Transform Coding

Last Lectures: Scalar and Vector Quantization

Scalar Quantization

- Simple encoding and decoding procedure
- Uniform reconstruction quantizers (URQ): Particularly simple and still very efficient
- Cannot exploit statistical dependencies (would require very complex entropy coding)

Vector Quantization

- High-dimensional vector quantizers can approach rate-distortion bound
- Space-filling gain can only be exploited by vector quantization (1.53 dB for $N \rightarrow \infty$)
- Rarely used in practice: High computational complexity and memory requirements

Lossy Coding of Sources with Memory

- Most important aspect: Exploit statistical dependencies (memory advantage)
- Need approach that is simpler than vector quantization, but still efficient

Transform Coding: Introduction

Transform Coding

- Simple concept for exploiting linear dependencies between samples
- Low complexity compared to vector quantization (can be interpreted as very simple VQ)
- Used in virtually all lossy audio, image and video codecs

Basic Concept

1 Arrange samples into blocks/vectors s of N adjacent samples
2 Analysis transform: Mapping to vectors of transform coefficients

$$
\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s}
$$

3 Scalar quantization of transform coefficients $\boldsymbol{u}=\left\{u_{k}\right\}$

$$
u_{k} \mapsto u_{k}^{\prime}
$$

4 Synthesis transform: Mapping to blocks/vectors of reconstructed samples

$$
s^{\prime}=B \cdot u^{\prime}
$$

Structure of Transform Coding Systems

Effect of transform coding:

- Remove/reduce dependencies before scalar quantization
- Simple alternative to vector quantization
- Simple and most relevant case: Linear transforms

Transform Encoder and Transform Decoder

Motivation of Transform Coding

Exploitation of Statistical Dependencies

- Typically, the signal energy is concentrated in a few transform coefficients
- Coding of a few non-zero coefficients and many zero-valued coefficients can be very efficient (e.g., using arithmetic coding, run-level coding, ...)
\Rightarrow Scalar quantization is more effective in transform domain

Efficient trade-off between Coding Efficiency and Complexity

- Vector Quantization: Searching through codebook for best matching vector
\Rightarrow Transform and scalar quantization: Substantial reduction in complexity

Suitable for Quantization using Perceptual Criteria

- Speech \& audio coding: Frequency bands might be used to simulate processing of human ear
- Image \& video coding: Quantization in transform domain leads to subjective improvement
\Rightarrow Removal of perceptually irrelevant signal components

Linear Block Transforms: Analysis Transform

Linear Block Transform

- Each component of the N-dimensional output vector \boldsymbol{u} represents a linear combination of the N components of the N-dimensional input vector s
\Rightarrow Can be represented as matrix multiplication

Linear Analysis Transform

- Block of samples \boldsymbol{s} is converted into vector of transform coefficients \boldsymbol{u}

$$
\boldsymbol{u}=\boldsymbol{A} \cdot \boldsymbol{s}
$$

- Extended notation

$$
\left[\begin{array}{c}
u_{0} \\
u_{1} \\
u_{2} \\
\vdots \\
u_{N-1}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{A}
\end{array}\right] \cdot\left[\begin{array}{c}
s_{0} \\
s_{1} \\
s_{2} \\
\vdots \\
s_{N-1}
\end{array}\right]
$$

Linear Block Transforms: Synthesis Transform

Linear Synthesis Transform

- Vector of reconstructed transform coefficients \boldsymbol{u}^{\prime} is converted into block of reconstructed samples \boldsymbol{s}^{\prime}

$$
\boldsymbol{s}^{\prime}=\boldsymbol{B} \cdot u^{\prime}
$$

- Extended notation

$$
\left[\begin{array}{c}
s_{0}^{\prime} \\
s_{1}^{\prime} \\
s_{2}^{\prime} \\
\vdots \\
s_{N-1}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
\boldsymbol{B} \\
\end{array}\right] \cdot\left[\begin{array}{c}
u_{0}^{\prime} \\
u_{1}^{\prime} \\
u_{2}^{\prime} \\
\vdots \\
u_{N-1}^{\prime}
\end{array}\right]
$$

\Rightarrow Interpretation: Vector of reconstructed samples \boldsymbol{s}^{\prime} is represented as a linear combination of column vectors $\left\{\boldsymbol{b}_{k}\right\}$ of the synthesis matrix \boldsymbol{B}

$$
\boldsymbol{s}^{\prime}=u_{0}^{\prime} \cdot \boldsymbol{b}_{0}+u_{1}^{\prime} \cdot \boldsymbol{b}_{1}+u_{2}^{\prime} \cdot \boldsymbol{b}_{1}+\ldots+u_{N-1}^{\prime} \cdot \boldsymbol{b}_{N-1}
$$

