Vector Quantization




Last Lectures: Scalar Quantization

m Performance of Scalar Quantizers: Distortion (MSE) and Bit Rate

D =u{(s-Q(s)} Z/uk“(sfs;f F(s) ds

Yk v Uk

Ukt

;zk / f(s)ds

Uk

R = B{¢(Q(S)) }
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Last Lectures: Optimal Scalar Quantization

Lloyd Quantizer
®m Minimizes distortion D for given number K of reconstruction levels
B Two optimization criterions:
e Centroid condition (MSE): sc=E{S|SeZ}
® Nearest neighbor condition (MSE): uk = (s + sp_1)/2
B Lloyd quantizer design: lterate between the two optimization criterions
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Last Lectures: Optimal Scalar Quantization

Lloyd Quantizer
®m Minimizes distortion D for given number K of reconstruction levels
B Two optimization criterions:
e Centroid condition (MSE): sc=E{S|SeZ}
® Nearest neighbor condition (MSE): uk = (s + sp_1)/2
B Lloyd quantizer design: lterate between the two optimization criterions

Entropy-Constrained Lloyd Quantizer
® Minimizes rate-distortion cost J = D + AR for given Lagrange multiplier A > 0
m Three optimization criterions:
e Centroid condition (MSE): sk =E{S|S €L}
® Entropy condition: L = —log, fu‘ik“ f(s)ds
® Mod. nearest neighbor condition (MSE): ux = (s + s¢—1)/2 + (A\/2)(k — Lk—1)/(Sk + Si—1)
m EC-Lloyd quantizer design: lterate between the optimization criterions

Heiko Schwarz (Freie Universitit Berlin) — Data Compressit Vector Qi ization 3/ 46




Last Lectures

Last Lectures: Performance of Scalar Quantizers

High-Rate Approximations (MSE Distortion)

m General form of high-rate distortion-rate function

Dx(R) = ¢% -0?-27%F
where the constant factor % depends on shape of pdf and quantizer design

= Lloyd + fixed length: e2=1 ( I ¥/F(s/o) ds)
= EC-Lloyd + variable length: &}, = L 22"5/9) with h(S) = — [*°_f(s) log, f(s) ds

=» Shannon lower bound: g2 = L 22h(s/e)

2me
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Last Lectures: Performance of Scalar Quantizers

High-Rate Approximations (MSE Distortion)

m General form of high-rate distortion-rate function

Dx(R) = ¢% -0?-27%F
where the constant factor % depends on shape of pdf and quantizer design

3
= Lloyd + fixed length: e2=1 ( I ¥/F(s/o) ds)
= EC-Lloyd + variable length: &}, = L 22"5/9) with h(S) = — [*°_f(s) log, f(s) ds

=» Shannon lower bound: g2 = L 22h(s/e)

2me

Comparison of Coding Efficiency

m EC-Lloyd often significantly better than Lloyd (Gauss: 2.81 dB; Laplace: 5.63 dB)
m Constant high-rate performance gap between EC-Lloyd and Shannon lower bound
D\/(R) B mwe

1 e
Du(R) =% ~ 1.42 (1.53 dB), Rv(D) — R.(D) = 5 log, 5 0.25
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Last Lectures: Scalar Quantization in Practice

U_ga u_3 u3 Ua us
s's sl | sh | s, | s
| | L A e
T | T | I | I
1 1 1 1 1
—5A —4A —-3A —2A —1A 0 1A 2A 3A 4A 5A S

Uniform Reconstruction Quantizers (URQs)
m Simple decoding process: s, = A-q,
m Encoder can choose trade-off between coding efficiency and complexity
=» Simplest encoding: g, = round (s,/A)

= Optimal encoding:  Choose g, that minimizes Lagrange cost J(gn) = (50 — Gn - A)% 4+ X - £y,
typically using fixed relationship A = const - A?

m URQs with optimal encoding are virtually as good as optimal scalar quantizers (for typical pdfs)
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Quantization: Open Questions

Performance Gap to Theoretical Bound

m Remember: High-rate performance of optimal scalar quantizer for 11D sources

DviRy—T€~142  (153dB lossin SNR)
D, 6

=» What causes this performance gap?
=» How can the quantizer performance be improved?
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Quantization of Sources with Memory

m Scalar quantizers cannot exploit dependencies between samples (use only marginal pdf)
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Quantization: Open Questions

Performance Gap to Theoretical Bound

m Remember: High-rate performance of optimal scalar quantizer for 11D sources

DviRy—T€~142  (153dB lossin SNR)
D, 6

=» What causes this performance gap?
=» How can the quantizer performance be improved?

Quantization of Sources with Memory
m Scalar quantizers cannot exploit dependencies between samples (use only marginal pdf)
=» How can we improve lossy coding for sources with memory?
e Conditional entropy coding of quantization indexes?

e Combination of scalar quantization and prediction ?
o .7

Heiko Schwarz (Freie Universitit Berlin) — Data Compressit Vector Qi ization 6 / 46




Scalar Quantizers in N-dimensional Signal Space
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Scalar Quantizers in N-dimensional Signal Space

Interpretation of Scalar Quantization in N-dimensional Signal Space
m N-dimensional input vector s is mapped to N-dimensional reconstructed vector s’
m All vectors s inside a quantization cell i are mapped to the same reconstruction vector s;,
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Scalar Quantizers in N-dimensional Signal Space

Interpretation of Scalar Quantization in N-dimensional Signal Space
m N-dimensional input vector s is mapped to N-dimensional reconstructed vector s’
m All vectors s inside a quantization cell i are mapped to the same reconstruction vector s;,

