Transform Coding

Last Lectures: Scalar and Vector Quantization

Scalar Quantization

- Simple encoding and decoding procedure
- Uniform reconstruction quantizers (URQ): Particularly simple and still very efficient
- Cannot exploit statistical dependencies (would require very complex entropy coding)

Vector Quantization

- High-dimensional vector quantizers can approach rate-distortion bound
- Space-filling gain can only be exploited by vector quantization (1.53 dB for $N \to \infty$)
- Rarely used in practice: High computational complexity and memory requirements

Lossy Coding of Sources with Memory

- Most important aspect: Exploit statistical dependencies (memory advantage)
- Need approach that is simpler than vector quantization, but still efficient

Transform Coding: Introduction

Transform Coding

- Simple concept for exploiting linear dependencies between samples
- Low complexity compared to vector quantization (can be interpreted as very simple VQ)
- Used in virtually all lossy audio, image and video codecs

Basic Concept

- 1 Arrange samples into blocks/vectors \mathbf{s} of N adjacent samples
- 2 Analysis transform: Mapping to vectors of transform coefficients

$$u = A \cdot s$$

3 Scalar quantization of transform coefficients $u = \{u_k\}$

$$u_k \mapsto u'_k$$

4 Synthesis transform: Mapping to blocks/vectors of reconstructed samples

$$s' = B \cdot u'$$

Structure of Transform Coding Systems

Effect of transform coding:

- Remove/reduce dependencies before scalar quantization
- Simple alternative to vector quantization
- Simple and most relevant case: Linear transforms

Transform Encoder and Transform Decoder

Motivation of Transform Coding

Exploitation of Statistical Dependencies

- Typically, the signal energy is concentrated in a few transform coefficients
- Coding of a few non-zero coefficients and many zero-valued coefficients can be very efficient (e.g., using arithmetic coding, run-level coding, ...)
- → Scalar quantization is more effective in transform domain

Efficient trade-off between Coding Efficiency and Complexity

- Vector Quantization: Searching through codebook for best matching vector
- → Transform and scalar quantization: Substantial reduction in complexity

Suitable for Quantization using Perceptual Criteria

- Speech & audio coding: Frequency bands might be used to simulate processing of human ear
- Image & video coding: Quantization in transform domain leads to subjective improvement
- → Removal of perceptually irrelevant signal components

Linear Block Transforms: Analysis Transform

Linear Block Transform

- Each component of the N-dimensional output vector u represents
 a linear combination of the N components of the N-dimensional input vector s
- → Can be represented as matrix multiplication

Linear Analysis Transform

lacktriangleright Block of samples $oldsymbol{s}$ is converted into vector of transform coefficients $oldsymbol{u}$

$$u = A \cdot s$$

Extended notation

$$\left[egin{array}{c} u_0 \ u_1 \ u_2 \ dots \ u_{N-1} \end{array}
ight] = \left[egin{array}{c} oldsymbol{A} \ \end{array}
ight] \cdot \left[egin{array}{c} s_0 \ s_1 \ s_2 \ dots \ s_{N-1} \end{array}
ight]$$

Linear Block Transforms: Synthesis Transform

Linear Synthesis Transform

lacktriangleright Vector of reconstructed transform coefficients $oldsymbol{u'}$ is converted into block of reconstructed samples $oldsymbol{s'}$

$$s' = B \cdot u'$$

Extended notation

$$\begin{bmatrix} s_0' \\ s_1' \\ s_2' \\ \vdots \\ s_{N-1}' \end{bmatrix} = \begin{bmatrix} \mathbf{B} \\ \mathbf{B} \end{bmatrix} \cdot \begin{bmatrix} u_0' \\ u_1' \\ u_2' \\ \vdots \\ u_{N-1}' \end{bmatrix}$$

→ Interpretation: Vector of reconstructed samples s' is represented as a linear combination of column vectors $\{b_k\}$ of the synthesis matrix B

$$s' = u'_0 \cdot b_0 + u'_1 \cdot b_1 + u'_2 \cdot b_1 + \ldots + u'_{N-1} \cdot b_{N-1}$$

