconstructed vector $oldsymbol{s'}$
- lacksquare All vectors $m{s}$ inside a quantization cell \mathcal{C}_k are mapped to the same reconstruction vector $m{s}_k'$

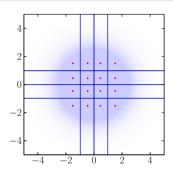




Interpretation of Scalar Quantization in N-dimensional Signal Space

- \blacksquare N-dimensional input vector s is mapped to N-dimensional reconstructed vector s'
- lacksquare All vectors $m{s}$ inside a quantization cell \mathcal{C}_k are mapped to the same reconstruction vector $m{s}_k'$
- \rightarrow Quantization cells C_k form hyper-rectangles in N-dimensional signal space

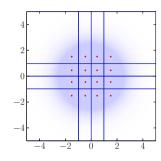




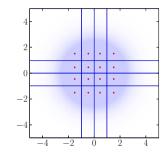
Interpretation of Scalar Quantization in N-dimensional Signal Space

- \blacksquare N-dimensional input vector s is mapped to N-dimensional reconstructed vector s'
- lacksquare All vectors $m{s}$ inside a quantization cell \mathcal{C}_k are mapped to the same reconstruction vector $m{s}_k'$
- ightharpoonup Quantization cells \mathcal{C}_k form hyper-rectangles in N-dimensional signal space
- \rightarrow Reconstruction vectors s'_k lie on orthogonal grid aligned with coordinate axes

scalar quantizer (dimension N = 1)



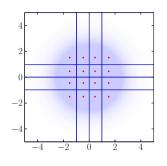
scalar quantizer (dimension N = 1)

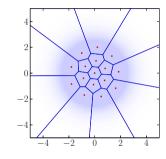


Vector Quantization

lacksquare Joint quantization of vectors/blocks $m{s}$ of N>1 successive input samples

scalar quantizer (dimension N = 1)



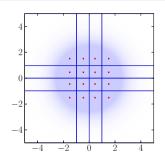


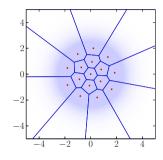
vector quantizer (dimension N = 2)

Vector Quantization

 \blacksquare Joint quantization of vectors/blocks ${\boldsymbol s}$ of ${\boldsymbol N}>1$ successive input samples

scalar quantizer (dimension N = 1)



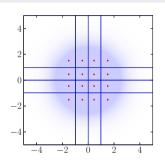


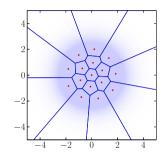
vector quantizer (dimension N = 2)

Vector Quantization

- lacksquare Joint quantization of vectors/blocks $m{s}$ of N>1 successive input samples
- Relax structural constraints that are implicitly imposed by scalar quantization
 - Quantization cells C_k can be arbitrarily shaped in N-dimensional space
 - ullet Reconstruction vectors s_k' can be arbitrarily placed in N-dimensional space

scalar quantizer (dimension N = 1)





vector quantizer (dimension N = 2)

Vector Quantization

- Joint quantization of vectors/blocks s of N > 1 successive input samples
- Relax structural constraints that are implicitly imposed by scalar quantization
 - Quantization cells C_k can be arbitrarily shaped in N-dimensional space
 - ullet Reconstruction vectors s_k' can be arbitrarily placed in N-dimensional space
- → Allows a number of new options in designing quantizers

Structure of Vector Quantizers

Vector Quantizers of Quantizer Dimension N

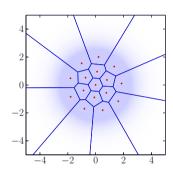
■ Map N-d input vectors s to N-d output vectors s'_k

$$Q: \mathbb{R}^N \mapsto \{ s_0', s_1', s_2', \cdots \}$$

■ Partition N-d space into countable number of quantization cells C_k

$$\mathcal{C}_k = \{ s \in \mathbb{R}^N : Q(s) = s'_k \}$$

■ All input vectors s that fall inside a quantization cell C_k are mapped to the associated reconstruction vector s'_k



Structure of Vector Quantizers

Vector Quantizers of Quantizer Dimension N

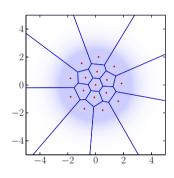
■ Map N-d input vectors s to N-d output vectors s'_k

$$Q: \mathbb{R}^N \mapsto \{s_0', s_1', s_2', \cdots\}$$

■ Partition N-d space into countable number of quantization cells C_k

$$\mathcal{C}_k = \{ \, oldsymbol{s} \in \mathbb{R}^{\mathcal{N}} : \, \, Q(oldsymbol{s}) = oldsymbol{s_k'} \, \}$$

All input vectors s that fall inside a quantization cell C_k are mapped to the associated reconstruction vector s'_k



Vector Quantization and Entropy Coding

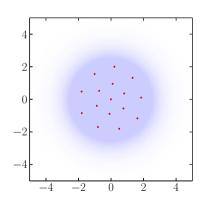
- lacksquare Quantization index k indicates quantization cell \mathcal{C}_k and reconstruction vector s_k'
 - \rightarrow Encoder mapping: $\alpha(s) = k$, $\forall s \in C_k$
 - \rightarrow Decoder mapping: $\beta(k) = s'_k$

- Arbitrarily shaped quantization cells C_k are difficult to store and check
- → Concept of quantization cells is not required in practice

- \blacksquare Arbitrarily shaped quantization cells \mathcal{C}_k are difficult to store and check
- → Concept of quantization cells is not required in practice

Encoding

■ Select the reconstruction vector s'_k that minimizes a **distance measure** d to the input vector s



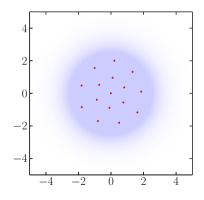
- \blacksquare Arbitrarily shaped quantization cells \mathcal{C}_k are difficult to store and check
- → Concept of quantization cells is not required in practice

Encoding

- Select the reconstruction vector s'_k that minimizes a **distance measure** d to the input vector s
- Possible distance measures:

 \rightarrow MSE distortion: $d = ||s - s'_k||_2^2$

ightharpoonup Lagrangan cost: $d = ||s - s'_k||_2^2 + \lambda \ell_k$



- \blacksquare Arbitrarily shaped quantization cells \mathcal{C}_k are difficult to store and check
- → Concept of quantization cells is not required in practice

Encoding

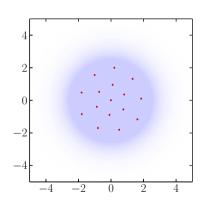
- Select the reconstruction vector s'_k that minimizes a **distance measure** d to the input vector s
- Possible distance measures:

 \rightarrow MSE distortion: $d = ||s - s'_k||_2^2$

ightharpoonup Lagrangan cost: $d = ||s - s'_k||_2^2 + \lambda \ell_k$

Decoding

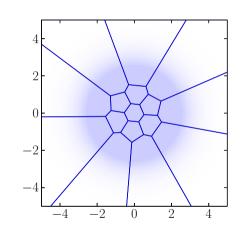
• Output reconstruction vector s'_k indicated by transmitted quantization index k (use array in decoder)



Performance of Vector Quantizers: Bit Rate

- Let ℓ_k be the codeword length for quantization index k
- → Average bit rate R per sample

$$R = \frac{1}{N} E \left\{ \ell(Q(S)) \right\} = \frac{1}{N} \sum_{\forall k} p_k \ell_k$$



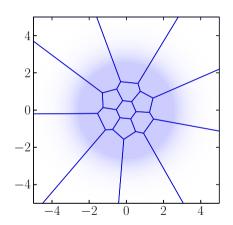
Performance of Vector Quantizers: Bit Rate