Interpretation of Synthesis Transform

Synthesis Transform

- Reconstructed block of samples \boldsymbol{s}^{\prime}

$$
\underbrace{\left[\begin{array}{c}
s_{0}^{\prime} \\
s_{1}^{\prime} \\
s_{2}^{\prime} \\
\vdots \\
s_{N-1}^{\prime}
\end{array}\right]}_{\boldsymbol{s}^{\prime}}=u_{0}^{\prime} \cdot \underbrace{\left[\begin{array}{c}
b_{00} \\
b_{01} \\
b_{02} \\
\vdots \\
b_{0, N-1}
\end{array}\right]}_{\boldsymbol{b}_{0}}+u_{1}^{\prime} \cdot \underbrace{\left[\begin{array}{c}
b_{10} \\
b_{11} \\
b_{12} \\
\vdots \\
b_{1, N-1}
\end{array}\right]}_{\boldsymbol{b}_{1}}+u_{2}^{\prime} \cdot \underbrace{\left[\begin{array}{c}
b_{20} \\
b_{21} \\
b_{22} \\
\vdots \\
b_{2, N-1}
\end{array}\right]}_{\boldsymbol{b}_{2}}+\cdots
$$

\Rightarrow Reconstructed transform coefficients $\left\{u_{k}^{\prime}\right\}$ represent weighting factors for basis vectors $\left\{\boldsymbol{b}_{k}\right\}$ (i.e., columns) of synthesis transform matrix \boldsymbol{B}

Analysis Transform for most relevant case $\boldsymbol{A}=\boldsymbol{B}^{-1}$
\rightarrow Decomposition of sample vector \boldsymbol{s} into basis vectors $\left\{\boldsymbol{b}_{k}\right\}$
\Rightarrow Transform coefficients u_{k} represent the corresponding weighting factors

Example for Possible Basis Vectors (of size 4)

$$
\boldsymbol{b}_{0}=\frac{1}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \quad \boldsymbol{b}_{1}=\frac{1}{4}\left[\begin{array}{r}
1 \\
1 \\
-1 \\
-1
\end{array}\right], \quad \boldsymbol{b}_{2}=\frac{1}{4}\left[\begin{array}{r}
1 \\
-1 \\
-1 \\
1
\end{array}\right], \quad \boldsymbol{b}_{3}=\frac{1}{4}\left[\begin{array}{r}
1 \\
-1 \\
1 \\
-1
\end{array}\right]
$$

\rightarrow Synthesis matrix B

$$
\boldsymbol{B}=\left[\begin{array}{rrrr}
\mid & \mid & \mid & \mid \\
\boldsymbol{b}_{0} & \boldsymbol{b}_{1} & \boldsymbol{b}_{2} & \boldsymbol{b}_{3} \\
\mid & \mid & \mid & \mid
\end{array}\right]=\frac{1}{4}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]
$$

\Rightarrow Associated analysis matrix \boldsymbol{A} (typical choice)

$$
\boldsymbol{A}=\boldsymbol{B}^{-1}=\frac{1}{4}\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right]
$$

Example: Typical Basis Functions for 8×8 Image Blocks

Perfect Reconstruction Property

Without Quantization

- Transform coefficients are lossless coded: $\boldsymbol{u}^{\prime}=\boldsymbol{u}$
\Rightarrow Optimal synthesis transform:

$$
\boldsymbol{B}=\boldsymbol{A}^{-1}
$$

\rightarrow Reconstructed samples are equal to source samples

$$
\boldsymbol{s}^{\prime}=\boldsymbol{B} \boldsymbol{u}=\boldsymbol{B} \boldsymbol{A} \boldsymbol{s}=\boldsymbol{A}^{-1} \boldsymbol{A} \boldsymbol{s}=\boldsymbol{s}
$$

Optimal Synthesis Transform (in presence of quantization)

- Optimality: Minimum MSE distortion among all synthesis transforms for given analysis transform \boldsymbol{A}
- $\boldsymbol{B}=\boldsymbol{A}^{-1}$ is optimal if
- \boldsymbol{A} is invertible and produces independent transform coefficients
- all component quantizers are centroid quantizers
- If above conditions are not fulfilled, a synthesis transform $\boldsymbol{B} \neq \boldsymbol{A}^{-1}$ may reduce the distortion
\Rightarrow In Practice: Use linear transforms with $\boldsymbol{B}=\boldsymbol{A}^{-1}$

Unitary Transforms

Unitary Matrix

■ Inverse matrix is equal to its conjugate transpose

$$
\boldsymbol{A}^{-1}=\boldsymbol{A}^{\dagger}=\left(\boldsymbol{A}^{*}\right)^{\mathrm{T}}
$$