=» Quantization cells Cx form hyper-rectangles in N-dimensional signal space
=» Reconstruction vectors s; lie on orthogonal grid aligned with coordinate axes
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Vector Quantization: Relaxing Structural Constraints

scalar quantizer Al
(dimension N =1) ol
0

_of

_al
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Vector Quantization: Relaxing Structural Constraints

scalar quantizer Al
(dimension N =1) ol
0
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_al

Vector Quantization
® Joint quantization of vectors/blocks s of N > 1 successive input samples
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Vector Quantization: Relaxing Structural Constraints

scalar quantizer at vector quantizer
(dimension N = 1) ol (dimension N = 2)
0
_of
—4F

Vector Quantization
® Joint quantization of vectors/blocks s of N > 1 successive input samples
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Vector Quantization: Relaxing Structural Constraints

vector quantizer
(dimension N = 2)

scalar quantizer at

(dimension N = 1)

Vector Quantization
® Joint quantization of vectors/blocks s of N > 1 successive input samples
m Relax structural constraints that are implicitly imposed by scalar quantization
® Quantization cells Cx can be arbitrarily shaped in N-dimensional space

® Reconstruction vectors s; can be arbitrarily placed in N-dimensional space
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Vector Quantization: Relaxing Structural Constraints

vector quantizer
(dimension N = 2)

scalar quantizer at

(dimension N = 1)

Vector Quantization
® Joint quantization of vectors/blocks s of N > 1 successive input samples
m Relax structural constraints that are implicitly imposed by scalar quantization
® Quantization cells Cx can be arbitrarily shaped in N-dimensional space
® Reconstruction vectors s; can be arbitrarily placed in N-dimensional space
=» Allows a number of new options in designing quantizers
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Structure of Vector Quantizers

Vector Quantizers of Quantizer Dimension N

® Map N-d input vectors s to N-d output vectors s;,
Q: RV {sg, 5,85, -}
m Partition N-d space into countable number of quantization cells Cy

Ck={seR": Q(s)=s;}

m All input vectors s that fall inside a quantization cell Cy
are mapped to the associated reconstruction vector s
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Structure of Vector Quantizers

Vector Quantizers of Quantizer Dimension N

® Map N-d input vectors s to N-d output vectors s;,
Q: RV {sg, 5,85, -}
m Partition N-d space into countable number of quantization cells Cy

Ck={seR": Q(s)=s;}

m All input vectors s that fall inside a quantization cell Cy
are mapped to the associated reconstruction vector s

Vector Quantization and Entropy Coding
m Quantization index k indicates quantization cell Cx and reconstruction vector s,'(
=» Encoder mapping: «(s) =k, Vs ey
=» Decoder mapping:  ((k) = s,
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Vector Quantization: Encoding and Decoding

m Arbitrarily shaped quantization cells Cy are difficult to store and check

=» Concept of quantization cells is not required in practice
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=» Concept of quantization cells is not required in practice

Encoding ' ' ' ' '
® Select the reconstruction vector s, that minimizes
a distance measure d to the input vector s ol |
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=» Concept of quantization cells is not required in practice

Encoding ' ' ' ' '
® Select the reconstruction vector s, that minimizes il |
a distance measure d to the input vector s ol |
® Possible distance measures: .
=» MSE distortion: d = ||s — s;]|3 or B o .
=» Lagrangan cost: d = |[s — s;||3 + A« ol L |
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Vector Quantization: Encoding and Decoding

m Arbitrarily shaped quantization cells Cy are difficult to store and check

=» Concept of quantization cells is not required in practice

Encoding ' ' ' ' '
® Select the reconstruction vector s, that minimizes il |
a distance measure d to the input vector s ol |
® Possible distance measures:
=» MSE distortion: d = ||s — s;]|3 or B o .
=» Lagrangan cost: d = |[s — s;||3 + A« ol L |
Decoding 4l |

® Qutput reconstruction vector s, indicated by transmitted — ; :
quantization index k (use array in decoder)
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Performance of Vector Quantizers: Bit Rate

m Let {4 be the codeword length for quantization index k

=>» Average bit rate R per sample

R = %E{ (Q®) } = %me
Vk
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Performance of Vector Quantizers: Bit Rate

m Let {4 be the codeword length for quantization index k

=>» Average bit rate R per sample

R = %E{ (Q®) } = %me
Vk

m Probability px of quantization cell Cx / quant. index k

Pk :/c f(s)ds
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Vector Quantization / Performance of Vector Quantizers

Performance of Vector Quantizers: Bit Rate

m Let ¢, be the codeword length for quantization index k

=>» Average bit rate R per sample

R = %E{ (Q®) } = %me
Vk

m Probability px of quantization cell Cx / quant. index k

Pk :/c f(s)ds

m Approximation for training set
n(k
Pk = 7( )
2k (k)

where n(k) is the number of vectors assigned to Cy / s,
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Vector Quantization / Performance of Vector Quantizers

Performance of Vector Quantizers: Distortion

=» Average MSE distortion D per sample

b= we{lIs-a®)|3}
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Vector Quantization / Performance of Vector Quantizers

Performance of Vector Quantizers: Distortion

=» Average MSE distortion D per sample

Se{lIs-a®3 )

_ N/RNHS_Q(S)Hj f(s) ds

D
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Vector Quantization / Performance of Vector Quantizers

Performance of Vector Quantizers:

=» Average MSE distortion D per sample

D

Heiko Schwarz (Freie Unive

we{lls- el }
_ N/RNHS_Q(S)Hj f(s) ds

1 , 112
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rsitit Berlin) — Data Compressi Vector Qi

Distortion

12 / 46




Vector Quantization / Performance of Vector Quantizers

Performance of Vector Quantizers:

