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Last Lectures

Last Lectures: Scalar Quantization
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Performance of Scalar Quantizers: Distortion (MSE) and Bit Rate
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Last Lectures

Last Lectures: Optimal Scalar Quantization

Lloyd Quantizer
Minimizes distortion D for given number K of reconstruction levels
Two optimization criterions:

Centroid condition (MSE): s ′k = E{S |S ∈ Ik }
Nearest neighbor condition (MSE): uk = (s ′k + s ′k−1)/2

Lloyd quantizer design: Iterate between the two optimization criterions

Entropy-Constrained Lloyd Quantizer
Minimizes rate-distortion cost J = D + λR for given Lagrange multiplier λ > 0
Three optimization criterions:

Centroid condition (MSE): s ′k = E{S |S ∈ Ik }
Entropy condition: `k = − log2

∫ uk+1
uk

f (s) ds

Mod. nearest neighbor condition (MSE): uk = (s ′k + s ′k−1)/2 + (λ/2)(`k − `k−1)/(s ′k + s ′k−1)

EC-Lloyd quantizer design: Iterate between the optimization criterions
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Last Lectures

Last Lectures: Performance of Scalar Quantizers

High-Rate Approximations (MSE Distortion)
General form of high-rate distortion-rate function

DX (R) = ε2X · σ2 · 2−2R

where the constant factor ε2X depends on shape of pdf and quantizer design

Lloyd + fixed length: ε2F = 1
12

(∫∞
−∞

3
√

f (s/σ) ds
)3

EC-Lloyd + variable length: ε2V = 1
12 2

2 h(S/σ) with h(S) = −
∫∞
−∞ f (s) log2 f (s) ds

Shannon lower bound: ε2L = 1
2πe 2

2 h(S/σ)

Comparison of Coding Efficiency
EC-Lloyd often significantly better than Lloyd (Gauss: 2.81 dB; Laplace: 5.63 dB)
Constant high-rate performance gap between EC-Lloyd and Shannon lower bound

DV (R)

DL(R)
=
πe

6
≈ 1.42 (1.53 dB), RV (D)− RL(D) =

1
2

log2
πe

6
≈ 0.25
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Last Lectures

Last Lectures: Scalar Quantization in Practice

s

u−4 u−3 u−2 u−1 u0 u1 u2 u3 u4 u5

∆ ∆

s ′−5 s ′−4 s ′−3 s ′−2 s ′−1 s ′0 s ′1 s ′2 s ′3 s ′4 s ′5

−5∆ −4∆ −3∆ −2∆ −1∆ 0 1∆ 2∆ 3∆ 4∆ 5∆

Uniform Reconstruction Quantizers (URQs)
Simple decoding process: s ′n = ∆ · qn
Encoder can choose trade-off between coding efficiency and complexity

Simplest encoding: qn = round (sn/∆)

Optimal encoding: Choose qn that minimizes Lagrange cost J(qn) = (sn − qn ·∆)2 + λ · `k ,
typically using fixed relationship λ = const ·∆2

URQs with optimal encoding are virtually as good as optimal scalar quantizers (for typical pdfs)
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Vector Quantization / Generalization of Scalar Quantization

Quantization: Open Questions

Performance Gap to Theoretical Bound
Remember: High-rate performance of optimal scalar quantizer for IID sources

DV

DL
(R) =

πe

6
≈ 1.42 (1.53 dB loss in SNR)

What causes this performance gap?
How can the quantizer performance be improved?

Quantization of Sources with Memory
Scalar quantizers cannot exploit dependencies between samples (use only marginal pdf)
How can we improve lossy coding for sources with memory?

Conditional entropy coding of quantization indexes ?

Combination of scalar quantization and prediction ?