\Rightarrow Unitary transforms preserve length of vectors: $\|\boldsymbol{A} \cdot \boldsymbol{s}\|_{2}=\|\boldsymbol{s}\|_{2}$

$$
\begin{aligned}
\|\boldsymbol{u}\|_{2}^{2} & =\sum_{k}\left|u_{k}\right|^{2}=\sum_{k} u_{k}^{*} \cdot u_{k}=\left(\boldsymbol{u}^{*}\right)^{\mathrm{T}} \boldsymbol{u} \\
& =\boldsymbol{u}^{\dagger} \cdot \boldsymbol{u}=(\boldsymbol{A} \boldsymbol{s})^{\dagger} \cdot(\boldsymbol{A} \boldsymbol{s})=\boldsymbol{s}^{\dagger} \cdot \boldsymbol{A}^{\dagger} \cdot \boldsymbol{A} \cdot \boldsymbol{s} \\
& =\boldsymbol{s}^{\dagger} \cdot\left(\boldsymbol{A}^{-1} \cdot \boldsymbol{A}\right) \cdot \boldsymbol{s}=\boldsymbol{s}^{\dagger} \cdot \boldsymbol{s} \\
& =\sum_{k} s_{k}^{*} \cdot s_{k}=\sum_{k}\left|s_{k}\right|^{2} \\
& =\|\boldsymbol{s}\|_{2}^{2}
\end{aligned}
$$

Orthogonal Transforms

Orthogonal Matrix

- Special case of unitary matrix: All matrix elements are real values
\Rightarrow Inverse matrix is equal to the transpose

$$
\boldsymbol{A}^{-1}=\boldsymbol{A}^{\mathrm{T}}
$$

Basis Vectors

- Columns of synthesis matrix \boldsymbol{B}
\Rightarrow Rows of analysis matrix $\boldsymbol{A}=\boldsymbol{B}^{\mathrm{T}}$

$$
\boldsymbol{A}=\left[\begin{array}{ccc}
\square & \boldsymbol{b}_{0} & - \\
- & \boldsymbol{b}_{1} & - \\
- & \boldsymbol{b}_{2} & - \\
\vdots & \\
- & \boldsymbol{b}_{N-1} & -
\end{array}\right] \quad \boldsymbol{B}=\left[\begin{array}{cccc}
| | & & \mid \\
\boldsymbol{b}_{0} & \boldsymbol{b}_{1} & \boldsymbol{b}_{2} & \cdots \\
\mid & \boldsymbol{b}_{N-1} \\
\mid & \mid & &
\end{array}\right]
$$

Orthonormal Basis

Property of Unitary Transforms

- Consider product of analysis and synthesis matrix: $\boldsymbol{A B}=\boldsymbol{B}^{-1} \boldsymbol{B}=\boldsymbol{B}^{\dagger} \boldsymbol{B}$
\Rightarrow Basis vectors \boldsymbol{b}_{k} are orthogonal to each other
\rightarrow Basis vectors \boldsymbol{b}_{k} have a length equal to 1
\rightarrow Basis vectors of unitary matrices form an orthonormal basis

Geometric Interpretation

- Rotation (and possible reflection) of coordinate system

Example of Orthogonal Transform for $N=2$

- Vector of two samples $\boldsymbol{s}=\left(s_{0}, s_{1}\right)^{\mathrm{T}}$
- Synthesis transform matrix

$$
\boldsymbol{B}=\left[\begin{array}{ll}
\boldsymbol{b}_{0} & \boldsymbol{b}_{1}
\end{array}\right]=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

- Representation of signal vector

$$
\begin{aligned}
\boldsymbol{s} & =u_{0} \cdot \boldsymbol{b}_{0}+u_{1} \cdot \boldsymbol{b}_{1} \\
{\left[\begin{array}{l}
4 \\
2
\end{array}\right] } & =u_{0} \cdot \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+u_{1} \cdot \frac{1}{\sqrt{2}}\left[\begin{array}{r}
1 \\
-1
\end{array}\right] \\
{\left[\begin{array}{l}
4 \\
2
\end{array}\right] } & =3 \cdot\left[\begin{array}{l}
1 \\
1
\end{array}\right]+1 \cdot\left[\begin{array}{r}
1 \\
-1
\end{array}\right]
\end{aligned}
$$

\Rightarrow Forward transform: Project signal vector onto basis vectors

$$
u_{0}=\boldsymbol{b}_{0}^{\mathrm{T}} \cdot \boldsymbol{s}=3 \sqrt{2} \quad \text { and } \quad u_{1}=\boldsymbol{b}_{1}^{\mathrm{T}} \cdot \boldsymbol{s}=\sqrt{2}
$$

Unitary Transforms: MSE Distortion

Conservation of MSE distortion

- Remember: Conservation of signal energy / vector length

$$
\|\boldsymbol{u}\|_{2}^{2}=\|\boldsymbol{A} \cdot \boldsymbol{s}\|_{2}^{2}=\|\boldsymbol{s}\|_{2}^{2}
$$

\rightarrow Consequence for MSE distortion

$$
\begin{aligned}
d_{N}\left(\boldsymbol{u}, \boldsymbol{u}^{\prime}\right) & =\frac{1}{N}\left\|\boldsymbol{u}-\boldsymbol{u}^{\prime}\right\|_{2}^{2} \\
& =\frac{1}{N}\left\|\boldsymbol{A} \boldsymbol{s}-\boldsymbol{B}^{-1} \boldsymbol{s}^{\prime}\right\|_{2}^{2}=\frac{1}{N}\left\|\boldsymbol{A}\left(\boldsymbol{s}-\boldsymbol{s}^{\prime}\right)\right\|_{2}^{2} \\
& =\frac{1}{N}\left\|\boldsymbol{s}-\boldsymbol{s}^{\prime}\right\|_{2}^{2}=d_{N}\left(\boldsymbol{s}, \boldsymbol{s}^{\prime}\right)
\end{aligned}
$$

