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Last Lectures

Last Lectures: Scalar and Vector Quantization

Scalar Quantization
Simple encoding and decoding procedure
Uniform reconstruction quantizers (URQ): Particularly simple and still very efficient
Cannot exploit statistical dependencies (would require very complex entropy coding)

Vector Quantization
High-dimensional vector quantizers can approach rate-distortion bound
Space-filling gain can only be exploited by vector quantization (1.53 dB for N →∞)
Rarely used in practice: High computational complexity and memory requirements

Lossy Coding of Sources with Memory
Most important aspect: Exploit statistical dependencies (memory advantage)
Need approach that is simpler than vector quantization, but still efficient
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Transform Coding: Overview

Transform Coding: Introduction

Transform Coding
Simple concept for exploiting linear dependencies between samples
Low complexity compared to vector quantization (can be interpreted as very simple VQ)
Used in virtually all lossy audio, image and video codecs

Basic Concept

1 Arrange samples into blocks/vectors s of N adjacent samples
2 Analysis transform: Mapping to vectors of transform coefficients

u = A · s

3 Scalar quantization of transform coefficients u = {uk}

uk 7→ u′k

4 Synthesis transform: Mapping to blocks/vectors of reconstructed samples

s′ = B · u′
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Transform Coding: Overview / Structure of Transform Coding Systems

Structure of Transform Coding Systems

Q0

Q1

Q2

...

QN−1

A B

u0

u1

u2

uN−1

u′0

u′1

u′2

u′N−1


s0
s1
s2
...

sN−1




s ′0
s ′1
s ′2
...

s ′N−1


analysis

transform
synthesis
transform

scalar
quantizers

Effect of transform coding:
Remove/reduce dependencies before scalar quantization
Simple alternative to vector quantization
Simple and most relevant case: Linear transforms
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Transform Coding: Overview / Structure of Transform Coding Systems

Transform Encoder and Transform Decoder

encoder

α0

α1
...

αN−1

analysis
transform

A

entropy
coding

γ

u0

u1

uN−1

q0

q1

qN−1

blocks of
samples

s

bitstream

b

decoder

β0

β1
...

βN−1

entropy
decoding

γ−1

synthesis
transform

B

q0

q1

qN−1

u′0

u′1

u′N−1

bitstream

b

blocks of
reconstr.
samples

s ′
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Transform Coding: Overview / Motivation

Motivation of Transform Coding

Exploitation of Statistical Dependencies
Typically, the signal energy is concentrated in a few transform coefficients
Coding of a few non-zero coefficients and many zero-valued coefficients can be very efficient
(e.g., using arithmetic coding, run-level coding, ...)
Scalar quantization is more effective in transform domain

Efficient trade-off between Coding Efficiency and Complexity
Vector Quantization: Searching through codebook for best matching vector
Transform and scalar quantization: Substantial reduction in complexity

Suitable for Quantization using Perceptual Criteria
Speech & audio coding: Frequency bands might be used to simulate processing of human ear
Image & video coding: Quantization in transform domain leads to subjective improvement
Removal of perceptually irrelevant signal components
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Orthogonal Block Transforms / Linear Block Transforms

Linear Block Transforms: Analysis Transform

Linear Block Transform
Each component of the N-dimensional output vector u represents
a linear combination of the N components of the N-dimensional input vector s
Can be represented as matrix multiplication

Linear Analysis Transform
Block of samples s is converted into vector of transform coefficients u

u = A · s

Extended notation 
u0
u1
u2
...

uN−1

 =

 A

 ·


s0
s1
s2
...

sN−1
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Orthogonal Block Transforms / Linear Block Transforms

Linear Block Transforms: Synthesis Transform

Linear Synthesis Transform
Vector of reconstructed transform coefficients u′ is converted into block of reconstructed samples s′

s′ = B · u′

Extended notation 
s ′0
s ′1
s ′2
...

s ′N−1

 =

 B

 ·


u′0
u′1
u′2
...

u′N−1



Interpretation: Vector of reconstructed samples s′ is represented as
a linear combination of column vectors {bk} of the synthesis matrix B

s′ = u′0 · b0 + u′1 · b1 + u′2 · b1 + . . .+ u′N−1 · bN−1
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Orthogonal Block Transforms / Linear Block Transforms

Interpretation of Synthesis Transform

Synthesis Transform
Reconstructed block of samples s′

s ′0
s ′1
s ′2
...