=» Average MSE distortion D per sample

Heiko Schw:

arz (Freie

Distortion

p=ye{lls-as)})
- N/RNHS_Q(S)H,; f(s) ds
= 12/ Hs—s,'(Hz f(s)ds
N vk v Cr
1 T ’
D = NZ/ (s—sp) (s—sp) f(s)ds
vk /Cx
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Vector Quantization / Performance of Vector Quantizers

Performance of Vector Quantizers: Distortion

=» Average MSE distortion D per sample

p - ye{lIs-as);}
_ N/RNHs—o(s)Hi f(s) ds
_;g/ckus—smiﬂs)ds
Dzl

N Z/c (s—s0) (s —si) f(s) ds
Vk k

m Approximation for training set {s,} of L vectors
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1
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Optimal Vector Quantizer for Fixed-Length Coding

Goal: Minimize MSE Distortion for K Quantization Cells
m Similar to Scalar Lloyd Quantizer

m Neglect impact of entropy coding =» Consider fixed-length coding
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Optimal Vector Quantizer for Fixed-Length Coding

Goal: Minimize MSE Distortion for K Quantization Cells
m Similar to Scalar Lloyd Quantizer
m Neglect impact of entropy coding =» Consider fixed-length coding
=» Rate R and MSE distortion D are given by

1
R = m [log, K| (typically K = 2B, with B being the bits per codeword)

D = ;;/CkHss,’(Hz f(s)ds = i’;/ck (s—s,'()T(s—s,'() f(s) ds
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Optimal Vector Quantizer for Fixed-Length Coding

Goal: Minimize MSE Distortion for K Quantization Cells
m Similar to Scalar Lloyd Quantizer
m Neglect impact of entropy coding =» Consider fixed-length coding
=» Rate R and MSE distortion D are given by

1
R = m [log, K| (typically K = 2B, with B being the bits per codeword)

D = ;;/CkHss,’(Hz f(s)ds = i’;/ck (s—s,'()T(s—s,'() f(s) ds

Optimize Quantizer of size K
m Derive necessary conditions for optimality (similar to Lloyd quantizer)

m Construct iterative algorithm for designing quantizer
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Optimality Conditions for Fixed-Length Coding

Necessary Conditions for Optimality (MSE distortion)
Centroid condition (for reconstruction vectors s; )

Pk

s;zE{5|s€ck}:i/c sf(s) ds
k
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Optimality Conditions for Fixed-Length Coding

Necessary Conditions for Optimality (MSE distortion)
Centroid condition (for reconstruction vectors s; )

s;zE{5|s€ck}:i/ sf(s) ds
Pk Je,

=» Centroid condition for training set

s,’(:n(lk)st with n(k) = Zl

s:a(s)=k Vs: a(s)=k
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Optimality Conditions for Fixed-Length Coding

Necessary Conditions for Optimality (MSE distortion)
Centroid condition (for reconstruction vectors s; )

s;zE{5|s€ck}:i/ sf(s) ds
Pk Je,

=» Centroid condition for training set

s,’(:n(lk)st with n(k) = Zl

s:a(s)=k Vs: a(s)=k

Nearest neighbour condition (for quantization cells Cx / encoder mapping «a(.))

a(s) = arg ngan l|s — SII<H§
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The Linde-Buzo-Gray (LBG) Algorithm for a Training Set (MSE Distortion)

Given is: @ the dimension N and the size K of the quantizer

e a sufficiently large realization {s,} of considered source
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Optimal Vector Quantizers with Fixed-Length Coding / The Linde-Buzo-Gray Algorithm

The Linde-Buzo-Gray (LBG) Algorithm for a Training Set (MSE Distortion)

Given is: @ the dimension N and the size K of the quantizer

e a sufficiently large realization {s,} of considered source

Iterative quantizer design

Choose an initial set of K reconstruction vectors {s; }
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Optimal Vector Quantizers with Fixed-Length Coding / The Linde-Buzo-Gray Algorithm

The Linde-Buzo-Gray (LBG) Algorithm for a Training Set (MSE Distortion)

Given is: @ the dimension N and the size K of the quantizer

e a sufficiently large realization {s,} of considered source

Iterative quantizer design
Choose an initial set of K reconstruction vectors {s; }

Associate all vectors of the training set {s,} with one of the quantization cells Cy

q(s,) = arg n\}i(n ||sn — s,’(Hz (nearest neighbor condition)
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Optimal Vector Quantizers with Fixed-Length Coding / The Linde-Buzo-Gray Algorithm

The Linde-Buzo-Gray (LBG) Algorithm for a Training Set (MSE Distortion)

Given is: @ the dimension N and the size K of the quantizer

e a sufficiently large realization {s,} of considered source

Iterative quantizer design
Choose an initial set of K reconstruction vectors {s; }

Associate all vectors of the training set {s,} with one of the quantization cells Cy
. 2 . "
q(s,) = arg min ||s,, — s,’(H2 (nearest neighbor condition)

Update the reconstruction vectors {s; } according to

s, = Sn (centroid condition)
‘ n(k) vn: c%)—k

where n(k) is the number of sample vectors s, assigned to Ci
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Optimal Vector Quantizers with Fixed-Length Coding / The Linde-Buzo-Gray Algorithm

The Linde-Buzo-Gray (LBG) Algorithm for a Training Set (MSE Distortion)

Given is: @ the dimension N and the size K of the quantizer

e a sufficiently large realization {s,} of considered source

Iterative quantizer design
Choose an initial set of K reconstruction vectors {s; }