Interpretation of Synthesis Transform

Synthesis Transform

Reconstructed block of samples s'

$$\underbrace{\begin{bmatrix} s'_0 \\ s'_1 \\ s'_2 \\ \vdots \\ s'_{N-1} \end{bmatrix}}_{\mathbf{s'}} = u'_0 \cdot \underbrace{\begin{bmatrix} b_{00} \\ b_{01} \\ b_{02} \\ \vdots \\ b_{0,N-1} \end{bmatrix}}_{\mathbf{b}_0} + u'_1 \cdot \underbrace{\begin{bmatrix} b_{10} \\ b_{11} \\ b_{12} \\ \vdots \\ b_{1,N-1} \end{bmatrix}}_{\mathbf{b}_1} + u'_2 \cdot \underbrace{\begin{bmatrix} b_{20} \\ b_{21} \\ b_{22} \\ \vdots \\ b_{2,N-1} \end{bmatrix}}_{\mathbf{b}_2} + \cdots$$

Reconstructed transform coefficients $\{u'_k\}$ represent weighting factors for basis vectors $\{\boldsymbol{b}_k\}$ (i.e., columns) of synthesis transform matrix \boldsymbol{B}

Analysis Transform for most relevant case $A = B^{-1}$

- \rightarrow Decomposition of sample vector \mathbf{s} into basis vectors $\{\mathbf{b}_k\}$
- \rightarrow Transform coefficients u_k represent the corresponding weighting factors

Example for Possible Basis Vectors (of size 4)

$$m{b}_0 = rac{1}{4} egin{bmatrix} 1 \ 1 \ 1 \ 1 \end{bmatrix}, \qquad m{b}_1 = rac{1}{4} egin{bmatrix} 1 \ 1 \ -1 \ -1 \end{bmatrix}, \qquad m{b}_2 = rac{1}{4} egin{bmatrix} 1 \ -1 \ 1 \ 1 \end{bmatrix}, \qquad m{b}_3 = rac{1}{4} egin{bmatrix} 1 \ -1 \ 1 \ -1 \end{bmatrix}$$

→ Synthesis matrix **B**

→ Associated analysis matrix **A** (typical choice)

Example: Typical Basis Functions for 8×8 **Image Blocks**

Perfect Reconstruction Property

Without Quantization

- Transform coefficients are lossless coded: u' = u
- \rightarrow Optimal synthesis transform: $B = A^{-1}$
- → Reconstructed samples are equal to source samples

$$s' = B u = B A s = A^{-1} A s = s$$

Optimal Synthesis Transform (in presence of quantization)

- Optimality: Minimum MSE distortion among all synthesis transforms for given analysis transform A
- lacksquare $B = A^{-1}$ is optimal if
 - A is invertible and produces independent transform coefficients
 - all component quantizers are centroid quantizers
- lacksquare If above conditions are not fulfilled, a synthesis transform $m{B}
 eq m{A}^{-1}$ may reduce the distortion
- \rightarrow In Practice: Use linear transforms with $B = A^{-1}$

Unitary Transforms

Unitary Matrix

Inverse matrix is equal to its conjugate transpose

$$oldsymbol{\mathcal{A}}^{-1} = oldsymbol{\mathcal{A}}^\dagger = \left(oldsymbol{\mathcal{A}}^*
ight)^{\mathrm{T}}$$

→ Unitary transforms preserve length of vectors: $\|\mathbf{A} \cdot \mathbf{s}\|_2 = \|\mathbf{s}\|_2$

$$\|\boldsymbol{u}\|_{2}^{2} = \sum_{k} |u_{k}|^{2} = \sum_{k} u_{k}^{*} \cdot u_{k} = (\boldsymbol{u}^{*})^{T} \boldsymbol{u}$$

$$= \boldsymbol{u}^{\dagger} \cdot \boldsymbol{u} = (\boldsymbol{A}\boldsymbol{s})^{\dagger} \cdot (\boldsymbol{A}\boldsymbol{s}) = \boldsymbol{s}^{\dagger} \cdot \boldsymbol{A}^{\dagger} \cdot \boldsymbol{A} \cdot \boldsymbol{s}$$

$$= \boldsymbol{s}^{\dagger} \cdot (\boldsymbol{A}^{-1} \cdot \boldsymbol{A}) \cdot \boldsymbol{s} = \boldsymbol{s}^{\dagger} \cdot \boldsymbol{s}$$