- Let ℓ_k be the codeword length for quantization index k
- **→** Average bit rate *R* per sample

$$R = \frac{1}{N} \operatorname{E} \left\{ \ell(Q(S)) \right\} = \frac{1}{N} \sum_{\forall k} p_k \ell_k$$

■ Probability p_k of quantization cell C_k / quant. index k

$$p_k = \int_{\mathcal{C}_k} f(\mathbf{s}) d\mathbf{s}$$



Performance of Vector Quantizers: Bit Rate

- Let ℓ_k be the codeword length for quantization index k
- → Average bit rate R per sample

$$R = \frac{1}{N} \operatorname{E} \left\{ \ell(Q(S)) \right\} = \frac{1}{N} \sum_{\forall k} p_k \ell_k$$

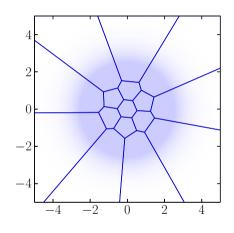
■ Probability p_k of quantization cell C_k / quant. index k

$$p_k = \int_{\mathcal{C}_k} f(s) \, \mathrm{d}s$$

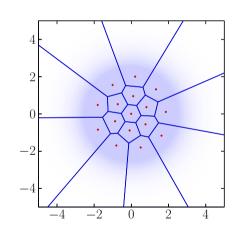
Approximation for training set

$$p_k = \frac{n(k)}{\sum_k n(k)}$$

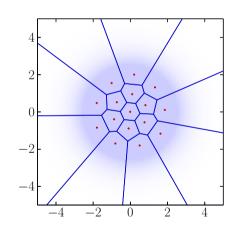
where n(k) is the number of vectors assigned to C_k / s'_k



$$D = \frac{1}{N} \operatorname{E} \left\{ \left| \left| \mathbf{S} - Q(\mathbf{S}) \right| \right|_{2}^{2} \right\}$$



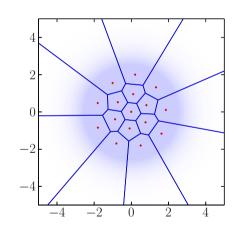
$$D = \frac{1}{N} \operatorname{E} \left\{ \left| \left| \mathbf{S} - Q(\mathbf{S}) \right| \right|_{2}^{2} \right\}$$
$$= \frac{1}{N} \int_{\mathbb{R}^{N}} \left| \left| \mathbf{s} - Q(\mathbf{s}) \right| \right|_{2}^{2} f(\mathbf{s}) d\mathbf{s}$$



$$D = \frac{1}{N} \operatorname{E} \left\{ \left| \left| \mathbf{S} - Q(\mathbf{S}) \right| \right|_{2}^{2} \right\}$$

$$= \frac{1}{N} \int_{\mathbb{R}^{N}} \left| \left| \mathbf{s} - Q(\mathbf{s}) \right| \right|_{2}^{2} f(\mathbf{s}) d\mathbf{s}$$

$$= \frac{1}{N} \sum_{\mathbf{M}} \int_{C_{k}} \left| \left| \mathbf{s} - \mathbf{s}_{k}' \right| \right|_{2}^{2} f(\mathbf{s}) d\mathbf{s}$$

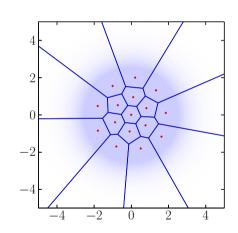


$$D = \frac{1}{N} \operatorname{E} \left\{ \left| \left| \mathbf{S} - Q(\mathbf{S}) \right| \right|_{2}^{2} \right\}$$

$$= \frac{1}{N} \int_{\mathbb{R}^{N}} \left| \left| \mathbf{s} - Q(\mathbf{s}) \right| \right|_{2}^{2} f(\mathbf{s}) d\mathbf{s}$$

$$= \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_{k}} \left| \left| \mathbf{s} - \mathbf{s}'_{k} \right| \right|_{2}^{2} f(\mathbf{s}) d\mathbf{s}$$

$$D = \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_k} (\mathbf{s} - \mathbf{s}_k')^{\mathrm{T}} (\mathbf{s} - \mathbf{s}_k') f(\mathbf{s}) d\mathbf{s}$$



→ Average MSE distortion *D* per sample

$$D = \frac{1}{N} \operatorname{E} \left\{ \left| \left| \mathbf{S} - Q(\mathbf{S}) \right| \right|_{2}^{2} \right\}$$

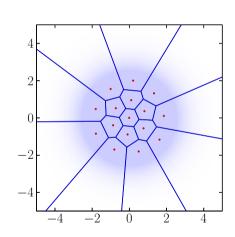
$$= \frac{1}{N} \int_{\mathbb{R}^{N}} \left| \left| \mathbf{s} - Q(\mathbf{s}) \right| \right|_{2}^{2} f(\mathbf{s}) d\mathbf{s}$$

$$= \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_{k}} \left| \left| \mathbf{s} - \mathbf{s}'_{k} \right| \right|_{2}^{2} f(\mathbf{s}) d\mathbf{s}$$

$$D = \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_{k}} \left(\mathbf{s} - \mathbf{s}'_{k} \right)^{\mathrm{T}} (\mathbf{s} - \mathbf{s}'_{k}) f(\mathbf{s}) d\mathbf{s}$$

■ Approximation for training set $\{s_n\}$ of L vectors

$$D = \frac{1}{L} \sum_{n} \left| \left| \mathbf{s}_n - Q(\mathbf{s}_n) \right| \right|_2^2$$



Optimal Vector Quantizer for Fixed-Length Coding

Goal: Minimize MSE Distortion for K Quantization Cells

- Similar to Scalar Lloyd Quantizer
- Neglect impact of entropy coding
 → Consider fixed-length coding

Optimal Vector Quantizer for Fixed-Length Coding

Goal: Minimize MSE Distortion for K Quantization Cells

- Similar to Scalar Lloyd Quantizer
- Neglect impact of entropy coding → Consider fixed-length coding
- \rightarrow Rate R and MSE distortion D are given by

$$R = \frac{1}{N} \lceil \log_2 K \rceil$$
 (typically $K = 2^B$, with B being the bits per codeword)

$$D = \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_k} \left| \left| \mathbf{s} - \mathbf{s}_k' \right| \right|_2^2 f(\mathbf{s}) \, d\mathbf{s} = \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_k} \left(\mathbf{s} - \mathbf{s}_k' \right)^{\mathrm{T}} \left(\mathbf{s} - \mathbf{s}_k' \right) f(\mathbf{s}) \, d\mathbf{s}$$

Optimal Vector Quantizer for Fixed-Length Coding

Goal: Minimize MSE Distortion for K Quantization Cells

- Similar to Scalar Lloyd Quantizer
- Neglect impact of entropy coding → Consider fixed-length coding
- \rightarrow Rate R and MSE distortion D are given by

$$R = \frac{1}{N} \lceil \log_2 K \rceil$$
 (typically $K = 2^B$, with B being the bits per codeword)

$$D = \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_k} \left| \left| \mathbf{s} - \mathbf{s}_k' \right| \right|_2^2 f(\mathbf{s}) \, d\mathbf{s} = \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_k} \left(\mathbf{s} - \mathbf{s}_k' \right)^{\mathrm{T}} \left(\mathbf{s} - \mathbf{s}_k' \right) f(\mathbf{s}) \, d\mathbf{s}$$

Optimize Quantizer of size K

- Derive necessary conditions for optimality (similar to Lloyd quantizer)
- Construct iterative algorithm for designing quantizer

Optimality Conditions for Fixed-Length Coding

Necessary Conditions for Optimality (MSE distortion)