Main Reason for using Unitary Transforms

\Rightarrow Minimization of MSE distortion $d_{N}\left(\boldsymbol{u}, \boldsymbol{u}^{\prime}\right)$ in transform domain also minimizes MSE distortion $d_{N}\left(\boldsymbol{s}, \boldsymbol{s}^{\prime}\right)$ in original signal space
\rightarrow Enables independent scalar quantization of transform coefficients

Unitary Transforms: Covariance Matrix

Covariance of Transform Coefficients

■ Covariance matrix of transform coefficients (general case: complex values)

$$
\begin{aligned}
\boldsymbol{C}_{u U} & =\mathrm{E}\left\{(\boldsymbol{U}-\mathrm{E}\{\boldsymbol{U}\})(\boldsymbol{U}-\mathrm{E}\{\boldsymbol{U}\})^{\dagger}\right\} \\
& =\mathrm{E}\left\{\boldsymbol{A}(\boldsymbol{S}-\mathrm{E}\{\boldsymbol{S}\})(\boldsymbol{S}-\mathrm{E}\{\boldsymbol{S}\})^{\dagger} \boldsymbol{A}^{\dagger}\right\} \\
& =\boldsymbol{A} \cdot \mathrm{E}\left\{(\boldsymbol{S}-\mathrm{E}\{\boldsymbol{S}\})(\boldsymbol{S}-\mathrm{E}\{\boldsymbol{S}\})^{\dagger}\right\} \cdot \boldsymbol{A}^{\dagger} \\
& =\boldsymbol{A} \cdot \boldsymbol{C}_{S S} \cdot \boldsymbol{A}^{\dagger} \\
& =\boldsymbol{A} \cdot \boldsymbol{C}_{S S} \cdot \boldsymbol{A}^{-1}
\end{aligned}
$$

\Rightarrow Transform matrix \boldsymbol{A} can be chosen in a way that (linear) statistical dependencies are reduced
\rightarrow Possible to increase efficiency of scalar quantization (if source contains linear statistical dependencies)

Unitary Transforms: Variances

Variances of Transform Coefficients

■ Sum of variances: Trace of autocovariance matrix

$$
\boldsymbol{C}_{U U}=\left[\begin{array}{ccccc}
\sigma_{0}^{2} & x & x & \cdots & x \\
x & \sigma_{1}^{2} & x & \cdots & x \\
x & x & \sigma_{2}^{2} & \cdots & x \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
x & x & x & \cdots & \sigma_{N-1}^{2}
\end{array}\right]=\boldsymbol{A} \cdot \boldsymbol{C}_{S S} \cdot \boldsymbol{A}^{-1}
$$

- Trace of a matrix is similarity-invariant

$$
\operatorname{tr}(\boldsymbol{X})=\operatorname{tr}\left(\boldsymbol{Q} \boldsymbol{X} \boldsymbol{Q}^{-1}\right)
$$

\rightarrow The arithmetic mean of the transform coefficient variances is equal to source variance

$$
\frac{1}{N} \sum_{k=0}^{N-1} \sigma_{k}^{2}=\sigma_{S}^{2}
$$

Effect of Orthogonal Transform for Correlated Sources

- 2d signal vectors of Gauss-Markov source with $\varrho=0.9$

$$
\begin{gathered}
\boldsymbol{A}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
-1 & 1
\end{array}\right] \\
\\
\text { rotation by } \\
\phi=-45^{\circ}
\end{gathered}
$$

\rightarrow Uneven distribution of transform coefficient variances: $\sigma_{0}^{2}>\sigma_{1}^{2}$
\rightarrow Most signal energy is concentrated in first transform coefficient

Orthogonal Block Transforms / Effect of Orthogonal Transforms

Gauss-Markov Examples for $N=2$

Example for Waveforms: Gauss-Markov with $\varrho=0.95$

$\binom{u_{0}[n]}{u_{1}[n]}=\frac{1}{\sqrt{2}}\left(\begin{array}{rr}1 & 1 \\ 1 & -1\end{array}\right)\binom{s[2 n]}{s[2 n+1]}$

Example for Images: 2×2 Block Transform (sorted Coefficients)

Example for Images: 4×4 Block Transform (sorted Coefficients)

Example for Images: 8×8 Block Transform (sorted Coefficients)

Transform Coding as Constrained Vector Quantizer

scalar quantization

| \cdot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |
| \cdot |

quantization cells
transform coding

quantization cells in transform domain

quantization cells in signal space

■ Quantization cells are: - hyper-rectangles as in conventional scalar quantization

- but rotated and aligned with the transform basis vectors
\rightarrow On average: Value of second quantization index is reduced (for correlated sources)
\rightarrow Indicates improved coding efficiency for correlated sources (exploits memory advantage)