Associate all vectors of the training set {s,} with one of the quantization cells Cy
. 2 . "
q(s,) = arg min ||s,, — s,’(H2 (nearest neighbor condition)

Update the reconstruction vectors {s; } according to

s, = Sn (centroid condition)
‘ n(k) vn: c%)—k

where n(k) is the number of sample vectors s, assigned to Ci

B Repeat the previous two steps until convergence
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__Optimal Vector Quantizers with Fixed-Length Coding / The Linde-Buzo-Gray Algorithn
Example: LBG Algorithm for Gaussian IID (62 =1, N =2, K = 16)

initialization

4F
ok
0
—ob
—4}F
-4 =2 2 4
R =2
D = 0.122
SNR = 9.12dB
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Example: LBG Algorithm for Gaussian IID (62 =1, N =2, K = 16)

initialization after iteration 5
af | . T
2 ol
0 ok
-2 -2
—af -4
T T 1 T =2 0 2 4
R =2 R =2
D = 0.122 D = 0.117
SNR = 9.12dB SNR = 9.31dB

Heiko Schwarz (Freie Universitit Berlin) — Data Compressit Vector Qi ization 16 / 46




Example: LBG Algorithm for Gaussian IID (62 =1, N =2, K = 16)

initialization after iteration 5 after iteration 15
2 ol
( ok
-2 -2
_at -4
T T 1 T =2 0 2 4
R =2 R =2 R =2
D = 0.122 D = 0.117 D = 0.114
SNR = 9.12dB SNR = 9.31dB SNR = 9.43dB
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Example: LBG Algorithm for Gaussian IID (62 =1, N =2, K = 16)

initialization after iteration 5 after iteration 15 final result
2 ol
( ok
-2 -2
_at -4
T T 1 T =2 0 2 4
R =2 R =2 R =2 R =2
D = 0.122 D = 0.117 D = 0.114 D = 0.107
SNR = 9.12dB SNR = 9.31dB SNR = 9.43dB SNR = 9.69dB
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Comparison to Scalar Quantization: Gaussian IID (62 =1, R = 2)

Lloyd (N =1) LBG (N =2)

O
|

0.117
SNR = 9.30dB

=> Improvement of 0.39dB (distortion reduction by factor 0.91)

Heiko Schwarz (Freie Universitit Berlin) — Data Compressit Vector Qi ization 17 / 46




Optimal Vector Quantizers with Fixed-Length Coding / Examples: Comparison to Lloyd

Comparison to Scalar Quantization: Gaussian IID (02 =1, R = 4)

Lloyd (N =1)

4.
2.
0
_9F
4}

S —

D =

SNR =

0.00951
20.22dB

D = 0.00767
SNR = 21.15dB

=> Improvement of 0.93dB (distortion reduction by factor 0.81)

Heiko Schwarz (Freie Universitit Berlin) — Data Compi

Vector Qi ization 18 / 46




Comparison to Scalar Quantization: Laplacian IID (02> =1, R =2)

Lloyd (N = 1) LBG (N = 2)

0

D = 0.176
SNR 7.54dB

=> Improvement of 1.35dB (distortion reduction by factor 0.73)
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Optimal Vector Quantizers with Fixed-Length Coding / Examples: Comparison to Lloyd

Comparison to Scalar Quantization: Laplacian IID (62 =1, R = 4)

Lloyd (N =1)

0

O
|

= 0.0153 D = 0.0098
SNR = 18.14dB SNR = 20.08dB

=> Improvement of 1.94dB (distortion reduction by factor 0.64)
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The Vector Quantizer Advantage

Gain over scalar quantization can be assigned to 3 effects:
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The Vector Quantizer Advantage

Gain over scalar quantization can be assigned to 3 effects:

m Space filling advantage:
e 7N lattice is not most efficient sphere packing in N dimensions (N > 1)
e Independent from source distribution or statistical dependencies
® Maximum gain for N — oo: 1.53 dB

Heiko Schwarz (Freie Universitit Berlin) — Data Compressit Vector Qi ization 21/ 46




The Vector Quantizer Advantage

Gain over scalar quantization can be assigned to 3 effects:

m Space filling advantage:
e 7N lattice is not most efficient sphere packing in N dimensions (N > 1)
e Independent from source distribution or statistical dependencies
® Maximum gain for N — oo: 1.53 dB

® Shape advantage:
® Exploit shape of source pdf

® Can also be exploited using entropy-constrained scalar quantization

Heiko Schwarz (Freie Universitit Berlin) — Data Compressit Vector Qi ization 21/ 46




The Vector Quantizer Advantage

Gain over scalar quantization can be assigned to 3 effects:

m Space filling advantage:
e 7N lattice is not most efficient sphere packing in N dimensions (N > 1)
e Independent from source distribution or statistical dependencies
® Maximum gain for N — oo: 1.53 dB

® Shape advantage:
® Exploit shape of source pdf

® Can also be exploited using entropy-constrained scalar quantization

® Memory advantage:
e Exploit statistical dependencies of the source

e Can also be exploited using predictive coding, transform coding,
block entropy coding or conditional entropy coding
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The Vector Quantizer Advantage / Space-Filling Advantage

Space-Filling Advantage: LBG for Uniform IID Source

Lloyd (N =1): SNR=23.97dB LBG (N =2): SNR=24.14dB

laooooonooouoooos Iosceny.