s ′N−1


︸ ︷︷ ︸

s′

= u′0 ·


b00
b01
b02
...

b0,N−1


︸ ︷︷ ︸

b0

+u′1 ·


b10
b11
b12
...

b1,N−1


︸ ︷︷ ︸

b1

+u′2 ·


b20
b21
b22
...

b2,N−1


︸ ︷︷ ︸

b2

+ · · ·

Reconstructed transform coefficients {u′k} represent weighting factors
for basis vectors {bk} (i.e., columns) of synthesis transform matrix B

Analysis Transform for most relevant case A = B−1

Decomposition of sample vector s into basis vectors {bk}
Transform coefficients uk represent the corresponding weighting factors
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Orthogonal Block Transforms / Linear Block Transforms

Example for Possible Basis Vectors (of size 4)

b0 =
1
4


1
1
1
1

 , b1 =
1
4


1
1
−1
−1

 , b2 =
1
4


1
−1
−1
1

 , b3 =
1
4


1
−1
1
−1



Synthesis matrix B

B =

 b0 b1 b2 b3



=
1
4


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1



Associated analysis matrix A (typical choice)

A = B−1 =
1
4


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1
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Orthogonal Block Transforms / Linear Block Transforms

Example: Typical Basis Functions for 8×8 Image Blocks
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Orthogonal Block Transforms / Perfect Reconstruction

Perfect Reconstruction Property

Without Quantization
Transform coefficients are lossless coded: u′ = u
Optimal synthesis transform: B = A−1

Reconstructed samples are equal to source samples

s′ = B u = B A s = A−1 A s = s

Optimal Synthesis Transform (in presence of quantization)
Optimality: Minimum MSE distortion among all synthesis transforms for given analysis transform A

B = A−1 is optimal if
A is invertible and produces independent transform coefficients
all component quantizers are centroid quantizers

If above conditions are not fulfilled, a synthesis transform B 6= A−1 may reduce the distortion

In Practice: Use linear transforms with B = A−1
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Orthogonal Block Transforms / Unitary and Orthogonal Transforms

Unitary Transforms

Unitary Matrix
Inverse matrix is equal to its conjugate transpose

A−1 = A† = (A∗)T

Unitary transforms preserve length of vectors: ‖A · s‖2 = ‖s‖2

‖u‖22 =
∑
k

|uk |2 =
∑
k

u∗k · uk = (u∗)T u

= u† · u = (As)† · (As) = s† · A† · A · s

= s† ·
(
A−1 · A

)
· s = s† · s

=
∑
k

s∗k · sk =
∑
k

|sk |2

= ‖s‖22
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Orthogonal Block Transforms / Unitary and Orthogonal Transforms

Orthogonal Transforms

Orthogonal Matrix
Special case of unitary matrix: All matrix elements are real values
Inverse matrix is equal to the transpose

A−1 = AT

Basis Vectors
Columns of synthesis matrix B
Rows of analysis matrix A = BT

A =


b0
b1
b2
...

bN−1

 B =

 b0 b1 b2 · · · bN−1
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Orthogonal Block Transforms / Unitary and Orthogonal Transforms

Orthonormal Basis

Property of Unitary Transforms
Consider product of analysis and synthesis matrix: AB = B−1B = B†B

b∗0
b∗1
b∗2
...

b∗N−1



 b0 b1 b2 · · · bN−1

 =


1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1



Basis vectors bk are orthogonal to each other
Basis vectors bk have a length equal to 1
Basis vectors of unitary matrices form an orthonormal basis

Geometric Interpretation
Rotation (and possible reflection) of coordinate system
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Orthogonal Block Transforms / Unitary and Orthogonal Transforms

Example of Orthogonal Transform for N = 2

Vector of two samples s = (s0, s1)T

Synthesis transform matrix

B =

[
b0 b1

]
=

1√
2

[
1 1
1 −1

]
Representation of signal vector

s = u0 · b0 + u1 · b1[
4
2

]
= u0 ·

1√
2

[
1
1

]
+ u1 ·

1√
2

[
1
−1

]

[
4
2

]
= 3 ·

[
1
1

]
+ 1 ·

[
1
−1

]

s0

s1

u0 · b0

u1 · b1

sb0

b1

Forward transform: Project signal vector onto basis vectors

u0 = bT
0 · s = 3

√
2 and u1 = bT

1 · s =
√
2
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Orthogonal Block Transforms / Properties of Unitary Transforms