1 Centroid condition (for reconstruction vectors s'_k)

$$oxed{s_k'} = \mathrm{E}\{oldsymbol{\mathcal{S}} \mid oldsymbol{\mathcal{S}} \in \mathcal{C}_k\} = rac{1}{p_k} \int_{\mathcal{C}_k} oldsymbol{\mathcal{S}} f(oldsymbol{s}) \, \mathrm{d}oldsymbol{s}}$$

Optimality Conditions for Fixed-Length Coding

Necessary Conditions for Optimality (MSE distortion)

1 Centroid condition (for reconstruction vectors s'_k)

$$oxed{s_k' = \mathrm{E}\{ \; oldsymbol{S} \, | \, oldsymbol{S} \in \mathcal{C}_k \, \} = rac{1}{p_k} \int_{\mathcal{C}_k} oldsymbol{s} \, f(oldsymbol{s}) \; \mathrm{d}oldsymbol{s}}$$

→ Centroid condition for training set

Optimality Conditions for Fixed-Length Coding

Necessary Conditions for Optimality (MSE distortion)

1 Centroid condition (for reconstruction vectors s'_k)

$$oxed{s_k' = \mathrm{E}\{ \; oldsymbol{S} \, | \, oldsymbol{S} \in \mathcal{C}_k \, \} = rac{1}{p_k} \int_{\mathcal{C}_k} oldsymbol{s} \, f(oldsymbol{s}) \; \mathrm{d}oldsymbol{s}}$$

→ Centroid condition for training set

2 Nearest neighbour condition (for quantization cells C_k / encoder mapping $\alpha(.)$)

$$\alpha(\boldsymbol{s}) = \arg\min_{\forall k} \ \left| \left| \boldsymbol{s} - \boldsymbol{s_k'} \right| \right|_2^2$$

- Given is: the dimension N and the size K of the quantizer
 - a sufficiently large realization $\{s_n\}$ of considered source

- Given is: the dimension N and the size K of the quantizer
 - a sufficiently large realization $\{s_n\}$ of considered source

Iterative quantizer design

1 Choose an initial set of K reconstruction vectors $\{s'_k\}$

- Given is: the dimension N and the size K of the quantizer
 - a sufficiently large realization $\{s_n\}$ of considered source

Iterative quantizer design

- 1 Choose an initial set of K reconstruction vectors $\{s'_k\}$
- **2** Associate all vectors of the training set $\{s_n\}$ with one of the quantization cells \mathcal{C}_k

$$q(s_n) = \arg\min_{\forall k} ||s_n - s'_k||_2^2$$
 (nearest neighbor condition)

- Given is: the dimension N and the size K of the quantizer
 - a sufficiently large realization $\{s_n\}$ of considered source

Iterative quantizer design

- 1 Choose an initial set of K reconstruction vectors $\{s'_{k}\}$
- **2** Associate all vectors of the training set $\{s_n\}$ with one of the quantization cells \mathcal{C}_k

$$q(s_n) = \arg\min_{\forall k} \ \left| \left| s_n - s_k' \right| \right|_2^2$$
 (nearest neighbor condition)

3 Update the reconstruction vectors $\{s'_k\}$ according to

$$s'_{k} = \frac{1}{n(k)} \sum_{\forall n: g(s_n) = k} s_n$$
 (centroid condition)

where n(k) is the number of sample vectors \mathbf{s}_n assigned to \mathcal{C}_k

- Given is: \bullet the dimension N and the size K of the quantizer
 - a sufficiently large realization $\{s_n\}$ of considered source

Iterative quantizer design

- 1 Choose an initial set of K reconstruction vectors $\{s'_{k}\}$
- **2** Associate all vectors of the training set $\{s_n\}$ with one of the quantization cells \mathcal{C}_k

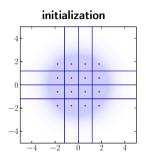
$$q(s_n) = \arg\min_{\forall k} \ \left| \left| s_n - s_k' \right| \right|_2^2$$
 (nearest neighbor condition)

3 Update the reconstruction vectors $\{s'_k\}$ according to

$$s'_{k} = \frac{1}{n(k)} \sum_{\forall n: o(s) = k} s_{n}$$
 (centroid condition)

where n(k) is the number of sample vectors \mathbf{s}_n assigned to \mathcal{C}_k

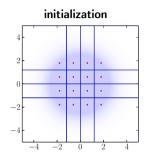
4 Repeat the previous two steps until convergence

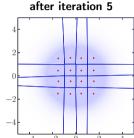


$$R = 2$$

$$D~=~0.122$$

$$SNR = 9.12 \, dB$$





$$R = 2$$

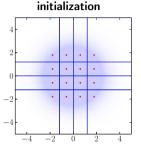
$$D = 0.122$$

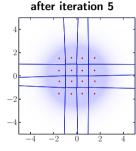
$$SNR = 9.12 \, dB$$

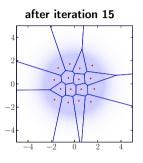
$$R = 2$$

$$D = 0.117$$

$$SNR = 9.31 \, dB$$







$$R = 2$$

$$D = 0.122$$

 $SNR = 9.12 \, dB$

$$R = 2$$

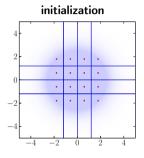
$$D = 0.117$$

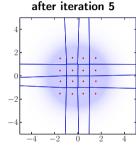
$$\mathsf{SNR} = 9.31\,\mathsf{dB}$$

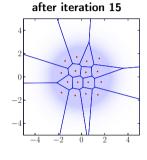
$$R = 2$$

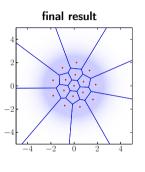
$$D = 0.114$$

$$SNR = 9.31 \, dB$$
 $SNR = 9.43 \, dB$









$$R = 2$$

$$D = 0.122$$

 $SNR = 9.12 \, dB$

$$R = 2$$

$$D = 0.117$$

 $SNR = 9.31 \, dB$

$$R = 2$$

$$D = 0.114$$

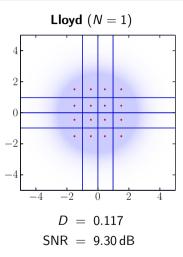
 $SNR = 9.43 \, dB$

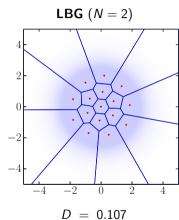
$$R = 2$$

$$D = 0.107$$

 $SNR = 9.69 \, dB$

Comparison to Scalar Quantization: Gaussian IID $(\sigma^2 = 1, R = 2)$



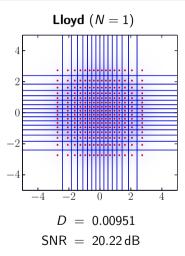


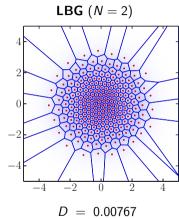
$$D = 0.107$$

SNR = 9.69 dB

→ Improvement of 0.39 dB (distortion reduction by factor 0.91)

Comparison to Scalar Quantization: Gaussian IID $(\sigma^2 = 1, R = 4)$

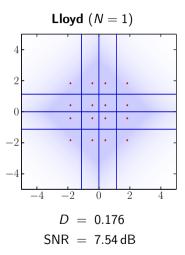


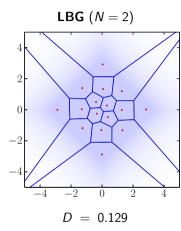


 $SNR = 21.15 \, dB$

→ Improvement of 0.93 dB (distortion reduction by factor 0.81)

Comparison to Scalar Quantization: Laplacian IID ($\sigma^2 = 1$, R = 2)