$$= \sum_{k} s_{k}^{*} \cdot s_{k} = \sum_{k} |s_{k}|^{2}$$

$$= \|\boldsymbol{s}\|_{2}^{2}$$

Orthogonal Transforms

Orthogonal Matrix

- Special case of unitary matrix: All matrix elements are real values
- → Inverse matrix is equal to the transpose

$$\textbf{\textit{A}}^{-1} = \textbf{\textit{A}}^{\mathrm{T}}$$

Basis Vectors

- Columns of synthesis matrix **B**
- \rightarrow Rows of analysis matrix $\mathbf{A} = \mathbf{B}^{\mathrm{T}}$

$$m{B} = \left| egin{array}{c|ccc} m{b}_0 & m{b}_1 & m{b}_2 & \cdots & m{b}_{\mathcal{N}-1} \ m{b}_1 & m{b}_1 & m{b}_2 & \cdots \end{array}
ight|$$

Orthonormal Basis

Property of Unitary Transforms

• Consider product of analysis and synthesis matrix: $\mathbf{A}\mathbf{B} = \mathbf{B}^{-1}\mathbf{B} = \mathbf{B}^{\dagger}\mathbf{B}$

- → Basis vectors b_k are orthogonal to each other
- → Basis vectors b_k have a length equal to 1
- → Basis vectors of unitary matrices form an orthonormal basis

Geometric Interpretation

■ Rotation (and possible reflection) of coordinate system

Example of Orthogonal Transform for N=2

- lacktriangleq Vector of two samples $m{s}=(s_0,s_1)^{\mathrm{T}}$
- Synthesis transform matrix

$$m{B} = \left[egin{array}{cc} m{b}_0 & m{b}_1 \end{array}
ight] = rac{1}{\sqrt{2}} \left[egin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}
ight]$$

Representation of signal vector

$$\mathbf{s} = u_0 \cdot \mathbf{b}_0 + u_1 \cdot \mathbf{b}_1$$

$$\begin{bmatrix} 4 \\ 2 \end{bmatrix} = u_0 \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + u_1 \cdot \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

$$\begin{bmatrix} 4 \\ 2 \end{bmatrix} = 3 \cdot \begin{bmatrix} 1 \\ 1 \end{bmatrix} + 1 \cdot \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

→ Forward transform: Project signal vector onto basis vectors

$$u_0 = \boldsymbol{b}_0^{\mathrm{T}} \cdot \boldsymbol{s} = 3\sqrt{2}$$
 and $\boldsymbol{u}_1 = \boldsymbol{b}_1^{\mathrm{T}} \cdot \boldsymbol{s} = \sqrt{2}$

Unitary Transforms: MSE Distortion

Conservation of MSE distortion

■ Remember: Conservation of signal energy / vector length

$$\left\| \boldsymbol{u} \right\|_2^2 = \left\| \boldsymbol{A} \cdot \boldsymbol{s} \right\|_2^2 = \left\| \boldsymbol{s} \right\|_2^2$$

→ Consequence for MSE distortion

$$d_{N}(\boldsymbol{u}, \boldsymbol{u'}) = \frac{1}{N} \|\boldsymbol{u} - \boldsymbol{u'}\|_{2}^{2}$$

$$= \frac{1}{N} \|\boldsymbol{A}\boldsymbol{s} - \boldsymbol{B}^{-1}\boldsymbol{s'}\|_{2}^{2} = \frac{1}{N} \|\boldsymbol{A}(\boldsymbol{s} - \boldsymbol{s'})\|_{2}^{2}$$

$$= \frac{1}{N} \|\boldsymbol{s} - \boldsymbol{s'}\|_{2}^{2} = d_{N}(\boldsymbol{s}, \boldsymbol{s'})$$

Main Reason for using Unitary Transforms

- \rightarrow Minimization of MSE distortion $d_N(\mathbf{u}, \mathbf{u'})$ in transform domain also minimizes MSE distortion $d_N(\mathbf{s}, \mathbf{s'})$ in original signal space
- → Enables independent scalar quantization of transform coefficients