... ?
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Vector Quantization / Generalization of Scalar Quantization

Scalar Quantizers in N-dimensional Signal Space

s
u1 u2 u3

s ′0 s ′1 s ′2 s ′3

−4 −2 0 2 4

−4

−2

0

2

4

Interpretation of Scalar Quantization in N-dimensional Signal Space
N-dimensional input vector s is mapped to N-dimensional reconstructed vector s′

All vectors s inside a quantization cell Ck are mapped to the same reconstruction vector s′k

Quantization cells Ck form hyper-rectangles in N-dimensional signal space
Reconstruction vectors s′k lie on orthogonal grid aligned with coordinate axes
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Vector Quantization / Generalization of Scalar Quantization

Vector Quantization: Relaxing Structural Constraints

scalar quantizer

(dimension N = 1)

−4 −2 0 2 4

−4

−2

0

2

4

−4 −2 0 2 4

−4

−2

0

2

4 vector quantizer

(dimension N = 2)

Vector Quantization
Joint quantization of vectors/blocks s of N > 1 successive input samples

Relax structural constraints that are implicitly imposed by scalar quantization
Quantization cells Ck can be arbitrarily shaped in N-dimensional space
Reconstruction vectors s′k can be arbitrarily placed in N-dimensional space

Allows a number of new options in designing quantizers
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Vector Quantization / Structure of Vector Quantizers

Structure of Vector Quantizers

Vector Quantizers of Quantizer Dimension N

Map N-d input vectors s to N-d output vectors s′k
Q : RN 7→ { s′0, s′1, s′2, · · · }

Partition N-d space into countable number of quantization cells Ck
Ck = { s ∈ RN : Q(s) = s′k }

All input vectors s that fall inside a quantization cell Ck
are mapped to the associated reconstruction vector s′k −4 −2 0 2 4

−4

−2

0

2

4

Vector Quantization and Entropy Coding
Quantization index k indicates quantization cell Ck and reconstruction vector s′k

Encoder mapping: α(s) = k, ∀s ∈ Ck
Decoder mapping: β(k) = s′k
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Vector Quantization / Structure of Vector Quantizers

Vector Quantization: Encoding and Decoding

Arbitrarily shaped quantization cells Ck are difficult to store and check
Concept of quantization cells is not required in practice

Encoding
Select the reconstruction vector s′k that minimizes
a distance measure d to the input vector s

Possible distance measures:
MSE distortion: d = ||s − s′k ||22
Lagrangan cost: d = ||s − s′k ||22 + λ `k

Decoding
Output reconstruction vector s′k indicated by transmitted
quantization index k (use array in decoder)

−4 −2 0 2 4

−4

−2

0

2

4
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Vector Quantization / Performance of Vector Quantizers

Performance of Vector Quantizers: Bit Rate

Let `k be the codeword length for quantization index k

Average bit rate R per sample

R =
1
N

E
{
`(Q(S) )

}
=

1
N

∑
∀k

pk `k

Probability pk of quantization cell Ck / quant. index k

pk =

∫
Ck

f (s) ds

Approximation for training set

pk =
n(k)∑
k n(k)

where n(k) is the number of vectors assigned to Ck / s′k

−4 −2 0 2 4

−4

−2

0

2

4
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Vector Quantization / Performance of Vector Quantizers

Performance of Vector Quantizers: Distortion

Average MSE distortion D per sample

D =
1
N

E
{ ∣∣∣∣S − Q(S)

∣∣∣∣2
2

}

=
1
N

∫
RN

∣∣∣∣ s − Q(s)
∣∣∣∣2

2 f (s) ds

=
1
N

∑
∀k

∫
Ck

∣∣∣∣ s − s′k
∣∣∣∣2

2 f (s) ds

D =
1
N

∑
∀k

∫
Ck

(
s − s′k

)T(s − s′k
)
f (s) ds

Approximation for training set {sn} of L vectors

D =
1
L

∑
∀n

∣∣∣∣sn − Q(sn)
∣∣∣∣2

2

−4 −2 0 2 4

−4

−2

0

2

4
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Vector Quantization / Performance of Vector Quantizers
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Optimal Vector Quantizers with Fixed-Length Coding

Optimal Vector Quantizer for Fixed-Length Coding

Goal: Minimize MSE Distortion for K Quantization Cells
Similar to Scalar Lloyd Quantizer
Neglect impact of entropy coding Consider fixed-length coding

Rate R and MSE distortion D are given by

R =
1
N

⌈
log2 K

⌉
(typically K = 2B , with B being the bits per codeword)

D =
1
N

∑
∀k

∫
Ck

∣∣∣∣s − s′k
∣∣∣∣2

2 f (s) ds =
1
N

∑
∀k

∫
Ck

(
s − s′k

)T(s − s′k
)
f (s) ds

Optimize Quantizer of size K

Derive necessary conditions for optimality (similar to Lloyd quantizer)
Construct iterative algorithm for designing quantizer
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Derive necessary conditions for optimality (similar to Lloyd quantizer)
Construct iterative algorithm for designing quantizer
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Optimal Vector Quantizers with Fixed-Length Coding / Optimality Conditions