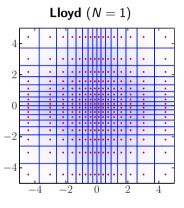




 $SNR = 8.89 \, dB$

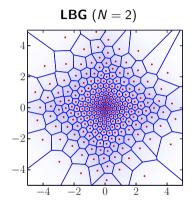
→ Improvement of 1.35 dB (distortion reduction by factor 0.73)

Comparison to Scalar Quantization: Laplacian IID $(\sigma^2 = 1, R = 4)$



$$D = 0.0153$$

SNR = 18.14 dB



$$D = 0.0098$$

SNR = 20.08 dB

→ Improvement of 1.94 dB (distortion reduction by factor 0.64)

Gain over scalar quantization can be assigned to 3 effects:

Gain over scalar quantization can be assigned to 3 effects:

- Space filling advantage:
 - \mathbb{Z}^N lattice is not most efficient sphere packing in N dimensions (N > 1)
 - Independent from source distribution or statistical dependencies
 - Maximum gain for $N \to \infty$: 1.53 dB

Gain over scalar quantization can be assigned to 3 effects:

- Space filling advantage:
 - \mathbb{Z}^N lattice is not most efficient sphere packing in N dimensions (N > 1)
 - Independent from source distribution or statistical dependencies
 - Maximum gain for $N \to \infty$: 1.53 dB
- Shape advantage:
 - Exploit shape of source pdf
 - Can also be exploited using entropy-constrained scalar quantization

Gain over scalar quantization can be assigned to 3 effects:

■ Space filling advantage:

- \mathbb{Z}^N lattice is not most efficient sphere packing in N dimensions (N > 1)
- Independent from source distribution or statistical dependencies
- Maximum gain for $N \to \infty$: 1.53 dB

Shape advantage:

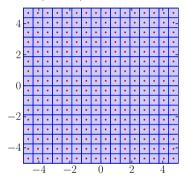
- Exploit shape of source pdf
- Can also be exploited using entropy-constrained scalar quantization

■ Memory advantage:

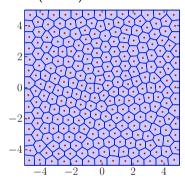
- Exploit statistical dependencies of the source
- Can also be exploited using predictive coding, transform coding, block entropy coding or conditional entropy coding

Space-Filling Advantage: LBG for Uniform IID Source

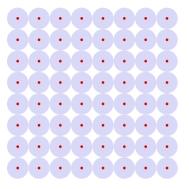
Lloyd (
$$N = 1$$
): SNR = 23.97 dB



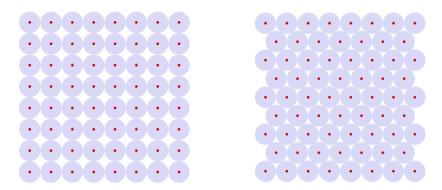
LBG (
$$N = 2$$
): SNR = 24.14 dB



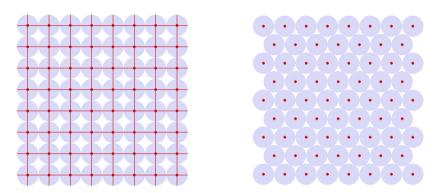
- LBG algorithm approaches approximate hexagonal lattice
- → Improvement of 0.17 dB



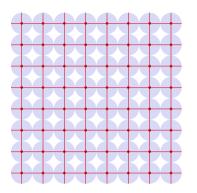
- Space filling gain: Densest packing of "optimal" quantization cells in signal space
- → MSE distortion: Densest packing of spheres in N-dimensional space

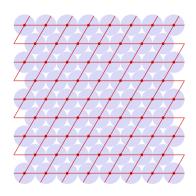


- Space filling gain: Densest packing of "optimal" quantization cells in signal space
- → MSE distortion: Densest packing of spheres in N-dimensional space

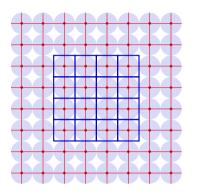


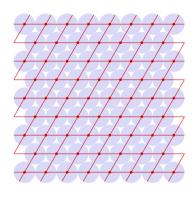
- Space filling gain: Densest packing of "optimal" quantization cells in signal space
- → MSE distortion: Densest packing of spheres in N-dimensional space



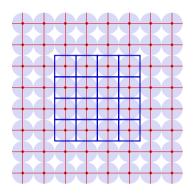


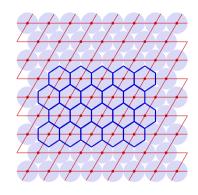
- Space filling gain: Densest packing of "optimal" quantization cells in signal space
- → MSE distortion: Densest packing of spheres in N-dimensional space



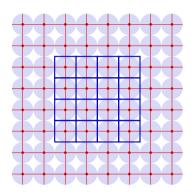


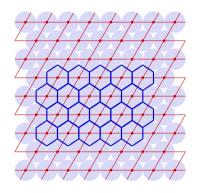
- Space filling gain: Densest packing of "optimal" quantization cells in signal space
- → MSE distortion: Densest packing of spheres in N-dimensional space



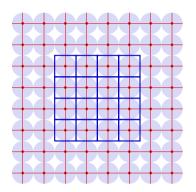


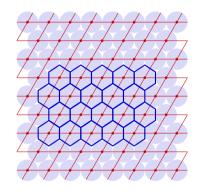
- Space filling gain: Densest packing of "optimal" quantization cells in signal space
- → MSE distortion: Densest packing of spheres in N-dimensional space





- Space filling gain: Densest packing of "optimal" quantization cells in signal space
- → MSE distortion: Densest packing of spheres in N-dimensional space
 - → 2 dimensions: Hexagonal lattice (like honeycombs)





- Space filling gain: Densest packing of "optimal" quantization cells in signal space
- → MSE distortion: Densest packing of spheres in N-dimensional space
 - → 2 dimensions: Hexagonal lattice (like honeycombs)
 - → 3 dimensions: Cuboidal lattice (stapling of cannon balls / oranges)

Center density

■ Consider *N*-dimensional spheres with radius r = 1

Center density

- Consider *N*-dimensional spheres with radius r = 1
- Measure for packing density: Center density

$$\delta = \frac{\text{average number of sphere centers}}{\text{unit volume}}$$

Center density

- Consider *N*-dimensional spheres with radius r = 1
- Measure for packing density: Center density

$$\delta = \frac{\text{average number of sphere centers}}{\text{unit volume}}$$

■ Example: N = 1 (SQ with intervals of size 2r = 2)

$$\delta = \frac{1}{2}$$

Center density

- Consider *N*-dimensional spheres with radius r = 1
- Measure for packing density: Center density

$$\delta = \frac{\text{average number of sphere centers}}{\text{unit volume}}$$

Example: N = 1 (SQ with intervals of size 2r = 2)

$$\delta = \frac{1}{2}$$

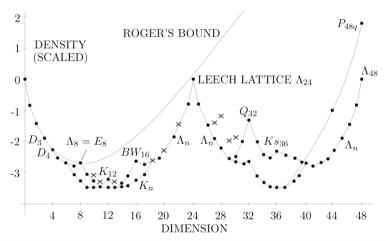
Roger's bound

■ Theoretical upper bound for center density (last term being approximate)

$$\log_2 \delta \leq \frac{\textit{N}}{2} \log_2 \left(\frac{\textit{N}}{4e\pi}\right) + \frac{1}{2} \log_2 \left(\frac{\pi \, \textit{N}^3}{e^2}\right) + \frac{21}{4\textit{N} + 10}$$

Space-Filling Advantage: Densest Known Sphere Packings

- Densest known packings for dimensions *N* ≤ 48 [Conway, Sloane, 1998]
- Vertical axis: $\log_2 \delta + N(24 N)/96$