U noooooooooooonn 2R

0F 0
-9 9
—4 _AF
| A 4 2 0 2 4

m | BG algorithm approaches approximate hexagonal lattice

=» Improvement of 0.17dB
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Space-Filling Advantage: Sphere Packing in N-dimensional Signal Space

m Space filling gain: Densest packing of “optimal” quantization cells in signal space
=» MSE distortion: Densest packing of spheres in N-dimensional space
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Space-Filling Advantage: Sphere Packing in N-dimensional Signal Space

Sy

NN
D DDl
XN
D DDl
W/

m Space filling gain: Densest packing of “optimal” quantization cells in signal space
=» MSE distortion: Densest packing of spheres in N-dimensional space
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Space-Filling Advantage: Sphere Packing in N-dimensional Signal Space

Sy

NN
D DDl
XN
D DDl
W/
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The Vector Quantizer Advantage / Space-Filling Advantage

Space-Filling Advantage: Sphere Packing in N-dimensional Signal Space

Sy

NN
D DDl
XN
D DDl
W/

m Space filling gain: Densest packing of “optimal” quantization cells in signal space
=» MSE distortion: Densest packing of spheres in N-dimensional space

=» 2 dimensions: Hexagonal lattice (like honeycombs)

=» 3 dimensions: Cuboidal lattice (stapling of cannon balls / oranges)
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Space-Filling Advantage: Sphere Packing Density

Center density
m Consider N-dimensional spheres with radius r = 1

Heiko Schwarz (Freie Universitit Berlin) — Data Compressit Vector Qi ization 24 / 46




Space-Filling Advantage: Sphere Packing Density

Center density
m Consider N-dimensional spheres with radius r = 1
m Measure for packing density: Center density

average number of sphere centers

0= .
unit volume

Heiko Schwarz (Freie Universitit Berlin) — Data Compressit Vector Qi ization 24 / 46




Space-Filling Advantage: Sphere Packing Density

Center density
m Consider N-dimensional spheres with radius r = 1
m Measure for packing density: Center density

average number of sphere centers

0= .
unit volume

m Example: N =1 (SQ with intervals of size 2r = 2)

625

Heiko Schwarz (Freie Universitit Berlin) — Data Compressit Vector Qi ization 24 / 46




Space-Filling Advantage: Sphere Packing Density

Center density
m Consider N-dimensional spheres with radius r = 1
m Measure for packing density: Center density

5 average number of sphere centers

unit volume

m Example: N =1 (SQ with intervals of size 2r = 2)

625

Roger’s bound
m Theoretical upper bound for center density (last term being approximate)

0z 6 < Niogo (M) 4 Lo m P
820= 51082\ o | T3 082 T2 4N + 10
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Space-Filling Advantage: Densest Known Sphere Packings

m Densest known packings for dimensions N < 48 [ Conway, Sloane, 1998]
m Vertical axis: log, d + N(24 — N)/96

2

. Pl&q ?
ROGER’S BOUND
DENSITY
(SCALED)
A
0e + LEECH LATTICE Ay, T
-1 A ' x Q32 ; /
. X o X I .
-2 Di. \x = Ex .An \n X7e e 1\75;;(; a A
l.o anl() . «® .o. * e c' !
3 K L. N 7
.0:)0(0)0(30 [\,, .oo-.

! 8 1216 20 24 28 32 36 40 44 18
DIMENSION
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The Vector Quantizer Advantage / Space-Filling Advantage

Space-Filling Advantage: Approximate SNR Gain

dimension | densest packing (name) highest kissing number | approximate gain [dB]
1 Z — Integer lattice 2 0
2 Ay — Hexagonal lattice 6 0.17
3 Az ~ D3 — Cuboidal lattice 12 0.29
4 Dy 24 0.39
5 Ds 40 0.47
6 Eg 72 0.54
7 E; 126 0.60
8 Eg — Gosset lattice 240 0.66
9 Ng — Laminated lattice 240 0.70
10 Pioc — Non-lattice arrangement 336 0.74
12 Kio — Coxeter-Todd lattice 756 0.81
16 BWie ~ Mg — Barnes-Wall lattice 4320 0.91
24 Nog — Leech lattice 196560 1.04
100 1.35
00 1.53
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Summary on Space-Filling Advantage

®m Gain of unique to vector quantization: Packing of quantization cells in N-dimensional space
B Increases with quantizer dimension N
=» Gain for N — oo: Difference between Shannon lower bound and ECSQ

1.75 a

» 1.53dB

._\

&
T

‘e

space-filling gain (MSE .
. P g gain (MSE)

[
Y

0.75 N

o
o1
[
|

0.25 | N

high-rate SNR gain [dB]
[
|
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The Vector Quantizer Advantage / Shape Advantage

Shape Advantage: Gaussian IID (02 =1, R =4)

Lloyd (N = 1) LBG (N = 2)

8 |18 DN:2
2F Sl o : ~ 0.81 2
o o0 DN—l

¢

ASNR ~ 0.93dB

Shape Advantage of Vector Quantizers
m Coding gain (0.93 dB for example) is larger than space-filling gain (0.17 dB for N = 2)
m Vector quantizer can better adapt to shape of pdf (even without entropy coding)
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Shape Advantage: Laplacian IID (02=1, R=4)

Lloyd (N = 1) LBG (N = 2)

4 4
NEEN A Drs .
e EEA S E1C o1 115 ari oa e ~ 0.64 2
5 —[EalE BiEEs] - B DN:1 .
0 OF
B ASNR ~ 1.94dB
—4F —4

Shape Advantage of Vector Quantizers
m Coding gain (1.94 dB for example) is larger than space-filling gain (0.17 dB for N = 2)

m Vector quantizer can better adapt to shape of pdf (even without entropy coding)
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Summary on Shape Advantage

m Gain of VQ due to exploitation of shape of pdf (without entropy coding)
m Overall gain for iid source: Space-filling gain + shape gain

=>» Shape advantage can also be exploited by entropy-constrained scalar quantization