Optimality Conditions for Fixed-Length Coding

Necessary Conditions for Optimality (MSE distortion)
1 Centroid condition (for reconstruction vectors s′k)

s′k = E{ S |S ∈ Ck } =
1
pk

∫
Ck

s f (s) ds

Centroid condition for training set

s′k =
1

n(k)

∑
∀s:α(s)=k

s with n(k) =
∑

∀s:α(s)=k

1

2 Nearest neighbour condition (for quantization cells Ck / encoder mapping α(.))

α(s) = arg min
∀k

∣∣∣∣s − s′k
∣∣∣∣2

2
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Optimal Vector Quantizers with Fixed-Length Coding / The Linde-Buzo-Gray Algorithm

The Linde-Buzo-Gray (LBG) Algorithm for a Training Set (MSE Distortion)

Given is: the dimension N and the size K of the quantizer
a sufficiently large realization {sn} of considered source

Iterative quantizer design
1 Choose an initial set of K reconstruction vectors {s′k}
2 Associate all vectors of the training set {sn} with one of the quantization cells Ck

q(sn) = arg min
∀k

∣∣∣∣sn − s′k
∣∣∣∣2

2 (nearest neighbor condition)

3 Update the reconstruction vectors {s′k} according to

s′k =
1

n(k)

∑
∀n: q(sn)=k

sn (centroid condition)

where n(k) is the number of sample vectors sn assigned to Ck
4 Repeat the previous two steps until convergence
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Optimal Vector Quantizers with Fixed-Length Coding / The Linde-Buzo-Gray Algorithm

Example: LBG Algorithm for Gaussian IID (σ2 = 1, N = 2, K = 16)

initialization

−4 −2 0 2 4

−4

−2

0

2

4

R = 2

D = 0.122

SNR = 9.12 dB

after iteration 5

−4 −2 0 2 4

−4

−2

0

2

4

R = 2

D = 0.117

SNR = 9.31 dB

after iteration 15

−4 −2 0 2 4

−4

−2

0

2

4

R = 2

D = 0.114

SNR = 9.43 dB

final result

−4 −2 0 2 4

−4

−2

0

2

4

R = 2

D = 0.107

SNR = 9.69 dB
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Optimal Vector Quantizers with Fixed-Length Coding / Examples: Comparison to Lloyd

Comparison to Scalar Quantization: Gaussian IID (σ2 = 1, R = 2)

Lloyd (N = 1)
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2

4

D = 0.117
SNR = 9.30 dB

LBG (N = 2)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.107
SNR = 9.69 dB

Improvement of 0.39 dB (distortion reduction by factor 0.91)
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Optimal Vector Quantizers with Fixed-Length Coding / Examples: Comparison to Lloyd

Comparison to Scalar Quantization: Gaussian IID (σ2 = 1, R = 4)

Lloyd (N = 1)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.00951
SNR = 20.22 dB

LBG (N = 2)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.00767
SNR = 21.15 dB

Improvement of 0.93 dB (distortion reduction by factor 0.81)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Vector Quantization 18 / 46



Optimal Vector Quantizers with Fixed-Length Coding / Examples: Comparison to Lloyd

Comparison to Scalar Quantization: Laplacian IID (σ2 = 1, R = 2)

Lloyd (N = 1)
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D = 0.176
SNR = 7.54 dB

LBG (N = 2)
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D = 0.129
SNR = 8.89 dB

Improvement of 1.35 dB (distortion reduction by factor 0.73)
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Optimal Vector Quantizers with Fixed-Length Coding / Examples: Comparison to Lloyd

Comparison to Scalar Quantization: Laplacian IID (σ2 = 1, R = 4)

Lloyd (N = 1)
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D = 0.0153
SNR = 18.14 dB

LBG (N = 2)
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D = 0.0098
SNR = 20.08 dB

Improvement of 1.94 dB (distortion reduction by factor 0.64)
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The Vector Quantizer Advantage

The Vector Quantizer Advantage

Gain over scalar quantization can be assigned to 3 effects:

Space filling advantage:
ZN lattice is not most efficient sphere packing in N dimensions (N > 1)