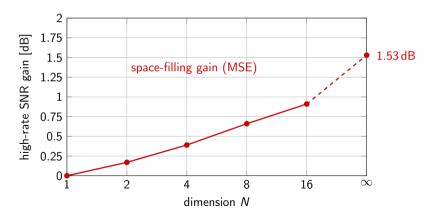


Space-Filling Advantage: Approximate SNR Gain

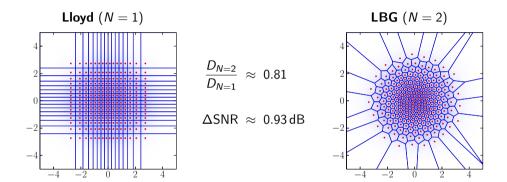
dimension	densest packing	(name)	highest kissing number	approximate gain [dB]
1	\mathbb{Z}	– Integer lattice	2	0
2	A_2	 Hexagonal lattice 	6	0.17
3	$A_3 \simeq D_3$	 Cuboidal lattice 	12	0.29
4	D_4		24	0.39
5	D_5		40	0.47
6	E_6		72	0.54
7	E ₇		126	0.60
8	E_8	 Gosset lattice 	240	0.66
9	Λ_9	 Laminated lattice 	240	0.70
10	P_{10c}	 Non-lattice arrangement 	336	0.74
12	K_{12}	 Coxeter-Todd lattice 	756	0.81
16	$BW_{16} \simeq \Lambda_{16}$	 Barnes-Wall lattice 	4320	0.91
24	Λ_{24}	 Leech lattice 	196560	1.04
100				1.35
∞				1.53

Summary on Space-Filling Advantage

- Gain of unique to vector quantization: Packing of quantization cells in N-dimensional space
- Increases with quantizer dimension N
- \rightarrow Gain for $N \rightarrow \infty$: Difference between Shannon lower bound and ECSQ



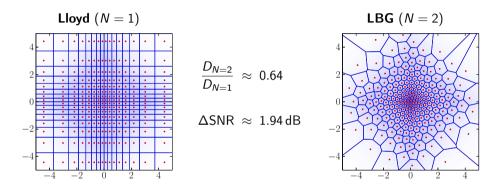
Shape Advantage: Gaussian IID $(\sigma^2 = 1, R = 4)$



Shape Advantage of Vector Quantizers

- Coding gain (0.93 dB for example) is larger than space-filling gain (0.17 dB for N=2)
- Vector quantizer can better adapt to shape of pdf (even without entropy coding)

Shape Advantage: Laplacian IID $(\sigma^2 = 1, R = 4)$

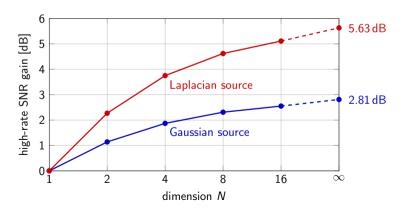


Shape Advantage of Vector Quantizers

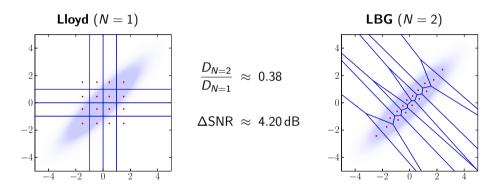
- Coding gain (1.94 dB for example) is larger than space-filling gain (0.17 dB for N = 2)
- Vector quantizer can better adapt to shape of pdf (even without entropy coding)

Summary on Shape Advantage

- Gain of VQ due to exploitation of shape of pdf (without entropy coding)
- Overall gain for iid source: Space-filling gain + shape gain
- → Shape advantage can also be exploited by entropy-constrained scalar quantization



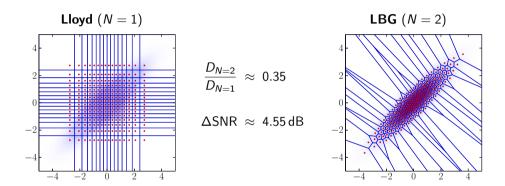
Memory Advantage: Gauss-Markov ($\sigma^2 = 1$, $\varrho = 0.9$, R = 2)



Memory Advantage of Vector Quantizers

- Large coding gain (4.20 dB for example) for sources with memory
- Vector quantizer can exploit dependencies between samples

Memory Advantage: Gauss-Markov ($\sigma^2 = 1$, $\varrho = 0.9$, R = 4)



Memory Advantage of Vector Quantizers

- Large coding gain (4.55 dB for example) for sources with memory
- Vector quantizer can exploit dependencies between samples

Summary on Memory Advantage

- Gain of VQ due to exploitation of dependencies between samples
- Largest gain to be made for sources with strong statistical dependencies
- → Exploitation of memory advantage is one of the most relevant aspects in source coding



Optimal Vector Quantizer with Consideration of Entropy Coding

■ Similar to Scalar Entropy-Constrained Lloyd Quantizer

Optimal Vector Quantizer with Consideration of Entropy Coding

- Similar to Scalar Entropy-Constrained Lloyd Quantizer
- ightharpoonup Minimization of Lagrangian cost for given Lagrange multiplier λ

$$J = D + \lambda \cdot R$$

$$= \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_k} \left| \left| \mathbf{s} - \mathbf{s}'_{k} \right| \right|_{2}^{2} f(\mathbf{s}) d\mathbf{s} + \frac{\lambda}{N} \sum_{\forall k} \ell_{k} \int_{\mathcal{C}_{k}} f(\mathbf{s}) d\mathbf{s}$$

Optimal Vector Quantizer with Consideration of Entropy Coding

- Similar to Scalar Entropy-Constrained Lloyd Quantizer
- ightharpoonup Minimization of Lagrangian cost for given Lagrange multiplier λ

$$J = D + \lambda \cdot R$$

$$= \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_k} ||\mathbf{s} - \mathbf{s}'_k||_2^2 f(\mathbf{s}) d\mathbf{s} + \frac{\lambda}{N} \sum_{\forall k} \ell_k \int_{\mathcal{C}_k} f(\mathbf{s}) d\mathbf{s}$$

■ Lagrange multiplier $\lambda > 0$ determines operation point (trade-off between rate and distortion)

Optimal Vector Quantizer with Consideration of Entropy Coding

- Similar to Scalar Entropy-Constrained Lloyd Quantizer
- ightharpoonup Minimization of Lagrangian cost for given Lagrange multiplier λ

$$J = D + \lambda \cdot R$$

$$= \frac{1}{N} \sum_{\forall k} \int_{\mathcal{C}_k} \left| \left| \mathbf{s} - \mathbf{s}_k' \right| \right|_2^2 f(\mathbf{s}) d\mathbf{s} + \frac{\lambda}{N} \sum_{\forall k} \ell_k \int_{\mathcal{C}_k} f(\mathbf{s}) d\mathbf{s}$$

■ Lagrange multiplier $\lambda > 0$ determines operation point (trade-off between rate and distortion)

Optimize Quantizer for given Lagrange multiplier

- Derive necessary conditions for optimality (similar to EC Lloyd quantizer)
- Construct iterative algorithm for designing quantizer
- Similar as for EC Lloyd: Use large number of intervals in initialization

Optimality Conditions for Variable-Length Coding

Necessary Conditions for Optimality (MSE distortion)

1 Centroid condition (for reconstruction vectors s'_{k} , same as for LBG)

$$\boxed{ \boldsymbol{s_k'} = \mathrm{E} \{ \ \boldsymbol{S} \, | \, \boldsymbol{S} \in \mathcal{C}_k \, \} = \frac{1}{\rho_k} \int_{\mathcal{C}_k} \boldsymbol{s} \, f(\boldsymbol{s}) \, \mathrm{d}\boldsymbol{s} } \qquad \text{(training set: take average of assigned vectors)}$$

Optimality Conditions for Variable-Length Coding

Necessary Conditions for Optimality (MSE distortion)