Unitary Transforms: Covariance Matrix

Covariance of Transform Coefficients

■ Covariance matrix of transform coefficients (general case: complex values)

$$egin{aligned} oldsymbol{C}_{UU} &= \mathrm{E} \Big\{ \left(oldsymbol{U} - \mathrm{E} \{ oldsymbol{U} \}
ight) \left(oldsymbol{U} - \mathrm{E} \{ oldsymbol{U} \}
ight)^{\dagger} \Big\} \ &= \mathrm{E} \Big\{ \left(oldsymbol{S} - \mathrm{E} \{ oldsymbol{S} \}
ight) \left(oldsymbol{S} - \mathrm{E} \{ oldsymbol{S} \}
ight)^{\dagger} \Big\} \cdot oldsymbol{A}^{\dagger} \ &= oldsymbol{A} \cdot oldsymbol{C}_{SS} \cdot oldsymbol{A}^{\dagger} \ &= oldsymbol{A} \cdot oldsymbol{C}_{SS} \cdot oldsymbol{A}^{-1} \end{aligned}$$

- → Transform matrix A can be chosen in a way that (linear) statistical dependencies are reduced
- → Possible to increase efficiency of scalar quantization (if source contains linear statistical dependencies)

Unitary Transforms: Variances

Variances of Transform Coefficients

■ Sum of variances: Trace of autocovariance matrix

$$\boldsymbol{C}_{UU} = \begin{bmatrix} \sigma_0^2 & x & x & \cdots & x \\ x & \sigma_1^2 & x & \cdots & x \\ x & x & \sigma_2^2 & \cdots & x \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x & x & x & \cdots & \sigma_{N-1}^2 \end{bmatrix} = \boldsymbol{A} \cdot \boldsymbol{C}_{SS} \cdot \boldsymbol{A}^{-1}$$

Trace of a matrix is similarity-invariant

$$\operatorname{tr}(\boldsymbol{X}) = \operatorname{tr}(\boldsymbol{Q} \boldsymbol{X} \boldsymbol{Q}^{-1})$$

→ The arithmetic mean of the transform coefficient variances is equal to source variance

$$\frac{1}{N}\sum_{k=0}^{N-1}\sigma_k^2=\sigma_S^2$$

Effect of Orthogonal Transform for Correlated Sources

lacksquare 2d signal vectors of Gauss-Markov source with $\varrho=0.9$

- → Uneven distribution of transform coefficient variances: $\sigma_0^2 > \sigma_1^2$
- → Most signal energy is concentrated in first transform coefficient

Gauss-Markov Examples for N=2

Example for Waveforms: Gauss-Markov with $\varrho=0.95$

$$\begin{pmatrix} u_0[n] \\ u_1[n] \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} s[2n] \\ s[2n+1] \end{pmatrix}$$

most signal energy is concentrated in $\it u_{\rm 0}$

Example for Images: 2x2 Block Transform (sorted Coefficients)

Example for Images: 4 x 4 Block Transform (sorted Coefficients)

Example for Images: 8x8 Block Transform (sorted Coefficients)

Transform Coding as Constrained Vector Quantizer

quantization cells

quantization cells in transform domain

quantization cells in signal space

- Quantization cells are:
- hyper-rectangles as in conventional scalar quantization
- but rotated and aligned with the transform basis vectors
- → On average: Value of second quantization index is reduced (for correlated sources)
- → Indicates improved coding efficiency for correlated sources (exploits memory advantage)

Bit Allocation for Transform Coefficients

- Given: Orthogonal transform with \boldsymbol{A} and $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$
- Operational distortion-rate function of scalar quantizers (general form)

$$D_k(R_k) = \sigma_k^2 \cdot g_k(R_k)$$

• Overall MSE distortion D and bit rate R (transform size N)

$$D = \frac{1}{N} \sum_{k=0}^{N-1} D_k(R_k)$$
 and $R = \frac{1}{N} \sum_{k=0}^{N-1} R_k$

Bit allocation

- Overall rate-distortion performance D(R) depends on bit distribution among transform coefficents $R \mapsto \{R_0, R_1, \dots\}$
- → Optimal bit allocation: Solution of optimization problem

min
$$D(R_0, R_1, \cdots)$$
 subject to $\frac{1}{N} \sum_{k} R_k = R$

Bit Allocation for Transform Coefficients

■ Constrained optimization problem

$$\min_{R_0, R_1, \cdots} D(R) = \frac{1}{N} \sum_{k=0}^{N-1} D_k(R_k)$$
 subject to $\frac{1}{N} \sum_{k=0}^{N-1} R_k = R$

with $D_k(R_k)$ being the operational distortion-rate functions the scalar component quantizers