Independent from source distribution or statistical dependencies
Maximum gain for N →∞: 1.53 dB

Shape advantage:
Exploit shape of source pdf
Can also be exploited using entropy-constrained scalar quantization

Memory advantage:
Exploit statistical dependencies of the source
Can also be exploited using predictive coding, transform coding,
block entropy coding or conditional entropy coding
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The Vector Quantizer Advantage / Space-Filling Advantage

Space-Filling Advantage: LBG for Uniform IID Source

Lloyd (N = 1): SNR=23.97 dB

−4 −2 0 2 4

−4

−2

0

2

4

LBG (N = 2): SNR=24.14 dB

−4 −2 0 2 4

−4

−2

0

2

4

LBG algorithm approaches approximate hexagonal lattice

Improvement of 0.17 dB

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Vector Quantization 22 / 46



The Vector Quantizer Advantage / Space-Filling Advantage

Space-Filling Advantage: Sphere Packing in N-dimensional Signal Space

Space filling gain: Densest packing of “optimal” quantization cells in signal space
MSE distortion: Densest packing of spheres in N-dimensional space

2 dimensions: Hexagonal lattice (like honeycombs)
3 dimensions: Cuboidal lattice (stapling of cannon balls / oranges)
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The Vector Quantizer Advantage / Space-Filling Advantage

Space-Filling Advantage: Sphere Packing Density

Center density
Consider N-dimensional spheres with radius r = 1

Measure for packing density: Center density

δ =
average number of sphere centers

unit volume

Example: N = 1 (SQ with intervals of size 2r = 2)

δ =
1
2

Roger’s bound
Theoretical upper bound for center density (last term being approximate)

log2 δ ≤
N

2
log2

(
N

4eπ

)
+

1
2

log2

(
πN3

e2

)
+

21
4N + 10
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The Vector Quantizer Advantage / Space-Filling Advantage

Space-Filling Advantage: Densest Known Sphere Packings

Densest known packings for dimensions N ≤ 48 [ Conway, Sloane, 1998 ]

Vertical axis: log2 δ + N(24− N)/96
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The Vector Quantizer Advantage / Space-Filling Advantage

Space-Filling Advantage: Approximate SNR Gain

dimension densest packing (name) highest kissing number approximate gain [dB]

1 Z – Integer lattice 2 0
2 A2 – Hexagonal lattice 6 0.17
3 A3 ' D3 – Cuboidal lattice 12 0.29
4 D4 24 0.39
5 D5 40 0.47
6 E6 72 0.54
7 E7 126 0.60
8 E8 – Gosset lattice 240 0.66
9 Λ9 – Laminated lattice 240 0.70
10 P10c – Non-lattice arrangement 336 0.74
12 K12 – Coxeter-Todd lattice 756 0.81
16 BW16 ' Λ16 – Barnes-Wall lattice 4320 0.91
24 Λ24 – Leech lattice 196560 1.04
100 1.35
∞ 1.53
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The Vector Quantizer Advantage / Space-Filling Advantage

Summary on Space-Filling Advantage

Gain of unique to vector quantization: Packing of quantization cells in N-dimensional space
Increases with quantizer dimension N

Gain for N →∞: Difference between Shannon lower bound and ECSQ
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The Vector Quantizer Advantage / Shape Advantage

Shape Advantage: Gaussian IID (σ2 = 1, R = 4)

Lloyd (N = 1)

−4 −2 0 2 4

−4

−2

0

2

4

DN=2

DN=1
≈ 0.81

∆SNR ≈ 0.93 dB

LBG (N = 2)

−4 −2 0 2 4

−4

−2

0

2

4

Shape Advantage of Vector Quantizers
Coding gain (0.93 dB for example) is larger than space-filling gain (0.17 dB for N = 2)
Vector quantizer can better adapt to shape of pdf (even without entropy coding)
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The Vector Quantizer Advantage / Shape Advantage

Shape Advantage: Laplacian IID (σ2 = 1, R = 4)

Lloyd (N = 1)
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DN=1
≈ 0.64

∆SNR ≈ 1.94 dB

LBG (N = 2)
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Shape Advantage of Vector Quantizers
Coding gain (1.94 dB for example) is larger than space-filling gain (0.17 dB for N = 2)
Vector quantizer can better adapt to shape of pdf (even without entropy coding)
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The Vector Quantizer Advantage / Shape Advantage