Bit Allocation for Transform Coefficients

- Given: Orthogonal transform with \boldsymbol{A} and $\boldsymbol{B}=\boldsymbol{A}^{\mathrm{T}}$
- Operational distortion-rate function of scalar quantizers (general form)

$$
D_{k}\left(R_{k}\right)=\sigma_{k}^{2} \cdot g_{k}\left(R_{k}\right)
$$

- Overall MSE distortion D and bit rate R (transform size N)

$$
D=\frac{1}{N} \sum_{k=0}^{N-1} D_{k}\left(R_{k}\right) \quad \text { and } \quad R=\frac{1}{N} \sum_{k=0}^{N-1} R_{k}
$$

Bit allocation

- Overall rate-distortion performance $D(R)$ depends on bit distribution among transform coefficents $R \mapsto\left\{R_{0}, R_{1}, \cdots\right\}$
\rightarrow Optimal bit allocation: Solution of optimization problem

$$
\min D\left(R_{0}, R_{1}, \cdots\right) \quad \text { subject to } \quad \frac{1}{N} \sum_{k} R_{k}=R
$$

Bit Allocation for Transform Coefficients

- Constrained optimization problem

$$
\min _{R_{0}, R_{1}, \cdots} D(R)=\frac{1}{N} \sum_{k=0}^{N-1} D_{k}\left(R_{k}\right) \quad \text { subject to } \quad \frac{1}{N} \sum_{k=0}^{N-1} R_{k}=R
$$

with $D_{k}\left(R_{k}\right)$ being the operational distortion-rate functions the scalar component quantizers
\Rightarrow Reformulate as unconstrained minimization problem using the technique of Lagrange multipliers (minimize $D+\lambda R$)

$$
\min _{R_{0}, R_{1}, \ldots}\left(\frac{1}{N} \sum_{k=0}^{N-1} D_{k}\left(R_{k}\right)\right)+\lambda \cdot\left(\frac{1}{N} \sum_{k=0}^{N-1} R_{k}\right)
$$

\Rightarrow Set derivatives with respect to R_{k} equal to 0

$$
\frac{\partial}{\partial R_{k}}(D+\lambda R) \stackrel{!}{=} 0
$$

Optimal Bit Allocation: Pareto Condition

- Minimize Lagrangian cost function $D+\lambda R$

$$
\begin{array}{r}
\frac{\partial}{\partial R_{k}}\left(\frac{1}{N} \sum_{i=0}^{N-1} D_{i}\left(R_{i}\right)+\frac{\lambda}{N} \sum_{i=0}^{N-1} R_{i}\right) \stackrel{!}{=} 0 \\
\frac{1}{N} \cdot \frac{\partial}{\partial R_{k}} D_{k}\left(R_{k}\right)+\frac{\lambda}{N} \stackrel{!}{=} 0
\end{array}
$$

\Rightarrow Solution: Pareto condition

$$
\frac{\partial D_{k}\left(R_{k}\right)}{\partial R_{k}}=-\lambda=\text { const }
$$

\Rightarrow All component quantizers have to be operated at the same slope of their operational distortion-rate function
\rightarrow Interpretation: Move bits from coefficients with small distortion reduction per bit to coefficients with larger distortion reduction per bit

High-Rate Approximation: Bit Allocation

High Rates

- All component quantizers are operated at high component rates R_{k}
- High-rate approximation of distortion-rate function for component quantizers

$$
D_{k}\left(R_{k}\right)=\varepsilon_{k}^{2} \cdot \sigma_{k}^{2} \cdot 2^{-2 R_{k}}
$$

where ε_{k}^{2} depends on transform coefficient distribution and quantizer

Optimal Bit Allocation at High Rates

- Pareto condition

$$
\frac{\partial}{\partial R_{k}} D_{k}\left(R_{k}\right)=-2 \ln 2 \varepsilon_{k}^{2} \sigma_{k}^{2} 2^{-2 R_{k}}=-2 \ln 2 D_{k}\left(R_{k}\right)=-\lambda=\text { const }
$$

\Rightarrow All component quantizers are operated at the same distortion

$$
D_{k}\left(R_{k}\right)=D
$$

High-Rate Approximation: Bit Allocation

Optimal Bit Allocation

- All component quantizers are operated at the same distortion

$$
D_{k}\left(R_{k}\right)=\varepsilon_{k}^{2} \cdot \sigma_{k}^{2} \cdot 2^{-2 R_{k}}=D
$$

\Rightarrow Bit allocation rule

$$
R_{k}(D)=\frac{1}{2} \log _{2}\left(\frac{\varepsilon_{k}^{2} \sigma_{k}^{2}}{D}\right)
$$

Overall Operational Rate-Distortion Function

- Use result of optimal bit allocation

$$
R(D)=\frac{1}{N} \sum_{k=0}^{N-1} R_{k}(D)=\frac{1}{2 N} \sum_{k=0}^{N-1} \log _{2}\left(\frac{\varepsilon_{k}^{2} \sigma_{k}^{2}}{D}\right)
$$