Unitary Transforms: MSE Distortion

Conservation of MSE distortion
Remember: Conservation of signal energy / vector length∥∥u∥∥2

2 =
∥∥A · s∥∥2

2 =
∥∥s∥∥2

2

Consequence for MSE distortion

dN(u,u′) =
1
N

∥∥u − u′∥∥2
2

=
1
N

∥∥∥As − B−1s′
∥∥∥2

2
=

1
N

∥∥∥A (s − s′)
∥∥∥2

2

=
1
N

∥∥s − s′
∥∥2

2 = dN(s, s′)

Main Reason for using Unitary Transforms
Minimization of MSE distortion dN(u,u′) in transform domain
also minimizes MSE distortion dN(s, s′) in original signal space

Enables independent scalar quantization of transform coefficients
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Orthogonal Block Transforms / Properties of Unitary Transforms

Unitary Transforms: Covariance Matrix

Covariance of Transform Coefficients
Covariance matrix of transform coefficients (general case: complex values)

CUU = E
{

(U − E{U }) (U − E{U })†
}

= E
{

A (S − E{S }) (S − E{S })†A†
}

= A · E
{

(S − E{S }) (S − E{S })†
}
· A†

= A · CSS · A†

= A · CSS · A−1

Transform matrix A can be chosen in a way that (linear) statistical dependencies are reduced

Possible to increase efficiency of scalar quantization
(if source contains linear statistical dependencies)
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Orthogonal Block Transforms / Properties of Unitary Transforms

Unitary Transforms: Variances

Variances of Transform Coefficients
Sum of variances: Trace of autocovariance matrix

CUU =


σ2

0 x x · · · x
x σ2

1 x · · · x
x x σ2

2 · · · x
...

...
...

. . .
...

x x x · · · σ2
N−1

 = A · CSS · A−1

Trace of a matrix is similarity-invariant

tr(X ) = tr(Q X Q−1)

The arithmetic mean of the transform coefficient variances is equal to source variance

1
N

N−1∑
k=0

σ2
k = σ2

S
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Orthogonal Block Transforms / Effect of Orthogonal Transforms

Effect of Orthogonal Transform for Correlated Sources

2d signal vectors of Gauss-Markov source with % = 0.9

s0

s1

A =
1√
2

[
1 1
−1 1

]

rotation by
φ = −45◦

u0

u1

Uneven distribution of transform coefficient variances: σ2
0 > σ2

1

Most signal energy is concentrated in first transform coefficient
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Orthogonal Block Transforms / Effect of Orthogonal Transforms

Gauss-Markov Examples for N = 2

% = 0.00

s0

s1

u0

u1

% = 0.50

s0

s1

u0

u1

% = 0.90

s0

s1

u0

u1

% = 0.95

s0

s1

u0

u1
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Orthogonal Block Transforms / Effect of Orthogonal Transforms

Example for Waveforms: Gauss-Markov with % = 0.95

s[n]

n

(
u0[n]

u1[n]

)
=

1√
2

(
1 1

1 −1

)(
s[2n]

s[2n + 1]

)

most signal energy is concentrated in u0

u0[n]

n

u1[n]

n
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Orthogonal Block Transforms / Effect of Orthogonal Transforms

Example for Images: 2 x 2 Block Transform (sorted Coefficients)
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Orthogonal Block Transforms / Effect of Orthogonal Transforms

Example for Images: 4 x 4 Block Transform (sorted Coefficients)
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Orthogonal Block Transforms / Effect of Orthogonal Transforms

Example for Images: 8 x 8 Block Transform (sorted Coefficients)
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Orthogonal Block Transforms / Effect of Orthogonal Transforms

Transform Coding as Constrained Vector Quantizer

scalar quantization

quantization cells

transform coding

quantization cells
in transform domain

transform coding

quantization cells
in signal space

Quantization cells are: hyper-rectangles as in conventional scalar quantization
but rotated and aligned with the transform basis vectors

On average: Value of second quantization index is reduced (for correlated sources)
Indicates improved coding efficiency for correlated sources (exploits memory advantage)
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Bit Allocation for Transform Coefficients / Optimization Problem

Bit Allocation for Transform Coefficients

Given: Orthogonal transform with A and B = AT

Operational distortion-rate function of scalar quantizers (general form)

Dk(Rk) = σ2
k · gk(Rk)