Summary on Shape Advantage

Gain of VQ due to exploitation of shape of pdf (without entropy coding)
Overall gain for iid source: Space-filling gain + shape gain
Shape advantage can also be exploited by entropy-constrained scalar quantization
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The Vector Quantizer Advantage / Memory Advantage

Memory Advantage: Gauss-Markov (σ2 = 1, % = 0.9, R = 2)

Lloyd (N = 1)
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≈ 0.38

∆SNR ≈ 4.20 dB

LBG (N = 2)
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Memory Advantage of Vector Quantizers
Large coding gain (4.20 dB for example) for sources with memory
Vector quantizer can exploit dependencies between samples
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The Vector Quantizer Advantage / Memory Advantage

Memory Advantage: Gauss-Markov (σ2 = 1, % = 0.9, R = 4)

Lloyd (N = 1)
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Memory Advantage of Vector Quantizers
Large coding gain (4.55 dB for example) for sources with memory
Vector quantizer can exploit dependencies between samples
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The Vector Quantizer Advantage / Memory Advantage

Summary on Memory Advantage

Gain of VQ due to exploitation of dependencies between samples
Largest gain to be made for sources with strong statistical dependencies
Exploitation of memory advantage is one of the most relevant aspects in source coding
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Optimal Vector Quantizers with Variable-Length Coding

Optimal Vector Quantizer for Variable-Length Coding

Optimal Vector Quantizer with Consideration of Entropy Coding
Similar to Scalar Entropy-Constrained Lloyd Quantizer

Minimization of Lagrangian cost for given Lagrange multiplier λ

J = D + λ · R

=
1
N

∑
∀k

∫
Ck

∣∣∣∣s − s′k
∣∣∣∣2

2 f (s) ds +
λ

N

∑
∀k

`k

∫
Ck

f (s) ds

Lagrange multiplier λ > 0 determines operation point (trade-off between rate and distortion)

Optimize Quantizer for given Lagrange multiplier
Derive necessary conditions for optimality (similar to EC Lloyd quantizer)
Construct iterative algorithm for designing quantizer
Similar as for EC Lloyd: Use large number of intervals in initialization
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Optimal Vector Quantizers with Variable-Length Coding / Optimality Conditions

Optimality Conditions for Variable-Length Coding

Necessary Conditions for Optimality (MSE distortion)

1 Centroid condition (for reconstruction vectors s′k , same as for LBG)

s′k = E{ S |S ∈ Ck } =
1
pk

∫
Ck

s f (s) ds (training set: take average of assigned vectors)

2 Entropy condition (for codeword length `k , same as for EC Llloyd)

`k = − log2 pk = − log2

∫
Ck

f (s) ds (training set: count assigned vectors)

3 Modified nearest neighbour condition (for quantization cells Ck / encoder mapping α(.))

α(s) = arg min
∀k

∣∣∣∣s − s′k
∣∣∣∣2

2 + λ · `k
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Optimal Vector Quantizers with Variable-Length Coding / The Chou-Lookabaugh-Gray Algorithm

The Chou-Lookabough-Gray (CLG) Algorithm for a Training Set (MSE)

Given is: the Lagrange multiplier λ > 0
a sufficiently large realization {sn} of considered source

Iterative quantizer design
1 Choose an initial set of K reconstruction vectors {s′k} and codeword length {`k}
2 Associate all vectors of the training set {sn} with one of the quantization cells Ck

q(sn) = arg min
∀k

∣∣∣∣sn − s′k
∣∣∣∣2

2 + λ · `k (modified nearest neighbor condition)

3 Update the reconstruction vectors {s′k} and codeword length {`k} according to

s′k =
1

n(k)

∑
∀n: q(sn)=k

sn and `k = − log2

(
n(k)∑
∀i n(i)

)
where n(k) is the number of sample vectors sn assigned to Ck

4 Repeat the previous two steps until convergence
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Optimal Vector Quantizers with Variable-Length Coding / Examples

Entropy-Constrained Vector Quantizer: Gaussian IID (σ2 = 1, R = 2)

LBG (N = 2)
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D = 0.107
SNR = 9.69 dB

CLG (N = 2)
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SNR = 10.68 dB

EC Lloyd (N = 1)
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D = 0.089
SNR = 10.51 dB