High-Rate Approximation: Distortion-Rate Function

- Operational Rate-Distortion Function

$$
R(D)=\frac{1}{2 N} \sum_{k=0}^{N-1} \log _{2}\left(\frac{\varepsilon_{k}^{2} \sigma_{k}^{2}}{D}\right)=\frac{1}{2} \log _{2}\left(\frac{1}{D}\left(\prod_{k=0}^{N-1} \varepsilon_{k}^{2}\right)^{\frac{1}{N}}\left(\prod_{k=0}^{N-1} \sigma_{k}^{2}\right)^{\frac{1}{N}}\right)
$$

- Define geometric means

$$
\tilde{\sigma}^{2}=\left(\prod_{k=0}^{N-1} \sigma_{k}^{2}\right)^{\frac{1}{N}} \quad \text { and } \quad \tilde{\varepsilon}^{2}=\left(\prod_{k=0}^{N-1} \varepsilon_{k}^{2}\right)^{\frac{1}{N}}
$$

\Rightarrow High-rate rate-distortion / distortion-rate function (for optimal bit allocation)

$$
R(D)=\frac{1}{2} \log _{2}\left(\frac{\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2}}{D}\right) \quad \text { and } \quad D(R)=\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2} \cdot 2^{-2 R}
$$

High-Rate Approximation for Gaussian Sources

Transform Coding for Gaussian Sources

- Any linear combination of Gaussian random variables is also a Gaussian random variable
\rightarrow All transform coefficients represent Gaussian random variables

Transform Coding for Gaussian Sources using Optimal Scalar Quantizers

- High-rate distortion-rate function of entropy-constrained scalar quantizers

$$
D_{k}\left(R_{k}\right)=\frac{\pi e}{6} \cdot \sigma_{k}^{2} \cdot 2^{-2 R_{k}}
$$

\Rightarrow Overall high-rate distortion-rate function for Gaussian sources

$$
D_{G}(R)=\frac{\pi e}{6} \cdot \tilde{\sigma}^{2} \cdot 2^{-2 R}
$$

\Rightarrow Improvement relative to scalar quantization for uneven distribution of transform coefficient variances

Transform Coding Gain at High Rates

Transform Coding Gain

- Ratio of distortion for scalar quantization and transform coding
- Transform coding gain at high rates

$$
G_{T}=\frac{D_{S Q}(R)}{D_{T Q}(R)}=\frac{\varepsilon_{S}^{2} \cdot \sigma_{S}^{2} \cdot 2^{-2 R}}{\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2} \cdot 2^{-2 R}}=\frac{\varepsilon_{S}^{2} \cdot \sigma_{S}^{2}}{\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2}}
$$

Transform Coding Gain for Gaussian Sources

- High-rate transform coding gain for Gaussian sources

$$
G_{T}=\frac{\sigma_{S}^{2}}{\tilde{\sigma}^{2}}=\frac{\frac{1}{N} \sum_{k=0}^{N-1} \sigma_{k}^{2}}{\sqrt[N]{\prod_{k=0}^{N-1} \sigma_{k}^{2}}}
$$

\Rightarrow Ratio of arithmetic and geometric mean of the transform coefficient variances
\Rightarrow Transform coding gain is maximized if the geometric mean $\tilde{\sigma}^{2}$ of variances is minimized

Example: Transform Coding with $N=2$ for Zero-Mean Gaussian

- Input vector and transform matrix

$$
\boldsymbol{s}=\left[\begin{array}{l}
s_{0} \\
s_{1}
\end{array}\right] \quad \text { and } \quad \boldsymbol{A}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

\Rightarrow Transformation

$$
\boldsymbol{u}=\left[\begin{array}{l}
u_{0} \\
u_{1}
\end{array}\right]=\boldsymbol{A} \cdot \boldsymbol{s}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
s_{0} \\
s_{1}
\end{array}\right]
$$

\rightarrow Transform coefficients

$$
u_{0}=\frac{1}{\sqrt{2}}\left(s_{0}+s_{1}\right) \quad \text { and } \quad u_{0}=\frac{1}{\sqrt{2}}\left(s_{0}-s_{1}\right)
$$

- Inverse transformation

$$
\boldsymbol{B}=\boldsymbol{A}^{-1}=\boldsymbol{A}^{\mathrm{T}}=\boldsymbol{A}=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right]
$$

Example: Transform Coding with $N=2$ for Zero-Mean Gaussian

- Transform coefficients

$$
u_{0}=\frac{1}{\sqrt{2}}\left(s_{0}+s_{1}\right) \quad \text { and } \quad u_{0}=\frac{1}{\sqrt{2}}\left(s_{0}-s_{1}\right)
$$