Reformulate as unconstrained minimization problem using the technique of Lagrange multipliers (minimize $D + \lambda R$)

$$\min_{R_{\mathbf{0}},R_{\mathbf{1}},\cdots} \left(\frac{1}{N} \sum_{k=0}^{N-1} D_k(R_k) \right) + \lambda \cdot \left(\frac{1}{N} \sum_{k=0}^{N-1} R_k \right)$$

 \rightarrow Set derivatives with respect to R_k equal to 0

$$\frac{\partial}{\partial R_L} (D + \lambda R) \stackrel{!}{=} 0$$

Optimal Bit Allocation: Pareto Condition

■ Minimize Lagrangian cost function $D + \lambda R$

$$\frac{\partial}{\partial R_k} \left(\frac{1}{N} \sum_{i=0}^{N-1} D_i(R_i) + \frac{\lambda}{N} \sum_{i=0}^{N-1} R_i \right) \stackrel{!}{=} 0$$

$$\frac{1}{N} \cdot \frac{\partial}{\partial R_k} D_k(R_k) + \frac{\lambda}{N} \stackrel{!}{=} 0$$

→ Solution: Pareto condition

$$\frac{\partial D_k(R_k)}{\partial R_k} = -\lambda = \text{const}$$

- → All component quantizers have to be operated at the same slope of their operational distortion-rate function
- → Interpretation: Move bits from coefficients with small distortion reduction per bit to coefficients with larger distortion reduction per bit

High-Rate Approximation: Bit Allocation

High Rates

- All component quantizers are operated at high component rates R_k
- High-rate approximation of distortion-rate function for component quantizers

$$D_k(R_k) = \varepsilon_k^2 \cdot \sigma_k^2 \cdot 2^{-2R_k}$$

where $arepsilon_k^2$ depends on transform coefficient distribution and quantizer

Optimal Bit Allocation at High Rates

■ Pareto condition

$$\frac{\partial}{\partial R_k} D_k(R_k) = -2 \ln 2 \varepsilon_k^2 \sigma_k^2 2^{-2R_k} = -2 \ln 2 D_k(R_k) = -\lambda = \text{const}$$

→ All component quantizers are operated at the same distortion

$$D_k(R_k) = D$$

High-Rate Approximation: Bit Allocation

Optimal Bit Allocation

■ All component quantizers are operated at the same distortion

$$D_k(R_k) = \varepsilon_k^2 \cdot \sigma_k^2 \cdot 2^{-2R_k} = D$$

→ Bit allocation rule

$$R_k(D) = \frac{1}{2} \log_2 \left(\frac{\varepsilon_k^2 \, \sigma_k^2}{D} \right)$$

Overall Operational Rate-Distortion Function

Use result of optimal bit allocation

$$R(D) = \frac{1}{N} \sum_{k=0}^{N-1} R_k(D) = \frac{1}{2N} \sum_{k=0}^{N-1} \log_2 \left(\frac{\varepsilon_k^2 \sigma_k^2}{D} \right)$$

High-Rate Approximation: Distortion-Rate Function

Operational Rate-Distortion Function

$$R(D) = \frac{1}{2N} \sum_{k=0}^{N-1} \log_2 \left(\frac{\varepsilon_k^2 \sigma_k^2}{D} \right) = \frac{1}{2} \log_2 \left(\frac{1}{D} \left(\prod_{k=0}^{N-1} \varepsilon_k^2 \right)^{\frac{1}{N}} \left(\prod_{k=0}^{N-1} \sigma_k^2 \right)^{\frac{1}{N}} \right)$$

Define geometric means

$$ilde{\sigma}^2 = \left(\prod_{k=0}^{N-1} \sigma_k^2\right)^{\frac{1}{N}} \qquad ext{and} \qquad ilde{arepsilon}^2 = \left(\prod_{k=0}^{N-1} arepsilon_k^2\right)^{\frac{1}{N}}$$

High-rate rate-distortion / distortion-rate function (for optimal bit allocation)

$$oxed{R(D) = rac{1}{2} \log_2 \left(rac{ ilde{arepsilon}^2 \cdot ilde{\sigma}^2}{D}
ight)}$$

and
$$D(R) = \tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2 \cdot 2^{-2R}$$