Large gain (1.0 dB) relative to LBG algorithm (fixed-length coding)
Gain relative to EC Lloyd reduces to space-filling gain (0.17 dB for N = 2)

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Vector Quantization 37 / 46



Optimal Vector Quantizers with Variable-Length Coding / Examples

Entropy-Constrained Vector Quantizer: Gaussian IID (σ2 = 1, R = 3)

LBG (N = 2)
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SNR = 15.29 dB

CLG (N = 2)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.0214
SNR = 16.70 dB

EC Lloyd (N = 1)
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D = 0.0222
SNR = 16.53 dB

Large gain (1.4 dB) relative to LBG algorithm (fixed-length coding)
Gain relative to EC Lloyd reduces to space-filling gain (0.17 dB for N = 2)
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Optimal Vector Quantizers with Variable-Length Coding / Examples

Entropy-Constrained Vector Quantizer: Gauss-Markov (σ2 = 1, % = 0.9, R = 3)

LBG (N = 2)
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D = 0.0125
SNR = 19.04 dB

CLG (N = 2)
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SNR = 20.06 dB

EC Lloyd (N = 1)

−4 −2 0 2 4

−4

−2

0

2

4

D = 0.0222
SNR = 16.53 dB

Large gain (1.0 dB) relative to LBG algorithm (fixed-length coding)
Gain relative to EC Lloyd: Sum of memory gain and space-filling gain
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Coding Efficiency and Complexity / Summary of Observations

Coding Efficiency of Vector Quantizers

Vector Quantizer Advantages
Space-filling advantage

Unique to vector quantization: (0.17 dB for N = 2; 1.53 dB for N →∞)

Shape advantage
Can also be exploited by entropy-constrained scalar quantization

Memory advantage
Can also be (partly) exploited by other coding techniques (topic of next lectures)

Coding Efficiency of Vector Quantizers
Optimal vector quantizers provide coding efficiency gains relative to scalar quantizers

IID sources: Only space-filling gain (when comparing entropy-constrained designs)
Sources with memory: Most important aspect is the memory advantage

Vector quantizers can asymptotically achieve rate-distortion bound for N →∞
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Coding Efficiency and Complexity / Summary of Observations

Complexity of Vector Quantization

Decoding Complexity
In principle: Table look-up (using transmitted quantization indexes)
Extremely large memory requirements for large N

Encoding Complexity
Finding the “closest reconstruction vector” can become very complex
Designing a good vector quantizer is already very complex

Usage of Vector Quantization
Unconstrained vector quantizers are rarely used in practice

Reduce complexity by imposing structural constraints
Tree-structured vector quantizers

Gain-shape vector quantizers

Lattice vector quantizers (important special case: Transform coding)

Trellis-coded quantization
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Coding Efficiency and Complexity / Examples for Constrained Vector Quantizers

Lattice Vector Quantizers & Transform Coding

Lattice Vector Quantizer
Reconstruction vectors are located on multi-dimensional lattice

Lattice is specified by N “basis vectors” {bk}
Reconstruction vectors given by matrix of “basis vectors”

s′k1,k2,··· ,kN = M · [k1, k2, · · · , kN ]T

Simple decoder operation possible
Less complex encoding (can still by very complex for large N)

Transform Coding
Lattice vector quantizer with orthonormal “basis vectors”
Very simple encoding and decoding

One of the most often used approaches in lossy coding
Will discuss in detail in next lectures
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Coding Efficiency and Complexity / Examples for Constrained Vector Quantizers

Trellis-Coded Quantization (TCQ)

Quantizer Design & Decoding Process
Two scalar quantizers

+ Prodecure for switching between quantizers (state machine with 2N states)

−4 −3 −2 −1 0 1 2 3 4 s/∆

Q0

Q1

A B A B A

C D C D

state quantizer next state

0 Q0 (A,B) 7→ (0,1)
1 Q1 (C,D) 7→ (2,3)
2 Q0 (A,B) 7→ (1,0)
3 Q1 (C,D) 7→ (3,2)

Encoding Process
Trellis formulation of possible quantizer switching

Viterbi algorithm

state 0 →
state 1 →
state 2 →
state 3 →

· · ·
· · ·
· · ·
· · ·
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Coding Efficiency and Complexity / Examples for Constrained Vector Quantizers

Example: TCQ Performance for Gaussian IID

Gish & Pierce (1.53 dB) entropy-constrained scalar quantizer

entropy-constrained TCQ (4 states)