- Variance of transform coefficients

$$
\begin{aligned}
\sigma_{0}^{2} & =\mathrm{E}\left\{U_{0}^{2}\right\}=\frac{1}{2} \mathrm{E}\left\{\left(S_{0}+S_{1}\right)^{2}\right\}=\frac{1}{2}\left(\mathrm{E}\left\{S_{0}^{2}\right\}+\mathrm{E}\left\{S_{1}^{2}\right\}+2 \mathrm{E}\left\{S_{0} S_{1}\right\}\right) \\
& =\frac{1}{2}\left(\sigma_{S}^{2}+\sigma_{S}^{2}+2 \sigma_{S}^{2} \varrho\right)=\sigma_{S}^{2}(1+\varrho) \\
\sigma_{1}^{2} & =\mathrm{E}\left\{U_{1}^{2}\right\}=\sigma_{S}^{2}(1-\varrho)
\end{aligned}
$$

- Cross-correlation of transform coefficients

$$
E\left\{U_{0} U_{1}\right\}=\frac{1}{2} \mathrm{E}\left\{\left(S_{0}+S_{1}\right)\left(S_{0}-S_{1}\right)\right\}=\frac{1}{2} \mathrm{E}\left\{S_{0}^{2}-S_{1}^{2}\right\}=\sigma_{S}^{2}-\sigma_{S}^{2}=0
$$

Example: Transform Coding with $N=2$ for Zero-Mean Gaussian

- High rate distortion-rate functions of component quantizers

$$
\begin{aligned}
& D_{0}\left(R_{0}\right)=\varepsilon^{2} \sigma_{0}^{2} 2^{-2 R_{0}}=\varepsilon^{2} \sigma_{S}^{2}(1+\varrho) 2^{-2 R_{0}} \\
& D_{1}\left(R_{1}\right)=\varepsilon^{2} \sigma_{1}^{2} 2^{-2 R_{1}}=\varepsilon^{2} \sigma_{S}^{2}(1-\varrho) 2^{-2 R_{1}}
\end{aligned}
$$

- Optimal bit allocation: Pareto condition at high rates $D_{0}\left(R_{0}\right)=D_{1}\left(R_{1}\right)$

$$
\begin{aligned}
\varepsilon^{2} \sigma_{S}^{2}(1+\varrho) 2^{-2 R_{0}} & =\varepsilon^{2} \sigma_{S}^{2}(1-\varrho) 2^{-2 R_{1}} \\
\log _{2}(1+\varrho)-2 R_{0} & =\log _{2}(1-\varrho)-2 R_{1}
\end{aligned}
$$

\Rightarrow Using $R=\frac{1}{2}\left(R_{0}+R_{1}\right) \rightarrow R_{1}=2 R-R_{0}$

$$
\begin{aligned}
\log _{2}(1+\varrho)-2 R_{0} & =\log _{2}(1-\varrho)-4 R+2 R_{0} \\
4 R_{0} & =4 R+\log _{2}(1+\varrho)-\log _{2}(1-\varrho) \\
R_{0} & =R+\frac{1}{4} \log _{2}\left(\frac{1+\varrho}{1-\varrho}\right)
\end{aligned}
$$

Example: Transform Coding with $N=2$ for Zero-Mean Gaussian

- Optimal bit allocation

$$
R_{0}=R+\frac{1}{4} \log _{2}\left(\frac{1+\varrho}{1-\varrho}\right) \quad \text { and } \quad R_{1}=R-\frac{1}{4} \log _{2}\left(\frac{1+\varrho}{1-\varrho}\right)
$$

- Resulting component distortions

$$
\begin{aligned}
D_{0}(R) & =\varepsilon^{2} \sigma_{s}^{2}(1+\varrho) 2^{-2 R-\frac{1}{2} \log _{2}\left(\frac{1+\varrho}{1-\varrho}\right)} \\
& =\varepsilon^{2} \sigma_{s}^{2}(1+\varrho) 2^{-2 R} \sqrt{\frac{1-\varrho}{1+\varrho}}=\varepsilon^{2} \sigma_{s}^{2} \sqrt{1-\varrho^{2}} 2^{-2 R} \\
D_{1}(R) & =\varepsilon^{2} \sigma_{s}^{2}(1-\varrho) 2^{-2 R+\frac{1}{2} \log _{2}\left(\frac{1+\varrho}{1-\varrho}\right)} \\
& =\varepsilon^{2} \sigma_{s}^{2}(1-\varrho) 2^{-2 R} \sqrt{\frac{1+\varrho}{1-\varrho}}=\varepsilon^{2} \sigma_{s}^{2} \sqrt{1-\varrho^{2}} 2^{-2 R}
\end{aligned}
$$

Example: Transform Coding with $N=2$ for Zero-Mean Gaussian

- Component distortions

$$
D_{0}(R)=D_{1}(R)=\varepsilon^{2} \sigma_{s}^{2} \sqrt{1-\varrho^{2}} 2^{-2 R}
$$

- Distortion rate function

$$
D(R)=\frac{1}{2}\left(D_{0}(R)+D_{1}(R)\right)=\varepsilon^{2} \sigma_{s}^{2} \sqrt{1-\varrho^{2}} 2^{-2 R}
$$

- Geometric mean of variances

$$
\tilde{\sigma}^{2}=\sqrt{\sigma_{0}^{2} \cdot \sigma_{1}^{2}}=\sigma_{S}^{2} \cdot \sqrt{(1+\varrho)(1-\varrho)}=\sigma_{S}^{2} \cdot \sqrt{1-\varrho^{2}}
$$