1 Centroid condition (for reconstruction vectors s'_{k} , same as for LBG)

$$\boxed{ \boldsymbol{s_k'} = \mathrm{E} \{ \ \boldsymbol{S} \, | \, \boldsymbol{S} \in \mathcal{C}_k \, \} = \frac{1}{\rho_k} \int_{\mathcal{C}_k} \boldsymbol{s} \, f(\boldsymbol{s}) \, \mathrm{d}\boldsymbol{s} } \qquad \text{(training set: take average of assigned vectors)}$$

2 Entropy condition (for codeword length ℓ_k , same as for EC Llloyd)

$$\ell_k = -\log_2 p_k = -\log_2 \int_{\mathcal{C}_k} f(s) \, \mathrm{d}s$$
 (training set: count assigned vectors)

Optimality Conditions for Variable-Length Coding

Necessary Conditions for Optimality (MSE distortion)

1 Centroid condition (for reconstruction vectors s'_{k} , same as for LBG)

$$\boxed{ \boldsymbol{s_k'} = \mathrm{E} \{ \ \boldsymbol{S} \, | \, \boldsymbol{S} \in \mathcal{C}_k \, \} = \frac{1}{\rho_k} \int_{\mathcal{C}_k} \boldsymbol{s} \, f(\boldsymbol{s}) \, \mathrm{d}\boldsymbol{s} } \qquad \text{(training set: take average of assigned vectors)}$$

Entropy condition (for codeword length ℓ_k , same as for EC Llloyd)

$$\ell_k = -\log_2 p_k = -\log_2 \int_{\mathcal{C}_k} f(\mathbf{s}) \, d\mathbf{s}$$
 (training set: count assigned vectors)

Modified nearest neighbour condition (for quantization cells C_k / encoder mapping $\alpha(.)$)

$$\left| \alpha(\mathbf{s}) = \arg \min_{\forall k} \left| \left| \mathbf{s} - \mathbf{s}'_{k} \right| \right|_{2}^{2} + \lambda \cdot \ell_{k} \right|$$

Given is: • the Lagrange multiplier $\lambda > 0$

• a sufficiently large realization $\{s_n\}$ of considered source

Given is: • the Lagrange multiplier $\lambda > 0$

• a sufficiently large realization $\{s_n\}$ of considered source

Iterative quantizer design

1 Choose an initial set of K reconstruction vectors $\{s'_k\}$ and codeword length $\{\ell_k\}$

- Given is:
- ullet the Lagrange multiplier $\lambda>0$
 - a sufficiently large realization $\{s_n\}$ of considered source

Iterative quantizer design

- **1** Choose an initial set of K reconstruction vectors $\{s'_k\}$ and codeword length $\{\ell_k\}$
- **2** Associate all vectors of the training set $\{s_n\}$ with one of the quantization cells \mathcal{C}_k

$$q(s_n) = \arg\min_{\forall k} \left| \left| s_n - s'_k \right| \right|_2^2 + \lambda \cdot \ell_k$$
 (modified nearest neighbor condition)

- Given is: the Lagrange multiplier $\lambda > 0$
 - a sufficiently large realization $\{s_n\}$ of considered source

Iterative quantizer design

- **1** Choose an initial set of K reconstruction vectors $\{s'_k\}$ and codeword length $\{\ell_k\}$
- **2** Associate all vectors of the training set $\{s_n\}$ with one of the quantization cells \mathcal{C}_k

$$q(s_n) = \arg\min_{\forall k} \ \left| \left| s_n - s_k' \right| \right|_2^2 \ + \ \lambda \cdot \ell_k$$
 (modified nearest neighbor condition)

3 Update the reconstruction vectors $\{s'_k\}$ and codeword length $\{\ell_k\}$ according to

$$m{s_k'} = rac{1}{n(k)} \sum_{orall n: g(m{s}_n) = k} m{s}_n \qquad ext{ and } \qquad \ell_k = -\log_2\left(rac{n(k)}{\sum_{orall i} n(i)}
ight)$$

where n(k) is the number of sample vectors \mathbf{s}_n assigned to \mathcal{C}_k

- Given is: the Lagrange multiplier $\lambda > 0$
 - a sufficiently large realization $\{s_n\}$ of considered source

Iterative quantizer design

- **1** Choose an initial set of K reconstruction vectors $\{s'_k\}$ and codeword length $\{\ell_k\}$
- 2 Associate all vectors of the training set $\{s_n\}$ with one of the quantization cells C_k

$$q(s_n) = \arg\min_{\forall k} \ \left| \left| s_n - s_k' \right| \right|_2^2 \ + \ \lambda \cdot \ell_k$$
 (modified nearest neighbor condition)

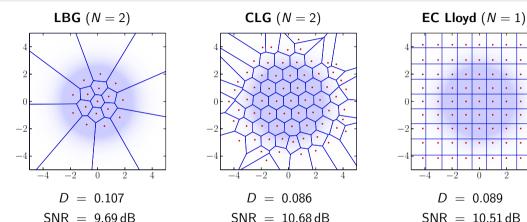
3 Update the reconstruction vectors $\{s'_k\}$ and codeword length $\{\ell_k\}$ according to

$$m{s_k'} = rac{1}{n(k)} \sum_{orall n : p(s_n) = k} m{s}_n$$
 and $\ell_k = -\log_2\left(rac{n(k)}{\sum_{orall i} n(i)}
ight)$

where n(k) is the number of sample vectors \mathbf{s}_n assigned to \mathcal{C}_k

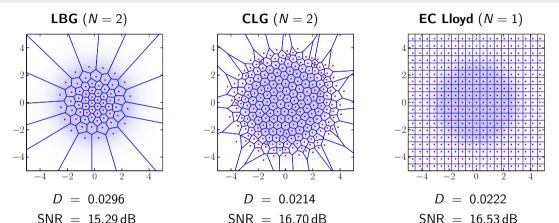
4 Repeat the previous two steps until convergence

Entropy-Constrained Vector Quantizer: Gaussian IID ($\sigma^2 = 1$, R = 2)



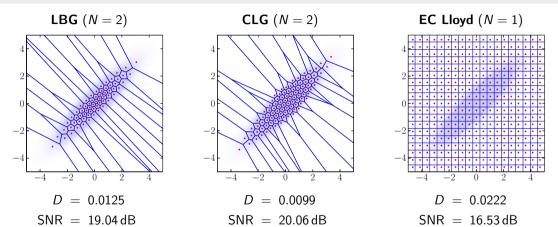
- → Large gain (1.0 dB) relative to LBG algorithm (fixed-length coding)
- \rightarrow Gain relative to EC Lloyd reduces to space-filling gain (0.17 dB for N=2)

Entropy-Constrained Vector Quantizer: Gaussian IID ($\sigma^2 = 1$, R = 3)



- → Large gain (1.4 dB) relative to LBG algorithm (fixed-length coding)
- \rightarrow Gain relative to EC Lloyd reduces to space-filling gain (0.17 dB for N=2)

Entropy-Constrained Vector Quantizer: Gauss-Markov ($\sigma^2 = 1$, $\varrho = 0.9$, R = 3)



- → Large gain (1.0 dB) relative to LBG algorithm (fixed-length coding)
- → Gain relative to EC Lloyd: Sum of memory gain and space-filling gain

Vector Quantizer Advantages

- Space-filling advantage
 - → Unique to vector quantization: (0.17 dB for N=2; 1.53 dB for $N\to\infty$)

Vector Quantizer Advantages

- Space-filling advantage
 - → Unique to vector quantization: (0.17 dB for N = 2; 1.53 dB for $N \to \infty$)
- Shape advantage
 - → Can also be exploited by entropy-constrained scalar quantization