Overall MSE distortion D and bit rate R (transform size N)

D =
1
N

N−1∑
k=0

Dk(Rk) and R =
1
N

N−1∑
k=0

Rk

Bit allocation

Overall rate-distortion performance D(R) depends on bit distribution
among transform coefficents R 7→ {R0,R1, · · · }
Optimal bit allocation: Solution of optimization problem

min D(R0,R1, · · · ) subject to
1
N

∑
k

Rk = R
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Bit Allocation for Transform Coefficients / Optimization Problem

Bit Allocation for Transform Coefficients

Constrained optimization problem

min
R0,R1,···

D(R) =
1
N

N−1∑
k=0

Dk(Rk) subject to
1
N

N−1∑
k=0

Rk = R

with Dk(Rk) being the operational distortion-rate functions the scalar component quantizers

Reformulate as unconstrained minimization problem using
the technique of Lagrange multipliers (minimize D + λR)

min
R0,R1,···

(
1
N

N−1∑
k=0

Dk(Rk)

)
+ λ ·

(
1
N

N−1∑
k=0

Rk

)

Set derivatives with respect to Rk equal to 0

∂

∂Rk

(
D + λR

) !
= 0
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Bit Allocation for Transform Coefficients / Pareto Condition

Optimal Bit Allocation: Pareto Condition

Minimize Lagrangian cost function D + λR

∂

∂Rk

(
1
N

N−1∑
i=0

Di (Ri ) +
λ

N

N−1∑
i=0

Ri

)
!

= 0

1
N
· ∂

∂Rk
Dk(Rk) +

λ

N
!

= 0

Solution: Pareto condition
∂Dk(Rk)

∂Rk
= −λ = const

All component quantizers have to be operated at the same slope
of their operational distortion-rate function

Interpretation: Move bits from coefficients with small distortion reduction per bit to coefficients
with larger distortion reduction per bit
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High-Rate Approximation / Optimal Bit Allocation

High-Rate Approximation: Bit Allocation

High Rates
All component quantizers are operated at high component rates Rk

High-rate approximation of distortion-rate function for component quantizers

Dk(Rk) = ε2k · σ2
k · 2−2Rk

where ε2k depends on transform coefficient distribution and quantizer

Optimal Bit Allocation at High Rates

Pareto condition
∂

∂Rk
Dk(Rk) = −2 ln 2 ε2k σ

2
k 2
−2Rk = −2 ln 2Dk(Rk) = −λ = const

All component quantizers are operated at the same distortion

Dk(Rk) = D
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High-Rate Approximation / Optimal Bit Allocation

High-Rate Approximation: Bit Allocation

Optimal Bit Allocation
All component quantizers are operated at the same distortion

Dk(Rk) = ε2k · σ2
k · 2−2Rk = D

Bit allocation rule

Rk(D) =
1
2

log2

(
ε2k σ

2
k

D

)

Overall Operational Rate-Distortion Function
Use result of optimal bit allocation

R(D) =
1
N

N−1∑
k=0

Rk(D) =
1
2N

N−1∑
k=0

log2

(
ε2k σ

2
k

D

)
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High-Rate Approximation / Operational Rate-Distortion Function

High-Rate Approximation: Distortion-Rate Function

Operational Rate-Distortion Function

R(D) =
1
2N

N−1∑
k=0

log2

(
ε2k σ

2
k

D

)
=

1
2

log2

 1
D

(
N−1∏
k=0

ε2k

)1
N
(

N−1∏
k=0

σ2
k

)1
N



Define geometric means

σ̃2 =

(
N−1∏
k=0

σ2
k

)1
N

and ε̃2 =

(
N−1∏
k=0

ε2k

)1
N

High-rate rate-distortion / distortion-rate function (for optimal bit allocation)

R(D) =
1
2

log2

(
ε̃2 · σ̃2

D

)
and D(R) = ε̃2 · σ̃2 · 2−2R
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High-Rate Approximation / Gaussian Sources

High-Rate Approximation for Gaussian Sources

Transform Coding for Gaussian Sources
Any linear combination of Gaussian random variables is also a Gaussian random variable
All transform coefficients represent Gaussian random variables