\Rightarrow Yields same expression for distortion rate function

$$
D(R)=\varepsilon^{2} \tilde{\sigma}^{2} 2^{-2 R}=\varepsilon^{2} \sigma_{S}^{2} \sqrt{1-\varrho^{2}} 2^{-2 R}
$$

Example: Transform Coding with $N=2$ for Zero-Mean Gaussian

- Transform coding gain for $N=2$

$$
G_{T}=\frac{\varepsilon^{2} \sigma_{S}^{2} 2^{-2 R}}{\varepsilon^{2} \sigma_{S}^{2} \sqrt{1-\varrho^{2}} 2^{-2 R}}=\frac{1}{\sqrt{1-\varrho^{2}}}
$$

Summary of Lecture

Transform Coding

- Linear unitary/orthogonal transform of block/vector of N consecutive samples
- Scalar quantization of resulting transform coefficients
- Inverse linear transform of reconstructed transform coefficients

Orthogonal Block Transforms

■ Inverse transform matrix $=$ Transpose of forward transform matrix
\Rightarrow Coordinate axes remain orthogonal to each other (independent quantization)
\rightarrow MSE distortion: Same in transform domain and signal space

Bit Allocation

- Optimal bit allocation: Pareto condition (same slope for all $D_{k}\left(R_{K}\right)$)
- For high rates: Optimum bit allocation yields equal component distortions $D_{k}=D$

Summary of Lecture

High-Rate Approximations

- Distortion-rate function of transform coding

$$
D(R)=\tilde{\varepsilon}^{2} \cdot \tilde{\sigma}^{2} \cdot 2^{-2 R}
$$

- Transform coding gain for Gaussian sources

$$
G_{T}=\frac{\bar{\sigma}^{2}}{\tilde{\sigma}^{2}}=\frac{\text { arithmetic mean of variances }}{\text { geometric mean of variances }}
$$

\Rightarrow Goal of transform: Compaction of signal energy in few transform coefficients

Open Questions

- What is the optimal transform for a given sources?
- Practical aspects of transform coding

Exercise 1: Orthogonal Transforms of Size $N=2$ (part I)

If we neglect possible reflections of coordinate axes, all orthogonal transforms for 2-d vectors can be specified by

$$
\boldsymbol{A}=\left[\begin{array}{rr}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right]
$$

where α is an arbitrary rotation angle.

Consider a zero-mean Gaussian process with variance σ_{S}^{2} and the first-order correlation coefficient ϱ.
(a) Calculate the variances σ_{0}^{2} and σ_{1}^{2} of the resulting transform coefficients as function of ϱ and α.
(b) Calculate the covariance σ_{01}^{2} between the resulting transform coefficients as function of ϱ and α.
(c) Consider an even rate distribution $R_{0}=R_{1}=R$ and determine the associated high-rate distortion-rate function. Does transform coding improve the coding efficiency relative to scalar quantization for this case?

Exercise 1: Orthogonal Transforms of Size $N=2$ (part II)

(d) Given is the overall rate $R=\left(R_{0}+R_{1}\right) / 2$. Determine the rate distribution $\left(R_{0}, R_{1}\right)$ for which the overall distortion $D=\left(D_{0}+D_{1}\right) / 2$ is minimized (assume that the high rate approximation for scalar quantization of the transform coefficients is valid).
(e) Determine the overall distortion-rate function for optimal rate allocation (and high rates).
(f) Determine the high-rate transform coding gain, which is given by

$$
G_{T}=\frac{D_{\text {scalar quantization }}(R)}{D_{\text {transform coding }}(R)}
$$

(g) For what rotation angles is the high-rate transform coding gain maximized (or the distortion minimized)?

Does the optimal rotation angle depend on the correlation coefficient ϱ ?

Exercise 2: Implement a PSNR Tool for PPM Images

Implement a tool for measuring PSNRs between two PPM images

- Input to the tool shall be two images in PPM format (original and reconstructed)
- The tool should output the following four Peak-Signal-to-Noise Ratios (PSNR measures)
\rightarrow PSNR of red component, PSNR of green component, PSNR of blue component
\Rightarrow Average of the red, green, and blue PSNR

Test the tool by
■ Coding one of our test images with JPEG (e.g., using "convert test.ppm test.jpg")
■ Reconstructing the JPEG-coded image into the ppm format (e.g., using "convert test.jpg rec.ppm")
■ Measuring the PSNRs between the original and reconstructed image using the implemented tool

The PSNR for a color component $c[x, y]$ and its reconstruction $c^{\prime}[x, y]$ is defined as follows

$$
\text { PSNR }=10 \cdot \log _{10}\left(\frac{255^{2}}{\text { MSE }}\right) \quad \text { with } \quad \text { MSE }=\frac{1}{\text { width } \cdot \text { height }} \sum_{x, y}\left(c^{\prime}[x, y]-c[x, y]\right)^{2}
$$