High-Rate Approximation for Gaussian Sources

Transform Coding for Gaussian Sources

- Any linear combination of Gaussian random variables is also a Gaussian random variable
- → All transform coefficients represent Gaussian random variables

Transform Coding for Gaussian Sources using Optimal Scalar Quantizers

■ High-rate distortion-rate function of entropy-constrained scalar quantizers

$$D_k(R_k) = \frac{\pi e}{6} \cdot \sigma_k^2 \cdot 2^{-2R_k}$$

→ Overall high-rate distortion-rate function for Gaussian sources

$$D_G(R) = \frac{\pi e}{6} \cdot \tilde{\sigma}^2 \cdot 2^{-2R}$$

→ Improvement relative to scalar quantization for uneven distribution of transform coefficient variances

Transform Coding Gain at High Rates

Transform Coding Gain

- Ratio of distortion for scalar quantization and transform coding
- Transform coding gain at high rates

$$G_T = \frac{D_{SQ}(R)}{D_{TQ}(R)} = \frac{\varepsilon_S^2 \cdot \sigma_S^2 \cdot 2^{-2R}}{\tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2 \cdot 2^{-2R}} = \frac{\varepsilon_S^2 \cdot \sigma_S^2}{\tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2}$$

Transform Coding Gain for Gaussian Sources

■ High-rate transform coding gain for Gaussian sources

$$G_T = \frac{\sigma_S^2}{\tilde{\sigma}^2} = \frac{\frac{1}{N} \sum_{k=0}^{N-1} \sigma_k^2}{\sqrt[N]{\prod_{k=0}^{N-1} \sigma_k^2}}$$

- → Ratio of arithmetic and geometric mean of the transform coefficient variances
- \rightarrow Transform coding gain is maximized if the geometric mean $\tilde{\sigma}^2$ of variances is minimized

Example: Transform Coding with N = 2 for Zero-Mean Gaussian

Input vector and transform matrix

$$m{s} = \left[egin{array}{c} s_0 \ s_1 \end{array}
ight] \qquad ext{and} \qquad m{A} = rac{1}{\sqrt{2}} \left[egin{array}{cc} 1 & 1 \ 1 & -1 \end{array}
ight]$$

→ Transformation

$$m{u} = \left[egin{array}{c} u_0 \\ u_1 \end{array}
ight] = m{A} \cdot m{s} = rac{1}{\sqrt{2}} \left[egin{array}{cc} 1 & 1 \\ 1 & -1 \end{array} \right] \left[egin{array}{c} s_0 \\ s_1 \end{array}
ight]$$

→ Transform coefficients

$$u_0 = \frac{1}{\sqrt{2}}(s_0 + s_1)$$
 and $u_0 = \frac{1}{\sqrt{2}}(s_0 - s_1)$

■ Inverse transformation

$$\boldsymbol{B} = \boldsymbol{A}^{-1} = \boldsymbol{A}^{\mathrm{T}} = \boldsymbol{A} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Example: Transform Coding with N = 2 for Zero-Mean Gaussian

■ Transform coefficients

$$u_0 = \frac{1}{\sqrt{2}}(s_0 + s_1)$$
 and $u_0 = \frac{1}{\sqrt{2}}(s_0 - s_1)$

Variance of transform coefficients

$$\begin{split} \sigma_0^2 &= \mathrm{E} \{ \ U_0^2 \ \} = \frac{1}{2} \, \mathrm{E} \{ \ (S_0 + S_1)^2 \ \} = \frac{1}{2} \Big(\mathrm{E} \{ \ S_0^2 \ \} + \mathrm{E} \{ \ S_1^2 \ \} + 2 \mathrm{E} \{ \ S_0 S_1 \ \} \Big) \\ &= \frac{1}{2} \left(\sigma_S^2 + \sigma_S^2 + 2 \sigma_S^2 \varrho \right) = \sigma_S^2 \left(1 + \varrho \right) \\ \sigma_1^2 &= \mathrm{E} \{ \ U_1^2 \ \} = \sigma_S^2 \left(1 - \varrho \right) \end{split}$$