Vector Quantizer Advantages

- Space-filling advantage
 - → Unique to vector quantization: (0.17 dB for N = 2; 1.53 dB for $N \to \infty$)
- Shape advantage
 - → Can also be exploited by entropy-constrained scalar quantization
- Memory advantage
 - → Can also be (partly) exploited by other coding techniques (topic of next lectures)

Vector Quantizer Advantages

- Space-filling advantage
 - → Unique to vector quantization: (0.17 dB for N = 2; 1.53 dB for $N \to \infty$)
- Shape advantage
 - → Can also be exploited by entropy-constrained scalar quantization
- Memory advantage
 - → Can also be (partly) exploited by other coding techniques (topic of next lectures)

Coding Efficiency of Vector Quantizers

Optimal vector quantizers provide coding efficiency gains relative to scalar quantizers

Vector Quantizer Advantages

- Space-filling advantage
 - → Unique to vector quantization: (0.17 dB for N = 2; 1.53 dB for $N \to \infty$)
- Shape advantage
 - → Can also be exploited by entropy-constrained scalar quantization
- Memory advantage
 - → Can also be (partly) exploited by other coding techniques (topic of next lectures)

Coding Efficiency of Vector Quantizers

- Optimal vector quantizers provide coding efficiency gains relative to scalar quantizers
- IID sources: Only space-filling gain (when comparing entropy-constrained designs)

Vector Quantizer Advantages

- Space-filling advantage
 - → Unique to vector quantization: (0.17 dB for N = 2; 1.53 dB for $N \to \infty$)
- Shape advantage
 - → Can also be exploited by entropy-constrained scalar quantization
- Memory advantage
 - → Can also be (partly) exploited by other coding techniques (topic of next lectures)

Coding Efficiency of Vector Quantizers

- Optimal vector quantizers provide coding efficiency gains relative to scalar quantizers
- IID sources: Only space-filling gain (when comparing entropy-constrained designs)
- Sources with memory: Most important aspect is the memory advantage

Vector Quantizer Advantages

- Space-filling advantage
 - → Unique to vector quantization: (0.17 dB for N=2; 1.53 dB for $N\to\infty$)
- Shape advantage
 - → Can also be exploited by entropy-constrained scalar quantization
- Memory advantage
 - → Can also be (partly) exploited by other coding techniques (topic of next lectures)

Coding Efficiency of Vector Quantizers

- Optimal vector quantizers provide coding efficiency gains relative to scalar quantizers
- IID sources: Only space-filling gain (when comparing entropy-constrained designs)
- Sources with memory: Most important aspect is the memory advantage
- ightharpoonup Vector quantizers can asymptotically achieve rate-distortion bound for $N
 ightharpoonup \infty$

Decoding Complexity

- In principle: Table look-up (using transmitted quantization indexes)
- Extremely large memory requirements for large *N*

Decoding Complexity

- In principle: Table look-up (using transmitted quantization indexes)
- Extremely large memory requirements for large *N*

Encoding Complexity

- Finding the "closest reconstruction vector" can become very complex
- Designing a good vector quantizer is already very complex

Decoding Complexity

- In principle: Table look-up (using transmitted quantization indexes)
- Extremely large memory requirements for large N

Encoding Complexity

- Finding the "closest reconstruction vector" can become very complex
- Designing a good vector quantizer is already very complex

Usage of Vector Quantization

Unconstrained vector quantizers are rarely used in practice

Decoding Complexity

- In principle: Table look-up (using transmitted quantization indexes)
- Extremely large memory requirements for large *N*

Encoding Complexity

- Finding the "closest reconstruction vector" can become very complex
- Designing a good vector quantizer is already very complex

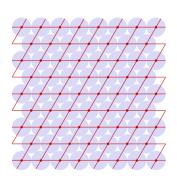
Usage of Vector Quantization

- Unconstrained vector quantizers are rarely used in practice
- → Reduce complexity by imposing structural constraints
 - Tree-structured vector quantizers
 - Gain-shape vector quantizers
 - Lattice vector quantizers (important special case: Transform coding)
 - Trellis-coded quantization

Lattice Vector Quantizer

- Reconstruction vectors are located on multi-dimensional lattice
 - Lattice is specified by N "basis vectors" $\{b_k\}$
 - Reconstruction vectors given by matrix of "basis vectors"

$$\boldsymbol{s'_{k_1,k_2,\cdots,k_N}} = \boldsymbol{M} \cdot [k_1,k_2,\cdots,k_N]^{\mathrm{T}}$$

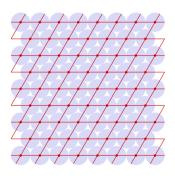


Lattice Vector Quantizer

- Reconstruction vectors are located on multi-dimensional lattice
 - Lattice is specified by N "basis vectors" $\{b_k\}$
 - Reconstruction vectors given by matrix of "basis vectors"

$$\boldsymbol{s'_{k_1,k_2,\cdots,k_N}} = \boldsymbol{M} \cdot [k_1,k_2,\cdots,k_N]^{\mathrm{T}}$$

Simple decoder operation possible

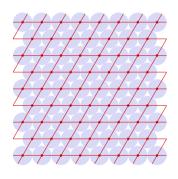


Lattice Vector Quantizer

- Reconstruction vectors are located on multi-dimensional lattice
 - Lattice is specified by N "basis vectors" $\{b_k\}$
 - Reconstruction vectors given by matrix of "basis vectors"

$$\boldsymbol{s}'_{k_1,k_2,\cdots,k_N} = \boldsymbol{M} \cdot [k_1,k_2,\cdots,k_N]^{\mathrm{T}}$$

- Simple decoder operation possible
- Less complex encoding (can still by very complex for large N)



Lattice Vector Quantizer

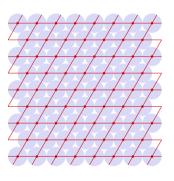
- Reconstruction vectors are located on multi-dimensional lattice
 - Lattice is specified by N "basis vectors" $\{b_k\}$
 - Reconstruction vectors given by matrix of "basis vectors"

$$\mathbf{s}'_{k_1,k_2,\cdots,k_N} = \mathbf{M} \cdot [k_1,k_2,\cdots,k_N]^{\mathrm{T}}$$

- Simple decoder operation possible
- Less complex encoding (can still by very complex for large N)

Transform Coding

- Lattice vector quantizer with orthonormal "basis vectors"
- Very simple encoding and decoding



Lattice Vector Quantizers & Transform Coding

Lattice Vector Quantizer

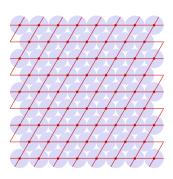
- Reconstruction vectors are located on multi-dimensional lattice
 - Lattice is specified by N "basis vectors" $\{b_k\}$
 - Reconstruction vectors given by matrix of "basis vectors"

$$\mathbf{s}'_{k_1,k_2,\cdots,k_N} = \mathbf{M} \cdot [k_1,k_2,\cdots,k_N]^{\mathrm{T}}$$

- Simple decoder operation possible
- Less complex encoding (can still by very complex for large N)

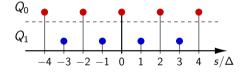
Transform Coding

- Lattice vector quantizer with orthonormal "basis vectors"
- Very simple encoding and decoding
- → One of the most often used approaches in lossy coding
- → Will discuss in detail in next lectures



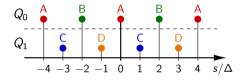
Quantizer Design & Decoding Process

■ Two scalar quantizers



Quantizer Design & Decoding Process

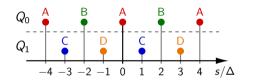
■ Two scalar quantizers + Prodecure for switching between quantizers (state machine with 2^N states)



state	quantizer	next state
0	Q_0	$(A,B) \mapsto (0,1)$
1	Q_1	$(C,D)\mapsto (2,3)$
2	Q_0	$(A,B) \mapsto (1,0)$
3	Q_1	$(C,D)\mapsto (3,2)$