Transform Coding for Gaussian Sources using Optimal Scalar Quantizers

High-rate distortion-rate function of entropy-constrained scalar quantizers

Dk(Rk) =
πe

6
· σ2

k · 2−2Rk

Overall high-rate distortion-rate function for Gaussian sources

DG (R) =
πe

6
· σ̃2 · 2−2R

Improvement relative to scalar quantization for uneven distribution of transform coefficient
variances
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High-Rate Approximation / Transform Gain

Transform Coding Gain at High Rates

Transform Coding Gain
Ratio of distortion for scalar quantization and transform coding

Transform coding gain at high rates

GT =
DSQ(R)

DTQ(R)
=
ε2S · σ2

S · 2−2R

ε̃2 · σ̃2 · 2−2R =
ε2S · σ2

S

ε̃2 · σ̃2

Transform Coding Gain for Gaussian Sources

High-rate transform coding gain for Gaussian sources

GT =
σ2
S

σ̃2 =
1
N

∑N−1
k=0 σ

2
k

N

√∏N−1
k=0 σ

2
k

Ratio of arithmetic and geometric mean of the transform coefficient variances
Transform coding gain is maximized if the geometric mean σ̃2 of variances is minimized
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High-Rate Approximation / Example: Zero-Mean Gaussian and Transform with N = 2

Example: Transform Coding with N = 2 for Zero-Mean Gaussian

Input vector and transform matrix

s =

[
s0
s1

]
and A =

1√
2

[
1 1
1 −1

]

Transformation

u =

[
u0
u1

]
= A · s =

1√
2

[
1 1
1 −1

] [
s0
s1

]
Transform coefficients

u0 =
1√
2

(s0 + s1) and u0 =
1√
2

(s0 − s1)

Inverse transformation

B = A−1 = AT = A =
1√
2

[
1 1
1 −1

]
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High-Rate Approximation / Example: Zero-Mean Gaussian and Transform with N = 2

Example: Transform Coding with N = 2 for Zero-Mean Gaussian

Transform coefficients

u0 =
1√
2

(s0 + s1) and u0 =
1√
2

(s0 − s1)

Variance of transform coefficients

σ2
0 = E

{
U2

0
}

=
1
2

E
{

(S0 + S1)2 } =
1
2

(
E
{
S2

0
}

+ E
{
S2

1
}

+ 2E{S0S1 }
)

=
1
2
(
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High-Rate Approximation / Example: Zero-Mean Gaussian and Transform with N = 2

Example: Transform Coding with N = 2 for Zero-Mean Gaussian

High rate distortion-rate functions of component quantizers

D0(R0) = ε2 σ2
0 2
−2R0 = ε2 σ2

S (1 + %) 2−2R0

D1(R1) = ε2 σ2
1 2
−2R1 = ε2 σ2

S (1− %) 2−2R1

Optimal bit allocation: Pareto condition at high rates D0(R0) = D1(R1)

ε2 σ2
S (1 + %) 2−2R0 = ε2 σ2

S (1− %) 2−2R1

log2(1 + %)− 2R0 = log2(1− %)− 2R1

Using R = 1
2 (R0 + R1) R1 = 2R − R0

log2(1 + %)− 2R0 = log2(1− %)− 4R + 2R0

4R0 = 4R + log2(1 + %)− log2(1− %)

R0 = R +
1
4

log2

(
1 + %

1− %

)
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Example: Transform Coding with N = 2 for Zero-Mean Gaussian

Optimal bit allocation

R0 = R +
1
4

log2

(
1 + %

1− %

)
and R1 = R − 1

4
log2

(
1 + %

1− %

)

Resulting component distortions

D0(R) = ε2 σ2
s (1 + %) 2−2R− 1

2 log2( 1+%
1−% )

= ε2 σ2
s (1 + %) 2−2R

√
1− %
1 + %

= ε2 σ2
s

√
1− %2 2−2R

D1(R) = ε2 σ2
s (1− %) 2−2R+ 1

2 log2( 1+%
1−% )

= ε2 σ2
s (1− %) 2−2R

√
1 + %

1− %
= ε2 σ2

s

√
1− %2 2−2R
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High-Rate Approximation / Example: Zero-Mean Gaussian and Transform with N = 2

Example: Transform Coding with N = 2 for Zero-Mean Gaussian

Component distortions
D0(R) = D1(R) = ε2 σ2

s

√
1− %2 2−2R

Distortion rate function

D(R) =
1
2

(D0(R) + D1(R)) = ε2 σ2
s

√
1− %2 2−2R

Geometric mean of variances

σ̃2 =
√
σ2

0 · σ2
1 = σ2

S ·
√

(1 + %)(1− %) = σ2
S ·
√

1− %2

Yields same expression for distortion rate function

D(R) = ε2 σ̃2 2−2R = ε2 σ2
S

√
1− %2 2−2R
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High-Rate Approximation / Example: Zero-Mean Gaussian and Transform with N = 2