Cross-correlation of transform coefficients

$$E\{U_0U_1\} = \frac{1}{2} E\{(S_0 + S_1)(S_0 - S_1)\} = \frac{1}{2} E\{S_0^2 - S_1^2\} = \sigma_S^2 - \sigma_S^2 = 0$$

Example: Transform Coding with N = 2 for Zero-Mean Gaussian

■ High rate distortion-rate functions of component quantizers

$$D_0(R_0) = \varepsilon^2 \, \sigma_0^2 \, 2^{-2R_0} = \varepsilon^2 \, \sigma_S^2 \, (1+\varrho) \, 2^{-2R_0}$$

$$D_1(R_1) = \varepsilon^2 \, \sigma_1^2 \, 2^{-2R_1} = \varepsilon^2 \, \sigma_S^2 \, (1-\varrho) \, 2^{-2R_1}$$

■ Optimal bit allocation: Pareto condition at high rates $D_0(R_0) = D_1(R_1)$

$$\varepsilon^{2} \sigma_{S}^{2} (1 + \varrho) 2^{-2R_{0}} = \varepsilon^{2} \sigma_{S}^{2} (1 - \varrho) 2^{-2R_{1}}$$
$$\log_{2}(1 + \varrho) - 2R_{0} = \log_{2}(1 - \varrho) - 2R_{1}$$

⇒ Using
$$R = \frac{1}{2}(R_0 + R_1)$$
 ⇒ $R_1 = 2R - R_0$

$$\log_2(1 + \varrho) - 2R_0 = \log_2(1 - \varrho) - 4R + 2R_0$$

$$4R_0 = 4R + \log_2(1 + \varrho) - \log_2(1 - \varrho)$$

$$R_0 = R + \frac{1}{4}\log_2\left(\frac{1 + \varrho}{1 - \varrho}\right)$$

Example: Transform Coding with N=2 for Zero-Mean Gaussian

Optimal bit allocation

$$R_0 = R + rac{1}{4}\log_2\Bigl(rac{1+arrho}{1-arrho}\Bigr) \qquad ext{and} \qquad R_1 = R - rac{1}{4}\log_2\Bigl(rac{1+arrho}{1-arrho}\Bigr)$$

■ Resulting component distortions

$$D_0(R) = \varepsilon^2 \sigma_s^2 (1+\varrho) 2^{-2R-\frac{1}{2}\log_2(\frac{1+\varrho}{1-\varrho})}$$
$$= \varepsilon^2 \sigma_s^2 (1+\varrho) 2^{-2R} \sqrt{\frac{1-\varrho}{1+\varrho}} = \varepsilon^2 \sigma_s^2 \sqrt{1-\varrho^2} 2^{-2R}$$

$$D_{1}(R) = \varepsilon^{2} \sigma_{s}^{2} (1 - \varrho) 2^{-2R + \frac{1}{2} \log_{2} \left(\frac{1 + \varrho}{1 - \varrho} \right)}$$
$$= \varepsilon^{2} \sigma_{s}^{2} (1 - \varrho) 2^{-2R} \sqrt{\frac{1 + \varrho}{1 - \varrho}} = \varepsilon^{2} \sigma_{s}^{2} \sqrt{1 - \varrho^{2}} 2^{-2R}$$

Example: Transform Coding with N=2 for Zero-Mean Gaussian

Component distortions

$$D_0(R) = D_1(R) = \varepsilon^2 \, \sigma_s^2 \, \sqrt{1 - \varrho^2} \, 2^{-2R}$$

Distortion rate function

$$D(R) = \frac{1}{2}(D_0(R) + D_1(R)) = \varepsilon^2 \, \sigma_s^2 \, \sqrt{1 - \varrho^2} \, 2^{-2R}$$

Geometric mean of variances

$$\tilde{\sigma}^2 = \sqrt{\sigma_0^2 \cdot \sigma_1^2} = \sigma_S^2 \cdot \sqrt{(1+\varrho)(1-\varrho)} = \sigma_S^2 \cdot \sqrt{1-\varrho^2}$$

→ Yields same expression for distortion rate function

$$D(R) = \varepsilon^2 \,\tilde{\sigma}^2 \, 2^{-2R} = \varepsilon^2 \,\sigma_S^2 \,\sqrt{1 - \varrho^2} \, 2^{-2R}$$