Quantizer Design & Decoding Process

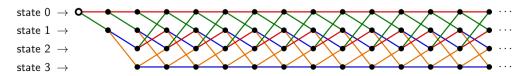
■ Two scalar quantizers + Prodecure for switching between quantizers (state machine with 2^N states)



state	quantizer	next state
0	Q_0	$(A,B) \mapsto (0,1)$
1	Q_1	$(C,D) \mapsto (2,3)$
2	Q_0	$(A,B) \mapsto (1,0)$
3	Q_1	$(C,D) \mapsto (3,2)$

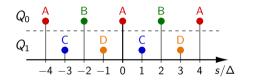
Encoding Process

■ Trellis formulation of possible quantizer switching



Quantizer Design & Decoding Process

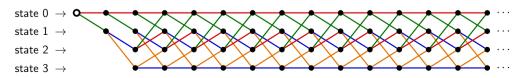
■ Two scalar quantizers + Prodecure for switching between quantizers (state machine with 2^N states)

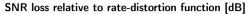


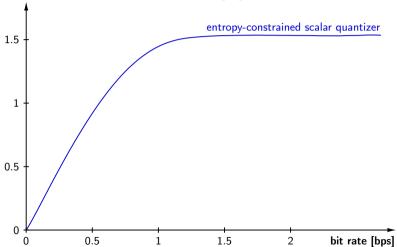
state	quantizer	next state
0	Q_0	$(A,B) \mapsto (0,1)$
1	Q_1	$(C,D) \mapsto (2,3)$
2	Q_0	$(A,B) \mapsto (1,0)$
3	Q_1	$(C,D) \mapsto (3,2)$

Encoding Process

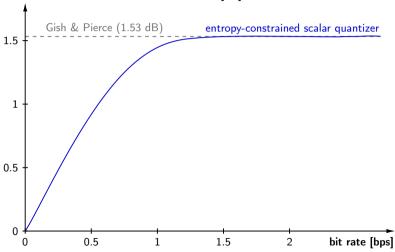
■ Trellis formulation of possible quantizer switching → Viterbi algorithm

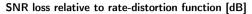


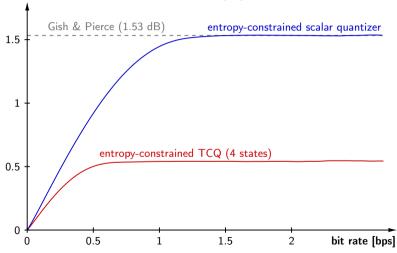


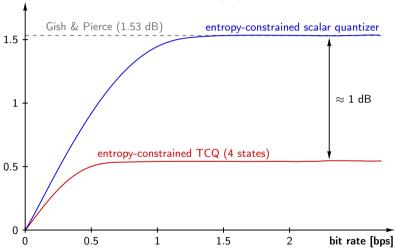


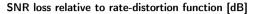
SNR loss relative to rate-distortion function [dB]

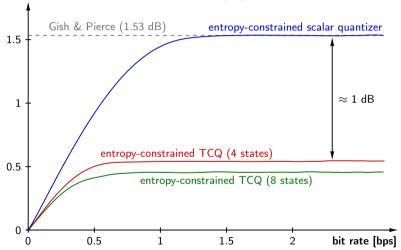


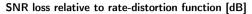


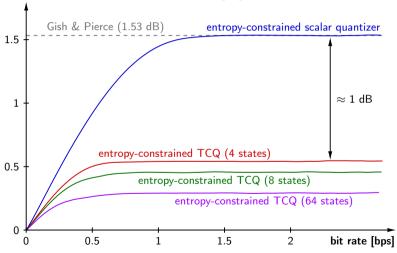












Vector Quantization (VQ)

- Straightforward extension of scalar quantization to higher dimensions *N*
- Opt. VQ with fixed-length codes: Similar to Lloyd quantizer
- Opt. VQ with variable-length codes: Similar to EC-Lloyd quantizer

Vector Quantization (VQ)

- Straightforward extension of scalar quantization to higher dimensions N
- Opt. VQ with fixed-length codes: Similar to Lloyd quantizer
- Opt. VQ with variable-length codes: Similar to EC-Lloyd quantizer

Vector Quantizer Advantages

- Space-filling advantage: Unique to vector quantizers (1.53 dB for $N \to \infty$)
- Shape advantage: Can also be exploited by ECSQ
- Memory advantage: Can also be exploited by other coding techniques

Vector Quantization (VQ)

- Straightforward extension of scalar quantization to higher dimensions N
- Opt. VQ with fixed-length codes: Similar to Lloyd quantizer
- Opt. VQ with variable-length codes: Similar to EC-Lloyd quantizer

Vector Quantizer Advantages

- Space-filling advantage: Unique to vector quantizers (1.53 dB for $N \to \infty$)
- Shape advantage: Can also be exploited by ECSQ
- Memory advantage: Can also be exploited by other coding techniques

Vector Quantization can achieve Rate-Distortion Bound! – Are we done?

Vector Quantization (VQ)

- Straightforward extension of scalar quantization to higher dimensions N
- Opt. VQ with fixed-length codes: Similar to Lloyd quantizer
- Opt. VQ with variable-length codes: Similar to EC-Lloyd quantizer

Vector Quantizer Advantages

- Space-filling advantage: Unique to vector quantizers (1.53 dB for $N \to \infty$)
- Shape advantage: Can also be exploited by ECSQ
- Memory advantage: Can also be exploited by other coding techniques

Vector Quantization can achieve Rate-Distortion Bound! - Are we done?

→ No! – Complexity of vector quanzization is a serious issue!

Vector Quantization (VQ)

- Straightforward extension of scalar quantization to higher dimensions N
- Opt. VQ with fixed-length codes: Similar to Lloyd quantizer
- Opt. VQ with variable-length codes: Similar to EC-Lloyd quantizer

Vector Quantizer Advantages

- Space-filling advantage: Unique to vector quantizers (1.53 dB for $N \to \infty$)
- Shape advantage: Can also be exploited by ECSQ
- Memory advantage: Can also be exploited by other coding techniques

Vector Quantization can achieve Rate-Distortion Bound! - Are we done?

- → No! Complexity of vector quanzization is a serious issue!
- → Require lossy coding techniques with high rate-distortion efficiency and a complexity suitable for wide range of implementations

Vector Quantization (VQ)

- Straightforward extension of scalar quantization to higher dimensions N
- Opt. VQ with fixed-length codes: Similar to Lloyd quantizer
- Opt. VQ with variable-length codes: Similar to EC-Lloyd quantizer

Vector Quantizer Advantages

- Space-filling advantage: Unique to vector quantizers (1.53 dB for $N \to \infty$)
- Shape advantage: Can also be exploited by ECSQ
- Memory advantage: Can also be exploited by other coding techniques

Vector Quantization can achieve Rate-Distortion Bound! - Are we done?

- → No! Complexity of vector quanzization is a serious issue!
- → Require lossy coding techniques with high rate-distortion efficiency and a complexity suitable for wide range of implementations
- → Particularly important: Exploitation of dependencies between samples!

Exercise 1: Space-Filling Gain for 2-dimensional Vector Quantizer

Calculate the gain (in signal-to-noise ratio) of optimal 2-dimensional vector quantization relative to optimal scalar quantization for high rates on the example of a uniform pdf.

Hints:

- In two dimensions, the optimal quantization cells are regular hexagons; the associated reconstruction vectors are located in the centers of the hexagons.
- For high rates, border effects can be neglected. It can be assumed that the signal space for which the pdf is non-zero is completely filled with regular quantization cells.