Example: Transform Coding with N = 2 for Zero-Mean Gaussian

Transform coding gain for N = 2

GT =
ε2 σ2

S 2
−2R

ε2 σ2
S

√
1− %2 2−2R

=
1√

1− %2

%

10 log10 GT

0 0.2 0.4 0.6 0.8 1.0
0 dB

2 dB

4 dB

6 dB

% = 0.5→ 0.625 dB

% = 0.9→ 3.606 dB

% = 0.95→ 5.055 dB
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Summary

Summary of Lecture

Transform Coding
Linear unitary/orthogonal transform of block/vector of N consecutive samples
Scalar quantization of resulting transform coefficients
Inverse linear transform of reconstructed transform coefficients

Orthogonal Block Transforms
Inverse transform matrix = Transpose of forward transform matrix
Coordinate axes remain orthogonal to each other (independent quantization)
MSE distortion: Same in transform domain and signal space

Bit Allocation
Optimal bit allocation: Pareto condition (same slope for all Dk(RK ))
For high rates: Optimum bit allocation yields equal component distortions Dk = D
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Summary

Summary of Lecture

High-Rate Approximations
Distortion-rate function of transform coding

D(R) = ε̃2 · σ̃2 · 2−2R

Transform coding gain for Gaussian sources

GT =
σ̄2

σ̃2 =
arithmetic mean of variances
geometric mean of variances

Goal of transform: Compaction of signal energy in few transform coefficients

Open Questions
What is the optimal transform for a given sources ?
Practical aspects of transform coding
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Exercises

Exercise 1: Orthogonal Transforms of Size N = 2 (part I)

If we neglect possible reflections of coordinate axes, all orthogonal transforms for 2-d vectors can be
specified by

A =

[
cosα sinα
− sinα cosα

]
where α is an arbitrary rotation angle.

Consider a zero-mean Gaussian process with variance σ2
S and the first-order correlation coefficient %.

(a) Calculate the variances σ2
0 and σ2

1 of the resulting transform coefficients as function of % and α.

(b) Calculate the covariance σ2
01 between the resulting transform coefficients as function of % and α.

(c) Consider an even rate distribution R0 = R1 = R and determine the associated high-rate
distortion-rate function. Does transform coding improve the coding efficiency relative to scalar
quantization for this case?

Heiko Schwarz (Freie Universität Berlin) — Data Compression: Transform Coding 43 / 45



Exercises

Exercise 1: Orthogonal Transforms of Size N = 2 (part II)

(d) Given is the overall rate R = (R0 + R1)/2. Determine the rate distribution (R0,R1) for which the
overall distortion D = (D0 + D1)/2 is minimized (assume that the high rate approximation for
scalar quantization of the transform coefficients is valid).

(e) Determine the overall distortion-rate function for optimal rate allocation (and high rates).

(f) Determine the high-rate transform coding gain, which is given by

GT =
Dscalar quantization(R)

Dtransform coding(R)

(g) For what rotation angles is the high-rate transform coding gain maximized
(or the distortion minimized)?

Does the optimal rotation angle depend on the correlation coefficient %?
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Exercises

Exercise 2: Implement a PSNR Tool for PPM Images

Implement a tool for measuring PSNRs between two PPM images
Input to the tool shall be two images in PPM format (original and reconstructed)
The tool should output the following four Peak-Signal-to-Noise Ratios (PSNR measures)

PSNR of red component, PSNR of green component, PSNR of blue component

Average of the red, green, and blue PSNR

Test the tool by
Coding one of our test images with JPEG (e.g., using “convert test.ppm test.jpg”)
Reconstructing the JPEG-coded image into the ppm format (e.g., using “convert test.jpg rec.ppm”)
Measuring the PSNRs between the original and reconstructed image using the implemented tool

The PSNR for a color component c[x , y ] and its reconstruction c ′[x , y ] is defined as follows

PSNR = 10 · log10

(
2552

MSE

)
with MSE =

1
width · height

∑
x,y

(
c ′[x , y ]− c[x , y ]

)2
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