¢ 5.63dB

Laplacian source
_______ -¢ 2.81dB

Gaussian source

high-rate SNR gain [dB]
w
I

1 2 4 8 16 00
dimension N
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The Vector Quantizer Advantage / Memory Advantage

Memory Advantage: Gauss-Markov (02=1, 0 =0.9, R =2)

Lloyd (N = 1) LBG (N =2)

nt 4
Dn=>

2F 1 ~ 0.38 2r
-l Dy

0 oF

. ASNR ~ 420dB

4} —4

T — 5 4 T2 0 2 4

Memory Advantage of Vector Quantizers
m Large coding gain (4.20 dB for example) for sources with memory

m Vector quantizer can exploit dependencies between samples
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The Vector Quantizer Advantage / Memory Advantage

Memory Advantage: Gauss-Markov (02=1, 0 =0.9, R =4)

Lloyd (N = 1) LBG (N = 2)

at 4
- 21 DN:2

2k amn o : ~ 0.35 2F
oo oo Dpy=1

0 ot

72 ASNR ~ 4.55dB o

—at —4

Memory Advantage of Vector Quantizers
m Large coding gain (4.55 dB for example) for sources with memory

m Vector quantizer can exploit dependencies between samples
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The Vector Quantizer Advantage / Memory Advantage

Summary on Memory Advantage

m Gain of VQ due to exploitation of dependencies between samples
B Largest gain to be made for sources with strong statistical dependencies
=» Exploitation of memory advantage is one of the most relevant aspects in source coding

11 T T T
— 10 Gauss-Markov 0 =0.95 —__-- -0 10.11dB
= 9f ; :
£ 8F 3
&S 7 eeemmmre -6 7.21dB
o 6+ —
=
woo5F Gauss-Markov ¢ = 0.9 B
2 4 -
T 3 1
ey
o 2| Gauss-Markov o = 0.5 -
<= 1f ° o —e®------- -6 1.25dB
0 | | | |
1 2 4 8 16 o0

dimension N
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Optimal Vector Quantizer for Variable-Length Coding

Optimal Vector Quantizer with Consideration of Entropy Coding

® Similar to Scalar Entropy-Constrained Lloyd Quantizer
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Optimal Vector Quantizer for Variable-Length Coding

Optimal Vector Quantizer with Consideration of Entropy Coding
® Similar to Scalar Entropy-Constrained Lloyd Quantizer

=» Minimization of Lagrangian cost for given Lagrange multiplier A

J=D+XR
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Optimal Vector Quantizer for Variable-Length Coding

Optimal Vector Quantizer with Consideration of Entropy Coding
® Similar to Scalar Entropy-Constrained Lloyd Quantizer

=» Minimization of Lagrangian cost for given Lagrange multiplier A

J=D+XR
w2 [ Nl sl sy ds + 3 e [ oo

m Lagrange multiplier A > 0 determines operation point (trade-off between rate and distortion)
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Optimal Vector Quantizer for Variable-Length Coding

Optimal Vector Quantizer with Consideration of Entropy Coding
® Similar to Scalar Entropy-Constrained Lloyd Quantizer

=» Minimization of Lagrangian cost for given Lagrange multiplier A

J=D+XR
w2 [ Nl sl sy ds + 3 e [ oo

m Lagrange multiplier A > 0 determines operation point (trade-off between rate and distortion)

Optimize Quantizer for given Lagrange multiplier
m Derive necessary conditions for optimality (similar to EC Lloyd quantizer)
m Construct iterative algorithm for designing quantizer

m Similar as for EC Lloyd: Use large number of intervals in initialization
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Optimality Conditions for Variable-Length Coding

Necessary Conditions for Optimality (MSE distortion)

Centroid condition (for reconstruction vectors s;, same as for LBG)

1
s,=E{S|SeC}= p—/ sf(s)ds (training set: take average of assigned vectors)
Kk Jey
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Necessary Conditions for Optimality (MSE distortion)

Centroid condition (for reconstruction vectors s;, same as for LBG)

1
s,=E{S|SeC}= p—/ sf(s)ds (training set: take average of assigned vectors)
Kk Jey

Entropy condition (for codeword length ¢, same as for EC Llloyd)

O = —logy px = —log, | f(s)ds (training set: count assigned vectors)
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Optimality Conditions for Variable-Length Coding

Necessary Conditions for Optimality (MSE distortion)

Centroid condition (for reconstruction vectors s;, same as for LBG)

1
s,=E{S|SeC}= p—/ sf(s)ds (training set: take average of assigned vectors)
Kk Jey

Entropy condition (for codeword length ¢, same as for EC Llloyd)

O = —logy px = —log, | f(s)ds (training set: count assigned vectors)

Cy

Modified nearest neighbour condition (for quantization cells Cx / encoder mapping «(.))

afs) = arg min Hs—s,’(”§+)\.€k
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Optimal Vector Quantizers with Variable-Length Coding / The Chou-Lookabaugh-Gray Algorithm

The Chou-Lookabough-Gray (CLG) Algorithm for a Training Set (MSE)

Given is: @ the Lagrange multiplier A > 0

e a sufficiently large realization {s,} of considered source
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Optimal Vector Quantizers with Variable-Length Coding / The Chou-Lookabaugh-Gray Algorithm

The Chou-Lookabough-Gray (CLG) Algorithm for a Training Set (MSE)

Given is: @ the Lagrange multiplier A > 0

e a sufficiently large realization {s,} of considered source

Iterative quantizer design

Choose an initial set of K reconstruction vectors {s; } and codeword length {¢}

Associate all vectors of the training set {s,} with one of the quantization cells Cy

q(s,) = arg ngan 1A ]; + Aty (modified nearest neighbor condition)
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Optimal Vector Quantizers with Variable-Length Coding / The Chou-Lookabaugh-Gray Algorithm