≈ 1 dB

entropy-constrained TCQ (8 states)

entropy-constrained TCQ (64 states)

0 0.5 1 1.5 2
0

0.5

1

1.5

bit rate [bps]

SNR loss relative to rate-distortion function [dB]

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Vector Quantization 44 / 46



Coding Efficiency and Complexity / Examples for Constrained Vector Quantizers

Example: TCQ Performance for Gaussian IID

Gish & Pierce (1.53 dB) entropy-constrained scalar quantizer

entropy-constrained TCQ (4 states)

≈ 1 dB

entropy-constrained TCQ (8 states)

entropy-constrained TCQ (64 states)

0 0.5 1 1.5 2
0

0.5

1

1.5

bit rate [bps]

SNR loss relative to rate-distortion function [dB]

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Vector Quantization 44 / 46



Coding Efficiency and Complexity / Examples for Constrained Vector Quantizers

Example: TCQ Performance for Gaussian IID

Gish & Pierce (1.53 dB) entropy-constrained scalar quantizer

entropy-constrained TCQ (4 states)

≈ 1 dB

entropy-constrained TCQ (8 states)

entropy-constrained TCQ (64 states)

0 0.5 1 1.5 2
0

0.5

1

1.5

bit rate [bps]

SNR loss relative to rate-distortion function [dB]

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Vector Quantization 44 / 46



Coding Efficiency and Complexity / Examples for Constrained Vector Quantizers

Example: TCQ Performance for Gaussian IID

Gish & Pierce (1.53 dB) entropy-constrained scalar quantizer

entropy-constrained TCQ (4 states)

≈ 1 dB

entropy-constrained TCQ (8 states)

entropy-constrained TCQ (64 states)

0 0.5 1 1.5 2
0

0.5

1

1.5

bit rate [bps]

SNR loss relative to rate-distortion function [dB]

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Vector Quantization 44 / 46



Coding Efficiency and Complexity / Examples for Constrained Vector Quantizers

Example: TCQ Performance for Gaussian IID

Gish & Pierce (1.53 dB) entropy-constrained scalar quantizer

entropy-constrained TCQ (4 states)

≈ 1 dB

entropy-constrained TCQ (8 states)

entropy-constrained TCQ (64 states)

0 0.5 1 1.5 2
0

0.5

1

1.5

bit rate [bps]

SNR loss relative to rate-distortion function [dB]

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Vector Quantization 44 / 46



Coding Efficiency and Complexity / Examples for Constrained Vector Quantizers

Example: TCQ Performance for Gaussian IID

Gish & Pierce (1.53 dB) entropy-constrained scalar quantizer

entropy-constrained TCQ (4 states)

≈ 1 dB

entropy-constrained TCQ (8 states)

entropy-constrained TCQ (64 states)

0 0.5 1 1.5 2
0

0.5

1

1.5

bit rate [bps]

SNR loss relative to rate-distortion function [dB]

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Vector Quantization 44 / 46



Summary

Summary of Lecture

Vector Quantization (VQ)
Straightforward extension of scalar quantization to higher dimensions N
Opt. VQ with fixed-length codes: Similar to Lloyd quantizer
Opt. VQ with variable-length codes: Similar to EC-Lloyd quantizer

Vector Quantizer Advantages
Space-filling advantage: Unique to vector quantizers (1.53 dB for N →∞)
Shape advantage: Can also be exploited by ECSQ
Memory advantage: Can also be exploited by other coding techniques

Vector Quantization can achieve Rate-Distortion Bound! – Are we done?

No! – Complexity of vector quanzization is a serious issue!
Require lossy coding techniques with high rate-distortion efficiency
and a complexity suitable for wide range of implementations
Particularly important: Exploitation of dependencies between samples!
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Exercises

Exercise 1: Space-Filling Gain for 2-dimensional Vector Quantizer

Calculate the gain (in signal-to-noise ratio) of optimal 2-dimensional vector quantization
relative to optimal scalar quantization for high rates on the example of a uniform pdf.

Hints:
In two dimensions, the optimal quantization cells are regular hexagons; the associated
reconstruction vectors are located in the centers of the hexagons.
For high rates, border effects can be neglected. It can be assumed that the signal space for which
the pdf is non-zero is completely filled with regular quantization cells.
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