Example: Transform Coding with N=2 for Zero-Mean Gaussian

■ Transform coding gain for N=2

$$G_T = rac{arepsilon^2 \sigma_S^2 \, 2^{-2R}}{arepsilon^2 \sigma_S^2 \, \sqrt{1 - \varrho^2} \, 2^{-2R}} = rac{1}{\sqrt{1 - \varrho^2}}$$

Summary of Lecture

Transform Coding

- Linear unitary/orthogonal transform of block/vector of N consecutive samples
- Scalar quantization of resulting transform coefficients
- Inverse linear transform of reconstructed transform coefficients

Orthogonal Block Transforms

- Inverse transform matrix = Transpose of forward transform matrix
- → Coordinate axes remain orthogonal to each other (independent quantization)
- → MSE distortion: Same in transform domain and signal space

Bit Allocation

- Optimal bit allocation: Pareto condition (same slope for all $D_k(R_K)$)
- For high rates: Optimum bit allocation yields equal component distortions $D_k = D$

Summary of Lecture

High-Rate Approximations

■ Distortion-rate function of transform coding

$$D(R) = \tilde{\varepsilon}^2 \cdot \tilde{\sigma}^2 \cdot 2^{-2R}$$

■ Transform coding gain for Gaussian sources

$$G_T = \frac{\bar{\sigma}^2}{\tilde{\sigma}^2} = \frac{\text{arithmetic mean of variances}}{\text{geometric mean of variances}}$$

→ Goal of transform: Compaction of signal energy in few transform coefficients

Open Questions

- What is the optimal transform for a given sources?
- Practical aspects of transform coding

Exercise 1: Orthogonal Transforms of Size N = 2 (part I)

If we neglect possible reflections of coordinate axes, all orthogonal transforms for 2-d vectors can be specified by

$$\mathbf{A} = \begin{bmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{bmatrix}$$

where α is an arbitrary rotation angle.

Consider a zero-mean Gaussian process with variance σ_S^2 and the first-order correlation coefficient ϱ .

- (a) Calculate the variances σ_0^2 and σ_1^2 of the resulting transform coefficients as function of ϱ and α .
- (b) Calculate the covariance σ_{01}^2 between the resulting transform coefficients as function of ϱ and α .
- (c) Consider an even rate distribution $R_0 = R_1 = R$ and determine the associated high-rate distortion-rate function. Does transform coding improve the coding efficiency relative to scalar quantization for this case?

Exercise 1: Orthogonal Transforms of Size N=2 (part II)

- (d) Given is the overall rate $R = (R_0 + R_1)/2$. Determine the rate distribution (R_0, R_1) for which the overall distortion $D = (D_0 + D_1)/2$ is minimized (assume that the high rate approximation for scalar quantization of the transform coefficients is valid).
- (e) Determine the overall distortion-rate function for optimal rate allocation (and high rates).
- (f) Determine the high-rate transform coding gain, which is given by

$$G_T = rac{D_{ extsf{scalar quantization}}(R)}{D_{ extsf{transform coding}}(R)}$$

(g) For what rotation angles is the high-rate transform coding gain maximized (or the distortion minimized)?

Does the optimal rotation angle depend on the correlation coefficient ϱ ?

Exercise 2: Implement a PSNR Tool for PPM Images

Implement a tool for measuring PSNRs between two PPM images

- Input to the tool shall be two images in PPM format (original and reconstructed)
- The tool should output the following four Peak-Signal-to-Noise Ratios (PSNR measures)
 - → PSNR of red component, PSNR of green component, PSNR of blue component
 - → Average of the red, green, and blue PSNR

Test the tool by

- Coding one of our test images with JPEG (e.g., using "convert test.ppm test.jpg")
- Reconstructing the JPEG-coded image into the ppm format (e.g., using "convert test.jpg rec.ppm")
- Measuring the PSNRs between the original and reconstructed image using the implemented tool

The PSNR for a color component c[x, y] and its reconstruction c'[x, y] is defined as follows

$$\mathsf{PSNR} = 10 \cdot \mathsf{log}_{10} \left(\frac{255^2}{\mathsf{MSE}} \right) \qquad \mathsf{with} \qquad \mathsf{MSE} = \frac{1}{\mathsf{width} \cdot \mathsf{height}} \; \sum_{x,y} \left(c'[x,y] - c[x,y] \right)^2$$