The Chou-Lookabough-Gray (CLG) Algorithm for a Training Set (MSE)

Given is: @ the Lagrange multiplier A > 0

e a sufficiently large realization {s,} of considered source

Iterative quantizer design

Choose an initial set of K reconstruction vectors {s; } and codeword length {¢}

Associate all vectors of the training set {s,} with one of the quantization cells Cj
g q
) 2 . . "
q(s,) = arg min 1A ]2 + Aty (modified nearest neighbor condition)

Update the reconstruction vectors {s; } and codeword length {/,} according to

1 n(k)
sl = — Snp and b= — Iog ()
“ n(k) v %)—k ¢ 2 >_vi n(i)

where n(k) is the number of sample vectors s, assigned to Cy
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Optimal Vector Quantizers with Variable-Length Coding / The Chou-Lookabaugh-Gray Algorithm

The Chou-Lookabough-Gray (CLG) Algorithm for a Training Set (MSE)

Given is: @ the Lagrange multiplier A > 0

e a sufficiently large realization {s,} of considered source

Iterative quantizer design

Choose an initial set of K reconstruction vectors {s; } and codeword length {¢}

Associate all vectors of the training set {s,} with one of the quantization cells Cj
g q
) 2 . . "
q(s,) = arg min 1A ]2 + Aty (modified nearest neighbor condition)

Update the reconstruction vectors {s; } and codeword length {/,} according to
p_ 1

_ i ()
o, M b e (o)

where n(k) is the number of sample vectors s, assigned to Cy

B Repeat the previous two steps until convergence
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Optimal Vector Quantizers with Variable-Length Coding / Examples

Entropy-Constrained Vector Quantizer: Gaussian IID (02 =1, R =2)

LBG (N =2) EC Lloyd (N =1)
of
0F
of
—4 SIS
-4 =2 0 2
D = 0.107 D = 0.086 D = 0.089
SNR = 9.69dB SNR = 10.68dB SNR = 10.51dB

=> Large gain (1.0 dB) relative to LBG algorithm (fixed-length coding)
=> Gain relative to EC Lloyd reduces to space-filling gain (0.17 dB for N = 2)
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Entropy-Constrained Vector Quantizer: Gaussian IID (02 =1, R = 3)

LBG (N = 2) EC Lloyd (N =1)
o e
—4 -2 0 2 4 —4 -2 0 2 4
D = 0.0296 D = 0.0214 D = 0.0222
SNR = 15.29dB SNR = 16.70dB SNR = 16.53dB

=> Large gain (1.4 dB) relative to LBG algorithm (fixed-length coding)
=> Gain relative to EC Lloyd reduces to space-filling gain (0.17 dB for N = 2)
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Optimal Vector Quantizers with Variable-Length Coding / Examples

Entropy-Constrained Vector Quantizer: Gauss-Markov (02 =1, 0 =0.9, R =3)

LBG (N = 2) CLG (N = 2) EC Lloyd (N =1)
o i
—4 -2 0 2 4 —4 -2 0 2 4
D = 0.0125 D = 0.0099 D = 0.0222
SNR = 19.04dB SNR = 20.06dB SNR = 16.53dB

=> Large gain (1.0 dB) relative to LBG algorithm (fixed-length coding)
=» Gain relative to EC Lloyd: Sum of memory gain and space-filling gain
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Coding Efficiency of Vector Quantizers

Vector Quantizer Advantages

m Space-filling advantage
=» Unique to vector quantization: (0.17dB for N =2; 1.53dB for N — o)
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® Memory advantage
=» Can also be (partly) exploited by other coding techniques (topic of next lectures)

Coding Efficiency of Vector Quantizers
m Optimal vector quantizers provide coding efficiency gains relative to scalar quantizers
m |ID sources: Only space-filling gain (when comparing entropy-constrained designs)
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Coding Efficiency of Vector Quantizers

Vector Quantizer Advantages
m Space-filling advantage
=» Unique to vector quantization: (0.17dB for N =2; 1.53dB for N — o)
B Shape advantage
=>» Can also be exploited by entropy-constrained scalar quantization
® Memory advantage
=» Can also be (partly) exploited by other coding techniques (topic of next lectures)

Coding Efficiency of Vector Quantizers
m Optimal vector quantizers provide coding efficiency gains relative to scalar quantizers
m |ID sources: Only space-filling gain (when comparing entropy-constrained designs)

m Sources with memory: Most important aspect is the memory advantage

=» Vector quantizers can asymptotically achieve rate-distortion bound for N — ~
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Complexity of Vector Quantization

Decoding Complexity
® |n principle: Table look-up (using transmitted quantization indexes)

® Extremely large memory requirements for large N
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Coding Efficiency and Complexity / Summary of Observations

Complexity of Vector Quantization

Decoding Complexity
® |n principle: Table look-up (using transmitted quantization indexes)

® Extremely large memory requirements for large N

Encoding Complexity
m Finding the “closest reconstruction vector’ can become very complex

m Designing a good vector quantizer is already very complex

Usage of Vector Quantization

®m Unconstrained vector quantizers are rarely used in practice
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Coding Efficiency and Complexity / Summary of Observations

Complexity of Vector Quantization

Decoding Complexity
® |n principle: Table look-up (using transmitted quantization indexes)
® Extremely large memory requirements for large N

Encoding Complexity
m Finding the “closest reconstruction vector’ can become very complex

m Designing a good vector quantizer is already very complex

Usage of Vector Quantization
®m Unconstrained vector quantizers are rarely used in practice
=>» Reduce complexity by imposing structural constraints
® Tree-structured vector quantizers
® Gain-shape vector quantizers
® Lattice vector quantizers (important special case: Transform coding)
® Trellis-coded quantization

Heiko Schwarz (Freie Universitit Berlin) — Data Compressit Vector Qi ization
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Lattice Vector Quantizers & Transform Coding

Lattice Vector Quantizer
®m Reconstruction vectors are located on multi-dimensional lattice

® Lattice is specified by N “basis vectors” {by}

® Reconstruction vectors given by matrix of “basis vectors”

’ T
Sky ke, ky = M- [ke ke, k]
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Lattice Vector Quantizers & Transform Coding

Lattice Vector Quantizer
®m Reconstruction vectors are located on multi-dimensional lattice

® Lattice is specified by N “basis vectors” {by}

® Reconstruction vectors given by matrix of “basis vectors”

’ T
Sky ke, ky = M- [ke ke, k]

m Simple decoder operation possible

m | ess complex encoding (can still by very complex for large N)

Transform Coding

m |attice vector quantizer with orthonormal “basis vectors”

® Very simple encoding and decoding
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Coding Efficiency and Complexity / Examples for Constrained Vector Quantizers

Lattice Vector Quantizers & Transform Coding

Lattice Vector Quantizer
®m Reconstruction vectors are located on multi-dimensional lattice

® Lattice is specified by N “basis vectors” {by}

® Reconstruction vectors given by matrix of “basis vectors”

’ T
Sky ke, ky = M- [ke ke, k]

m Simple decoder operation possible

m | ess complex encoding (can still by very complex for large N)

Transform Coding

m |attice vector quantizer with orthonormal “basis vectors”

® Very simple encoding and decoding
=» One of the most often used approaches in lossy coding

=»> Will discuss in detail in next lectures
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Trellis-Coded Quantization (TCQ)

Quantizer Design & Decoding Process

m Two scalar quantizers
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Trellis-Coded Quantization (TCQ)

Quantizer Design & Decoding Process
® Two scalar quantizers 4+ Prodecure for switching between quantizers (state machine with 2V states)

Q A B A B A state quantizer next state
0
-------------------------- 0 Qo (A.B) — (0,1)
Q $ 2 $ 2 1 Q@ (CD)w— (23)
— — 2 Qo (A,B) — (1,0)
-4 -3-2-10 1 2 3 4 s/A 3 Q (C,D) = (3.2)
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Trellis-Coded Quantization (TCQ)

Quantizer Design & Decoding Process

® Two scalar quantizers 4+ Prodecure for switching between quantizers (state machine with 2V states)

Q A B A B A state quantizer next state
0
-------------------------- 0 Qo (A.B) = (0,1)
Q $ 2 $ 2 1 Q@ (CD)w— (23)
’ ’ R 2 Qo (A,B) — (1,0)
-4 -3-2-10 1 2 3 4 s/A 3 Q (C,D) = (3.2)

Encoding Process
m Trellis formulation of possible quantizer switching
state 0 — O
A2 Va Va VA Y
state 1 — \ .""‘"‘?"
state 2 — /‘W“
NN

state 3 —
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Trellis-Coded Quantization (TCQ)

Quantizer Design & Decoding Process

® Two scalar quantizers 4+ Prodecure for switching between quantizers (state machine with 2V states)

Q A B A B A state quantizer next state
0
-------------------------- 0 Qo (A.B) = (0,1)
Q $ 2 $ 2 1 Q@ (CD)w— (23)
’ ’ R 2 Qo (A,B) — (1,0)
-4 -3-2-10 1 2 3 4 s/A 3 Q (C,D) = (3.2)

Encoding Process
m Trellis formulation of possible quantizer switching =» Viterbi algorithm
state 0 — ©
AVAVAVAVYA YA YA A Y
state 2 — /‘W /“‘ /‘ /‘ 4
N NN NN NN

state 3 —
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Coding Efficiency and Complexity / Examples for Constrained Vector Quantizers

Example: TCQ Performance for Gaussian IID

SNR loss relative to rate-distortion function [dB]
\

entropy-constrained scalar quantizer

05t

0 0.5 1 15 2 bit rate [bps]
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Example: TCQ Performance for Gaussian IID

SNR loss relative to rate-distortion function [dB]

\
Gish & Pierce (1.53 dB) entropy-constrained scalar quantizer
3 i
1 4
05t
0 t t t t
0 0.5 1 15 2 bit rate [bps]
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Vector Quantizer Advantages
m Space-filling advantage: Unique to vector quantizers (1.53 dB for N — c0)
® Shape advantage: Can also be exploited by ECSQ

® Memory advantage: Can also be exploited by other coding techniques

Vector Quantization can achieve Rate-Distortion Bound! — Are we done?
=» No! — Complexity of vector quanzization is a serious issue!

=» Require lossy coding techniques with high rate-distortion efficiency
and a complexity suitable for wide range of implementations

=» Particularly important: Exploitation of dependencies between samples!
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_ Exercises
Exercise 1: Space-Filling Gain for 2-dimensional Vector Quantizer

Calculate the gain (in signal-to-noise ratio) of optimal 2-dimensional vector quantization
relative to optimal scalar quantization for high rates on the example of a uniform pdf.

Hints:

® In two dimensions, the optimal quantization cells are regular hexagons; the associated
reconstruction vectors are located in the centers of the hexagons.

m For high rates, border effects can be neglected. It can be assumed that the signal space for which
the pdf is non-zero is completely filled with regular quantization cells.
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